Science.gov

Sample records for algae brown algae

  1. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  2. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  3. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  4. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  5. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  6. Phospholipids of New Zealand Edible Brown Algae.

    PubMed

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of (31)P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  7. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  8. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  9. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  10. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD... chopped for use in food. (b) The ingredient meets the specifications for kelp in the Food Chemicals Codex...

  11. Cytoplasmic inheritance of organelles in brown algae.

    PubMed

    Motomura, Taizo; Nagasato, Chikako; Kimura, Kei

    2010-03-01

    Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete, irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1-2 h after fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization, mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis in brown algae.

  12. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.

    PubMed

    Thomas, Noel Vinay; Kim, Se-Kwon

    2011-11-01

    Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  14. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE

    PubMed Central

    Bouck, G. Benjamin

    1965-01-01

    The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells. PMID:5865936

  15. Antimicrobial effect of phlorotannins from marine brown algae.

    PubMed

    Eom, Sung-Hwan; Kim, Young-Mog; Kim, Se-Kwon

    2012-09-01

    Marine organisms exhibit a rich chemical content that possess unique structural features as compared to terrestrial metabolites. Among marine resources, marine algae are a rich source of chemically diverse compounds with the possibility of their potential use as a novel class of artificial food ingredients and antimicrobial agents. The objective of this brief review is to identify new candidate drugs for antimicrobial activity against food-borne pathogenic bacteria. Bioactive compounds derived from brown algae are discussed, namely phlorotannins, that have anti-microbial effects and therefore may be useful to explore as potential antimicrobial agents for the food and pharmaceutical industries. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    PubMed

    Zhang, Lei; Wang, Xumin; Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  17. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  18. Brown algae as a model for plant organogenesis.

    PubMed

    Bogaert, Kenny A; Arun, Alok; Coelho, Susana M; De Clerck, Olivier

    2013-01-01

    Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.

  19. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    PubMed

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae.

  20. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  1. Cytoskeleton and Morphogenesis in Brown Algae

    PubMed Central

    KATSAROS, CHRISTOS; KARYOPHYLLIS, DEMOSTHENES; GALATIS, BASIL

    2006-01-01

    • Background Morphogenesis on a cellular level includes processes in which cytoskeleton and cell wall expansion are strongly involved. In brown algal zygotes, microtubules (MTs) and actin filaments (AFs) participate in polarity axis fixation, cell division and tip growth. Brown algal vegetative cells lack a cortical MT cytoskeleton, and are characterized by centriole-bearing centrosomes, which function as microtubule organizing centres. • Scope Extensive electron microscope and immunofluorescence studies of MT organization in different types of brown algal cells have shown that MTs constitute a major cytoskeletal component, indispensable for cell morphogenesis. Apart from participating in mitosis and cytokinesis, they are also involved in the expression and maintenance of polarity of particular cell types. Disruption of MTs after Nocodazole treatment inhibits cell growth, causing bulging and/or bending of apical cells, thickening of the tip cell wall, and affecting the nuclear positioning. Staining of F-actin using Rhodamine-Phalloidin, revealed a rich network consisting of perinuclear, endoplasmic and cortical AFs. AFs participate in mitosis by the organization of an F-actin spindle and in cytokinesis by an F-actin disc. They are also involved in the maintenance of polarity of apical cells, as well as in lateral branch initiation. The cortical system of AFs was found related to the orientation of cellulose microfibrils (MFs), and therefore to cell wall morphogenesis. This is expressed by the coincidence in the orientation between cortical AFs and the depositing MFs. Treatment with cytochalasin B inhibits mitosis and cytokinesis, as well as tip growth of apical cells, and causes abnormal deposition of MFs. • Conclusions Both the cytoskeletal elements studied so far, i.e. MTs and AFs are implicated in brown algal cell morphogenesis, expressed in their relationship with cell wall morphogenesis, polarization, spindle organization and cytokinetic mechanism. The

  2. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  3. Trihydroxylated linear diterpenes from the brown alga Bifurcaria bifurcata.

    PubMed

    Culioli, Gérald; Ortalo-Magné, Annick; Daoudi, Mohammed; Thomas-Guyon, Hélène; Valls, Robert; Piovetti, Louis

    2004-07-01

    Two novel polar diterpenes were isolated from the brown alga Bifurcaria bifurcata collected off the Atlantic coast of Morocco, and their structures established by spectral methods. Both compounds are trihydroxylated acyclic diterpenes derived from 12-hydroxygeranylgeraniol. They were tested in vitro for their cytotoxicity and proved to be active against the NSCLC-N6 cell line. Their absolute configuration at the C-12 position has been determined with a modified Mosher's method [J. Am. Chem. Soc. 113 (1991) 4092] and that of the 12-hydroxygeranylgeraniol (bifurcadiol) has been revised.

  4. Mannitol metabolism in brown algae involves a new phosphatase family.

    PubMed

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms.

  5. A brown alga Sargassum fulvellum facilitates neuronal maturation and synaptogenesis.

    PubMed

    Hannan, Md Abdul; Kang, Ji-Young; Hong, Yong-Ki; Lee, Hyunsook; Chowdhury, Muhammad Tanvir Hossain; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2012-09-01

    Sargassum fulvellum (Turner) C. Agardh is an edible brown macroalgae having pharmacological importance. In previous reports, we described the screening of marine algae for their neuritogenic activity in developing hippocampal neurons and found that ethanol extract of S. fulvellum (SFE) possesses promising neurite-outgrowth-promoting activity. In this study, we evaluated whether the initial neurite promoting effect of SFE was followed on the further neuronal maturation and synapse formation. SFE exhibited dose-dependent effect on neurite maturation with an optimum concentration of 5 μg/mL. The initial neuronal differentiation is significantly promoted by SFE. Subsequently, compared with control culture, SFE increased the indices of axonal and dendritic developments such as the number and the length of primary processes, and branching frequencies. In addition to its effect on neurite development, SFE significantly increased the number of puncta for postsynaptic density-95, synaptic vesicle 2, and synapse (about 35%, 67%, and 125%, respectively, of control). Moreover, SFE dose-dependently protects neurons from naturally occurring death in normal culture condition. Taken together, our data demonstrate that SFE can promote neuronal maturation and synaptogenesis and support neuronal survival, suggesting the beneficial effect of this alga in nervous system.

  6. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles).

    PubMed

    Fu, Gang; Nagasato, Chikako; Oka, Seiko; Cock, J Mark; Motomura, Taizo

    2014-09-01

    Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served as crucial structures in algal studies especially from a viewpoint of phylogeny. However, the protein compositions of the flagella are still largely unknown. Here we report a LC-MS/MS based proteomics analysis of brown algal flagella. In total, 495 flagellar proteins were identified. Functional annotation of the proteome data revealed that brown algal flagellar proteins were associated with cell motility, signal transduction and various metabolic activities. We separately isolated AF and PF and analyzed their protein compositions. This analysis led to the identification of several AF- and PF-specific proteins. Among the PF-specific proteins, we found a candidate novel blue light receptor protein involved in phototaxis, and named it HELMCHROME because of the steering function of PF. Immunological analysis revealed that this protein was localized along the whole length of the PF and concentrated in the paraflagellar body.

  7. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  8. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    NASA Astrophysics Data System (ADS)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  9. Bioactive Chemical Constituents from the Brown Alga Homoeostrichus formosana

    PubMed Central

    Fang, Hui-Yu; Chokkalingam, Uvarani; Chiou, Shu-Fen; Hwang, Tsong-Long; Chen, Shu-Li; Wang, Wei-Lung; Sheu, Jyh-Horng

    2014-01-01

    A new chromene derivative, 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-hydroxy-2,6-dimethyl-2H-chromene (1) together with four known natural products, methylfarnesylquinone (2), isololiolide (3), pheophytin a (4), and β-carotene (5) were isolated from the brown alga Homoeostrichus formosana. The structure of 1 was determined by extensive 1D and 2D spectroscopic analyses. Acetylation of 1 yielded the monoacetylated derivative 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-acetyl-2,6-dimethyl-2H-chromene (6). Compounds 1–6 exhibited various levels of cytotoxic, antibacterial, and anti-inflammatory activities. Compound 2 was found to display potent in vitro anti-inflammatory activity by inhibiting the generation of superoxide anion (IC50 0.22 ± 0.03 μg/mL) and elastase release (IC50 0.48 ± 0.11 μg/mL) in FMLP/CB-induced human neutrophils. PMID:25561228

  10. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  11. Rapid Evolution of microRNA Loci in the Brown Algae.

    PubMed

    Cock, J Mark; Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P; Coelho, Susana M; Tarver, James E

    2017-03-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function.

  12. Rapid Evolution of microRNA Loci in the Brown Algae

    PubMed Central

    Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P.; Coelho, Susana M.; Tarver, James E.

    2017-01-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function. PMID:28338896

  13. Halovenus rubra sp. nov., isolated from salted brown alga Laminaria.

    PubMed

    Han, Dong; Zhang, Wen-Jiao; Cui, Heng-Lin; Li, Zheng-Rong

    2015-01-01

    Halophilic archaeal strain R28(T) was isolated from the brown alga Laminaria produced at Dalian, Liaoning Province, China. The cells of the strain were pleomorphic and lysed in distilled water, stained Gram-negative, and formed red-pigmented colonies. Strain R28(T) was able to grow at 25-50 °C (optimum 42 °C), in the presence of 3.1-5.1 M NaCl (optimum 3.9 M NaCl), with 0.005-1.0 M MgCl(2) (optimum 0.01 M MgCl(2)) and at pH 6.0-9.5 (optimum pH 7.0-7.5). The minimal NaCl concentration to prevent cell lysis was 15 % (w/v). The major polar lipids of the strain were identified as phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, and two glycolipids chromatographically identical to those of Halovenus aranensis CGMCC 1.11001(T). The 16S rRNA gene and rpoB' gene of strain R28(T) were phylogenetically related to the corresponding genes of Hvn. aranensis CGMCC 1.11001(T) (91.9-97.2 and 82.9 % nucleotide identity, respectively). The DNA G+C content of strain R28(T) was determined to be 56.3 mol%. The phenotypic, chemotaxonomic, and phylogenetic properties suggest that strain R28(T) (=CGMCC 1.10592(T) = JCM 17269(T)) represents a novel species of the genus Halovenus, for which the name Halovenus rubra sp. nov. is proposed.

  14. Sulfitobacter undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Won, Sung-Min; Park, Ji-Min; Yoon, Jung-Hoon

    2015-05-01

    A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and coccoid, ovoid or rod-shaped bacterial strain, W-BA2(T), was isolated from a brown algae reservoir in Wando of South Korea. Strain W-BA2(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of approximately 2.0-3.0% (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain W-BA2(T) fell within the clade comprising the type strains of species of the genus Sulfitobacter , clustering coherently with the type strains of Sulfitobacter donghicola and Sulfitobacter guttiformis showing sequence similarity values of 98.0-98.1%. Sequence similarities to the type strains of the other species of the genus Sulfitobacter were 96.0-97.4%. Strain W-BA2(T) contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain W-BA2(T) were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain W-BA2(T) was 55.0 mol% and its DNA-DNA relatedness values with the type strains of Sulfitobacter donghicola , Sulfitobacter guttiformis and Sulfitobacter mediterraneus were 16-23%. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain W-BA2(T) is separated from other species of the genus Sulfitobacter . On the basis of the data presented, strain W-BA2(T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter undariae sp. nov. is proposed. The type strain is W-BA2(T) ( = KCTC 42200(T) = NBRC 110523(T)).

  15. Antioxidant Effects of Brown Algae Sargassum on Sperm Parameters

    PubMed Central

    Sobhani, Alireza; Eftekhaari, Tasnim Eghbal; Shahrzad, Mohammad Esmaeil; Natami, Mohammad; Fallahi, Soghra

    2015-01-01

    Abstract The occurrence of oxidative stress during the sperm freeze-thaw cycles affects the sperm parameters and eventually leads to a decrease in its reproductive potential. Sperm protection against oxidative reactions during freezing is done by antioxidants. Since the selection of a suitable sperm cryopreservation bank is effective in maintaining acceptable reproductive potential and motility of sperm during cryopreservation. This study aimed to evaluate the antioxidant effects of different doses of the extract of brown algae Sargassum on oxidative stress and frozen human sperm parameters. We conducted a randomized controlled trial on the semen samples from 11 healthy men in the age group of 25 to 36 years. The samples were collected by masturbation after 3 to 5 days of abstinence from ejaculation. The specimens were divided into 3 equal parts, including 1 control group and 2 experimental groups. The 2 experimental groups were frozen using the rapid solidification technique with Sargassum extract at doses of 250 and 500 μg/mL. Motility and morphology of sperms were measured using a computer system and CASA software and the amount of reactive oxygen species was determined using Oxisperm kit. Sargassum extract significantly decreased the amount of reactive oxygen species (P < 0.005) and at doses of 250 and 500 μg/mL, significantly increased the overall motility (P < 0.006) and progressive motility (P < 0.007) after solidification, but did not affect the normal morphology of sperms. The addition of ethanol extract of Sargassum prevents reactive oxygen species production during the solidification process and improves sperm motility at doses of 250 and 500 μg/mL. PMID:26717354

  16. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  17. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    PubMed

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels.

  18. [Bacterial communities of brown and red algae from Peter the Great Bay, the Sea of Japan].

    PubMed

    Beleneva, I A; Zhukova, N V

    2006-01-01

    The structure of microbial communities of brown algae, red algae, and of the red alga Gracilaria verrucosa, healthy and affected with rotten thallus, were comparatively investigated; 61 strains of heterotrophic bacteria were isolated and characterized. Most of them were identified to the genus level, some Vibrio spp., to the species level according to their phenotypic properties and the fatty acid composition of cellular lipids. The composition of the microflora of two species of brown algae was different. In Chordaria flagelliformis, Pseudomonas spp. prevailed, and in Desmarestia viridis, Bacillus spp. The composition of the microflora of two red algae, G. verrucosa and Camphylaephora hyphaeoides, differed mainly in the ratio of prevailing groups of bacteria. The most abundant were bacteria of the CFB cluster and pseudoalteromonads. In addition, the following bacteria were found on the surface of the algae: Sulfitobacter spp., Halomonas spp., Acinetobacter sp., Planococcus sp., Arthrobacter sp., and Agromyces sp. From tissues of the affected G. verrucosa, only vibrios were isolated, both agarolytic and nonagarolytic. The existence of specific bacterial communities characteristic of different species of algae is suggested and the relation of Vibrio sp. to the pathological process in the tissues of G. verrucosa is supposed.

  19. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.

    PubMed

    Lee, Seung-Hong; Jeon, You-Jin

    2013-04-01

    Marine algae are popular and abundant food ingredients mainly in Asian countries, and also well known for their health beneficial effects due to the presence of biologically active components. The marine algae have been studied for biologically active components and phlorotannins, marine polyphenols are among them. Among marine algae, brown algae have extensively studied for their potential anti-diabetic activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their various anti-diabetic mechanisms such as α-glucosidase and α-amylase inhibitory effect, glucose uptake effect in skeletal muscle, protein tyrosine phosphatase 1B (PTP 1B) enzyme inhibition, improvement of insulin sensitivity in type 2 diabetic db/db mice, and protective effect against diabetes complication. In this review, we have made an attempt to discuss the various anti-diabetic mechanisms associated with phlorotannins from brown algae that are confined to in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Algibacter undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Lee, Jung-Sook; Lee, Keun-chul; Yoon, Jung-Hoon

    2013-10-01

    A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY9(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY9(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY9(T) clustered with the type strain of Algibacter lectus with a bootstrap resampling value of 100 %. Strain WS-MY9(T) exhibited 16S rRNA gene sequence similarity values of 98.5 and 96.7 % to the type strains of A. lectus and Algibacter mikhailovii, respectively, and less than 96.1 % sequence similarity to other members of the family Flavobacteriaceae. Strain WS-MY9(T) contained MK-6 as the predominant menaquinone and anteiso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 as the major fatty acids. The major polar lipids of strain WS-MY9(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY9(T) was 35.0 mol% and its DNA-DNA relatedness value with A. lectus KCTC 12103(T) was 15 %. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY9(T) is separate from the two recognized species of the genus Algibacter. On the basis of the data presented, strain WS-MY9(T) represents a novel species of the genus Algibacter, for which the name Algibacter undariae sp. nov. is proposed. The type strain is WS-MY9(T) ( = KCTC 32259(T) = CCUG 63684(T)).

  1. Lacinutrix undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Park, Ji-Min; Jung, Yong-Taek; Kang, Chul-Hyung; Yoon, Jung-Hoon

    2015-08-01

    A Gram-stain-negative, aerobic, non-flagellated, non-gliding and ovoid or rod-shaped bacterium, designated strain W-BA8T, was isolated from a brown algae reservoir on the South Sea, South Korea, and subjected to a polyphasic taxonomic approach. Strain W-BA8T grew optimally at 25 °C, at pH 7.0-7.5 and in the presence of 1.0-2.0% (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain W-BA8T clustered with the type strains of species of the genus Lacinutrix. Strain W-BA8T exhibited 16S rRNA gene sequence similarity values of 94.9-96.5% to the type strains of Lacinutrix species and of less than 95.8% to the type strains of other recognized species. Strain W-BA8T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH as major fatty acids. The polar lipid profile of strain W-BA8T contained phosphatidylethanolamine, two unidentified lipids and one unidentified glycolipid as major components. The DNA G+C content of strain W-BA8T was 35 mol%. Differential phenotypic properties, together with phylogenetic distinctiveness, revealed that strain W-BA8T is separated from other species of the genus Lacinutrix. On the basis of the data presented, strain W-BA8T is considered to represent a novel species of the genus Lacinutrix, for which the name Lacinutrix undariae sp. nov. is proposed. The type strain is W-BA8T ( = KCTC 42176T = CECT 8671T).

  2. Brown Algae (Phaeophyceae) from the Coast of Madagascar: preliminary Bioactivity Studies and Isolation of Natural Products.

    PubMed

    Rahelivao, Marie Pascaline; Gruner, Margit; Andriamanantoanina, Hanta; Bauer, Ingmar; Knölker, Hans-Joachim

    2015-10-01

    Eight species of brown algae (Phaeophyceae) from the coast of Madagascar have been investigated for their chemical constituents. Fucosterol (3) was obtained as the most abundant compound. The brown alga Sargassum ilicifolium was the source for the first isolation of the terpenoid C27-alcohol 1,1',2-trinorsqualenol (1) from marine sources. From S. incisifolium we isolated the highly unsaturated glycolipid 1-O-palmitoyl-2-O-stearidonoyl-3-O-β-D-galactopyranosylglycerol (4) and we report the first full assignment of its (1)H and (13)C NMR data. Apo-9'-fucoxanthinone (8) along with 24-ketocholesterol (5), (22E)-3β-hydroxycholesta-5,22-dien-24-one (6), and saringosterol (7) were obtained from Turbinaria ornata. The crude extracts of all eight species of brown algae exhibited a pronounced antimicrobial activity against the Gram-positive bacteria Bacillus cereus, Staphylococcus aureus, and Streptococcus pneumoniae.

  3. Anticancer and Antitumor Potential of Fucoidan and Fucoxanthin, Two Main Metabolites Isolated from Brown Algae

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Karimian, Hamed; Khanabdali, Ramin; Razavi, Mahboubeh; Firoozinia, Mohammad; Abdul Kadir, Habsah

    2014-01-01

    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae. PMID:24526922

  4. Detection and activity of iodine-131 in brown algae collected in the Japanese coastal areas.

    PubMed

    Morita, Takami; Niwa, Kentaro; Fujimoto, Ken; Kasai, Hiromi; Yamada, Haruya; Nishiutch, Kou; Sakamoto, Tatsuya; Godo, Waichiro; Taino, Seiya; Hayashi, Yoshihiro; Takeno, Koji; Nishigaki, Tomokazu; Fujiwara, Kunihiro; Aratake, Hisamichi; Kamonoshita, Shingo; Hashimoto, Hiroshi; Kobayashi, Takuya; Otosaka, Sigeyoshi; Imanaka, Tetsuji

    2010-07-15

    Iodine-131 (physical half-life: 8.04 days) was detected in brown algae collected off the Japanese coast. Brown algae have been extensively used as bioindicators for radioiodine because of their ability to accumulate radionuclides in high concentration factors. The maximum measured specific activity of (131)I in brown algae was 0.37 + or - 0.010 Bq/kg-wet. Cesium-137 was also detected in all brown algal samples used in this study. There was no correlation between specific activities of (131)I and (137)Cs in these seaweeds. The specific activity of (137)Cs ranged from 0.0034 + or - 0.00075 to 0.090 + or - 0.014 Bq/kg-wet. Low specific activity and minimal variability of (137)Cs in brown algae indicated that past nuclear weapon tests were the source of (137)Cs. Although nuclear power stations and nuclear fuel reprocessing plants are known to be pollution sources of (131)I, there was no relationship between the sites where (131)I was detected and the locations of nuclear power facilities. Most of the sites where (131)I was detected were near big cities with large populations. Iodine-131 is frequently used in diagnostic and therapeutic nuclear medicine. On the basis of the results, we suggest that the likely pollution source of (131)I, detected in brown seaweeds, is not nuclear power facilities, but nuclear medicine procedures.

  5. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  6. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  7. Symbiotic associations in the phenotypically-diverse brown alga Saccharina japonica.

    PubMed

    Balakirev, Evgeniy S; Krupnova, Tatiana N; Ayala, Francisco J

    2012-01-01

    The brown alga Saccharina japonica (Areschoug) Lane, Mayes, Druehl et Saunders is a highly polymorphic representative of the family Laminariaceae, inhabiting the northwest Pacific region. We have obtained 16S rRNA sequence data in symbiont microorganisms of the typical form (TYP) of S. japonica and its common morphological varieties, known as "longipes" (LON) and "shallow-water" (SHA), which show contrasting bathymetric distribution and sharp morphological, life history traits, and ecological differences. Phylogenetic analysis of the 16S rRNA sequences shows that the microbial communities are significantly different in the three forms studied and consist of mosaic sets of common and form-specific bacterial lineages. The divergence in bacterial composition is substantial between the TYP and LON forms in spite of their high genetic similarity. The symbiont distribution in the S. japonica forms and in three other laminarialean species is not related to the depth or locality of the algae settlements. Combined with our previous results on symbiont associations in sea urchins and taking into account the highly specific character of bacteria-algae associations, we propose that the TYP and LON forms may represent incipient species passing through initial steps of reproductive isolation. We suggest that phenotype differences between genetically similar forms may be caused by host-symbiont interactions that may be a general feature of evolution in algae and other eukaryote organisms. Bacterial symbionts could serve as sensitive markers to distinguish genetically similar algae forms and also as possible growth-promoting inductors to increase algae productivity.

  8. Fucoidan extracted from Fucus evanescens brown algae corrects immunity and hemostasis disorders in experimental endotoxemia.

    PubMed

    Kuznetsova, T A

    2009-01-01

    Fucoidan extracted from brown algae (Fucus evanescens) was used for correction of immunity and hemostasis disorders in experimental endotoxemia induced by injection of LPS. Fucoidan reduced the elevated levels of proinflammatory cytokines (TNF-alpha, IL-1, IL-6) and partially arrested hypercoagulation phenomena, thus improving animal resistance to LPS.

  9. New data about optic properties of biominerals from some brown algae Undaria pinnatifida and Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Pamirsky, I. E.; Chung, G.; Gutnikov, S. A.; Golokhvast, K. S.

    2016-11-01

    For the first time we made an attempt to study morphological types of phytoliths in the same species of multicellular brown algae (Undaria pinnatifida, Laminaria japonica) growing in different locations. However, in all samples only shapeless silicon dioxide particles were found. Some of them had rough edges, the other had smooth edges. We assume that the rough-edged shapeless phytolithes were formed within cells and smooth-edged - in the intercellular space. Verification of this assumption needs confirmation by detection of similar structures in the tissues of live algae.

  10. Surface-bound iron: a metal ion buffer in the marine brown alga Ectocarpus siliculosus?

    PubMed

    Miller, Eric P; Böttger, Lars H; Weerasinghe, Aruna J; Crumbliss, Alvin L; Matzanke, Berthold F; Meyer-Klaucke, Wolfram; Küpper, Frithjof C; Carrano, Carl J

    2014-02-01

    Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be 'non-specifically' adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion 'buffer', allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments.

  11. Surface-bound iron: a metal ion buffer in the marine brown alga Ectocarpus siliculosus?

    PubMed Central

    Carrano, Carl J.

    2014-01-01

    Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be ‘non-specifically’ adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion ‘buffer’, allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments. PMID:24368501

  12. Anticoagulant effect of marine algae.

    PubMed

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. ETOILE Regulates Developmental Patterning in the Filamentous Brown Alga Ectocarpus siliculosus[W

    PubMed Central

    Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte

    2011-01-01

    Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell–cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell–cell communication during the establishment of the developmental pattern in this brown alga. PMID:21478443

  14. ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus.

    PubMed

    Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte

    2011-04-01

    Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.

  15. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance

    PubMed Central

    La Barre, Stéphane; Potin, Philippe; Leblanc, Catherine; Delage, Ludovic

    2010-01-01

    Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology. PMID:20479964

  16. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  17. Chemotactic movement in sperm of the oogamous brown algae, Saccharina japonica and Fucus distichus.

    PubMed

    Kinoshita, Nana; Nagasato, Chikako; Motomura, Taizo

    2017-01-01

    In oogamous species of brown algae such as Saccharina japonica and Fucus distichus, the sperm possess an unusual long posterior flagellum, which oscillates actively and produces a propulsive force during swimming. In this study, we quantitatively analyzed the effect of chemotactic responses on sperm swimming and flagellar waveforms by high-speed video recordings. We found that the thigmotactic response to the chemo-attractant was not enhanced during chemotactic swimming and that the swimming velocity of sperm did not decrease. As concentration of the chemo-attractant decreased, the sperm performed drastic U-turn movements, which was caused by a rapid and large bend of the posterior flagellum. Unilateral bending of the posterior flagellum when sensing a decrease in the concentration of the chemo-attractant may be a common response in male gametes during fertilization of brown algae both oogamous and isogamous species.

  18. Complete mitochondrial genome of the invasive brown alga Sargassum muticum (Sargassaceae, Phaeophyceae).

    PubMed

    Liu, Feng; Pang, Shaojun

    2016-01-01

    Sargassum muticum (Yendo) Fensholt is an invasive canopy-forming brown alga, expanding its presence from Northeast Asia to North America and Europe. The complete mitochondrial genome of S. muticum is characterized as a circular molecule of 34,720 bp. The overall AT content of S. muticum mitogenome is 63.41%. This mitogenome contains 65 genes typically found in brown algae, including 3 ribosomal RNA genes, 25 transfer RNA genes, 35 protein-coding genes, and 2 conserved open reading frames (ORFs). The gene order of mitogenome for S. muticum is identical to that for Sargassum horneri, Fucus vesiculosus and Desmarestia viridis. Phylogenetic analyses based on 35 protein-coding genes reveal that S. muticum has a close evolutionary relationship with S. horneri and a distant relationship with Dictyota dichotoma, supporting current taxonomic systems. The present investigation provides new molecular data for studies of S. muticum population diversity as well as comparative genomics in the Phaeophyceae.

  19. In vitro antioxidant properties of crude extracts and compounds from brown algae.

    PubMed

    Balboa, Elena M; Conde, Enma; Moure, Andres; Falqué, Elena; Domínguez, Herminia

    2013-06-01

    Research on the bioactives from seaweeds has increased in recent years. Antioxidant activity is one of the most studied, due to the interest of these compounds both as preservatives and protectors against oxidation in food and cosmetics and also due to their health implications, mainly in relation to their potential as functional ingredients. Brown algae present higher antioxidant potential in comparison with red and green families and contain compounds not found in terrestrial sources. In vitro antioxidant chemical methods, used as a first approach to evaluate potential agents to protect from lipid oxidation in foods, confirmed that the brown algae crude extracts, fractions and pure components are comparatively similar or superior to synthetic antioxidants. Particular emphasis on the fucoidan and phlorotannin polymeric fractions is given, considering variations associated with the species, collection area, season, and extraction and purification technologies.

  20. Isolation and Structure Elucidation of Three New Dolastanes from the Brown Alga Dilophus spiralis

    PubMed Central

    Ioannou, Efstathia; Vagias, Constantinos; Roussis, Vassilios

    2013-01-01

    Three new dolastane diterpenes (1–3) and five previously reported perhydroazulenes were isolated from the organic extracts of the brown alga Dilophus spiralis. The structure elucidation and the assignment of the relative configurations of the isolated natural products were based on extensive analyses of their spectroscopic data, whereas the absolute configuration of metabolite 2 was determined through its chemical conversion to a previously isolated compound of known configuration. PMID:23549282

  1. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2015-11-20

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2(T). Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing D-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD(+), and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae

    PubMed Central

    Ji, Shi-Qi; Wang, Bing; Lu, Ming

    2015-01-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2T. Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing d-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD+, and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. PMID:26590273

  3. Biosorption of uranium(VI) from aqueous solution by biomass of brown algae Laminaria japonica.

    PubMed

    Lee, K Y; Kim, K W; Baek, Y J; Chung, D Y; Lee, E H; Lee, S Y; Moon, J K

    2014-01-01

    The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.

  4. A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent.

    PubMed

    Xiong, Ying; Xu, Jia; Shan, Weijun; Lou, Zhenning; Fang, Dawei; Zang, Shuliang; Han, Guangxi

    2013-01-01

    Brown algae Laminaria japonica was chemically modified with sulfuric acid to obtain a crosslinked brown algae gel (CAS). The CAS gel showed a high affinity for Re(VII) comparing with other biomass gels, and the maximum adsorption capacity was evaluated as 37.20 mg g(-1) in case of pH 6, which could be explained by their different adsorption mechanisms. The adsorption equilibrium, kinetics and thermodynamic study for Re(VII) on the CAS gel was discussed in detail by the several models, such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich model for kinetics analysis, the pseudo first, the second-order, the Elovich and intraparticle diffusion equation for equilibrium analysis. Reutilization of the CAS gel was confirmed up to three adsorption-elution cycles in column-mode operation with no damage of gel, packed in the column. The result also provides a new approach for the recovery of Re(VII) from Re-containing wastewater by using the modified brown algae gel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  6. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed

    Tapia, Javier E; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.

  7. Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation

    PubMed Central

    Zhu, Yueming; Chen, Peng; Bao, Yunjuan; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Jibin; Sun, Yuanxia

    2016-01-01

    A novel marine strain representing efficient degradation ability toward brown algae was isolated, identified, and assigned to Bacillus weihaiensis Alg07. The alga-associated marine bacteria promote the nutrient cycle and perform important functions in the marine ecosystem. The de novo sequencing of the B. weihaiensis Alg07 genome was carried out. Results of gene annotation and carbohydrate-active enzyme analysis showed that the strain harbored enzymes that can completely degrade alginate and laminarin, which are the specific polysaccharides of brown algae. We also found genes for the utilization of mannitol, the major storage monosaccharide in the cell of brown algae. To understand the process of brown algae decomposition by B. weihaiensis Alg07, RNA-seq transcriptome analysis and qRT-PCR were performed. The genes involved in alginate metabolism were all up-regulated in the initial stage of kelp degradation, suggesting that the strain Alg07 first degrades alginate to destruct the cell wall so that the laminarin and mannitol are released and subsequently decomposed. The key genes involved in alginate and laminarin degradation were expressed in Escherichia coli and characterized. Overall, the model of brown algae degradation by the marine strain Alg07 was established, and novel alginate lyases and laminarinase were discovered. PMID:27901120

  8. Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation.

    PubMed

    Zhu, Yueming; Chen, Peng; Bao, Yunjuan; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Jibin; Sun, Yuanxia

    2016-11-30

    A novel marine strain representing efficient degradation ability toward brown algae was isolated, identified, and assigned to Bacillus weihaiensis Alg07. The alga-associated marine bacteria promote the nutrient cycle and perform important functions in the marine ecosystem. The de novo sequencing of the B. weihaiensis Alg07 genome was carried out. Results of gene annotation and carbohydrate-active enzyme analysis showed that the strain harbored enzymes that can completely degrade alginate and laminarin, which are the specific polysaccharides of brown algae. We also found genes for the utilization of mannitol, the major storage monosaccharide in the cell of brown algae. To understand the process of brown algae decomposition by B. weihaiensis Alg07, RNA-seq transcriptome analysis and qRT-PCR were performed. The genes involved in alginate metabolism were all up-regulated in the initial stage of kelp degradation, suggesting that the strain Alg07 first degrades alginate to destruct the cell wall so that the laminarin and mannitol are released and subsequently decomposed. The key genes involved in alginate and laminarin degradation were expressed in Escherichia coli and characterized. Overall, the model of brown algae degradation by the marine strain Alg07 was established, and novel alginate lyases and laminarinase were discovered.

  9. Organic aggregates formed by benthopleustophyte brown alga Acinetospora crinita (Acinetosporaceae, Ectocarpales).

    PubMed

    Giani, Michele; Sartoni, Gianfranco; Nuccio, Caterina; Berto, Daniela; Ferrari, Carla Rita; Najdek, Mirjana; Sist, Paola; Urbani, Ranieri

    2016-08-01

    This work presents the elemental, polysaccharide, and fatty acid compositions of benthic aggregates formed by the filamentous brown alga Acinetospora crinita, which are widely spread on the rocky bottoms of the Mediterranean Sea. The aggregates can be characterized as mineralized centers in which regeneration of nutrients and recycling of dissolved organic matter actively occur and favor the development of an abundant phytoplankton community. Analyses of the stable isotopes of C and N display their marine origin and could provide evidence of the processes that occur inside/outside of the aggregates. The monosaccharide compositions of Adriatic and Tyrrhenian mucilages produced by brown alga A. crinita were quite similar. In particular, the Adriatic sample compositions resembled the average composition of the Tyrrhenian high molecular weight exopolymers, and the observed differences could be ascribed to different degradation stages. The fatty acid patterns found for the aggregates were similar to those observed in the isolated A. crinita algae with variable contributions from embedded diatom species. The bacterial contribution to the fatty acid pool was quite low, most likely due to the known poor conditions for their heterotrophic growth. © 2016 Phycological Society of America.

  10. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    PubMed

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  11. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity.

    PubMed

    Andrade, Leonardo R; Leal, Raquel N; Noseda, Miguel; Duarte, Maria Eugenia R; Pereira, Mariana S; Mourão, Paulo A S; Farina, Marcos; Amado Filho, Gilberto M

    2010-09-01

    Brown algae are often used as heavy metal biomonitors and biosorbents because they can accumulate high concentrations of metals. Cation-exchange performed by cell wall polysaccharides is pointed out as the main chemical mechanism for the metal sequestration. Here, we biochemically investigated if the brown alga Padina gymnospora living in a heavy metal contaminated area would modify their polysaccharidic content. We exposed non-living biomass to Cd and Pb and studied the metals adsorption and localization. We found that raw dried polysaccharides, sulfate groups, uronic acids, fucose, mannose, and galactose were significantly higher in contaminated algae compared with the control ones. Metal concentrations adsorbed by non-living biomass were rising comparatively to the tested concentrations. Electron microscopy showed numerous granules in the cell walls and X-ray microanalysis revealed Cd as the main element. We concluded that P. gymnospora overproduces cell wall polysaccharides when exposed to high metal concentrations as a defense mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus.

    PubMed

    Jormalainen, V; Honkanen, T

    2004-07-01

    Directional selection for plant traits associated with resistance to herbivory tends to eliminate genetic variation in such traits. On the other hand, balancing selection arising from trade-offs between resistance and growth or spatially variable selection acts against the elimination of genetic variation. We explore both the amount of genetic variation and variability of natural selection for growth and concentration of phenolic secondary compounds, phlorotannins, in the brown alga Fucus vesiculosus. We measured variation in selection at two growing depths and two levels of nutrient availability in algae that had faced two kinds of past growing environments. Genetic variation was low for growth but high for phlorotannins. The form and strength of selection for both focal traits depended on the past growing environment of the algae. We found strong directional selection for growth rate in algae previously subjected to higher ultraviolet radiation, but not in algae previously subjected to higher nutrient availability. Stabilizing selection for growth occurred especially in the deep growing environment. Selection for phlorotannins was generally weak, but in some past-environment-current-environment combinations we detected either directional selection against phlorotannins or stabilizing selection. Thus, phlorotannins are not selectively neutral but affect the fitness of F. vesiculosus. In particular, there may be a fitness cost of producing phlorotannins, but the realization of such a cost varies from one environment to another. Genetic correlations between selective environments were high for growth but nonexistent for phlorotannins, emphasizing the high phenotypic plasticity of phlorotannin production. The highly heterogeneous selection, including directional, stabilizing, and spatially variable selection as well as temporal change in selection due to responses to past environmental conditions, probably maintains a high amount of genetic variation in phlorotannins

  13. Brown algae (Phaeophyta) for monitoring heavy metals at the Sudanese Red Sea coast

    NASA Astrophysics Data System (ADS)

    Ali, Abuagla Y. A.; Idris, Abubakr M.; Ebrahim, Ammar M.; Eltayeb, Mohmaed A. H.

    2017-02-01

    This study aimed at monitoring some heavy metals at the Sudanese Red Sea coast using Brown algae (Phaeophyta) as biomonitor. The total contents of heavy metals in four species (Turbinaria sp., Sargassum sp., Cystoseira sp. and Padina sp.) as well as seawater were examined. Twenty-six algae samples were collected from seven locations. The ranges of concentrations (µg/g, dry wt.) of heavy metals in algae were 4.95-16.95 for Cr, 2.93-257.32 for Mn, 1.35-7.43 for Ni, 0.83-14.10 for Cu, 4.13-19.13 for Zn, 0.03-0.15 for Cd and 0.45-2.18 for Pb. The ranges of the pH and the salinity of seawater from the same locations were 8.11-8.82 and 38.00-41.00 PSU, respectively. The ranges of concentrations (µg/L) of heavy metals in seawater were 7.00-11.00 for Cr, 2.90-10.20 for Mn, 6.70-10.10 for Ni, 1.70-5.00 for Cu, 0.94-5.70 for Zn, 0.09-0.14 for Cd and 0.93-1.80 for Pb. No significant correlations between metal concentrations in algae and seawater were observed. Some locations in the study area recorded relatively high levels of heavy metals in algae indicating possible contribution from manmade activities. Cr recorded higher levels in the study area than those in other coastal areas in the word. Padina sp. and Cystoseira sp. were better bioindicator than Turbinaria sp., Sargassum sp. for their high metal uptake.

  14. Characterization of Phlorotannins from Brown Algae by LC-HRMS.

    PubMed

    Melanson, Jeremy E; MacKinnon, Shawna L

    2015-01-01

    Phlorotannins are a class of polyphenols found in brown seaweeds that have significant potential for use as therapeutics, owing to their wide range of bioactivities. Molecular characterization of phlorotannin-enriched extracts is challenging due to the extreme sample complexity and the wide range of molecular weights observed. Herein, we describe a method for characterizing phlorotannins employing ultrahigh-pressure liquid chromatography (UHPLC) operating in hydrophilic interaction liquid chromatography (HILIC) mode combined with high-resolution mass spectrometry (HRMS).

  15. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  16. Structural characteristics and biological activity of Fucoidans from the brown algae Alaria sp. and Saccharina japonica of different reproductive status.

    PubMed

    Vishchuk, Olesya S; Tarbeeva, Dariya V; Ermakova, Svetlana P; Zvyagintseva, Tatyana N

    2012-04-01

    Structural characteristics and the antitumor activity of fucoidans isolated from vegetative and reproductive tissue of the brown algae Alaria sp. and Saccharina japonica were studied. The reproductive status of the brown algae affected the yield of fucoidans and their structural characteristics. The fucoidan yield was 5.7% (w/w on the basis of the dried algae weight) for fertile and 3.8% for sterile Alaria sp. and 1.42 and 0.71% for fertile and sterile S. japonica, respectively. The fucoidans from fertile Alaria sp. and S. japonica had a slightly higher degree of sulfation and a somewhat more homogeneous monosaccharide composition, with predominate amounts of fucose and galactose, than those isolated from sterile algae tissue. The fucoidans from both the sterile and fertile brown algae tissue tested possessed selective cytotoxicity towards human breast cancer (T-47D) and melanoma (RPMI-7951) cell lines, but not to normal mouse epidermal cells (JB6 Cl41), and effectively inhibited the proliferation and colony formation of the breast cancer and melanoma cell lines. The fucoidans from reproductive tissue of brown algae possessed higher antitumor activity than those from vegetative plants.

  17. Characterization of Mannuronan C-5-Epimerase Genes from the Brown Alga Laminaria digitata1

    PubMed Central

    Nyvall, Pi; Corre, Erwan; Boisset, Claire; Barbeyron, Tristan; Rousvoal, Sylvie; Scornet, Delphine; Kloareg, Bernard; Boyen, Catherine

    2003-01-01

    Alginate is an industrially important polysaccharide obtained commercially by harvesting brown algae. The final step in alginate biosynthesis, the epimerization of β-1,4-d-mannuronic acid to α-1,4-l-guluronic acid, a structural change that controls the physicochemical properties of the alginate, is catalyzed by the enzyme mannuronan C-5-epimerase. Six different cDNAs with homology to bacterial mannuronan C-5-epimerases were isolated from the brown alga Laminaria digitata (Phaeophyceae). Hydrophobic cluster analysis indicated that the proteins encoded by the L. digitata sequences have important structural similarities to the bacterial mannuronan C-5-epimerases, including conservation of the catalytic site. The expression of the C-5-epimerase genes was examined by northern-blot analysis and reverse transcriptase-polymerase chain reaction in L. digitata throughout a year. Expression was also monitored in protoplast cultures by northern and western blot, reverse transcriptase-polymerase chain reaction, and activity measurements. From both the structural comparisons and the expression pattern, it appears that the cDNAs isolated from L. digitata encode functional mannuronan C-5-epimerases. The phylogenetic relationships of the bacterial and brown algal enzymes and the inferences on the origin of alginate biosynthetic machinery are discussed. PMID:14526115

  18. Genome-wide computational analysis of the secretome of brown algae (Phaeophyceae).

    PubMed

    Terauchi, Makoto; Yamagishi, Takahiro; Hanyuda, Takeaki; Kawai, Hiroshi

    2017-04-01

    Brown algae have evolved complex multicellularity in the heterokont lineage. They are phylogenetically distant to land plants, fungi and animals. Especially, the members of Laminariales (so-called kelps) have developed highly differentiated tissues. Extracellular matrix (ECM) plays pivotal roles in a number of essential processes in multicellular organisms, such as cell adhesion, cell and tissue differentiations, cell-to-cell communication, and responses to environmental stimuli. In these processes, a set of extracellular secreted proteins called the secretome operates remodeling of the physicochemical nature of ECM and signal transduction by interacting with cell surface proteins and signaling molecules. Characterization of the secretome is a critical step to clarify the contributions of ECM to the multicellularity of brown algae. However, the identity of the brown algal secretome has been poorly understood. In order to reveal the repertory of the brown algal secretome and its involvement in the evolution of Laminariales, we conducted a genome-wide analysis of the brown algal secretome utilizing the published complete genome data of Ectocarpus siliculosus and Saccharina japonica as well as newly obtained RNA-seq data of seven laminarialean species (Agarum clathratum, Alaria crassifolia, Aureophycus aleuticus, Costaria costata, Pseudochorda nagaii, Saccharina angustata and Undaria pinnatifida) largely covering the laminarialean families. We established the in silico pipeline to systematically and accurately detect the secretome by combining multiple prediction algorithms for the N-terminal signal peptide and transmembrane domain within the protein sequence. From 16,189 proteins of E. siliculosus and 18,733 proteins of S. japonica, 552 and 964 proteins respectively were predicted to be classified as the secretome. Conserved domain analysis showed that the domain repertory were very similar to each other, and that of the brown algal secretome was partially common

  19. Cultivable Alginate Lyase-Excreting Bacteria Associated with the Arctic Brown Alga Laminaria

    PubMed Central

    Dong, Sheng; Yang, Jie; Zhang, Xi-Ying; Shi, Mei; Song, Xiao-Yan; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-01-01

    Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases. PMID:23203272

  20. Cultivable alginate lyase-excreting bacteria associated with the Arctic brown alga Laminaria.

    PubMed

    Dong, Sheng; Yang, Jie; Zhang, Xi-Ying; Shi, Mei; Song, Xiao-Yan; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-11-06

    Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.

  1. 4α-Acetoxyamijidictyol - A New Antifeeding Dolastane Diterpene from the Brazilian Brown Alga Canistrocarpus cervicornis.

    PubMed

    Miguel Bianco, Éverson; Martins Francisco, Thiago; Basílio Pinheiro, Carlos; Bagueira de Vasconcellos Azeredo, Rodrigo; Laneuville Teixeira, Valéria; Crespo Pereira, Renato

    2015-11-01

    Chemical investigation of the CH2 Cl2 crude extract from the brown alga Canistrocarpus cervicornis (Dictyotaceae) led to isolation of one new (1) and four previously reported dolastane diterpenes (2-5). Their structures were characterized by 1D- and 2D-NMR spectroscopic techniques, including a full single crystal X-ray diffraction analysis for 1, 2, and 4. In addition, the new structure 1 was assayed as chemical defense inhibiting the feeding by the sea urchin Lytechinus variegatus. This study constitutes an additional report broadening the known spectrum of action and defensive roles of secondary metabolites of the C. cervicornis and Dictyotales species.

  2. [Morphofunctional changes of dendritic cells induced by sulfated polysaccharides of brown algae].

    PubMed

    Makarenkova, I D; Akhmatova, N K; Ermakova, S P; Besednova, N N

    2017-01-01

    The effects of various sulfated polysaccharides of brown algae Fucus evanescens, Saccharina cichorioides and Saccharina japonica on the morphofunctional changes of dendritic cells have been investigated using flow cytometry and phase-contrast microscopy. The dendritic cells are characterized by larger sizes, vacuolated cytoplasm, eccentrically located nucleus, and also by the presence of numerous cytoplasmic pseudopodia of various shapes. They express surface markers, indicating their maturation (CD83, CD11c, HLA-DR, CD86). Increased production of immunoregulatory (IL-12) and proinflammatory TNF-a, IL-6) cytokines (by dendritic cells polarizes the development of the Th-1 type immune response.

  3. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii

    PubMed Central

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire MM; Katsaros, Christos

    2013-01-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host. PMID:24025487

  4. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae.

    PubMed

    Deniaud-Bouët, Estelle; Kervarec, Nelly; Michel, Gurvan; Tonon, Thierry; Kloareg, Bernard; Hervé, Cécile

    2014-10-01

    Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please

  5. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae

    PubMed Central

    Deniaud-Bouët, Estelle; Kervarec, Nelly; Michel, Gurvan; Tonon, Thierry; Kloareg, Bernard; Hervé, Cécile

    2014-01-01

    Background and Aims Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. Methods Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. Key Results The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. Conclusions The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure–function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae. PMID:24875633

  6. Effects of DCMU on chlorophyll fluorescence ratio F685/F735 in marine red, brown and green algae

    NASA Astrophysics Data System (ADS)

    Wu, Bao-Gan; Zuo, Dong-Mei; Zang, Ru-Bo

    1996-03-01

    The chlorophyll fluorescence ratio F685/F735 in vivo can be a useful indicator for stress detection in higher plants and seaweeds. DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] treatment influences this ratio. The effets of DCMU on F685/F735 of marine red, brown and green algae under excitation light of different wavelengths were investigated. In the brown algae, Laminaria japonica and Undaria pinnatifida, DCMU did not increase this ratio under blue light excitation but increased the ratio slightly under excitation by green light. For the red algae, Halymenia sinensis, DCMU increased the ratio markedly under both blue and green light excitation. The percentage increase could reach 50% (under green light excitation) and was due to unequal enhancement at the two emission maxima by DCMU. A fraction of chlorophyll which contributed to fluorescence in the 735 nm region was less sensitive to DCMU and was likely from photosystem I of red algae. In the green alga, Ulva pertusa, DCMU caused a slight increase in F685/F735 value under blue, green and red light. Green light excitation during DCMU treatment increased the ratio most (16%) but induced the lowest ratio in the control (without DCMU). It is proposed that a considerable fraction of fluorescence from the 735 nm region at room temperature may be emitted by the chlorophyll of photosystem I in red algae.

  7. Fouling mediates grazing: intertwining of resistances to multiple enemies in the brown alga Fucus vesiculosus.

    PubMed

    Jormalainen, Veijo; Wikström, Sofia A; Honkanen, Tuija

    2008-03-01

    Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.

  8. Bifurcatriol, a New Antiprotozoal Acyclic Diterpene from the Brown Alga Bifurcaria bifurcata.

    PubMed

    Smyrniotopoulos, Vangelis; Merten, Christian; Kaiser, Marcel; Tasdemir, Deniz

    2017-08-02

    Linear diterpenes that are commonly found in brown algae are of high chemotaxonomic and ecological importance. This study reports bifurcatriol (1), a new linear diterpene featuring two stereogenic centers isolated from the Irish brown alga Bifurcariabifurcata. The gross structure of this new natural product was elucidated based on its spectroscopic data (IR, 1D and 2D-NMR, HRMS). Its absolute configuration was identified by experimental and computational vibrational circular dichroism (VCD) spectroscopy, combined with the calculation of (13)C-NMR chemical shielding constants. Bifurcatriol (1) was tested for in vitro antiprotozoal activity towards a small panel of parasites (Plasmodium falciparum, Trypanosoma brucei rhodesiense, T. cruzi, and Leishmania donovani) and cytotoxicity against mammalian primary cells. The highest activity was exerted against the malaria parasite P. falciparum (IC50 value 0.65 μg/mL) with low cytotoxicity (IC50 value 56.6 μg/mL). To our knowledge, this is the first successful application of VCD and DP4 probability analysis of the calculated (13)C-NMR chemical shifts for the simultaneous assignment of the absolute configuration of multiple stereogenic centers in a long-chain acyclic natural product.

  9. Antibiofilm Activity of the Brown Alga Halidrys siliquosa against Clinically Relevant Human Pathogens

    PubMed Central

    Busetti, Alessandro; Thompson, Thomas P.; Tegazzini, Diana; Megaw, Julianne; Maggs, Christine A.; Gilmore, Brendan F.

    2015-01-01

    The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC assay. A bioassay-guided fractionation method was developed yielding 10 active fractions from which to perform purification and structural elucidation of clinically-relevant antibiofilm compounds. PMID:26058011

  10. Brown Algae and Basalt Meal in Maintaining the Activity of Arylsulfatase of Soil Polluted with Cadmium.

    PubMed

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2017-01-01

    This study analysed the effectiveness of innovative (basalt meal, brown algae extract) and conventional (barley straw) substances which hypothetically alleviate the inhibiting effect of Cd(2+) on biochemical properties of soil, with particular regard to the activity of arylsulfatase. An analysis of their potential was carried out based on the activity of arylsulfatase and the number of Pseudomonas sp. determined on the 25th and 50th days of the study. Cd(2+) was applied in the following doses: 0, 4, 40, 80, 120, 160, 200 mg Cd(2+) kg(-1) of DM soil, in the form of CdCl2·2.5H2O. A complex formulation of the issue was obtained from the presentation of biochemical properties using the RS (resistance of soil) index. Cadmium caused permanent adverse effects in the soil environment, inhibiting the activity of arylsulfatase and the yield of spring barley. The consequences of stress connected with increasing Cd(2+) pollution were intensified by an elongation of the accumulation time of the tested metal in the soil. Chances for regeneration of the soil may be sought, most of all, with the application of straw and, to a lesser degree, with basalt meal. Brown algae did not meet the expectations for its potential. An increase in the studied parameters also resulted from sowing the soil with spring barley.

  11. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2016-01-01

    Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation.

  12. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent

    NASA Astrophysics Data System (ADS)

    Helmiyati; Aprilliza, M.

    2017-04-01

    Sodium alginate obtained from the extraction of brown algae is used as the backbone for the synthesis of superabsorbent nanocomposite copolymerization. The first stage of extraction is the demineralization process using 0.1 M HCl solution and then 2% Na2CO3 solution for 2 hours at 60°C. The rendement of sodium alginate obtained was 44.32% with molecular weight of 40680 g/mol with measurement of the intrinsic viscosity. FTIR spectra of sodium alginate showed mannuronic acid functional group at wavenumber 884 cm-1 and the uronic acid at wavenumber 939 cm-1, OH functional group at wavenumber 3200-3400 cm-1, and CH2 stretching at wavenumber 2928 cm-1. The diffraction pattern of isolated sodium alginate has specific 2θ at 13.068 and 21.096, amorphous intensity found specific 2θ at 18.058, and the obtained crystallinity degree of the sodium alginate is equal to 29.292% from the XRD analysis. The morphological analysis by SEM shows fibrils of isolated sodium alginate. The success isolation of sodium alginate from brown algae is supported by DSC which shows the decomposition temperature of pure sodium alginate and isolated alginate have close values, namely 251.12°C for pure sodium alginate and 229.90°C for isolated sodium alginate.

  13. Preliminary investigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassum polycystum.

    PubMed

    Bilan, Maria I; Grachev, Alexey A; Shashkov, Alexander S; Thuy, Thanh Thi Thu; Van, Tran Thi Thanh; Ly, Bui Minh; Nifantiev, Nikolay E; Usov, Anatolii I

    2013-08-09

    A fucoidan preparation was isolated from the brown alga Sargassum polycystum (Fucales, Sargassaceae). The preparation was fractionated by anion-exchange chromatography, and two highly sulfated fractions F3 and F4 were obtained. The fractions were quite similar in composition, but different in chemical structure. F4 was analyzed by chemical methods, including desulfation, methylation, Smith degradation, and partial acid hydrolysis with mass-spectrometric monitoring, as well as by NMR spectroscopy. Several 2D NMR procedures, including HMQC-TOCSY and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra. Molecules of F4 were shown to contain a backbone built up mainly of 3-linked α-L-fucopyranose 4-sulfate residues, as in many other fucoidans, but rather short sequences of these residues are interspersed by single 2-linked α-D-galactopyranose residues also sulfated at position 4. This rather unusual structural feature should have a great influence on the conformation of the polymeric molecule and may be important for biological activity of the polysaccharide. Hence, F4 is an example of a new sulfated galactofucan isolated from the brown alga. According to the data obtained, the distribution of galactose residues along the polysaccharide backbone seems to be not strictly regular, but the definitive sequence of monomers in the polymeric molecules awaits additional investigation.

  14. The Identification of a SIRT6 Activator from Brown Algae Fucus distichus

    PubMed Central

    Rahnasto-Rilla, Minna K.; McLoughlin, Padraig; Kulikowicz, Tomasz; Doyle, Maire; Bohr, Vilhelm A.; Lahtela-Kakkonen, Maija; Ferrucci, Luigi; Hayes, Maria; Moaddel, Ruin

    2017-01-01

    Brown seaweeds contain many bioactive compounds, including polyphenols, polysaccharides, fucosterol, and fucoxantin. These compounds have several biological activities, including anti-inflammatory, hepatoprotective, anti-tumor, anti-hypertensive, and anti-diabetic activity, although in most cases their mechanisms of action are not understood. In this study, extracts generated from five brown algae (Fucus dichitus, Fucus vesiculosus (Linnaeus), Cytoseira tamariscofolia, Cytoseira nodacaulis, Alaria esculenta) were tested for their ability to activate SIRT6 resulting in H3K9 deacetylation. Three of the five macroalgal extracts caused a significant increase of H3K9 deacetylation, and the effect was most pronounced for F. dichitus. The compound responsible for this in vitro activity was identified by mass spectrometry as fucoidan. PMID:28635654

  15. Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus

    PubMed Central

    Le Bail, Aude; Dittami, Simon M; de Franco, Pierre-Olivier; Rousvoal, Sylvie; Cock, Mark J; Tonon, Thierry; Charrier, Bénédicte

    2008-01-01

    Background Brown algae are plant multi-cellular organisms occupying most of the world coasts and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus is an emerging model for brown algal research. Its genome has been sequenced, and several tools are being developed to perform analyses at different levels of cell organization, including transcriptomic expression analyses. Several topics, including physiological responses to osmotic stress and to exposure to contaminants and solvents are being studied in order to better understand the adaptive capacity of brown algae to pollution and environmental changes. A series of genes that can be used to normalise expression analyses is required for these studies. Results We monitored the expression of 13 genes under 21 different culture conditions. These included genes encoding proteins and factors involved in protein translation (ribosomal protein 26S, EF1alpha, IF2A, IF4E) and protein degradation (ubiquitin, ubiquitin conjugating enzyme) or folding (cyclophilin), and proteins involved in both the structure of the cytoskeleton (tubulin alpha, actin, actin-related proteins) and its trafficking function (dynein), as well as a protein implicated in carbon metabolism (glucose 6-phosphate dehydrogenase). The stability of their expression level was assessed using the Ct range, and by applying both the geNorm and the Normfinder principles of calculation. Conclusion Comparisons of the data obtained with the three methods of calculation indicated that EF1alpha (EF1a) was the best reference gene for normalisation. The normalisation factor should be calculated with at least two genes, alpha tubulin, ubiquitin-conjugating enzyme or actin-related proteins being good partners of EF1a. Our results exclude actin as a good normalisation gene, and, in this, are in agreement with previous studies in other organisms. PMID:18710525

  16. Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus.

    PubMed

    Honkanen, Tuija; Jormalainen, Veijo

    2005-06-01

    In this study, we examined genetic variation in resistance and tolerance to fouling organisms in the brown alga Fucus vesiculosus. We first grew 30 algal genotypes in the field, where we allowed fouling organisms to colonise the genotypes at natural levels. We then conducted a manipulative experiment, where we grew 20 genotypes of algae in aquaria with or without fouling organisms. We measured host resistance as the load of fouling organisms and tolerance as the slope of the regression of algal performance on fouling level. Fouling organisms decreased host growth and contents of phlorotannins and thus have the potential to act as selective agents on algal defenses. We found significant among-genotype variation in both resistance and tolerance to fouling. We did not find a trade-off between resistance and tolerance. We found a marginally significant cost of resistance, but no cost of tolerance. Our results thus indicate that both the tolerance and resistance of F. vesiculosus can evolve as a response to fouling and that the costs of resistance may maintain genetic variation in resistance.

  17. Morphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching.

    PubMed

    Jia, Fei; Ben Amar, Martine; Billoud, Bernard; Charrier, Bénédicte

    2017-02-01

    A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney-Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells. © 2017 The Authors.

  18. Morphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching

    PubMed Central

    Jia, Fei; Billoud, Bernard; Charrier, Bénédicte

    2017-01-01

    A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus. Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney–Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells. PMID:28228537

  19. Biological Activity and Chemical Constituents of Red and Brown Algae from the Persian Gulf

    PubMed Central

    Jassbi, Amir Reza; Mohabati, Maryam; Eslami, Saba; Sohrabipour, Jelveh; Miri, Ramin

    2013-01-01

    Different solvent extracts of a red algae, Hypnea flagelliformis, and two brown algae, Cystoseira myrica and Sargassum boveanum, which were collected from the Persian Gulf coast were subjected to different bioassays, including: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, antibacterial and antifungal activity by thin layer chromatography (TLC)-bioautography, agar disc diffusion (ADD) and nutrient-broth micro-dilution (NBMD) bioassays. The water extracts were found to have the most antioxidant activity. The antibacterial minimum inhibitory concentrations (MIC) of the active extracts were determined for the susceptible organisms, Staphylococcus aurous and Bacillus subtilis, using NBMD bioassays. The active substances were identified as free fatty acids (FFA), by using gas chromatography-mass spectrometry (GC-MS). After derivatization to their methyl esters, their concentrations were measured by using GC- lame ionization detection (GC-FID). In addition to the fatty acids, fucosterol, cholesterol and 22-dehydroxychlosterol were detected as the major sterols in S. boveanum extract using GC-MS analyses. PMID:24250640

  20. Biological activity and chemical constituents of red and brown algae from the persian gulf.

    PubMed

    Jassbi, Amir Reza; Mohabati, Maryam; Eslami, Saba; Sohrabipour, Jelveh; Miri, Ramin

    2013-01-01

    Different solvent extracts of a red algae, Hypnea flagelliformis, and two brown algae, Cystoseira myrica and Sargassum boveanum, which were collected from the Persian Gulf coast were subjected to different bioassays, including: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, antibacterial and antifungal activity by thin layer chromatography (TLC)-bioautography, agar disc diffusion (ADD) and nutrient-broth micro-dilution (NBMD) bioassays. The water extracts were found to have the most antioxidant activity. The antibacterial minimum inhibitory concentrations (MIC) of the active extracts were determined for the susceptible organisms, Staphylococcus aurous and Bacillus subtilis, using NBMD bioassays. The active substances were identified as free fatty acids (FFA), by using gas chromatography-mass spectrometry (GC-MS). After derivatization to their methyl esters, their concentrations were measured by using GC- lame ionization detection (GC-FID). In addition to the fatty acids, fucosterol, cholesterol and 22-dehydroxychlosterol were detected as the major sterols in S. boveanum extract using GC-MS analyses.

  1. Isolation and characterization of fucoidans from five brown algae and evaluation of their antioxidant activity

    NASA Astrophysics Data System (ADS)

    Qu, Guiyan; Liu, Xu; Wang, Dongfeng; Yuan, Yi; Han, Lijun

    2014-10-01

    In this study, we evaluated the chemical property and antioxidant activity of fucoidans isolated from brown algae, Laminaria japonica (LJF), Lessonia nigrescens (LNF), Lessonia trabeculata (LTF), Ascophyllum mackaii (AMF), and Ecklonia maxima (EMF). LJF was less in sulfate content (14.16%) and more in galactose and mannose content (1.08 and 0.68) than the documented early. EMF contained 20%-30% of sulfate and fucose, 0.97 in molar ratio which was lower than that of sulfate to other four fucoidans (1.21-1.41). AMF (162 kDa) and EMF (150 kDa) were the first two largest in molecular weight, which were followed by LJP (126 kDa), LNF (113 kDa) and LTF (105 kDa). The fucoidans isolated these algae showed a wide range of antioxidant activity in vitro. It was found that the reducing power of the isolated fucoidans was positively correlated with their sulfate content and molecular weight. In addition, LNF and LTF at low concentrations exhibited high superoxide and hydroxyl radical scavenging activity. This demonstrated that low molecular weight fucoidans may perform a high antioxidant activity.

  2. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae.

    PubMed

    Saint-Marcoux, Denis; Billoud, Bernard; Langdale, Jane A; Charrier, Bénédicte

    2015-01-01

    Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

  3. Evaluation of the Genotoxicity and Cytotoxicity of Semipurified Fractions from the Mediterranean Brown Algae, Dictyopteris membranacea

    PubMed Central

    Akremi, Najoua; Cappoen, Davie; Anthonissen, Roel; Bouraoui, Abderrahman; Verschaeve, Luc

    2016-01-01

    Dictyopteris membranacea, a species of Mediterranean brown algae, is believed to have potential pharmacological and nutritional applications. However, such potentials only make sense when devoid of any adverse health consequences. The present study should be seen in this context. It aimed at evaluating the genotoxicity and cytoxicity of its organic extract (F0) and semi purified fractions (F4, F5, and F6). Extracts were tested using the bacterial Vitotox® test and micronucleus assay in different concentrations (from 1.25 μg/mL up to 100 μg/mL, depending on the test and the extract). Applied concentrations were based on a preliminary dose-finding test with the neutral red uptake assay. The results show that all extracts were not genotoxic in the presence or absence of a rat metabolic enzyme fraction (S9). This is encouraging and justifies further investigations on the therapeutic and other values of this algae. SUMMARY Dictyopteris membranacea extracts and some of their semi purified fractions have important antibacterial properties.The organic extract (F0) and semi purified fractions (F4, F5, and F6) were not genotoxic according to the bacterial Vitotox test.They were also not genotoxic according to the micronucleus test in human C3A cells.Applied concentrations were based on the in-vitro neutral red uptake (NRU) test. PMID:27761065

  4. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes.

    PubMed

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity.

  5. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes

    PubMed Central

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    Background While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Methodology/Principal Findings Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Conclusion and Significance Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity. PMID:28036348

  6. Formosa undariae sp. nov., isolated from a reservoir containing the brown algae Undaria pinnatifida.

    PubMed

    Park, Sooyeon; Lee, Jung-Sook; Lee, Keun-Chul; Yoon, Jung-Hoon

    2013-11-01

    A strain of Gram-staining-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacteria, designated WS-MY3(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY3(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0-3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY3(T) fell within the cluster comprising the type strains of species of the genus Formosa, clustering coherently with the type strains of Formosa agariphila and Formosa algae. It exhibited 16S rRNA gene sequence similarity values of 98.7, 97.9 and 96.8 % to the type strains of F. agariphila, F. algae and Formosa spongicola, respectively. Strain WS-MY3(T) contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C16 : 0 3-OH, iso-C15 : 1 G and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids of strain WS-MY3(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY3(T) was 37.3 mol% and its DNA-DNA relatedness values with F. agariphila KCTC 12365(T) and F. algae KCTC 12364(T) were 23 % and 17 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY3(T) is separate from the three recognized species of the genus Formosa. On the basis of the data presented, strain WS-MY3(T) is considered to represent a novel species of the genus Formosa, for which the name Formosa undariae sp. nov. is proposed. The type strain is WS-MY3(T) ( = KCTC 32328(T) = CECT 8286(T)).

  7. Early Embryogenesis of Brown Alga Fucus vesiculosus L. is Characterized by Significant Changes in Carbon and Energy Metabolism.

    PubMed

    Tarakhovskaya, Elena; Lemesheva, Valeriya; Bilova, Tatiana; Birkemeyer, Claudia

    2017-09-09

    Brown algae have an important role in marine environments. With respect to their broad distribution and importance for the environment and human use, brown algae of the order Fucales in particular became a model system for physiological and ecological studies. Thus, several fucoids have been extensively studied for their composition on the molecular level. However, research of fucoid physiology and biochemistry so far mostly focused on the adult algae, so a holistic view on the development of these organisms, including the crucial first life stages, is still missing. Therefore, we employed non-targeted metabolite profiling by gas chromatography coupled to mass spectrometry to create a non-biased picture of the early development of the fucoid alga Fucus vesiculosus. We found that embryogenic physiology was mainly dominated by a tight regulation of carbon and energy metabolism. The first dramatic changes of zygote metabolism started within 1 h after fertilization, while metabolism of 6-9 days old embryos appeared already close to that of an adult alga, indicated by the intensive production of secondary metabolites and accumulation of mannitol and citric acid. Given the comprehensive description and analysis we obtained in our experiments, our results exhibit an invaluable resource for the design of further experiments related to physiology of early algal development.

  8. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    PubMed

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses.

  9. Nodularin induces oxidative stress in the Baltic Sea brown alga Fucus vesiculosus (Phaeophyceae).

    PubMed

    Pflugmacher, Stephan; Olin, Miikka; Kankaanpää, Harri

    2007-08-01

    In the Baltic Sea regular, intensive cyanobacterial blooms rich in the cyanobacterium Nodularia spumigena occur during the summer season. N. spumigena is known to produce the cyclic pentapeptide nodularin (NOD) in high concentrations. Marine macroalgae, together with sea-grass meadows, are an extremely important habitat for life in the sea. In addition to this, the decaying macroalgae substantially contribute to the substrate for the microbial loop in coastal food webs. Uptake of nodularin into the brown macroalga Fucus vesiculosus was assessed using an ELISA technique resulting in an uptake of up to 45.1 microg kg(-1) fresh weight (fw). Nodularin was also detected in the reproductive part of the algae (receptacle) at 14.1 microg kg(-1) fw. The induction of oxidative stress in F. vesiculosus, after exposure to NOD, was also shown by monitoring cellular damage as changes in lipid peroxidation and the activation of antioxidative defence systems (antioxidative capacity, superoxide dismutase and soluble glutathione S-transferase).

  10. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus.

    PubMed

    Mata, Y N; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu>Cd approximately Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb>Cu>Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  11. Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies.

    PubMed

    Pahlavanzadeh, H; Keshtkar, A R; Safdari, J; Abadi, Z

    2010-03-15

    The biosorption characteristics of nickel(II) ions using the brown algae (Cystoseria indica, Nizmuddinia zanardini, Sargassum glaucescens and Padina australis) were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, initial metal concentration and temperature were studied. The equilibrium data fitted very well to the Langmuir adsorption model in the concentration range of nickel(II) ions and at all the temperatures studied. Evaluation of the experimental data in terms of biosorption dynamics showed that the biosorption of nickel(II) onto algal biomass followed the pseudo-second-order dynamics well. The calculated thermodynamic parameters (Delta G degrees, Delta H degrees and DeltaS degrees) showed that the biosorption of nickel(II) ions were feasible, spontaneous and endothermic at the temperature ranges of 293-313 K.

  12. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh.

    PubMed

    Li, Demao; Chen, Limei; Xu, Dong; Zhang, Xiaowen; Ye, Naihao; Chen, Fangjian; Chen, Shulin

    2012-01-01

    The marine brown alga, Sargassum patens C. Agardh, floating on the Yellow Sea, was collected and converted to bio-oil through hydrothermal liquefaction with a modified reactor. A maximum yield of 32.1±0.2 wt.% bio-oil was obtained after 15 min at 340 °C, at a feedstock concentration of 15 g biomass/150 ml water, without using a catalyst. The bio-oil had a heating value of 27.1MJ/kg and contained water, lipid, alcohol, phenol, esters, ethers and aromatic compounds. The solid residue obtained had a high ash and oxygen content. The results suggest that S. patens C. Agardh has potential as biomass feedstock for fuel and chemical products.

  13. Worldwide occurrence of virus-infections in filamentous marine brown algae

    NASA Astrophysics Data System (ADS)

    Müller, D. G.; Stache, B.

    1992-03-01

    Virus infections were detected in Ectocarpus siliculosus and Ectocarpus fasciculatus on the coasts of Ireland, California, Peru, southern South America, Australia and New Zealand; in three Feldmannia species on the coasts of Ireland, continental Chile and Archipelago Juan Fernandez (Chile); and in Leptonematella from Antarctica. Natural populations on the Irish coast contained 3% infected plants in E. fasciculatus, and less than 1% in Feldmannia simplex. On the Californian coast, 15 to 25% of Ectocarpus isolates were infected. Virus symptoms were absent in E. siliculosus from Peru, but appeared after meiosis in laboratory cultures. The virus particles in E. fasciculatus are identical in size and capsid structure to those reported for E. siliculosus, while the virus in F. simplex is smaller and has a different envelope. Our findings suggest that virus infections are a common and worldwide phenomenon in filamentous brown algae.

  14. Mono-acyl arsenosugar phospholipids in the edible brown alga Kombu (Saccharina japonica).

    PubMed

    Yu, Xinwei; Xiong, Chan; Jensen, Kenneth B; Glabonjat, Ronald A; Stiboller, Michael; Raber, Georg; Francesconi, Kevin A

    2018-02-01

    Twenty one arsenolipids, including eight new compounds (AsSugPL 692, AsSugPL 706, AsSugPL 720, AsSugPL 734, AsSugPL 742, AsSugPL 746, AsSugPL 748, and AsSugPL 776) were identified in the edible brown alga Kombu, Saccharina japonica, by means of HPLC coupled with elemental and molecular mass spectrometry. The hitherto undescribed compounds are all mono-acyl arsenosugar phospholipids, differing from previously reported natural arsenic-containing phospholipids by containing only one fatty acid on the glycerol group. Collectively, this new group of mono-acyl compounds constituted about 30% of total lipid arsenic; other significant groups were the di-acyl arsenosugar phospholipids (50%) and arsenic hydrocarbons (20%). The origin and relevance of the mono-acyl arsenosugar phospholipids in Kombu, a commercial seafood product, is briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sphacelaria lacustris sp. nov. , a freshwater brown alga from Lake Michigan

    SciTech Connect

    Schloesser, R.E.; Blum, J.L.

    1980-06-01

    The growth, reproduction and ultrasturcture of a new freshwater phaeophyte, Sphacelaria lacustris sp. nov., are described. The plant occurs as a minute calcified thallus at 5 to 15 m depth along the western shoreline of Lake Michigan. Both freshly collected and laboratory grown plants show apical growth of erect and basal filaments, intermittent longitudinal divisions in filament segments, vegetative reproduction by propagules, numerous parietal chloroplasts and an absence of pyrenoids, characteristics of Sphacelaria. This material is separated from the only other freshwater species in the genus (S. fluviatilis Jao) at least by differences in longitudinal septation, in branching, in its propagules and in general aspect. Between this plant and marine brown algae there are essential similarities of ultrastructure of cell wall and pores, chloroplasts, mitochondria, nucleus and the production/excretion of physodes.

  16. Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus.

    PubMed

    Godfroy, Olivier; Peters, Akira F; Coelho, Susana M; Cock, J Mark

    2015-12-01

    Ectocarpus has emerged as a model organism for the brown algae and a broad range of genetic and genomic resources are being generated for this species. The aim of the work presented here was to evaluate two mutagenesis protocols based on ultraviolet irradiation and ethyl methanesulphonate treatment using genome resequencing to measure the number, type and distribution of mutations generated by the two methods. Ultraviolet irradiation generated a greater number of genetic lesions than ethyl methanesulphonate treatment, with more than 400 mutations being detected in the genome of the mutagenised individual. This study therefore confirms that the ultraviolet mutagenesis protocol is suitable for approaches that require a high density of mutations, such as saturation mutagenesis or Targeting Induced Local Lesions in Genomes (TILLING). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft

    PubMed Central

    Ali, Liaqat; Khan, Abdul Latif; Al-Broumi, Muhammad; Al-Harrasi, Rashid; Al-Kharusi, Lubna; Hussain, Javid; Al-Harrasi, Ahmed

    2017-01-01

    In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1), along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D) spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation. PMID:28106757

  18. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  19. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum

    PubMed Central

    Ham, Young Min; Yoon, Weon-Jong; Lee, Wook Jae; Kim, Sang-Cheol; Baik, Jong Seok; Kim, Jin Hwa; Lee, Geun Soo; Lee, Nam Ho; Hyun, Chang-Gu

    2015-01-01

    During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics. PMID:26600756

  20. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft.

    PubMed

    Ali, Liaqat; Khan, Abdul Latif; Al-Broumi, Muhammad; Al-Harrasi, Rashid; Al-Kharusi, Lubna; Hussain, Javid; Al-Harrasi, Ahmed

    2017-01-18

    In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1), along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D) spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation.

  1. Sex-biased gene expression in the brown alga Fucus vesiculosus.

    PubMed

    Martins, Maria João F; Mota, Catarina F; Pearson, Gareth A

    2013-05-01

    The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious - hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant heterogametic animal models. This work

  2. Sulfated Galactofucan from the Brown Alga Saccharina latissima—Variability of Yield, Structural Composition and Bioactivity

    PubMed Central

    Ehrig, Karina; Alban, Susanne

    2014-01-01

    The fucose-containing sulfated polysaccharides (SP) from brown algae exhibit a wide range of bioactivities and are, therefore, considered promising candidates for health-supporting and medicinal applications. A critical issue is their availability in high, reproducible quality. The aim of the present study was to fractionate and characterize the SP extracted from Saccharina latissima (S.l.-SP) harvested from two marine habitats, the Baltic Sea and North Atlantic Ocean, in May, June and September. The fractionation of crude S.l.-SP by anion exchange chromatography including analytical investigations revealed that S.l.-SP is composed of a homogeneous fraction of sulfated galactofucan (SGF) and a mixture of low-sulfated, uronic acid and protein containing heteropolysaccharides. Furthermore, the results indicated that S.l. growing at an intertidal zone with high salinity harvested at the end of the growing period delivered the highest yield of S.l.-SP with SGF as the main fraction (67%). Its SGF had the highest degree of sulfation (0.81), fucose content (86.1%) and fucose/galactose ratio (7.8) and was most active (e.g., elastase inhibition: IC50 0.21 μg/mL). Thus, S.l. from the North Atlantic harvested in autumn proved to be more appropriate for the isolation of S.l.-SP than S.l. from the Baltic Sea and S.l. harvested in spring, respectively. In conclusion, this study demonstrated that habitat and harvest time of brown algae should be considered as factors influencing the yield as well as the composition and thus also the bioactivity of their SP. PMID:25548975

  3. Sex-biased gene expression in the brown alga Fucus vesiculosus

    PubMed Central

    2013-01-01

    Background The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious – hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. Results Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. Conclusions Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant

  4. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  5. Genetic regulation of life cycle transitions in the brown alga Ectocarpus.

    PubMed

    Coelho, Susana M; Godfroy, Olivier; Arun, Alok; Le Corguillé, Gildas; Peters, Akira F; Cock, J Mark

    2011-11-01

    The life cycle of an organism is one of its most elemental features, underpinning a broad range of phenomena including developmental processes, reproductive fitness, mode of dispersal and adaptation to the local environment. Life cycle modification may have played an important role during the evolution of several eukaryotic groups, including the terrestrial plants. Brown algae are potentially interesting models to study life cycle evolution because this group exhibits a broad range of different life cycles. Currently, life cycle studies are focused on the emerging brown algal model Ectocarpus. Two life cycle mutants have been described in this species, both of which cause the sporophyte generation to exhibit gametophyte characteristics. The ouroboros mutation is particularly interesting because it induces complete conversion of the sporophyte generation into a functional, gamete-producing gametophyte, a class of mutation that has not been described so far in other systems. Analysis of Ectocarpus life cycle mutants is providing insights into several life-cycle-related processes including parthenogenesis, symmetric/asymmetric initial cell divisions and sex determination.

  6. EARLY DEVELOPMENT PATTERN OF THE BROWN ALGA ECTOCARPUS SILICULOSUS (ECTOCARPALES, PHAEOPHYCEAE) SPOROPHYTE(1).

    PubMed

    Le Bail, Aude; Billoud, Bernard; Maisonneuve, Carole; Peters, Akira F; Mark Cock, J; Charrier, Bénédicte

    2008-10-01

    The distant phylogenetic position of brown macroalgae from the other multicellular phyla offers the opportunity to study novel and alternative developmental processes involved in the establishment of multicellularity. At present, however, very little information is available about developmental patterning in this group. Ectocarpus siliculosus (Dillwyn) Lyngb. has uniseriate filaments and displays one of the simplest architectures in the Phaeophyceae. The aim of this study was to decipher the morphogenetic steps that lead to the development of the Ectocarpus sporophyte. We carried out a detailed morphometric study of the events that occurred between gamete germination and the 100-cell stage. This analysis was performed on two ecologically distant isolates to assess plasticity in developmental patterning within this species. Cell sizes were measured in both isolates, allowing the definition of two main cell types based on their shape (round and elongated). On average, the filament is composed of about 40% round cells, which are present in the central region of the filament, but different combinations of the two cell types within filaments were observed and quantified. Young sporophytes grew apically, with elongated cells progressively differentiating into round cells. Secondary filaments emerged preferentially on round cells, primarily from the older central cells. Statistical analyses showed that the pattern of branching was regulated to ensure a stereotyped architecture. This description of the developmental patterning during the growth of the E. siliculosus sporophyte will serve as a base for more detailed studies of development, in this species and in brown algae in general. © 2008 Phycological Society of America.

  7. Genetic regulation of life cycle transitions in the brown alga Ectocarpus

    PubMed Central

    Coelho, Susana M.; Godfroy, Olivier; Arun, Alok; Le Corguillé, Gildas; Peters, Akira F.; Cock, J. Mark

    2011-01-01

    The life cycle of an organism is one of its most elemental features, underpinning a broad range of phenomena including developmental processes, reproductive fitness, mode of dispersal and adaptation to the local environment. Life cycle modification may have played an important role during the evolution of several eukaryotic groups, including the terrestrial plants. Brown algae are potentially interesting models to study life cycle evolution because this group exhibits a broad range of different life cycles. Currently, life cycle studies are focused on the emerging brown algal model Ectocarpus. Two life cycle mutants have been described in this species, both of which cause the sporophyte generation to exhibit gametophyte characteristics. The ouroboros mutation is particularly interesting because it induces complete conversion of the sporophyte generation into a functional, gamete-producing gametophyte, a class of mutation that has not been described so far in other systems. Analysis of Ectocarpus life cycle mutants is providing insights into several life-cycle-related processes including parthenogenesis, symmetric/asymmetric initial cell divisions and sex determination. PMID:22067105

  8. Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment.

    PubMed

    Saha, M; Rempt, M; Gebser, B; Grueneberg, J; Pohnert, G; Weinberger, F

    2012-01-01

    It was demonstrated previously that polar and non-polar surface extracts of the brown alga Fucus vesiculosus collected during winter from the Kiel Bight (Germany) inhibited bacterial attachment at natural concentrations. The present study describes the bioassay-guided identification of the active metabolites from the polar fraction. Chromatographic separation on a size-exclusion liquid chromatography column and bioassays identified an active fraction that was further investigated using nuclear magnetic resonance spectroscopy and mass spectrometry. This fraction contained the metabolites dimethylsulphopropionate (DMSP), proline and alanine. DMSP and proline caused the anti-attachment activity. The metabolites were further quantified on the algal surface together with its associated boundary layer. DMSP and proline were detected in the range 0.12-1.08 ng cm(-2) and 0.09-0.59 ng cm(-2), respectively. These metabolites were tested in the concentration range from 0.1 to 1000 ng cm(-2) against the attachment of five bacterial strains isolated from algae and sediment co-occurring with F. vesiculosus. The surface concentrations for 50% inhibition of attachment of these strains were always <0.38 ng cm(-2) for DMSP and in four cases <0.1 ng cm(-2) for proline, while one strain required 1.66 ng cm(-2) of proline for 50% inhibition. Two further bacterial strains that had been directly isolated from F. vesiculosus were also tested, but proved to be the least sensitive. This study shows that DMSP and proline have an ecologically relevant role as surface inhibitors against bacterial attachment on F. vesiculosus.

  9. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  10. Genome Sequence of Formosa haliotis Strain MA1, a Brown Alga-Degrading Bacterium Isolated from the Gut of Abalone Haliotis gigantea

    PubMed Central

    Mizutani, Yukino; Shibata, Toshiyuki; Miyake, Hideo; Iehata, Shunpei; Mori, Tetsushi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-01-01

    Formosa haliotis is a brown alga-degrading bacterium isolated from the gut of abalone Haliotis gigantea. Here, we report the draft genome sequence of this bacterium and pointed out possible important features related to alginate degradation. PMID:27856598

  11. Diffusion or advection? Mass transfer and complex boundary layer landscapes of the brown alga Fucus vesiculosus.

    PubMed

    Lichtenberg, Mads; Nørregaard, Rasmus Dyrmose; Kühl, Michael

    2017-03-01

    The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant-microbe interactions. © 2017 The Author(s).

  12. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus.

    PubMed

    Mata, Y N; Torres, E; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-07-30

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  13. Extraction and Identification of Phlorotannins from the Brown Alga, Sargassum fusiforme (Harvey) Setchell.

    PubMed

    Li, Yajing; Fu, Xiaoting; Duan, Delin; Liu, Xiaoyong; Xu, Jiachao; Gao, Xin

    2017-02-21

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds.

  14. A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities.

    PubMed

    Wu, Mingjiang; Tong, Changqing; Wu, Yue; Liu, Shuai; Li, Wei

    2016-06-15

    A lectin (HFL) was isolated from the brown alga, Hizikia fusiformis, through ion exchange on cellulose DE52 and HPLC with a TSK-gel G4000PWXL column. SDS-PAGE showed that HFL had a molecular mass of 16.1 kDa. The HPLC (with a TSK-gel G4000PWXL column) indicated that HFL is a tetramer in its native state. The total carbohydrate content was 41%. Glucose, galactose and fucose were the monosaccharide units of HFL, and the normalized mol% values were 6, 14 and 80, respectively. HFL contains a large amount of the acidic amino acid, Asx. The β-elimination reaction suggested that the oligosaccharide and peptide moieties of HFL may belong to the N-glucosidic linkage. The amino acid sequences, of about five segments of HFL, were acquired by MALDI-TOF/TOF, and the sequences have no homology with other lectins. HFL was found to agglutinate sheep erythrocytes. The hemagglutination activity was inhibited by thyroglobulin, from bovine thyroid, but not by any of the monosaccharides tested. The lectin reaction was independent of the presence of the divalent cation Ca(2+). HFL showed free radical scavenging activity against hydroxyl, DPPH and ABTS(+) radicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota pfaffii

    PubMed Central

    Pardo-Vargas, Alonso; Oliveira, Ingrid de Barcelos; Stephens, Paulo Roberto Soares; Cirne-Santos, Claudio Cesar; Paixão, Izabel Christina Nunes de Palmer; Ramos, Freddy Alejandro; Jiménez, Carlos; Rodríguez, Jaime; Resende, Jackson Antonio Lamounier Camargos; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-01-01

    The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT) of HIV-1. Reexamination of the minor diterpene constituents yielded three new dolabellane diterpenes, (1R*,2E,4R*,7S,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (1), (1R*,2E,4R*,7R*,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (2), (1R*,2E,4R*,8E,10S*,11S,12R*)10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene (3), termed dolabelladienols A–C (1–3) respectively, in addition to the known dolabellane diterpenes (4–6). The elucidation of the compounds 1–3 was assigned by 1D and 2D NMR, MS, optical rotation and molecular modeling, along with the relative configuration of compound 4 and the absolute configuration of 5 by X-ray diffraction. The potent anti-HIV-1 activities displayed by compounds 1 and 2 (IC50 = 2.9 and 4.1 μM), which were more active than even the known dolabelladienetriol 4, and the low cytotoxic activity against MT-2 lymphocyte tumor cells indicated that these compounds are promising anti-HIV-1 agents. PMID:25056631

  16. The Tropical Brown Alga Lobophora variegata: A Source of Antiprotozoal Compounds

    PubMed Central

    Cantillo-Ciau, Zulema; Moo-Puc, Rosa; Quijano, Leovigildo; Freile-Pelegrín, Yolanda

    2010-01-01

    Lobophora variegata, a brown alga collected from the coast of the Yucatan peninsula, Mexico, was studied for antiprotozoal activity against Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The whole extract showed the highest activity against T. vaginalis, with an IC50 value of 3.2 μg/mL. For the fractions, the best antiprotozoal activity was found in non-polar fractions. The chloroform fraction of the extract contained a major sulfoquinovosyldiacylglycerol (SQDG), identified as 1-O-palmitoyl-2-O-myristoyl-3-O-(6‴-sulfo-α-d-quinovopyranosyl)-glycerol (1), together with small amounts of 1,2-di-O-palmitoyl-3-O-(6‴-sulfo-α-d-quinovopyranosyl)-glycerol (2) and a new compound identified as 1-O-palmitoyl-2-O-oleoyl-3-O-(6‴-sulfo-α-d-quinovopyranosyl)-glycerol (3). Their structures were elucidated on the basis of chemical and enzymatic hydrolysis and careful analysis of FAB-MS and NMR spectroscopic data. This is the first report on the isolation of SQDGs from L. variegata. The mixture of 1–3 showed good activity against E. histolytica and moderate activity against T. vaginalis with IC50s of 3.9 and 8.0 μg/mL, respectively, however, the activity of 1–3 is not as effective as metronidazole. These results afford ground information for the potential use of the whole extract and fractions of this species in protozoal infections. PMID:20479979

  17. Evaluation of Marine Brown Algae and Sponges from Brazil as Anticoagulant and Antiplatelet Products

    PubMed Central

    de Andrade Moura, Laura; Ortiz-Ramirez, Fredy; Cavalcanti, Diana Negrao; Ribeiro, Suzi Meneses; Muricy, Guilherme; Teixeira, Valeria Laneuville; Fuly, Andre Lopes

    2011-01-01

    The ischemic disorders, in which platelet aggregation and blood coagulation are involved, represent a major cause of disability and death worldwide. The antithrombotic therapy has unsatisfactory performance and may produce side effects. So, there is a need to seek molecules with antithrombotic properties. Marine organisms produce substances with different well defined ecological functions. Moreover, some of these molecules also exhibit pharmacological properties such as antiviral, anticancer, antiophidic and anticoagulant properties. The aim of this study was to evaluate, through in vitro tests, the effect of two extracts of brown algae and ten marine sponges from Brazil on platelet aggregation and blood coagulation. Our results revealed that most of the extracts were capable of inhibiting platelet aggregation and clotting measured by plasma recalcification tests, prothrombin time, activated partial thromboplastin time, and fibrinogenolytic activity. On the other hand, five of ten species of sponges induced platelet aggregation. Thus, the marine organisms studied here may have molecules with antithrombotic properties, presenting biotechnological potential to antithrombotic therapy. Further chemical investigation should be conducted on the active species to discover useful molecules for the development of new drugs to treat clotting disorders. PMID:21892349

  18. Dolabelladienols A-C, new diterpenes isolated from Brazilian brown alga Dictyota pfaffii.

    PubMed

    Pardo-Vargas, Alonso; de Barcelos Oliveira, Ingrid; Stephens, Paulo Roberto Soares; Cirne-Santos, Claudio Cesar; de Palmer Paixão, Izabel Christina Nunes; Ramos, Freddy Alejandro; Jiménez, Carlos; Rodríguez, Jaime; Resende, Jackson Antonio Lamounier Camargos; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-07-23

    The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT) of HIV-1. Reexamination of the minor diterpene constituents yielded three new dolabellane diterpenes, (1R*,2E,4R*,7S,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (1), (1R*,2E,4R*,7R*,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (2), (1R*,2E,4R*,8E,10S*,11S,12R*)10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene (3), termed dolabelladienols A-C (1-3) respectively, in addition to the known dolabellane diterpenes (4-6). The elucidation of the compounds 1-3 was assigned by 1D and 2D NMR, MS, optical rotation and molecular modeling, along with the relative configuration of compound 4 and the absolute configuration of 5 by X-ray diffraction. The potent anti-HIV-1 activities displayed by compounds 1 and 2 (IC50 = 2.9 and 4.1 μM), which were more active than even the known dolabelladienetriol 4, and the low cytotoxic activity against MT-2 lymphocyte tumor cells indicated that these compounds are promising anti-HIV-1 agents.

  19. Cystoseira usneoides: A Brown Alga Rich in Antioxidant and Anti-inflammatory Meroditerpenoids.

    PubMed

    de los Reyes, Carolina; Ortega, María J; Zbakh, Hanaa; Motilva, Virginia; Zubía, Eva

    2016-02-26

    Twelve new meroditerpenoids, 1-12, along with eight known compounds, have been isolated from the brown alga Cystoseira usneoides collected off the coast of Tarifa (Spain). The structures of the new metabolites have been established by spectroscopic techniques. All of the new compounds consist of a toluhydroquinone-derived nucleus linked to a regular diterpenoid moiety, which can either be acyclic or contain an ether ring. Most structural diversity arises from the presence of different oxygenated functionalities and unsaturations along the two terminal isoprenoid units of the diterpene backbone. Twelve of the isolated meroditerpenes have been tested in antioxidant assays. All of them have shown radical-scavenging activity. The most active compounds were cystodiones G (1) and H (2), 11-hydroxyamentadione (15), and amentadione (16), which exhibited antioxidant activities in the range of 77-87% that of the Trolox standard. In anti-inflammatory assays, cystodiones G (1) and M (6), cystone C (9), 11-hydroxyamentadione (15), and amentadione (16) showed significant activity as inhibitors of the production of the proinflammatory cytokine TNF-α in LPS-stimulated THP-1 human macrophages.

  20. Purification and characterisation of vanadium haloperoxidases from the brown alga Pelvetia canaliculata.

    PubMed

    Almeida, M G; Humanes, M; Melo, R; Silva, J A; da Silva, J J; Wever, R

    2000-05-01

    Two enzymes characterised as iodoperoxidases (PcI and PcII), with vanadium-dependent activity, have been purified from the brown alga Pelvetia canaliculata (L.) Decne et Thur. (Fucaceae, Phaeophyceae), collected in the Northern Portuguese coast, at Viana do Castelo. The relative molecular masses were 166 kDa for PcI and 416 kDa for PcII, as determined by gel filtration. SDS-PAGE shows that PcI has just one band corresponding to a subunit of 66 kDa, while PcII shows four bands (66, 72, 157 and 280 kDa). The following kinetic parameters have been determined from a steady-state analysis of the oxidation of iodide by H2O2: PcI, pHopt = 6.0, KM(I-) = 2.1 mM, KM(H2O2) = 110 microM, Ki(I-) = 127 mM; and PcII, pHopt = 6.5, KM(I-) = 2.4 mM, KM(H2O2) = 20 microM and Ki(I-) = 69 mM. These iodoperoxidases are thermostable, as also observed for vanadium bromo- and chloroperoxidases.

  1. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  2. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs.

    PubMed

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-09-08

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.

  3. Biosorptive removal of malachite green from aqueous solution using chemically modified brown marine alga Sargassum swartzii.

    PubMed

    Jerold, M; Sivasubramanian, V

    2017-02-01

    Sargassum swartzii, marine macro brown alga, showed a high malachite green (MG) biosorption capacity in batch mode of operation. The analytical evidence from Fourier transform infrared spectra confirmed the involvement of amine group in the biosorption of MG and electrostatic interaction type of mechanism was proposed to occur between the amine group of dye and the cationic MG dye solution. Scanning electron micrograph shows the morphological features and the attachment of dye onto the biosorbent. pH edge experiment shows that biosorption capacity was maximum at pH 10. The effect of biosorbent concentration, pH, temperature, adsorption time was studied for the biosorption of MG using S. swartzii. Langmuir, Freundlich and Temkin models were used to describe the isotherm data, of which Langmuir model described the isotherm data with high coefficient of determination R(2) = 0.999. The maximum dye uptake of 111.1 mg/g was reported at pH 10 based on Langmuir model. Kinetics and temperature profiles were evaluated and reported. Desorption study was carried out with 0.1 M HCl. Efforts were also made to continuously treat MG bearing wastewater using up-flow packed column. Investigations proved that S. swartzii is an excellent biosorbent for the sequestration of MG in aqueous media.

  4. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection.

    PubMed

    Hayashi, Kyoko; Nakano, Takahisa; Hashimoto, Minoru; Kanekiyo, Kenji; Hayashi, Toshimitsu

    2008-01-01

    Fucoidan, a sulfated polysaccharide isolated from an edible brown alga Undaria pinnatifida, was previously shown to be a potent inhibitor of the in vitro replication of herpes simplex virus type 1 (HSV-1). HSV-1 is a member of herpes viruses that cause infections ranging from trivial mucosal ulcers to life-threatening disorders in immunocompromised hosts. In the in vivo conditions, the replication of HSV-1 is controlled under the immunoresponse coordinated by both the innate and adaptive immune systems. In the present study, the effects of the fucoidan were examined on in vivo viral replication and the host's immune defense system. Oral administration of the fucoidan protected mice from infection with HSV-1 as judged from the survival rate and lesion scores. Phagocytic activity of macrophages and B cell blastogenesis in vitro were significantly stimulated by the fucoidan, while no significant change in the release of NO(2)(-) by macrophages was observed. In in vivo studies, oral administration of the fucoidan produced the augmentation of NK activity in HSV-1-infected mice immunosuppressed by 5-fluorouracil treatment. CTL activity in HSV-1-infected mice was also enhanced by oral administration of the fucoidan. The production of neutralizing antibodies in the mice inoculated with HSV-1 was significantly promoted during the oral administration of the fucoidan for 3 weeks. These results suggested that oral intake of the fucoidan might take the protective effects through direct inhibition of viral replication and stimulation of both innate and adaptive immune defense functions.

  5. Extraction and Identification of Phlorotannins from the Brown Alga, Sargassum fusiforme (Harvey) Setchell

    PubMed Central

    Li, Yajing; Fu, Xiaoting; Duan, Delin; Liu, Xiaoyong; Xu, Jiachao; Gao, Xin

    2017-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds. PMID:28230766

  6. Anti-inflammatory effects of apo-9′-fucoxanthinone from the brown alga, Sargassum muticum

    PubMed Central

    2013-01-01

    Background The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo) Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized. Methods Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis. Results Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages. Conclusions This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies. PMID:23889890

  7. Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) suringar

    NASA Astrophysics Data System (ADS)

    Fletcher, R. L.; Farrell, P.

    1998-09-01

    The recent introduction of the macroalga Undaria pinnatifida (Harvey) Suringar into the North Atlantic is the latest of a large number of introductions, which have occurred over many years. Some have been deliberate introductions for mariculture or research, while most have been accidental, via vectors such as shipping and shellfish imports. Not all newly recorded species are introductions; some are thought to be merely extensions of distribution, e.g. Laminaria ochroleuca, while others may have been overlooked previously, e.g. Scytosiphon dotyi. Subsequent to its accidental introduction into the waters around the Mediterranean French coast at Sete, most likely with imported oysters, Undaria was deliberately introduced into the North Atlantic, to Brittany, in 1983 by IFREMER for commercial exploitation. Undaria has since spread from the original sites in Brittany, and is now established at several sites on the south coast of England. This paper discusses the introduced brown algae in the North Atlantic and outlines the establishment of Undaria in the UK.

  8. Nutrient-regulated transcriptional responses in the brown tide forming alga Aureococcus anophagefferens

    PubMed Central

    Wurch, Louie L.; Haley, Sheean T.; Orchard, Elizabeth D.; Gobler, Christopher J.; Dyhrman, Sonya T.

    2012-01-01

    Summary Long-SAGE (Serial Analysis of Gene Expression) was used to profile the transcriptome of the brown tide-forming alga, Aureococcus anophagefferens, under nutrient replete (control), and nitrogen (N) and phosphorus (P) deficiency to understand how this organism responds at the transcriptional level to varying nutrient conditions. This approach has aided A. anophagefferens genome annotation efforts and identified a suite of genes up-regulated by N and P deficiency, some of which have known roles in nutrient metabolism. Genes up-regulated under N deficiency include an ammonium transporter, an acetamidase/formamidase, and two peptidases. This suggests an ability to utilize reduced N compounds and dissolved organic nitrogen, supporting the hypothesized importance of these N sources in A. anophagefferens bloom formation. There are also a broad suite of P-regulated genes, including an alkaline phosphatase, and two 5’-nucleotidases, suggesting A. anophagefferens may use dissolved organic phosphorus under low phosphate conditions. These N- and P-regulated genes may be important targets for exploring nutrient controls on bloom formation in field populations. PMID:20880332

  9. Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch

    NASA Astrophysics Data System (ADS)

    Yang, Huicheng; Zeng, Mingyong; Dong, Shiyuan; Liu, Zunying; Li, Ruixue

    2010-01-01

    In this study, we evaluated the anti-proliferative activity of phlorotannins derived from brown algae Laminaria japonica Aresch extracts on the human hepatocellular carcinoma cell (BEL-7402) and on murine leukemic cells (P388) by MTT assay. Cells were incubated with 100 μg/mL of the phlorotannin extract (PE) for 48 h. The inhibitory rate of PE on BEL-7402 and P388 cells was 30.20±1.16% and 43.44±1.86%, respectively, and the half-inhibitory concentration of PE (IC50) on P388 and BEL-7402 cells was 120 μg/mL and >200 μg/mL, respectively. Microscopic observation shows that the morphologic features of tumor cells treated with PE and 5-fluorouracil are markedly different from the normal control group. The inhibitory rate of fraction A2 isolated from PE by sephadex LH-20 for BEL-7402 and P388 cells at the sample concentration of 70.42 μg/mL was 61.96±7.02% and 40.47±8.70%, respectively. The apoptosis peak for fraction A2 was the most profound of all fractions used in the flow cytometry assay. The results indicate that the anti-proliferative of this algal extract is associated with the total phlorotannin content.

  10. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Fricke, A.; Titlyanova, T. V.; Nugues, M. M.; Bischof, K.

    2011-12-01

    Lobophora variegata is a dominant macroalga on coral reefs across the Caribbean. Over the last two decades, it has expanded its vertical distribution to both shallow and deep reefs along the leeward coast of the island of Curaçao, Southern Caribbean. However, the ecological implications of this expansion and the role of L. variegata as a living substratum are poorly known. This study compared epiphytic algal communities on L. variegata blades along two depth transects (6-40 m). The epiphytic community was diverse with a total of 70 species of which 49 were found directly attached to L. variegata. The epiphytic community varied significantly between blade surface, depth and site. The greatest number of genera per blade was found growing on the underside of the blades regardless of site and depth. Filamentous red algae (e.g. Neosiphonia howei) were commonly found on the upperside of the blades over the whole depth gradient, whereas the underside was mainly colonized by calcifying (e.g. Hydrolithon spp., Jania spp., Amphiroa fragillissima), fleshy red algae (e.g. Champia spp., Gelidiopsis spp., Hypnea spinella) and foliose brown alga (e.g. Dictyota spp.). Anotrichum tenue, a red alga capable of overgrowing corals, was a common epiphyte of both blade surfaces. L. variegata plays an important role as a newly available substratum. Thus, its spread may influence other algal species and studies of benthic macroalgae such as L. variegata should also take into consideration their associated epiphytic algal communities.

  11. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  12. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts.

    PubMed

    Margulis, L; Hinkle, G; McKhann, H; Moynihan, B

    1988-09-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  13. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  14. Light Energy Distribution in the Brown Alga Macrocystis pyrifera (Giant Kelp) 1

    PubMed Central

    Fork, David C.; Herbert, Stephen K.; Malkin, Shmuel

    1991-01-01

    The brown alga Macrocystis pyrifera (giant kelp) was studied by a combination of fluorescence spectroscopy at 77 kelvin, room temperature modulated fluorimetry, and photoacoustic techniques to determine how light energy is partitioned between photosystems I and II in states 1 and 2. Preillumination with farred light induced the high fluorescence state (state 1) as determined by fluorescence emission spectra measured at 77K and preillumination with green light produced a low fluorescence state (state 2). Upon transition from state 1 to state 2, there was an almost parallel decrease of all of the fluorescence bands at 693, 705, and 750 nanometers and not the expected decrease of fluorescence of photosystem II and increase of fluorescence in photosystem I. The momentary level of room temperature fluorescence (fluorescence in the steady state, Fs), as well as the fluorescence levels corresponding to all closed (Fm) or all open (Fo) reaction-center states were measured following the kinetics of the transition between states 1 and 2. Calculation of the distribution of light 2 (540 nanometers) between the two photosystems was done assuming both the `separate package' and `spill-over' models. Unlike green plants, red algae, and cyanobacteria, the changes here of the light distribution were rather small in Macrocystis so that there was approximately an even distribution of the photosystem II light at 540 nanometers to photosystem I and photosystem II in both states 1 and 2. Photoacoustic measurements confirmed the conclusions reached as a result of fluorescence measurements, i.e. an almost equal distribution of light-2 quanta to both photosystems in each state. This conclusion was reached by analyzing the enhancement phenomenon by light 2 of the energy storage measured in far red light. The effect of light 1 in decreasing the energy storage measured in light 2 is also consistent with this conclusion. The photoacoustic experiments showed that there was a significant energy

  15. The Cultivable Surface Microbiota of the Brown Alga Ascophyllum nodosum is Enriched in Macroalgal-Polysaccharide-Degrading Bacteria

    PubMed Central

    Martin, Marjolaine; Barbeyron, Tristan; Martin, Renee; Portetelle, Daniel; Michel, Gurvan; Vandenbol, Micheline

    2015-01-01

    Bacteria degrading algal polysaccharides are key players in the global carbon cycle and in algal biomass recycling. Yet the water column, which has been studied largely by metagenomic approaches, is poor in such bacteria and their algal-polysaccharide-degrading enzymes. Even more surprisingly, the few published studies on seaweed-associated microbiomes have revealed low abundances of such bacteria and their specific enzymes. However, as macroalgal cell-wall polysaccharides do not accumulate in nature, these bacteria and their unique polysaccharidases must not be that uncommon. We, therefore, looked at the polysaccharide-degrading activity of the cultivable bacterial subpopulation associated with Ascophyllum nodosum. From A. nodosum triplicates, 324 bacteria were isolated and taxonomically identified. Out of these isolates, 78 (~25%) were found to act on at least one tested algal polysaccharide (agar, ι- or κ-carrageenan, or alginate). The isolates “active” on algal-polysaccharides belong to 11 genera: Cellulophaga, Maribacter, Algibacter, and Zobellia in the class Flavobacteriia (41) and Pseudoalteromonas, Vibrio, Cobetia, Shewanella, Colwellia, Marinomonas, and Paraglaceciola in the class Gammaproteobacteria (37). A major part represents likely novel species. Different proportions of bacterial phyla and classes were observed between the isolated cultivable subpopulation and the total microbial community previously identified on other brown algae. Here, Bacteroidetes and Gammaproteobacteria were found to be the most abundant and some phyla (as Planctomycetes and Cyanobacteria) frequently encountered on brown algae weren't identified. At a lower taxonomic level, twelve genera, well-known to be associated with algae (with the exception for Colwellia), were consistently found on all three A. nosodum samples. Even more interesting, 9 of the 11 above mentioned genera containing polysaccharolytic isolates were predominant in this common core. The cultivable

  16. The Cultivable Surface Microbiota of the Brown Alga Ascophyllum nodosum is Enriched in Macroalgal-Polysaccharide-Degrading Bacteria.

    PubMed

    Martin, Marjolaine; Barbeyron, Tristan; Martin, Renee; Portetelle, Daniel; Michel, Gurvan; Vandenbol, Micheline

    2015-01-01

    Bacteria degrading algal polysaccharides are key players in the global carbon cycle and in algal biomass recycling. Yet the water column, which has been studied largely by metagenomic approaches, is poor in such bacteria and their algal-polysaccharide-degrading enzymes. Even more surprisingly, the few published studies on seaweed-associated microbiomes have revealed low abundances of such bacteria and their specific enzymes. However, as macroalgal cell-wall polysaccharides do not accumulate in nature, these bacteria and their unique polysaccharidases must not be that uncommon. We, therefore, looked at the polysaccharide-degrading activity of the cultivable bacterial subpopulation associated with Ascophyllum nodosum. From A. nodosum triplicates, 324 bacteria were isolated and taxonomically identified. Out of these isolates, 78 (~25%) were found to act on at least one tested algal polysaccharide (agar, ι- or κ-carrageenan, or alginate). The isolates "active" on algal-polysaccharides belong to 11 genera: Cellulophaga, Maribacter, Algibacter, and Zobellia in the class Flavobacteriia (41) and Pseudoalteromonas, Vibrio, Cobetia, Shewanella, Colwellia, Marinomonas, and Paraglaceciola in the class Gammaproteobacteria (37). A major part represents likely novel species. Different proportions of bacterial phyla and classes were observed between the isolated cultivable subpopulation and the total microbial community previously identified on other brown algae. Here, Bacteroidetes and Gammaproteobacteria were found to be the most abundant and some phyla (as Planctomycetes and Cyanobacteria) frequently encountered on brown algae weren't identified. At a lower taxonomic level, twelve genera, well-known to be associated with algae (with the exception for Colwellia), were consistently found on all three A. nosodum samples. Even more interesting, 9 of the 11 above mentioned genera containing polysaccharolytic isolates were predominant in this common core. The cultivable fraction of

  17. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga ectocarpus.

    PubMed

    Lipinska, Agnieszka; Cormier, Alexandre; Luthringer, Rémy; Peters, Akira F; Corre, Erwan; Gachon, Claire M M; Cock, J Mark; Coelho, Susana M

    2015-06-01

    Males and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male- and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology.

  18. Structure and anticancer activity in vitro of sulfated galactofucan from brown alga Alaria angusta.

    PubMed

    Menshova, Roza V; Anastyuk, Stanislav D; Ermakova, Svetlana P; Shevchenko, Natalia M; Isakov, Vladimir I; Zvyagintseva, Tatiana N

    2015-11-05

    Laminaran and three fractions of fucoidan were isolated from brown alga Alaria angusta. The laminaran AaL was characterized as a typical 1,3;1,6-β-D-glucan (ratio of bonds 1,3:1,6 = 10:1). Fucoidans AaF1 and AaF2 are sulfated heteropolysaccharides, containing fucose, galactose, mannose and xylose. The fraction AaF3 is sulfated and acetylated galactofucan with the main chain represented by a repeating unit → 3)-α-L-Fucp-(2,4-SO3(-))-(1 →. According the data of methylation analysis, AaF3 contains mainly 1,3-linked fucose, less 1,4-linked and 1,4,6-linked galactose residues. The autohydrolysis (37 °C) of fucoidan AaF3 allowed to obtain selectively 2-desulfaled polysaccharide fraction, built up of fucose only, and low molecular weight (LMW) fraction. The negative-ion tandem mass spectrometry of LMW fraction, further hydrolyzed by acid hydrolysis identified the following fragments: Gal-2-SO3(-)-(1 → 4)-Gal, Gal-4-SO3(-)-(1 → 4)-Gal, Gal-(1 → 2)-Gal-4-SO3(-), Fuc-2-SO3(-)-(1 → 4)-Gal, Gal-2-SO3(-)-(1 → 3)-Fuc-(1 → 3)-Fuc, Fuc-2-SO3(-)-(1 → 3)-Fuc-(1 → 4)-Gal. The laminaran AaL and the fucoidan AaF3 exhibited no cytotoxicity in vitro for HT 29, T-47D, and SK-MEL-28 cell lines. The AaF3 fraction suppressed colony formation of HT 29 and T-47D cells, AaL-only HT 29 cells. Copyright © 2015. Published by Elsevier Ltd.

  19. Structural Characteristics and Anticancer Activity of Fucoidan from the Brown Alga Sargassum mcclurei

    PubMed Central

    Duc Thinh, Pham; Menshova, Roza V.; Ermakova, Svetlana P.; Anastyuk, Stanislav D.; Ly, Bui Minh; Zvyagintseva, Tatiana N.

    2013-01-01

    Three different fucoidan fractions were isolated and purified from the brown alga, Sargassum mcclurei. The SmF1 and SmF2 fucoidans are sulfated heteropolysaccharides that contain fucose, galactose, mannose, xylose and glucose. The SmF3 fucoidan is highly sulfated (35%) galactofucan, and the main chain of the polysaccharide contains a →3)-α-l-Fucp(2,4SO3−)-(1→3)-α-l-Fucp(2,4SO3−)-(1→ motif with 1,4-linked 3-sulfated α-l-Fucp inserts and 6-linked galactose on reducing end. Possible branching points include the 1,2,6- or 1,3,6-linked galactose and/or 1,3,4-linked fucose residues that could be glycosylated with terminal β-d-Galp residues or chains of alternating sulfated 1,3-linked α-l-Fucp and 1,4-linked β-d-Galp residues, which have been identified in galactofucans for the first time. Both α-l-Fucp and β-d-Galp residues are sulfated at C-2 and/or C-4 (and some C-6 of β-d-Galp) and potentially the C-3 of terminal β-d-Galp, 1,4-linked β-d-Galp and 1,4-linked α-l-Fucp residues. All fucoidans fractions were less cytotoxic and displayed colony formation inhibition in colon cancer DLD-1 cells. Therefore, these fucoidan fractions are potential antitumor agents. PMID:23648551

  20. Rapid Mass Spectrometric Analysis of a Novel Fucoidan, Extracted from the Brown Alga Coccophora langsdorfii

    PubMed Central

    Anastyuk, Stanislav D.; Imbs, Tatyana I.; Dmitrenok, Pavel S.; Zvyagintseva, Tatyana N.

    2014-01-01

    The novel highly sulfated (35%) fucoidan fraction Cf2 , which contained, along with fucose, galactose and traces of xylose and uronic acids was purified from the brown alga Coccophora langsdorfii. Its structural features were predominantly determined (in comparison with fragments of known structure) by a rapid mass spectrometric investigation of the low-molecular-weight fragments, obtained by “mild” (5 mg/mL) and “exhaustive” (maximal concentration) autohydrolysis. Tandem matrix-assisted laser desorption/ionization mass spectra (MALDI-TOF/TOFMS) of fucooligosaccharides with even degree of polymerization (DP), obtained by “mild” autohydrolysis, were the same as that observed for fucoidan from Fucus evanescens, which have a backbone of alternating (1 → 3)- and (1 → 4) linked sulfated at C-2 and sometimes at C-4 of 3-linked α-L-Fucp residues. Fragmentation patterns of oligosaccharides with odd DP indicated sulfation at C-2 and at C-4 of (1 → 3) linked α-L-Fucp residues on the reducing terminus. Minor sulfation at C-3 was also suggested. The “exhaustive” autohydrolysis allowed us to observe the “mixed” oligosaccharides, built up of fucose/xylose and fucose/galactose. Xylose residues were found to occupy both the reducing and nonreducing termini of FucXyl disaccharides. Nonreducing galactose residues as part of GalFuc disaccharides were found to be linked, possibly, by 2-type of linkage to fucose residues and were found to be sulfated, most likely, at position C-2. PMID:24578675

  1. Halopenitus salinus sp. nov., isolated from the brine of salted brown alga Laminaria.

    PubMed

    Han, Dong; Cui, Heng-Lin; Li, Zheng-Rong

    2014-10-01

    A halophilic archaeal strain, SKJ47(T), was isolated from a commercial preparation of the brown alga Laminaria produced at Dalian, Liaoning Province, China. Cells of the strain were observed to be short rods, stain Gram-negative, and to form red-pigmented colonies on solid media. Strain SKJ47(T) was found to be able to grow at 20-50 °C (optimum 37 °C), at 0.9-4.8 M NaCl (optimum 2.6-3.1 M), at pH 6.0-9.5 (optimum pH 7.0). The cells lysed in distilled water and the minimal NaCl concentration to prevent cell-lysis was found to be 5% (w/v). The major polar lipids of the strain were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and two glycolipids chromatographically identical to those of Halopenitus persicus IBRC 10041(T). The 16S rRNA gene and rpoB' gene of strain SKJ47(T) were found to be phylogenetically related to the corresponding genes of Halopenitus malekzadehii IBRC-M 10418(T) (96.3 and 91.9% nucleotide identity, respectively) and Hpt. persicus IBRC 10041(T) (96.2 and 93.8%). The DNA G+C content of strain SKJ47(T) was determined to be 65.0 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain SKJ47(T) (=CGMCC 1.12229(T) = JCM 18641(T)) represents a new species of the genus Halopenitus, for which the name Halopenitus salinus sp. nov. is proposed.

  2. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T).

  3. Algibacter wandonensis sp. nov., isolated from sediment around a brown algae (Undaria pinnatifida) reservoir.

    PubMed

    Yoon, Jung-Hoon; Park, Sooyeon

    2013-12-01

    A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY22(T), was isolated from sediment around a brown algae reservoir located on Wando in South Korea. It grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY22(T) clustered coherently with the type strains of Algibacter lectus and Algibacter undariae. It exhibited sequence similarity of 99.4 and 98.9 % to the type strains of A. lectus and A. undariae, respectively, and of 95.1-96.6 % to those of the other species of the genus Algibacter. Strain WS-MY22(T) contained MK-6 as the predominant menaquinone and iso-C15 : 1 G and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids of strain WS-MY22(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY22(T) was 35.8 mol% and its DNA-DNA relatedness with A. lectus KCTC 12103(T) and A. undariae WS-MY9(T) was 31 and 19 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY22(T) is separate from other species of the genus Algibacter. On the basis of the data presented, strain WS-MY22(T) is considered to represent a novel species of the genus Algibacter, for which the name Algibacter wandonensis sp. nov. is proposed. The type strain is WS-MY22(T) ( = KCTC 32381(T) = CECT 8301(T)).

  4. Electron tomographic analysis of cytokinesis in the brown alga Silvetia babingtonii (Fucales, Phaeophyceae).

    PubMed

    Nagasato, Chikako; Kajimura, Naoko; Terauchi, Makoto; Mineyuki, Yoshinobu; Motomura, Taizo

    2014-11-01

    In brown algae, membrane resources for the new cell partition during cytokinesis are mainly flat cisternae (FCs) and Golgi-derived vesicles. We used electron tomography coupled with rapid freezing/freeze substitution of zygotes to clarify the structure of transient membrane compartments during cytokinesis in Silvetia zygotes. After mitosis, an amorphous membranous structure, considered to be an FC intermediate was observed near endoplasmic reticulum clusters, lying between two daughter nuclei. FCs were arrayed at the cytokinetic plane, and a tubular membranous network was formed around them. This network might be formed by the consecutive fusion of spherical vesicles that are linked to the edges of FCs to form a membranous network (MN). At the initial stage of the formation of a membranous sac (MS) from the MN, the MS had flat and swollen parts, with the latter showing membranous tunnels. Coated pits were detected with high frequency at the swollen parts of the MS. This observation indicated that membranous tunnels disappeared by recycling of excess membrane via endocytosis, and the swollen part became flat. The MN appeared at the edges of the growing MS. MN and the MN-MS complex were observed along the cytokinetic plane in several spaces. The MS expanded by the incorporation of MN or other MS in its neighborhood. With the maturation of the new cell partition membrane, the thickness of the MS became constant and the membrane cavity disappeared. The changes in the surface area and volume of the transient membrane compartment during cytokinesis were analyzed from the tomographic data.

  5. Complete Plastid Genome of the Brown Alga Costaria costata (Laminariales, Phaeophyceae).

    PubMed

    Zhang, Lei; Wang, Xumin; Liu, Tao; Wang, Haiyang; Wang, Guoliang; Chi, Shan; Liu, Cui

    2015-01-01

    Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs). The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.

  6. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava.

    PubMed

    Kim, Ji-Young; Park, So-Hyun; Seo, Ga-Young; Kim, Young-Ju; Oh, Duck-Chul

    2015-09-01

    A novel bacterial strain, designated EC29(T), was isolated from the brown alga Ecklonia cava collected on Jeju Island, Republic of Korea. Cells of strain EC29(T) were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10-30 °C (optimum, 20-25 °C), at pH 6.0-9.5 (optimum, pH 7.5) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus Winogradskyella. Strain EC29(T) exhibited the highest 16S rRNA gene sequence similarities, of 96.5-97.8%, to the type strains of Winogradskyella pulchriflava EM106(T), Winogradskyella echinorum KMM 6211(T) and Winogradskyella ulvae KMM 6390(T). Strain EC29(T) exhibited < 27% DNA-DNA relatedness with Winogradskyella pulchriflava EM106(T) and Winogradskyella echinorum KMM 6211(T). The predominant fatty acids of strain EC29(T) were iso-C15 : 0, iso-C15 : 1 G, C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella eckloniae sp. nov. is proposed. The type strain is EC29(T) ( = KCTC 32172(T) = JCM 18703(T)).

  7. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava.

    PubMed

    Park, So-Hyun; Kim, Ji-Young; Kim, Young-Ju; Heo, Moon-Soo

    2015-11-01

    A bacterial strain, designated EC11(T) was isolated from brown alga Ecklonia cava collected from Jeju Island, Korea. EC11(T) was identified as a Gram-negative, rod-shaped and yellow-pigmented bacterial strain. The strain EC11(T) grew over a temperature range of 10 °C to 30 °C (optimally at 25 °C), and a pH range of 6.0-10.5 (optimally at pH 7.5). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EC11(T) belongs to the genus Flavobacterium. Strain EC11(T) shared close similarity with Flavobacterium jumunjinense HME7102(T) (96.4%), Flavobacterium dongtanense LW30(T) (95.8%), Flavobacterium haoranii LQY-7(T) (95.3%), and Flavobacterium urocaniciphilum (95.1%). The major fatty acids (> 5%) were iso-C17:0 3-OH (22.4%), iso-C15:0 3-OH (19.0%), C15:0 (12.4%), summed feature 3 (comprising C16:1 ω7c/ C16:1 ω6c; 9.78%), iso-C15:1 G (9.6%), and iso-C16:0 3-OH (9.0%). The DNA G+C content was 28.1 mol% and the strain contained MK-6 as the predominant menaquinone. The major polar lipids were phosphatidylethanolamine, two unknown aminolipids and three unknown polar lipids. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain EC11T represents a novel species of the Flavobacterium genus, for which the name Flavobacterium jejuensis sp. nov. is proposed. The type strain of F. jejuensis is EC11(T) (=KCTC 42149(T) = JCM 30735(T)).

  8. Complete Plastid Genome of the Brown Alga Costaria costata (Laminariales, Phaeophyceae)

    PubMed Central

    Liu, Tao; Wang, Haiyang; Wang, Guoliang; Chi, Shan; Liu, Cui

    2015-01-01

    Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs). The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes. PMID:26444909

  9. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae

    PubMed Central

    2014-01-01

    Background Brown algae are sessile macro-organisms of great ecological relevance in coastal ecosystems. They evolved independently from land plants and other multicellular lineages, and therefore hold several original ontogenic and metabolic features. Most brown algae grow along the coastal zone where they face frequent environmental changes, including exposure to toxic levels of heavy metals such as copper (Cu). Results We carried out large-scale transcriptomic and metabolomic analyses to decipher the short-term acclimation of the brown algal model E. siliculosus to Cu stress, and compared these data to results known for other abiotic stressors. This comparison demonstrates that Cu induces oxidative stress in E. siliculosus as illustrated by the transcriptomic overlap between Cu and H2O2 treatments. The common response to Cu and H2O2 consisted in the activation of the oxylipin and the repression of inositol signaling pathways, together with the regulation of genes coding for several transcription-associated proteins. Concomitantly, Cu stress specifically activated a set of genes coding for orthologs of ABC transporters, a P1B-type ATPase, ROS detoxification systems such as a vanadium-dependent bromoperoxidase, and induced an increase of free fatty acid contents. Finally we observed, as a common abiotic stress mechanism, the activation of autophagic processes on one hand and the repression of genes involved in nitrogen assimilation on the other hand. Conclusions Comparisons with data from green plants indicate that some processes involved in Cu and oxidative stress response are conserved across these two distant lineages. At the same time the high number of yet uncharacterized brown alga-specific genes induced in response to copper stress underlines the potential to discover new components and molecular interactions unique to these organisms. Of particular interest for future research is the potential cross-talk between reactive oxygen species (ROS)-, myo

  10. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  11. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  12. Biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. in fixed-bed column.

    PubMed

    Esmaeili, Akbar; Soufi, Samira; Rustaiyan, Abdolhossein; Safaiyan, Shila; Mirian, Simin; Fallahe, Gila; Moazami, Nasrin

    2007-11-01

    The biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. were investigated in a fixed-bed column (temperature = 30 degrees C; different pH). Langmuir and Freundlich sorption models were used to represent the equilibrium data. The maximum Cu2+ uptake was obtained at pH 4 and the optimum Co2+ and Ni2+ uptake were at pH 7. Different dosage of biosorbent did not have an effect on the results, but the 3.5 and 5 g of biosorbent were shown higher uptake. The metal removal rates were rapid, with about 80% of the total adsorption tacking place within 40 min.

  13. Winogradskyella undariae sp. nov., a member of the family Flavobacteriaceae isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Yoon, Jung-Hoon

    2013-11-01

    A novel bacterial strain, designated WS-MY5(T), capable of degrading a variety of polysaccharides was isolated from a brown algae (Undaria pinnatifida) reservoir at Wando in the South Sea, South Korea. Strain WS-MY5(T) was found to grow optimally at 30 °C, at pH 7.0-7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY5(T) falls within the clade comprising Winogradskyella species, clustering with the type strains of Winogradskyella pacifica, Winogradskyella arenosi, Winogradskyella rapida and Winogradskyella thalassocola, with which it exhibited 16S rRNA gene sequence similarity values of 97.3-98.8 %. It exhibited sequence similarity values of 93.0-96.2 % to the type strains of the other recognized Winogradskyella species. Strain WS-MY5(T) was found to contain MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH and iso-C15:1 G as the major fatty acids. The major polar lipids of strain WS-MY5(T) were identified as phosphatidylethanolamine, two unidentified lipids and two unidentified aminolipids. The DNA G+C content of strain WS-MY5(T) was determined to be 33.2 mol% and its DNA-DNA relatedness values with the type strains of W. pacifica, W. arenosi, W. rapida and W. thalassocola were in the range 16-28 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enabled strain WS-MY5(T) to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain WS-MY5(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella undariae sp. nov. is proposed. The type strain is WS-MY5(T) (=KCTC 32261(T)=CCUG 63832(T)).

  14. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi.

    PubMed

    Lee, Seung Hyeon; Park, Moon Su; Jung, Ji Young; Jeon, Che Ok

    2012-05-01

    A Gram-staining-positive, non-motile and non-spore-forming lactic acid bacterium, designated strain M2(T), was isolated from fermented brown algae (Undaria pinnatifida) kimchi in South Korea. Cells of the isolate were facultatively anaerobic ovoids and showed catalase- and oxidase-negative reactions. Growth of strain M2(T) was observed at 4-35 °C and at pH 5.0-9.0. The G+C content of the genomic DNA was 42.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M2(T) belonged to the genus Leuconostoc and was most closely related to Leuconostoc inhae IH003(T), Leuconostoc kimchii IH25(T), Leuconostoc gasicomitatum LMG 18811(T), Leuconostoc gelidum DSM 5578(T), Leuconostoc palmae TMW2.694(T) and Leuconostoc holzapfelii BFE 7000(T) with 98.9 %, 98.8 %, 98.8 %, 98.7 %, 98.5 % and 98.2 % sequence similarity, respectively. DNA-DNA hybridization values between strain M2(T) and Leuconostoc inhae KACC 12281(T), Leuconostoc kimchii IH25(T), Leuconostoc gelidum KACC 12256(T), Leuconostoc gasicomitatum KACC 13854(T), Leuconostoc palmae DSM 21144(T) and Leuconostoc holzapfelii DSM 21478(T) were 13.8±3.2 %, 14.3±3.4 %, 9.9±1.0 %, 13.2±0.8 %, 22.4±4.9 % and 16.2±4.6 %, respectively, which allowed differentiation of strain M2(T) from the closely related species of the genus Leuconostoc. On the basis of phenotypic and molecular properties, strain M2(T) represents a novel species in the genus Leuconostoc, for which the name Leuconostoc miyukkimchii sp. nov. is proposed. The type strain is M2(T) ( = KACC 15353(T)  = JCM 17445(T)).

  15. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of 'mozuku' biology.

    PubMed

    Nishitsuji, Koki; Arimoto, Asuka; Iwai, Kenji; Sudo, Yusuke; Hisata, Kanako; Fujie, Manabu; Arakaki, Nana; Kushiro, Tetsuo; Konishi, Teruko; Shinzato, Chuya; Satoh, Noriyuki; Shoguchi, Eiichi

    2016-12-01

    The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. C. okamuranus constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of C. okamuranus S-strain. The genome size of C. okamuranus was estimated as ∼140 Mbp, smaller than genomes of two other brown algae, Ectocarpus siliculosus and Saccharina japonica Sequencing with ∼100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the C. okamuranus genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the E. siliculosus genome identified a set of C. okamuranus genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified C. okamuranus genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the Cladosiphon okamuranus genome provides a platform for future studies of mozuku biology. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    PubMed

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  17. Characterization of GDP-mannose dehydrogenase from the brown alga Ectocarpus siliculosus providing the precursor for the alginate polymer.

    PubMed

    Tenhaken, Raimund; Voglas, Elena; Cock, J Mark; Neu, Volker; Huber, Christian G

    2011-05-13

    Alginate is a major cell wall polymer of brown algae. The precursor for the polymer is GDP-mannuronic acid, which is believed to be derived from a four-electron oxidation of GDP-mannose through the enzyme GDP-mannose dehydrogenase (GMD). So far no eukaryotic GMD has been biochemically characterized. We have identified a candidate gene in the Ectocarpus siliculosus genome and expressed it as a recombinant protein in Escherichia coli. The GMD from Ectocarpus differs strongly from related enzymes in bacteria and is as distant to the bacterial proteins as it is to the group of UDP-glucose dehydrogenases. It lacks the C-terminal ∼120 amino acid domain present in bacterial GMDs, which is believed to be involved in catalysis. The GMD from brown algae is highly active at alkaline pH and contains a catalytic Cys residue, sensitive to heavy metals. The product GDP-mannuronic acid was analyzed by HPLC and mass spectroscopy. The K(m) for GDP-mannose was 95 μM, and 86 μM for NAD(+). No substrate other than GDP-mannose was oxidized by the enzyme. In gel filtration experiments the enzyme behaved as a dimer. The Ectocarpus GMD is stimulated by salts even at low molar concentrations as a possible adaptation to marine life. It is rapidly inactivated at temperatures above 30 °C.

  18. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  19. Blue-green algae

    MedlinePlus

    ... conditions, cancer, fatty liver disease, hepatitis C, and arsenic poisoning. Blue-green algae are applied inside the mouth ... people with insulin resistance due to HIV medication. Arsenic poisoning. Early research shows that taking 250 mg of ...

  20. Nuclear DNA Content Estimates in Multicellular Green, Red and Brown Algae: Phylogenetic Considerations

    PubMed Central

    KAPRAUN, DONALD F.

    2005-01-01

    • Background and Aims Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae. • Methods The DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry. • Key Results 2C DNA contents for 85 species of Chlorophyta range from 0·2–6·1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39·2 and 20·7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0·1–2·8 pg, and for 44 species of Phaeophyta range from 0·2–1·8 pg. • Conclusions New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges. PMID:15596456

  1. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development.

    PubMed

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle; Cassin, Andrew; Johnson, Kim L; Salmeán, Armando A; Willats, William G T; Doblin, Monika S; Bacic, Antony; Kloareg, Bernard

    2016-03-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Formosa haliotis sp. nov., a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea.

    PubMed

    Tanaka, Reiji; Cleenwerck, Ilse; Mizutani, Yukino; Iehata, Shunpei; Shibata, Toshiyuki; Miyake, Hideo; Mori, Tetsushi; Tamaru, Yutaka; Ueda, Mitsuyoshi; Bossier, Peter; Vandamme, Peter

    2015-12-01

    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).

  3. Effects of Cd, Cu, Ni, and Zn on brown tide alga Aureococcus anophagefferens growth and metal accumulation.

    PubMed

    Wang, Bin; Axe, Lisa; Michalopoulou, Zoi-Heleni; Wei, Liping

    2012-01-03

    Trace metals play important roles in regulating phytoplankton growth and could influence algal bloom development. Laboratory studies were conducted to evaluate the influence of environmentally relevant concentrations of Cd, Cu, Ni, and Zn on Aureococcus anophagefferens bloom (brown tide) development. Results show that the elevated Ni(2+) concentrations, e.g. those of brown tide waters in the northeastern US, greatly stimulated A. anophagefferens growth (as compared to the control without Ni addition), yet, only low amounts of dissolved Ni were sequestered, thus leaving excessive Ni directly promoting A. anophagefferens blooms. The medium effective concentration EC(50) (Me(2+)) suggests A. anophagefferens has similar Cd sensitivity but much greater Cu tolerance as compared to cyanobacteria, as such, excessive Cu could indirectly promote A. anophagefferens blooms by inhibiting competitors such as Synechococcus sp. The effects of Ni and Cu promoting growth are consistent with the recent genomic study of this alga. In addition, Zn(2+) concentrations lower than those in brown tide waters enhance A. anophagefferens growth, but Zn sequestration in A. anophagefferens would not substantially reduce total dissolved Zn in these waters. Overall, this study, showing that excessive Cu and Ni likely promote brown tides, provides evidence for trace metal linkages in algal bloom development.

  4. Antioxidant and anti-inflammatory meroterpenoids from the brown alga Cystoseira usneoides.

    PubMed

    de Los Reyes, Carolina; Zbakh, Hanaa; Motilva, Virginia; Zubía, Eva

    2013-04-26

    A chemical study of the alga Cystoseira usneoides has led to the isolation of six new meroterpenoids, cystodiones A-F (1-6), together with six known related compounds (7-12). The structures of the new metabolites have been established by spectroscopic techniques. In antioxidant assays all of the tested meroterpenes, and in particular cystodiones A (1) and B (2), 6-cis-amentadione-1'-methyl ether (7), and amentadione-1'-methyl ether (8), exhibited strong radical-scavenging activity. In anti-inflammatory assays, usneoidone Z (11) and its corresponding 6E isomer (12) showed significant activity as inhibitors of the production of the proinflammatory cytokine TNF-α in LPS-stimulated THP-1 human macrophages.

  5. Effects of ocean acidification on the brown alga Padina pavonica: decalcification due to acute and chronic events.

    PubMed

    Gil-Díaz, Teba; Haroun, Ricardo; Tuya, Fernando; Betancor, Séfora; Viera-Rodríguez, María A

    2014-01-01

    Since the industrial revolution, anthropogenic CO₂ emissions have caused ocean acidification, which particularly affects calcified organisms. Given the fan-like calcified fronds of the brown alga Padina pavonica, we evaluated the acute (short-term) effects of a sudden pH drop due to a submarine volcanic eruption (October 2011-early March 2012) affecting offshore waters around El Hierro Island (Canary Islands, Spain). We further studied the chronic (long-term) effects of the continuous decrease in pH in the last decades around the Canarian waters. In both the observational and retrospective studies (using herbarium collections of P. pavonica thalli from the overall Canarian Archipelago), the percent of surface calcium carbonate coverage of P. pavonica thalli were contrasted with oceanographic data collected either in situ (volcanic eruption event) or from the ESTOC marine observatory data series (herbarium study). Results showed that this calcified alga is sensitive to acute and chronic environmental pH changes. In both cases, pH changes predicted surface thallus calcification, including a progressive decalcification over the last three decades. This result concurs with previous studies where calcareous organisms decalcify under more acidic conditions. Hence, Padina pavonica can be implemented as a bio-indicator of ocean acidification (at short and long time scales) for monitoring purposes over wide geographic ranges, as this macroalga is affected and thrives (unlike strict calcifiers) under more acidic conditions.

  6. Evolution and maintenance of haploid-diploid life cycles in natural populations: The case of the marine brown alga Ectocarpus.

    PubMed

    Couceiro, Lucía; Le Gac, Mickael; Hunsperger, Heather M; Mauger, Stéphane; Destombe, Christophe; Cock, J Mark; Ahmed, Sophia; Coelho, Susana M; Valero, Myriam; Peters, Akira F

    2015-07-01

    The evolutionary stability of haploid-diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long-standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year-round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid-diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle.

    PubMed

    Dogs, Marco; Wemheuer, Bernd; Wolter, Laura; Bergen, Nils; Daniel, Rolf; Simon, Meinhard; Brinkhoff, Thorsten

    2017-09-01

    Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Effects of Ocean Acidification on the Brown Alga Padina pavonica: Decalcification Due to Acute and Chronic Events

    PubMed Central

    Gil-Díaz, Teba; Haroun, Ricardo; Tuya, Fernando; Betancor, Séfora; Viera-Rodríguez, María A.

    2014-01-01

    Since the industrial revolution, anthropogenic CO2 emissions have caused ocean acidification, which particularly affects calcified organisms. Given the fan-like calcified fronds of the brown alga Padina pavonica, we evaluated the acute (short-term) effects of a sudden pH drop due to a submarine volcanic eruption (October 2011–early March 2012) affecting offshore waters around El Hierro Island (Canary Islands, Spain). We further studied the chronic (long-term) effects of the continuous decrease in pH in the last decades around the Canarian waters. In both the observational and retrospective studies (using herbarium collections of P. pavonica thalli from the overall Canarian Archipelago), the percent of surface calcium carbonate coverage of P. pavonica thalli were contrasted with oceanographic data collected either in situ (volcanic eruption event) or from the ESTOC marine observatory data series (herbarium study). Results showed that this calcified alga is sensitive to acute and chronic environmental pH changes. In both cases, pH changes predicted surface thallus calcification, including a progressive decalcification over the last three decades. This result concurs with previous studies where calcareous organisms decalcify under more acidic conditions. Hence, Padina pavonica can be implemented as a bio-indicator of ocean acidification (at short and long time scales) for monitoring purposes over wide geographic ranges, as this macroalga is affected and thrives (unlike strict calcifiers) under more acidic conditions. PMID:25268231

  9. microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus

    PubMed Central

    Tarver, James E.; Cormier, Alexandre; Pinzón, Natalia; Taylor, Richard S.; Carré, Wilfrid; Strittmatter, Martina; Seitz, Hervé; Coelho, Susana M.; Cock, J. Mark

    2015-01-01

    There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria to identify novel microRNA loci. A large set of 63 microRNA families was identified in the brown alga Ectocarpus based on mapping of RNA-seq data and nine microRNAs were confirmed by northern blotting. The Ectocarpus microRNAs are highly diverse at the sequence level with few multi-gene families, and do not tend to occur in clusters but exhibit some highly conserved structural features such as the presence of a uracil at the first residue. No homologues of Ectocarpus microRNAs were found in other stramenopile genomes indicating that they emerged late in stramenopile evolution and are perhaps specific to the brown algae. The large number of microRNA loci in Ectocarpus is consistent with the developmental complexity of many brown algal species and supports a proposed link between the emergence and expansion of microRNA regulatory systems and the evolution of complex multicellularity. PMID:26101255

  10. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    PubMed Central

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  11. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus.

    PubMed

    Avia, Komlan; Coelho, Susana M; Montecinos, Gabriel J; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J Mark; Boudry, Pierre

    2017-03-03

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species.

  12. Investigation of a sulfate transfer during autohydrolysis of a fucoidan from the brown alga Fucus evanescens by tandem ESIMS.

    PubMed

    Anastyuk, Stanislav D; Shevchenko, Natalia M; Dmitrenok, Pavel S; Zvyagintseva, Tatyana N

    2011-12-27

    A fucoidan from the brown alga Fucus evanescens was effectively depolymerized by autohydrolysis. Negative-ion electrospray ionization mass spectrometry (ESIMS) revealed that the mixture contained sulfated mono- and oligosaccharides with polymerization degree (DP) up to 6, having from 1 to 4 sulfate groups per molecule. The prevalence of oligosaccharides with even DP was observed. It could be explained by the tendency of the 3-linked α-L-fucopyranose residues to hydrolyze faster than 4-linked ones. The intermolecular sulfate transfer during autohydrolysis was detected by ESIMS, when equimolar quantities of D-Rib and D-Glc were added as acceptors. The products were singly-sulfated and hexose was about four times more effective as an acceptor, than pentose. It was impossible to record MS/MS spectra of the sulfate transfer products, since intensities of their ions were too low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition.

    PubMed

    Anastasakis, K; Ross, A B

    2011-04-01

    The brown macro-alga Laminaria saccharina was converted into bio-crude by hydrothermal liquefaction in a batch reactor. The influence of reactor loading, residence time, temperature and catalyst (KOH) loading was assessed. A maximum bio-crude yield of 19.3 wt% was obtained with a 1:10 biomass:water ratio at 350 °C and a residence time of 15 min without the presence of the catalyst. The bio-crude had an HHV of 36.5 MJ/kg and is similar in nature to a heavy crude oil or bitumen. The solid residue has high ash content and contains a large proportion of calcium and magnesium. The aqueous phase is rich in sugars and ammonium and contains a large proportion of potassium and sodium.

  14. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea).

    PubMed

    Kravtsova, Alexandra V; Milchakova, Nataliya A; Frontasyeva, Marina V

    2015-08-15

    Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in "branches" than in "stems". Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Isolation, semi-synthesis and bio-evaluation of spatane derivatives from the brown algae Stoechospermum marginatum.

    PubMed

    Chinnababu, B; Purushotham Reddy, S; Sankara Rao, P; Loka Reddy, V; Sudheer Kumar, B; Rao, J Venkateswara; Prakasham, R S; Suresh Babu, K

    2015-06-15

    A comprehensive investigation of chemical constituents from brown algae Stoechospermum marginatum yielded ten known spatane compounds (1-10). To develop the compound libraries on these scaffolds, a series of semi synthetic derivatives was prepared (1a-1d, 2a, 4a, 11 and 12) and investigated for their anti-microbial and anticancer activities. The results indicated that compounds 2a, 4, 1b and 4a exhibited potent cytotoxic activities against B16F10 cancer cell line with IC50 values of 3.28, 3.45, 3.62 and 4.11 μg/ml respectively, which are comparable to the standard drug (etoposide IC50=4.12 μg/ml). In addition, 4 and 1b were also manifested potent antimicrobial activities against tested bacterial and fungal strains. This is the first Letter on the synthesis and biological activities of these novel derivatives.

  16. Data set for extraction and transesterification of bio-oil from Stoechospermum marginatum, a brown marine algae.

    PubMed

    Venkatesan, Hariram; Godwin, John J; Sivamani, Seralathan

    2017-10-01

    The article presents the experimental data on the extraction and transesterification of bio-oil derived from Stoechospermum marginatum, a brown macro marine algae. The samples were collected from Mandapam region, Gulf of Mannar, Tamil Nadu, India. The bio-oil was extracted using Soxhlet technique with a lipid extraction efficiency of 24.4%. Single stage transesterification was adopted due to lower free fatty acid content. The yield of biodiesel was optimized by varying the process parameters. The obtained data showed the optimum process parameters as reaction time 90 min, reaction temperature 65 °C, catalyst concentration 0.50 g and 8:1 M ratio. Furthermore, the data pertaining to the physio-chemical properties of the derived algal biodiesel were also presented.

  17. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract ( Bifurcaria bifurcata)

    NASA Astrophysics Data System (ADS)

    Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.

    2014-06-01

    Recently, biosynthesis of nanoparticles has attracted scientists' attention because of the necessity to develop new clean, cost-effective and efficient synthesis techniques. In particular, metal oxide nanoparticles are receiving increasing attention in a large variety of applications. However, up to now, the reports on the biopreparation and characterization of nanocrystalline copper oxide are relatively few compared to some other metal oxides. In this paper, we report for the first time the use of brown alga ( Bifurcaria bifurcata) in the biosynthesis of copper oxide nanoparticles of dimensions 5-45 nm. The synthesized nanomaterial is characterized by UV-visible absorption spectroscopy and Fourier transform infrared spectrum analysis. X-ray diffraction confirms the formation and the crystalline nature of copper oxide nanomaterial. Further, these nanoparticles were found to exhibit high antibacterial activity against two different strains of bacteria Enterobacter aerogenes (Gram negative) and Staphylococcus aureus (Gram positive).

  18. Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in vitro investigation of their anticancer activity.

    PubMed

    Imbs, Tatiana I; Ermakova, Svetlana P; Malyarenko Vishchuk, Olesya S; Isakov, Vladimir V; Zvyagintseva, Tatiana N

    2016-01-01

    Laminaran, fucoidan, and alginate were isolated from the brown alga Coccophora langsdorfii collected in the Japan Sea. The structural characteristics of polysaccharides were investigated by NMR spectroscopy. The laminaran was determined as β-d-glucan, which consisted of 80% of 1,3- and 20% of 1,6-linked residues and was terminated with mannitol. The alginate was a guluronic acid-rich polysaccharide (M/G=0.85). Fucoidan, sulfated α-l-fucan, contained a linear backbone of alternating (1→3)- and (1→4)- linked α-l-fucopyranose residues with sulfate at C2 and C4 of (1→3)-α-l-fucopyranose residues. Anticancer activity of this fucoidan was investigated in comparison with activity of fucoidan having similar linear backbone from the brown alga Fucus evanescens. The fucoidan from C. langsdorfii significantly inhibited colony formation of SK-MEL-5 and SK-MEL-28 melanoma cells (the percentage of inhibition was 28 and 76, respectively) and weakly inhibited colony formation of breast adenocarcinoma cells MDA-MB-231 (the percentage of inhibition was about 5). Similar results were obtained for fucoidan from F. evanescens; the percentage of inhibition of colony formation of SK-MEL-5 and SK-MEL-28 melanoma cells was 54 and 56, respectively. The inhibition of colony formation of breast adenocarcinoma cells MDA-MB-231 was weak. We suppose that other sulfated and partially acetylated fucoidans consisting of (1→3)- and (1→4)-linked α-l-fucopyranose residues may suppress progression of melanoma cell colony formation similar to fucoidans of C. langsdorfii and F. evanescens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism.

    PubMed

    Strittmatter, Martina; Grenville-Briggs, Laura J; Breithut, Lisa; Van West, Pieter; Gachon, Claire M M; Küpper, Frithjof C

    2016-02-01

    Pathogens are increasingly being recognized as key evolutionary and ecological drivers in marine ecosystems. Defence mechanisms of seaweeds, however, have mostly been investigated by mimicking infection using elicitors. We have established an experimental pathosystem between the genome brown model seaweed Ectocarpus siliculosus and the oomycete Eurychasma dicksonii as a powerful new tool to investigate algal responses to infection. Using proteomics, we identified 21 algal proteins differentially accumulated in response to Eu. dicksonii infection. These include classical algal stress response proteins such as a manganese superoxide dismutase, heat shock proteins 70 and a vanadium bromoperoxidase. Transcriptional profiling by qPCR confirmed the induction of the latter during infection. The accumulation of hydrogen peroxide was observed at different infection stages via histochemical staining. Inhibitor studies confirmed that the main source of hydrogen peroxide is superoxide converted by superoxide dismutase. Our data give an unprecedented global overview of brown algal responses to pathogen infection, and highlight the importance of oxidative stress and halogen metabolism in these interactions. This suggests overlapping defence pathways with herbivores and abiotic stresses. We also identify previously unreported actors, in particular a Rad23 and a plastid-lipid-associated protein, providing novel insights into the infection and defence processes in brown algae.

  20. Infection of the brown alga E ctocarpus siliculosus by the oomycete E urychasma dicksonii induces oxidative stress and halogen metabolism

    PubMed Central

    Strittmatter, Martina; Grenville‐Briggs, Laura J.; Breithut, Lisa; Van West, Pieter; Gachon, Claire M. M.

    2015-01-01

    Abstract Pathogens are increasingly being recognized as key evolutionary and ecological drivers in marine ecosystems. Defence mechanisms of seaweeds, however, have mostly been investigated by mimicking infection using elicitors. We have established an experimental pathosystem between the genome brown model seaweed E ctocarpus siliculosus and the oomycete E urychasma dicksonii as a powerful new tool to investigate algal responses to infection. Using proteomics, we identified 21 algal proteins differentially accumulated in response to E u. dicksonii infection. These include classical algal stress response proteins such as a manganese superoxide dismutase, heat shock proteins 70 and a vanadium bromoperoxidase. Transcriptional profiling by qPCR confirmed the induction of the latter during infection. The accumulation of hydrogen peroxide was observed at different infection stages via histochemical staining. Inhibitor studies confirmed that the main source of hydrogen peroxide is superoxide converted by superoxide dismutase. Our data give an unprecedented global overview of brown algal responses to pathogen infection, and highlight the importance of oxidative stress and halogen metabolism in these interactions. This suggests overlapping defence pathways with herbivores and abiotic stresses. We also identify previously unreported actors, in particular a Rad23 and a plastid–lipid‐associated protein, providing novel insights into the infection and defence processes in brown algae. PMID:25764246

  1. The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga Ectocarpus Exhibit Unusual Features

    PubMed Central

    Luthringer, Rémy; Lipinska, Agnieszka P.; Roze, Denis; Cormier, Alexandre; Macaisne, Nicolas; Peters, Akira F.; Cock, J. Mark; Coelho, Susana M.

    2015-01-01

    The recombining regions of sex chromosomes (pseudoautosomal regions, PARs) are predicted to exhibit unusual features due to their being genetically linked to the nonrecombining, sex-determining region. This phenomenon is expected to occur in both diploid (XY, ZW) and haploid (UV) sexual systems, with slightly different consequences for UV sexual systems because of the absence of masking during the haploid phase (when sex is expressed) and because there is no homozygous sex in these systems. Despite a considerable amount of theoretical work on PAR genetics and evolution, these genomic regions have remained poorly characterized empirically. We show here that although the PARs of the U/V sex chromosomes of the brown alga Ectocarpus recombine at a similar rate to autosomal regions of the genome, they exhibit many genomic features typical of nonrecombining regions. The PARs were enriched in clusters of genes that are preferentially, and often exclusively, expressed during the sporophyte generation of the life cycle, and many of these genes appear to have evolved since the Ectocarpales diverged from other brown algal lineages. A modeling-based approach was used to investigate possible evolutionary mechanisms underlying this enrichment in sporophyte-biased genes. Our results are consistent with the evolution of the PAR in haploid systems being influenced by differential selection pressures in males and females acting on alleles that are advantageous during the sporophyte generation of the life cycle. PMID:26248564

  2. The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga Ectocarpus Exhibit Unusual Features.

    PubMed

    Luthringer, Rémy; Lipinska, Agnieszka P; Roze, Denis; Cormier, Alexandre; Macaisne, Nicolas; Peters, Akira F; Cock, J Mark; Coelho, Susana M

    2015-11-01

    The recombining regions of sex chromosomes (pseudoautosomal regions, PARs) are predicted to exhibit unusual features due to their being genetically linked to the nonrecombining, sex-determining region. This phenomenon is expected to occur in both diploid (XY, ZW) and haploid (UV) sexual systems, with slightly different consequences for UV sexual systems because of the absence of masking during the haploid phase (when sex is expressed) and because there is no homozygous sex in these systems. Despite a considerable amount of theoretical work on PAR genetics and evolution, these genomic regions have remained poorly characterized empirically. We show here that although the PARs of the U/V sex chromosomes of the brown alga Ectocarpus recombine at a similar rate to autosomal regions of the genome, they exhibit many genomic features typical of nonrecombining regions. The PARs were enriched in clusters of genes that are preferentially, and often exclusively, expressed during the sporophyte generation of the life cycle, and many of these genes appear to have evolved since the Ectocarpales diverged from other brown algal lineages. A modeling-based approach was used to investigate possible evolutionary mechanisms underlying this enrichment in sporophyte-biased genes. Our results are consistent with the evolution of the PAR in haploid systems being influenced by differential selection pressures in males and females acting on alleles that are advantageous during the sporophyte generation of the life cycle.

  3. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus

    PubMed Central

    Matzanke, Berthold F.; Küpper, Frithjof C.; Carrano, Carl J.

    2012-01-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to 57Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron–sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe3+O6) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool. PMID:22945940

  4. Study of nickel and copper biosorption on brown algae Sargassum angustifolium: application of response surface methodology (RSM).

    PubMed

    Ahmady-Asbchin, Salman; Tabaraki, Reza; Jafari, Naser; Allahverdi, Abdollah; Azhdehakoshpour, Ashkan

    2013-01-01

    This study has been focused on the batch culture removal of Cu2+ and Ni2+ ions from the aqueous solution using marine brown algae Sargassum angustifolium. Influences of parameters like pH, initial metal ions concentration and biosorbent dosage on nickel and copper adsorption were also examined using the Box-Behnken design matrix. For biosorption of Cu2+ the optimum pH value was determined as 5.0, optimum biosorbent concentration to 1.0 g/L and optimum initial concentration 0.15 mmol/L. For the biosorption of Ni2+, the optimal condition was the same but the optimum pH value was determined as 6.0. Desorption experiments indicated that CH3COOH and EDTA were efficient desorbents for recovery from Cu2+ and Ni2+. The Langmuir isotherm model was applied to describe the biosorption of the Cu2+ and Ni2+ into S. angustifolium. The maximum uptake of Cu2+ and Ni2+ ions by the S. angustifolium biomass under the optimal conditions was approximately 0.94 and 0.78 mmol/g dry alga, respectively. Response surface models showed that the data were adequately fitted to a second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R2 = 0.993 for Cu2+ and 0.991 for Ni2+) and a satisfactory second-order regression model was derived. In addition, results reported in this research demonstrated the feasibility of employing S. angustifolium as biosorbent for Ni2+ and Cu2+ removal.

  5. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  6. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  7. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea.

    PubMed

    Brinza, Loredana; Nygård, Charlotta A; Dring, Matthew J; Gavrilescu, Maria; Benning, Liane G

    2009-03-01

    Cadmium (Cd) uptake capacities and Cd tolerance of the marine alga Fucus vesiculosus from the Irish Sea (salinity 35 psu) and from the Bothnian Sea (northern Baltic, 5 psu) were quantified. These data were complemented by measurements of changes in maximal photosynthetic rate (P(max)), dark respiration rate and variable fluorescence vs. maximal fluorescence (F(v):F(m)). At concentrations between 0.01 and 1 mmol Cd l(-1), F. vesiculosus from the Bothnian Sea adsorbed significantly more (about 98%) Cd compared with F. vesiculosus from the Irish Sea. The photosynthetic measurements showed that the Bothnian Sea F. vesiculosus were more sensitive to Cd exposure than the Irish Sea algae. The algae from the Irish Sea showed negative photosynthetic effects only at 1 mmol Cd l(-1), which was expressed as a decreased P(max) (-12.3%) and F(v):F(m) (-4.6%). On the contrary, the algae from the Bothnian Sea were negatively affected already at Cd concentrations as low at 0.1 mmol Cd l(-1). They exhibited increased dark respiration (+11.1%) and decreased F(v):F(m) (-13.9%). The results show that F. vesiculosus from the Bothnian Sea may be an efficient sorption substrate for Cd removal from Cd contaminated seawater and this algae type may also have applications for wastewater treatment.

  8. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    PubMed

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cloning, expression and purification of cytochrome c{sub 6} from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure

    SciTech Connect

    Akazaki, Hideharu; Kawai, Fumihiro; Chida, Hirotaka; Matsumoto, Yuichirou; Hirayama, Mao; Hoshikawa, Ken; Unzai, Satoru; Hakamata, Wataru; Nishio, Toshiyuki; Park, Sam-Yong; Oku, Tadatake

    2008-08-01

    The crystal structure of cytochrome c{sub 6} from the brown alga H. fusiformis has been determined at 1.6 Å resolution. The amino-acid sequence and tertiary structure of H. fusiformis cytochrome c{sub 6} were very similar to those of red algal cytochrome c{sub 6} rather than those of green algal cytochrome c{sub 6}. The primary sequence of cytochrome c{sub 6} from the brown alga Hizikia fusiformis has been determined by cDNA cloning and the crystal structure has been solved at 1.6 Å resolution. The crystal belonged to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 84.58, c = 232.91 Å and six molecules per asymmetric unit. The genome code, amino-acid sequence and crystal structure of H. fusiformis cytochrome c{sub 6} were most similar to those of red algal cytochrome c{sub 6}. These results support the hypothesis that brown algae acquired their chloroplasts via secondary endosymbiosis involving a red algal endosymbiont and a eukaryote host.

  10. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    PubMed

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  11. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls.

    PubMed

    Liu, Haiyan; Gu, Liwei

    2012-02-08

    Accumulation of advanced glycation end products (AGEs) in vivo is associated with aging, diabetes, Alzheimer's disease, renal failure, etc. The objective of this study was to investigate the inhibitory effects of brown algae Fucus vesiculosus phlorotannins on the formation of AGEs. F. vesiculosus phlorotannins were extracted using 70% acetone. The resultant extract was fractionated into dichloromethane, ethyl acetate, butanol, and water fractions. The ethyl acetate fraction was further fractionated into four subfractions (Ethyl-F1 to -F4) using a Sephadex LH-20 column. F. vesiculosus acetone extract or fractions significantly inhibited the formation of AGEs mediated by glucose and methylglyoxal in a concentration-dependent manner. The concentrations of F. vesiculosus extracts required to inhibit 50% of albumin glycation (EC(50)) in the bovine serum albumin (BSA)-methylglyoxal assay were lower than those of aminoguanidine (a drug candidate for diabetic complication), except for F. vesiculosus acetone extract and dichloromethane fraction. In the BSA-glucose assay, F. vesiculosus extracts inhibited BSA glycation more than or as effectively as aminoguanidine, except for Ethyl-F3 and -F4. The ethyl acetate fraction and its four subfractions scavenged more than 50% of methylglyoxal in two hours. The hypothesis whether F. vesiculosus phlorotannins scavenged reactive carbonyls by forming adducts was tested. Phloroglucinol, the constituent unit of phlorotannins, reacted with glyoxal and methylglyoxal. Five phloroglucinol-carbonyl adducts were detected and tentatively identified using HPLC-ESI-MS(n).

  12. Structure, enzymatic transformation and anticancer activity of branched high molecular weight laminaran from brown alga Eisenia bicyclis.

    PubMed

    Menshova, Roza V; Ermakova, Svetlana P; Anastyuk, Stanislav D; Isakov, Vladimir V; Dubrovskaya, Yuliya V; Kusaykin, Mikhail I; Um, Byung-Hun; Zvyagintseva, Tatiana N

    2014-01-01

    The structure of high molecular weight laminaran from brown alga Eisenia bicyclis was investigated by chemical and enzymatic methods, NMR spectroscopy and mass spectrometry. The laminaran from E. bicyclis was characterized as 1,3;1,6-β-D-glucan with the high content of 1,6-linked glucose residues (ratio of bonds 1,3:1,6=1.5:1), which are both in the branches and in the main chain of the laminaran. The degree of polymerization of fragments, building from 1,3-linked glucose residues with single glucose branches at C-6 or without it, was no more than four glucose residues. The main part of 1,3-linked glucose blocks was builded from disaccharide fragments. 1,6-Linked glucose residues were localized basically on non-reduced ends of molecules. The degree of polymerization of 1,6-linked blocks was not greater than three glucose residues. Laminaran contained laminarioligosaccharides, gentiobiose, gentiotriose and single glucose residues in the branches at the C-6. Laminaran and its products of enzymatic hydrolysis inhibited a colony formation of human melanoma SK-MEL-28 and colon cancer DLD-1 cells. It was shown that decreasing the molecular weight of native laminaran to a determined limit (degree of polymerization 9-23) and increasing the content of 1,6-linked glucose residues increased the anticancer effect. Therefore, they may be perspective antitumor agents.

  13. Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects.

    PubMed

    Voisin, Marie; Engel, Carolyn R; Viard, Frédérique

    2005-04-12

    Worldwide marine invaders, such as the brown alga Undaria pinnatifida, offer challenging models for unraveling the apparent paradox of sustainable settlement of exotic species over a large spectrum of environments. Two intergenic noncoding mitochondrial loci were found to be highly informative at the within-species level. Twenty-five haplotypes were found over the whole dataset (333 base pairs, 524 individuals, and 24 populations). The native range showed striking population genetic structure stemming from low diversity within and high differentiation among populations, a pattern not observed in the introduced range of this seaweed. Contrary to classical expectations of founding effects associated with accidental introduction of exotic species, most of the introduced populations showed high genetic diversity. At the regional scale, genetic diversity and sequence divergence showed contrasting patterns in the two main areas of introduction (Europe and Australasia), suggesting different processes of introduction in the two regions. Gene genealogy analyses point to aquaculture as a major vector of introduction and spread in Europe but implicate maritime traffic in promoting recurrent migration events from the native range to Australasia. The multiplicity of processes and genetic signatures associated with the successful invasion confirms that multiple facets of global change, e.g., aquaculture practices, alteration of habitats, and increased traffic, act in synergy at the worldwide level, facilitating successful pandemic introductions.

  14. OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus

    PubMed Central

    Coelho, Susana M.; Godfroy, Olivier; Arun, Alok; Le Corguillé, Gildas; Peters, Akira F.; Cock, J. Mark

    2011-01-01

    The brown alga Ectocarpus siliculosus has a haploid–diploid life cycle that involves an alternation between two distinct generations, the sporophyte and the gametophyte. We describe a mutant, ouroboros (oro), in which the sporophyte generation is converted into a functional, gamete-producing gametophyte. The life history of the mutant thus consists of a continuous reiteration of the gametophyte generation. The oro mutant exhibited morphological features typical of the gametophyte generation and accumulated transcripts of gametophyte generation marker genes. Genetic analysis showed that oro behaved as a single, recessive, Mendelian locus that was unlinked to the IMMEDIATE UPRIGHT locus, which has been shown to be necessary for full expression of the sporophyte developmental program. The data presented here indicate that ORO is a master regulator of the gametophyte-to-sporophyte life cycle transition and, moreover, that oro represents a unique class of homeotic mutation that results in switching between two developmental programs that operate at the level of the whole organism. PMID:21709217

  15. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa

    2009-11-15

    This paper presents the equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of Al(III) by P. pavonica biomass. The biosorption capacity of P. pavonica biomass was found as 77.3mg/g. The metal ions were desorbed from P. pavonica using 1M HCl. The high stability of P. pavonica permitted a slight decrease about 20% in the recovery of Al(III) ions after 10 times of adsorption-elution process. The mean free energy value evaluated from the D-R model indicated that the biosorption of Al(III) onto P. pavonica biomass was taken place by chemical ion exchange. The calculated thermodynamic parameters, DeltaG degrees , DeltaH degrees and DeltaS degrees showed that the biosorption of Al(III) onto P. pavonica biomass was feasible, spontaneous and endothermic under examined conditions. Experimental data was also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Al(III) onto P. pavonica biomass followed well pseudo-second-order kinetics.

  16. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava.

    PubMed

    Park, Ji-Young; Kim, Jang Hoon; Kwon, Jung Min; Kwon, Hyung-Jun; Jeong, Hyung Jae; Kim, Young Min; Kim, Doman; Lee, Woo Song; Ryu, Young Bae

    2013-07-01

    SARS-CoV 3CL(pro) plays an important role in viral replication. In this study, we performed a biological evaluation on nine phlorotannins isolated from the edible brown algae Ecklonia cava. The nine isolated phlorotannins (1-9), except phloroglucinol (1), possessed SARS-CoV 3CL(pro) inhibitory activities in a dose-dependently and competitive manner. Of these phlorotannins (1-9), two eckol groups with a diphenyl ether linked dieckol (8) showed the most potent SARS-CoV 3CL(pro) trans/cis-cleavage inhibitory effects (IC(50)s = 2.7 and 68.1 μM, respectively). This is the first report of a (8) phlorotannin chemotype significantly blocking the cleavage of SARS-CoV 3CL(pro) in a cell-based assay with no toxicity. Furthermore, dieckol (8) exhibited a high association rate in the SPR sensorgram and formed extremely strong hydrogen bonds to the catalytic dyad (Cys145 and His41) of the SARS-CoV 3CL(pro).

  17. Inhibitory effects against pasture weeds in Brazilian Amazonia of natural products from the marine brown alga Dictyota menstrualis.

    PubMed

    Fonseca, Rainiomar Raimundo; Filho, Antonio Pedro Silva Souza; Villaça, Roberto Campos; Teixeira, Valéria Laneuville

    2013-12-01

    Fractions of the acetone extract and a mixture of two diterpenes from the marine brown alga Dictyota menstrualis were prepared with the aim of identifying potential effects on the germination of seeds and on elongation of the radicle and hypocotyl of the weeds Mimosa pudica and Senna obtusifolia. The bioassay on seed germination was performed in controlled conditions of 25 degreeC temperature and a 12 hour photoperiod, while the one concerning radicle and hypocotyl elongation was performed at the same temperature, though adopting a photoperiod of 24 hours. The results varied according to the receptor species, the fraction utilized, and its concentration. TLC analysis of the fractions and comparison with isolated products indicated that the diterpenes pachydictyol A and isopachydictyol A were the most abundant compounds in fraction HE, whereas the diterpene 6-hydroxy-dichotomano-2, 13-diene-16, 17-dial (3) was the most abundant compound in fractions DC and EA. Analysis of less polar fractions (in n-hexane, dichloromethane and ethyl acetate) revealed values of less than 30% inhibition. On the other hand, the ethanol/water fraction was the most active in all instances. The biological activity of these fractions must be due to the presence of known diterpenes and/or sulfated polysaccharides isolated in earlier studies.

  18. Effect of enzyme preparation from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus.

    PubMed

    Bilan, M I; Kusaykin, M I; Grachev, A A; Tsvetkova, E A; Zvyagintseva, T N; Nifantiev, N E; Usov, A I

    2005-12-01

    A fucoidanase preparation from the marine mollusk Littorina kurila cleaved some glycosidic bonds in fucoidan from the brown alga Fucus distichus, but neither fucose nor lower oligosaccharides were produced. The main product isolated from the incubation mixture was a polysaccharide built up of disaccharide repeating units -->3)-alpha-L-Fucp-(2,4-di-SO3(-))-(1-->4)-alpha-L-Fucp-(2SO3(-))-(1-->, the structure coinciding with the idealized formula proposed for the initial substance. A polymer fraction with the same carbohydrate chain but sulfated only at positions 2 and nonstoichiometrically acetylated at positions 3 and 4 of fucose residues was isolated as a minor component. It is suggested that the native polysaccharide should contain small amounts of non-sulfated and non-acetylated fucose residues, and only their glycosidic bonds are cleaved by the enzyme. The enzymatic hydrolysis showed that irregular regions of the native polysaccharide containing acetylated and partially sulfated repeating units were assembled in blocks.

  19. In silico survey of the mitochondrial protein uptake and maturation systems in the brown alga Ectocarpus siliculosus.

    PubMed

    Delage, Ludovic; Leblanc, Catherine; Nyvall Collén, Pi; Gschloessl, Bernhard; Oudot, Marie-Pierre; Sterck, Lieven; Poulain, Julie; Aury, Jean-Marc; Cock, J Mark

    2011-01-01

    The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.

  20. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  1. Active, Irreversible Accumulation of Extreme Levels of H2SO4 in the Brown Alga, Desmarestia1

    PubMed Central

    McClintock, Mark; Higinbotham, Noe; Uribe, Ernest G.; Cleland, Robert E.

    1982-01-01

    The brown algae Desmarestia ligulata var. ligulata (Lightf.) Lamour., and D. viridis (Mull.) Lamour., accumulate H2SO4 until their average internal pH is 0.5 to 0.8. A related species, D. aculeata (L.) Lamour., does not accumulate acid. The H2SO4 accumulation is accompanied by a reduction in the K+ and Cl− content, presumedly to maintain osmotic balance. Measurements of the membrane potential and H+ and SO42− concentrations indicate that both ions are accumulated in the vacuole against their electrochemical potential gradients. The internal pH remains constant in all three species over the growing season, despite striking changes in the algal morphology. The pH is not affected by periods of darkness of up to 34 hours. Sulfate accumulated in the vacuoles appears to be trapped there since incubation of D. ligulata for up to 10 days in sulfate-free medium resulted in little loss of either vacuolar sulfate or H+. Although the uptake of H2SO4 into the vacuole must require energy, the maintenance of the vacuolar H2SO4 may be due to the impermeability of the tonoplast, with little necessity for continued expenditure of energy. PMID:16662573

  2. Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation.

    PubMed

    Connan, Solène; Stengel, Dagmar B

    2011-07-01

    The effect of copper enrichment and salinity on growth, photosynthesis and copper accumulation of two temperate brown seaweeds, Ascophyllum nodosum and Fucus vesiculosus, was investigated in laboratory experiments. A significant negative impact of reduced salinity on photosynthetic activity and growth was observed for both species. After 15 days at a salinity of 5, photosynthesis of A. nodosum was entirely inhibited and growth ceased at a salinity of 15. Increased copper concentration negatively affected photosynthetic activity of A. nodosum and F. vesiculosus resulting in chlorosis and reduced seaweed growth; 5 mg L⁻¹ copper caused an inhibition of the photosynthesis and the degradation of seaweed tips. Under reduced salinity, copper toxicity was enhanced and caused an earlier impact on the physiology of seaweed tips. After exposure to copper and different salinities for 15 days, copper contents of seaweeds were closely related to copper concentration in the water; seaweed copper contents reached their maximum after 1 day of exposure; contents only increased again when additional, free copper was added to the water. At high water copper concentrations or low salinity, or a combination of both, copper content of A. nodosum decreased. By contrast, copper content of F. vesiculosus increased, suggesting that different binding sites or uptake mechanisms exist in the two species. The results suggest that when using brown seaweeds in biomonitoring in situ, any change in the environment will directly and significantly affect algal physiology and thus their metal binding capacity; the assessment of the physiological status of the algae in combination with the analysis of thallus metal content will enhance the reliability of the biomonitoring process. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry.

    PubMed

    Carrilho, Elma Neide V M; Nóbrega, Joaquim A; Gilbert, Thomas R

    2003-08-29

    The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH<2 with diluted HCl. The enrichment factors for Cu(II), Fe(III), Al(III) and Co(II) were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel.

  4. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses.

    PubMed

    Creis, Emeline; Delage, Ludovic; Charton, Sophie; Goulitquer, Sophie; Leblanc, Catherine; Potin, Philippe; Ar Gall, Erwan

    2015-01-01

    A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm) was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of phenolic compounds

  5. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses

    PubMed Central

    Creis, Emeline; Delage, Ludovic; Charton, Sophie; Goulitquer, Sophie; Leblanc, Catherine; Potin, Philippe; Ar Gall, Erwan

    2015-01-01

    A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm) was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of phenolic compounds

  6. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  7. Carotenoids in Algae: Distributions, Biosyntheses and Functions

    PubMed Central

    Takaichi, Shinichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized. PMID:21747749

  8. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus.

    PubMed

    Cormier, Alexandre; Avia, Komlan; Sterck, Lieven; Derrien, Thomas; Wucher, Valentin; Andres, Gwendoline; Monsoor, Misharl; Godfroy, Olivier; Lipinska, Agnieszka; Perrineau, Marie-Mathilde; Van De Peer, Yves; Hitte, Christophe; Corre, Erwan; Coelho, Susana M; Cock, J Mark

    2017-04-01

    The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed Central

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0–15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly

  10. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0-15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly

  11. Antidiabetic effect of polyphenols from brown alga Ecklonia kurome in genetically diabetic KK-A(y) mice.

    PubMed

    Xu, Hu-Lin; Kitajima, Chieko; Ito, Hisatomi; Miyazaki, Toshitsugu; Baba, Masaki; Okuyama, Toru; Okada, Yoshihito

    2012-03-01

    Prevalence of diabetes mellitus type 2 (DM-II) is increasing in Japan. Brown alga Ecklonia kurome Okamura (Laminariaceae) (kurome in Japanese) is rich in phlorotannins, a kind of polyphenol. Phlorotannins have been reported to possess various bioactivities; however, few studies have reported its effect on DM-II. The present study was conducted to investigate the antidiabetic effect of polyphenols from E. kurome (KPP) on KK-A(y) mice, the animal model for human DM-II. Inhibitory activities of KPP against α-amylase and α-glucosidase in vitro, and effects on oral carbohydrate tolerance test in vivo were investigated. KK-A(y) mice were fed with 0.1% KPP containing water for 5 weeks. A glucose tolerance test was conducted at week 4 of the 5-week period. At the end of experiment, blood biochemical parameters, including blood glucose, insulin, glycoalbumin, and fructosamine were determined. Furthermore, the kidneys and pancreatic islets were histologically examined. KPP showed inhibitory activities on carbohydrate-hydrolyzing enzymes and decreased postprandial blood glucose levels. The body weight gain and blood glucose levels in the KPP group were lower than the control group during the experimental period. KPP improved glucose tolerance and decreased the fasting blood glucose and insulin levels, fructosamine and glycoalbumin levels compared with the control group. Furthermore, KPP contracted the pancreatic islet size and decreased renal mesangial matrix in KK-A(y) mice. These results suggest that KPP is effective against DM-II and might provide a source of therapeutic agents for DM-II.

  12. Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseira barbata.

    PubMed

    Yalçın, Sibel; Sezer, Semih; Apak, Reşat

    2012-09-01

    The objectives of this research are to identify the functional groups and determine corresponding pK (a) values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model. CaCl(2) pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5-5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures. The retention of the tested metal ions was mostly influenced from pH in the range of 1.5-2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26 mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions. The capacity of the biomass for single metal ions (around 1 mmol/g) was increased to 1.3 mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents.

  13. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  14. Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus

    PubMed Central

    Torode, Thomas A.; Siméon, Amandine; Marcus, Susan E.; Jam, Murielle; Le Moigne, Marie-Anne; Duffieux, Delphine; Knox, J. Paul; Hervé, Cécile

    2016-01-01

    Zygotes from Fucus species have been used extensively to study cell polarization and rhizoid outgrowth, and in this model system cell wall deposition aligns with the establishment of polarity. Monoclonal antibodies are essential tools for the in situ analysis of cell wall glycans, and here we report the characteristics of six monoclonal antibodies to alginates (BAM6–BAM11). The use of these, in conjunction with monoclonal antibodies to brown algal sulfated fucans, has enabled the study of the developmental dynamics of the Fucus zygote cell walls. Young zygotes are spherical and all alginate epitopes are deposited uniformly following cellulose deposition. At germination, sulfated fucans are secreted in the growing rhizoid wall. The redistribution of cell wall epitopes was investigated during treatments that cause reorientation of the growth axis (change in light direction) or disrupt rhizoid development (arabinogalactan-protein-reactive Yariv reagent). Alginate modeling was drastically impaired in the latter, and both treatments cause a redistribution of highly sulfated fucan epitopes. The dynamics of cell wall glycans in this system have been visualized in situ for the first time, leading to an enhanced understanding of the early developmental mechanisms of Fucus species. These sets of monoclonal antibodies significantly extend the available molecular tools for brown algal cell wall studies. PMID:27811078

  15. Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus.

    PubMed

    Torode, Thomas A; Siméon, Amandine; Marcus, Susan E; Jam, Murielle; Le Moigne, Marie-Anne; Duffieux, Delphine; Knox, J Paul; Hervé, Cécile

    2016-11-01

    Zygotes from Fucus species have been used extensively to study cell polarization and rhizoid outgrowth, and in this model system cell wall deposition aligns with the establishment of polarity. Monoclonal antibodies are essential tools for the in situ analysis of cell wall glycans, and here we report the characteristics of six monoclonal antibodies to alginates (BAM6-BAM11). The use of these, in conjunction with monoclonal antibodies to brown algal sulfated fucans, has enabled the study of the developmental dynamics of the Fucus zygote cell walls. Young zygotes are spherical and all alginate epitopes are deposited uniformly following cellulose deposition. At germination, sulfated fucans are secreted in the growing rhizoid wall. The redistribution of cell wall epitopes was investigated during treatments that cause reorientation of the growth axis (change in light direction) or disrupt rhizoid development (arabinogalactan-protein-reactive Yariv reagent). Alginate modeling was drastically impaired in the latter, and both treatments cause a redistribution of highly sulfated fucan epitopes. The dynamics of cell wall glycans in this system have been visualized in situ for the first time, leading to an enhanced understanding of the early developmental mechanisms of Fucus species. These sets of monoclonal antibodies significantly extend the available molecular tools for brown algal cell wall studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Cellular Auxin Transport in Algae

    PubMed Central

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491

  17. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  18. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders.

    PubMed

    Kawai, Hiroshi; Hanyuda, Takeaki; Draisma, Stefano G A; Wilce, Robert T; Andersen, Robert A

    2015-10-01

    The molecular phylogeny of brown algae was examined using concatenated DNA sequences of seven chloroplast and mitochondrial genes (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1). The study was carried out mostly from unialgal cultures; we included Phaeostrophion irregulare and Platysiphon glacialis because their ordinal taxonomic positions were unclear. Overall, the molecular phylogeny agreed with previously published studies, however, Platysiphon clustered with Halosiphon and Stschapovia and was paraphyletic with the Tilopteridales. Platysiphon resembled Stschapovia in showing remarkable morphological changes between young and mature thalli. Platysiphon, Halosiphon and Stschapovia also shared parenchymatous, terete, erect thalli with assimilatory filaments in whorls or on the distal end. Based on these results, we proposed a new order Stschapoviales and a new family Platysiphonaceae. We proposed to include Phaeostrophion in the Sphacelariales, and we emended the order to include this foliose member. Finally, using basal taxa not included in earlier studies, the origin and divergence times for brown algae were re-investigated. Results showed that the Phaeophyceae branched from Schizocladiophyceae ~260 Ma during the Permian Period. The early diverging brown algae had isomorphic life histories, whereas the derived taxa with heteromorphic life histories evolved 155-110 Ma when they branched from the basal taxa. Based on these results, we propose that the development of heteromorphic life histories and their success in the temperate and cold-water regions was induced by the development of the remarkable seasonality caused by the breakup of Pangaea. Most brown algal orders had diverged by roughly 60 Ma, around the last mass extinction event during the Cretaceous Period, and therefore a drastic climate change might have triggered the divergence of brown algae. © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological

  19. Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus.

    PubMed

    Saha, Mahasweta; Wahl, Martin

    2013-01-01

    The important role of marine epibiotic biofilms in the interactions of the host with its environment has been acknowledged recently. Previous studies with the temperate brown macroalga Fucus vesiculosus have identified polar and non-polar compounds recovered from the algal surface that have the potential to control such biofilms. Furthermore, both the fouling pressure and the composition of the epibiotic bacterial communities on this macroalga varied seasonally. The extent to which this reflects a seasonal fluctuation of the fouling control mechanisms of the host is, however, unexplored in an ecological context. The present study investigated seasonal variation in the anti-settlement activity of surface extracts of F. vesiculosus against eight biofilm-forming bacteria isolated from rockweed-dominated habitats, including replication of two populations from two geographically distant sites. The anti-settlement activity at both sites was found to vary temporally, reaching a peak in summer/autumn. Anti-settlement activity also showed a consistent and strong difference between sites throughout the year. This study is the first to report temporal variation of antifouling defence originating from ecologically relevant surface-associated compounds.

  20. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity.

    PubMed

    Palanisamy, Subramanian; Vinosha, Manoharan; Marudhupandi, Thangapandi; Rajasekar, Periyannan; Prabhu, Narayanan Marimuthu

    2017-09-01

    In this study antioxidant and anticancer effect of fucoidan isolated from brown seaweed Sargassum polycystum was investigated. The total yield of fucoidan was 4.51±0.24%, of these, 46.8% of fucose and 22.35±0.23% of sulphate respectively. The structural characteristic of fucoidan was analyzed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The antioxidant properties were determined by DPPH scavenging, reducing power and total antioxidant assays. The maximum DPPH scavenging activity (61.2±0.33%), reducing ability (67.56±0.26%) and total antioxidant activity (65.3±0.66%) were obtained at 1000μg/ml of fucoidan. The cytotoxicity effect of fucoidan showed a higher percentage (90.4±0.25%) of inhibition against the MCF-7 cell line at 150μg/ml with an estimated IC50 at 50μg/ml. Further, cytomorphological and apoptosis changes of fucoidan treated cells were observed under inverted light microscope and confocal laser scanning microscope (CLSM). The results demonstrated that the isolated fucoidan from S. polycystum possessed potent antioxidant and anticancer properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells.

    PubMed

    González-Ballesteros, N; Prado-López, S; Rodríguez-González, J B; Lastra, M; Rodríguez-Argüelles, M C

    2017-05-01

    This study is the first dealt with the use of brown macroalgae Cystoseira baccata (CB) extracts in obtaining gold nanoparticles (Au@CB) through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline nanoparticles with mean diameter of 8.4±2.2nm was demonstrated by UV-vis spectroscopy, TEM, HRTEM, STEM and zeta potential measurements. The extract appears to act as a protective agent where the particles are embedded, keeping them separated, avoiding aggregation and coalescence. The EELS and EDS analyses confirmed the elemental composition of the extract and nanoparticles. Moreover, the functional group of biomolecules present in CB and Au@CB were characterized by FTIR. The effects of CB extract and Au@CB were tested in vitro on the colon cancer cell lines HT-29 and Caco-2, as well as on normal primary neonatal dermal fibroblast cell line PCS-201-010. Results show a stronger cytotoxic effect against HT-29 than that on Caco-2; interestingly, a lack of toxicity on PCS-201-010 was obtained. Finally, the apoptotic activity was determined; Au@CB is able to induce apoptosis activation by the extrinsic and mitochondrial pathway in our CRC in vitro model. These encouraging results suggest that Au@CB has a significant potential for the treatment of colon rectal cancer.

  2. Inhibitory effects of brown algae extracts on histamine production in mackerel muscle via inhibition of growth and histidine decarboxylase activity of Morganella morganii.

    PubMed

    Kim, Dong Hyun; Kim, Koth Bong Woo Ri; Cho, Ji Young; Ahn, Dong Hyun

    2014-04-01

    This study was performed to investigate the inhibitory effects of brown algae extracts on histamine production in mackerel muscle. First, antimicrobial activities of brown algae extracts against Morganella morganii were investigated using a disk diffusion method. An ethanol extract of Ecklonia cava (ECEE) exhibited strong antimicrobial activity. The minimum inhibitory concentration (MIC) of ECEE was 2 mg/ml. Furthermore, the brown algae extracts were examined for their ability to inhibit crude histidine decarboxylase (HDC) of M. morganii. The ethanol extract of Eisenia bicyclis (EBEE) and ECEE exhibited significant inhibitory activities (19.82% and 33.79%, respectively) at a concentration of 1 mg/ml. To obtain the phlorotannin dieckol, ECEE and EBEE were subjected to liquid-liquid extraction, silica gel column chromatography, and HPLC. Dieckol exhibited substantial inhibitory activity with an IC50 value of 0.61 mg/ml, and exhibited competitive inhibition. These extracts were also tested on mackerel muscle. The viable cell counts and histamine production in mackerel muscle inoculated with M. morganii treated with ≥2.5 MIC of ECEE (weight basis) were highly inhibited compared with the untreated sample. Furthermore, treatment of crude HDC-inoculated mackerel muscle with 0.5% ECEE and 0.5% EBEE (weight basis), which exhibited excellent inhibitory activities against crude HDC, reduced the overall histamine production by 46.29% and 56.89%, respectively, compared with the untreated sample. Thus, these inhibitory effects of ECEE and EBEE should be helpful in enhancing the safety of mackerel by suppressing histamine production in this fish species.

  3. Ecology of Harmful Algae

    NASA Astrophysics Data System (ADS)

    Roelke, Daniel L.

    2007-07-01

    Edna Graneli and Jefferson T. Turner, Editors;Ecological Studies Series, Vol. 189; Springer; ISBN 3540322094; 413 pp.; 2006; $195 Harmful algal blooms (HABs) affect commercially and recreationally important species, human health, and ecosystem functioning. Hallmark events are the visually stunning blooms where waters are discolored and filled with ichthyotoxin-producing algae that lead to large fish kills. Of most concern, however, are HABs that pose a threat to human health. For example, some phycotoxins bioaccumulate in the guts and tissues of commercially and recreationally important species that when consumed by humans, may result in nausea, paralysis, memory loss, and even death. In addition to the deleterious impacts of phycotoxins, HABs can be problematic in other ways. For example, the decay of blooms often leads to low dissolved oxygen in subsurface waters. Blooms also reduce light penetration into the water column. Both processes disrupt ecosystems and in some cases have completely destroyed benthic communities.

  4. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme.

    PubMed

    Zou, Hui-Xi; Pang, Qiu-Ying; Zhang, Ai-Qin; Lin, Li-Dong; Li, Nan; Yan, Xiu-Feng

    2015-01-01

    Copper (Cu) is an essential micronutrient for algal growth and development; however, it is also generally considered to be one of the most toxic metals when present at higher levels. Seaweeds are often exposed to low concentrations of metals, including Cu, for long time periods. In cases of ocean outfall, they may even be abruptly exposed to high levels of metals. The physiological processes that are active under Cu stress are largely unknown. In this study, the brown macroalga Sargassum fusiforme was cultured in fresh seawater at final Cu concentrations of 0, 4, 8, 24 and 47 μM. The Cu(2+) concentration and chlorophyll autofluorescence were measured to establish the toxic effects of Cu on this economically important seaweed. The accumulation of Cu by S. fusiforme was also dependent upon the external Cu concentration. Algal growth displayed a general decline with increasing media Cu concentrations, indicating that S. fusiforme was able to tolerate Cu stress at low concentrations, while it was negatively impacted at high concentrations. The term "acute stress" was employed to indicate exposure to high Cu concentrations for 1 day in this study. On the other hand, "chronic stress" was defined as exposure to lower sub-lethal Cu concentrations for 7 days. Proteins were extracted from control and Cu-treated S. fusiforme samples and separated by two-dimensional gel electrophoresis. Distinct patterns of protein expression in the acute and chronic stress conditions were observed. Proteins related to energy metabolism and photosynthesis were reduced significantly, whereas those related to carbohydrate metabolism, protein destination, RNA degradation and signaling regulation were induced in S. fusiforme in response to acute copper stress. Energy metabolism-related proteins were significantly induced by chronic Cu stress. Proteins from other functional groups, such as those related to membranes and transport, were present in minor quantities. These results suggest that S

  5. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate.

    PubMed

    Lorbeer, Andrew John; Lahnstein, Jelle; Bulone, Vincent; Nguyen, Trung; Zhang, Wei

    2015-12-01

    The aim of this study was to optimize the acidic treatment of the brown alga Ecklonia radiata in order to extract fucoidan and facilitate the efficient sequential extraction of alginates. Response surface methodology was used to determine the effects of the temperature, pH, and duration of the acidic treatment on fucoidan yield, alginate extractability, and the molecular weight of sequentially extracted alginates. Desirability functions were then used to predict the best overall combinations of responses. The most desirable compromise allowed for the recovery of a fucoidan-rich fraction with a yield of 3.75% (w/w of alga) and the sequential extraction of alginates having an average molecular weight of 730kDa at a yield of 44% (w/w of alga), with low cross-contamination between the products. The optimized acidic treatment could form the basis of an industrial biorefinery process for the production of both fucoidan and alginate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii: first results on the organization and the role of cytoskeleton in both host and parasite.

    PubMed

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire Mm; Katsaros, Christos

    2013-11-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host.

  7. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature.

  8. Chemical Characterization and Determination of the Anti-Oxidant Capacity of Two Brown Algae with Respect to Sampling Season and Morphological Structures Using Infrared Spectroscopy and Multivariate Analyses.

    PubMed

    Beratto, Angelo; Agurto, Cristian; Freer, Juanita; Peña-Farfal, Carlos; Troncoso, Nicolás; Agurto, Andrés; Castillo, Rosario Del P

    2017-10-01

    Brown algae biomass has been shown to be a highly important industrial source for the production of alginates and different nutraceutical products. The characterization of this biomass is necessary in order to allocate its use to specific applications according to the chemical and biological characteristics of this highly variable resource. The methods commonly used for algae characterization require a long time for the analysis and rigorous pretreatments of samples. In this work, nondestructive and fast analyses of different morphological structures from Lessonia spicata and Macrocystis pyrifera, which were collected during different seasons, were performed using Fourier transform infrared (FT-IR) techniques in combination with chemometric methods. Mid-infrared (IR) and near-infrared (NIR) spectral ranges were tested to evaluate the spectral differences between the species, seasons, and morphological structures of algae using a principal component analysis (PCA). Quantitative analyses of the polyphenol and alginate contents and the anti-oxidant capacity of the samples were performed using partial least squares (PLS) with both spectral ranges in order to build a predictive model for the rapid quantification of these parameters with industrial purposes. The PCA mainly showed differences in the samples based on seasonal sampling, where changes were observed in the bands corresponding to polysaccharides, proteins, and lipids. The obtained PLS models had high correlation coefficients (r) for the polyphenol content and anti-oxidant capacity (r > 0.9) and lower values for the alginate determination (0.7 < r < 0.8). Fourier transform infrared-based techniques were suitable tools for the rapid characterization of algae biomass, in which high variability in the samples was incorporated for the qualitative and quantitative analyses, and have the potential to be used on an industrial scale.

  9. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  10. [From algae to "functional foods"].

    PubMed

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development.

  11. Neuroprotective effects of marine algae.

    PubMed

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection.

  12. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  13. Algibacter miyuki sp. nov., a member of the family Flavobacteriaceae isolated from leachate of a brown algae reservoir.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Yoon, Jung-Hoon

    2013-08-01

    A Gram-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacterial strain, designated WS-MY6(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY6(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY6(T) clustered with the type strains of Algibacter lectus and 'Algibacter undariae', showing 16S rRNA gene sequence similarity values of 98.1 and 98.4 %, respectively. It exhibited sequence similarities of 95.4-96.7 % to the type strains of the other Algibacter species, Pontirhabdus pectinovorans and Marinivirga aestuarii, whose reclassification into the genus Algibacter has been recently proposed. Strain WS-MY6(T) contained MK-6 as the predominant menaquinone and iso-C15:1 G, anteiso-C15:0 and iso-C17:0 3-OH as the major fatty acids. It contained phosphatidylethanolamine and two unidentified lipids as the major polar lipids. The DNA G + C content of strain WS-MY6(T) was 35.3 mol% and its DNA-DNA relatedness values with A. lectus KCTC 12103(T) and 'A. undariae' WS-MY9(T) was 21 and 13 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY6(T) is separate from existing Algibacter species. On the basis of the data presented, strain WS-MY6(T) is considered to represent a novel species of the genus Algibacter, for which the name Algibacter miyuki sp. nov. is proposed. The type strain is WS-MY6(T) (=KCTC 32382(T) =CECT 8300(T)).

  14. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  15. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  16. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions.

    PubMed

    Koivikko, Riitta; Loponen, Jyrki; Honkanen, Tuija; Jormalainen, Veijo

    2005-01-01

    Phlorotannins are ubiquitous secondary metabolites in brown algae that are phenotypically plastic and suggested to have multiple ecological roles. Traditionally, phlorotannins have been quantified as total soluble phlorotannins. Here, we modify a quantification procedure to measure, for the first time, the amount of cell-wall-bound phlorotannins. We also optimize the quantification of soluble phlorotannins. We use these methods to study the responses of soluble and cell-wall-bound phlorotannin to nutrient enrichment in growing and nongrowing parts of the brown alga Fucus vesiculosus. We also examine the effects of nutrient shortage and herbivory on the rate of phlorotannin exudation. Concentrations of cell-wall-bound phlorotannins were much lower than concentrations of soluble phlorotannins; we also found that nutrient treatment over a period of 41 days affected only soluble phlorotannins. Concentrations of each phlorotannin type correlated positively between growing and nongrowing parts of individual seaweeds. However, within nongrowing thalli, soluble and cell-wall-bound phlorotannins were negatively correlated, whereas within growing thalli there was no correlation. Phlorotannins were exuded from the thallus in all treatments. Herbivory increased exudation, while a lack of nutrients had no effect on exudation. Because the amount of cell-wall-bound phlorotannins is much smaller than the amount of soluble phlorotannins, the major function of phlorotannins appears to be a secondary one.

  17. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of ‘mozuku’ biology

    PubMed Central

    Nishitsuji, Koki; Arimoto, Asuka; Iwai, Kenji; Sudo, Yusuke; Hisata, Kanako; Fujie, Manabu; Arakaki, Nana; Kushiro, Tetsuo; Konishi, Teruko; Shinzato, Chuya; Satoh, Noriyuki; Shoguchi, Eiichi

    2016-01-01

    The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. C. okamuranus constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of C. okamuranus S-strain. The genome size of C. okamuranus was estimated as ∼140 Mbp, smaller than genomes of two other brown algae, Ectocarpus siliculosus and Saccharina japonica. Sequencing with ∼100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the C. okamuranus genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the E. siliculosus genome identified a set of C. okamuranus genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified C. okamuranus genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the Cladosiphon okamuranus genome provides a platform for future studies of mozuku biology. PMID:27501718

  18. Isolation and purification of the major photosynthetic antenna, fucoxanthin-Chl a/c protein, from cultured discoid germilings of the brown Alga, Cladosiphon okamuranus TOKIDA (Okinawa Mozuku).

    PubMed

    Fujii, Ritsuko; Kita, Mamiko; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Cogdell, Richard J; Hashimoto, Hideki

    2012-03-01

    A chlorophyll c binding membrane intrinsic light-harvesting complex, the fucoxanthin-chlorophyll a/c protein (FCP), was isolated from cultured discoid germilings of an edible Japanese brown alga, Cladosiphon (C.) okamuranus TOKIDA (Okinawa Mozuku in Japanese). The discoid germiling is an ideal source of brown algal photosynthetic pigment-protein complexes in terms of its size and easiness of cultivation on a large scale. Ion-exchange chromatography was crucial for the purification of FCP from solubilized thylakoid proteins. The molecular weight of the purified FCP assembly was estimated to be ~56 kDa using blue native-PAGE. Further subunit analyses using 2D-PAGE revealed that the FCP assembled as a trimer consisting of two distinguishable subunits having molecular weights of 18.2 (H) and 17.5 (L) kDa. Fluorescence and fluorescence-excitation spectra confirmed that the purified FCP assembly was functionally intact.

  19. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  20. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  1. Sterol chemotaxonomy of marine pelagophyte algae.

    PubMed

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  2. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    PubMed Central

    Kremb, Stephan; Helfer, Markus; Kraus, Birgit; Wolff, Horst; Wild, Christian; Schneider, Martha; Voolstra, Christian R.; Brack-Werner, Ruth

    2014-01-01

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors. PMID:25144758

  3. Aqueous extracts of the marine brown alga Lobophora variegata inhibit HIV-1 infection at the level of virus entry into cells.

    PubMed

    Kremb, Stephan; Helfer, Markus; Kraus, Birgit; Wolff, Horst; Wild, Christian; Schneider, Martha; Voolstra, Christian R; Brack-Werner, Ruth

    2014-01-01

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  4. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter.

  5. Waterborne Signaling Primes the Expression of Elicitor-Induced Genes and Buffers the Oxidative Responses in the Brown Alga Laminaria digitata

    PubMed Central

    Thomas, François; Cosse, Audrey; Goulitquer, Sophie; Raimund, Stefan; Morin, Pascal; Valero, Myriam; Leblanc, Catherine; Potin, Philippe

    2011-01-01

    As marine sessile organisms, seaweeds must respond efficiently to biotic and abiotic challenges in their natural environment to reduce the fitness consequences of wounds and oxidative stress. This study explores the early steps of the defense responses of a large marine brown alga (the tangle kelp Laminaria digitata) and investigates its ability to transmit a warning message to neighboring conspecifics. We compared the early responses to elicitation with oligoguluronates in laboratory-grown and harvested wild individuals of L. digitata. We followed the release of H2O2 and the concomitant production of volatile organic compounds. We also monitored the kinetics of expression of defense-related genes following the oxidative burst. Laboratory-grown algae were transplanted in kelp habitats to further evaluate their responses to elicitation after a transient immersion in natural seawater. In addition, a novel conditioning procedure was established to mimic field conditions in the laboratory. Our experiments showed that L. digitata integrates waterborne cues present in the kelp bed and/or released from elicited neighboring plants. Indeed, the exposure to elicited conspecifics changes the patterns of oxidative burst and volatile emissions and potentiates this kelp for faster induction of genes specifically regulated in response to oligoguluronates. Thus, waterborne signals shape the elicitor-induced responses of kelps through a yet unknown mechanism reminiscent of priming in land plants. PMID:21731761

  6. Waterborne signaling primes the expression of elicitor-induced genes and buffers the oxidative responses in the brown alga Laminaria digitata.

    PubMed

    Thomas, François; Cosse, Audrey; Goulitquer, Sophie; Raimund, Stefan; Morin, Pascal; Valero, Myriam; Leblanc, Catherine; Potin, Philippe

    2011-01-01

    As marine sessile organisms, seaweeds must respond efficiently to biotic and abiotic challenges in their natural environment to reduce the fitness consequences of wounds and oxidative stress. This study explores the early steps of the defense responses of a large marine brown alga (the tangle kelp Laminaria digitata) and investigates its ability to transmit a warning message to neighboring conspecifics. We compared the early responses to elicitation with oligoguluronates in laboratory-grown and harvested wild individuals of L. digitata. We followed the release of H₂O₂ and the concomitant production of volatile organic compounds. We also monitored the kinetics of expression of defense-related genes following the oxidative burst. Laboratory-grown algae were transplanted in kelp habitats to further evaluate their responses to elicitation after a transient immersion in natural seawater. In addition, a novel conditioning procedure was established to mimic field conditions in the laboratory. Our experiments showed that L. digitata integrates waterborne cues present in the kelp bed and/or released from elicited neighboring plants. Indeed, the exposure to elicited conspecifics changes the patterns of oxidative burst and volatile emissions and potentiates this kelp for faster induction of genes specifically regulated in response to oligoguluronates. Thus, waterborne signals shape the elicitor-induced responses of kelps through a yet unknown mechanism reminiscent of priming in land plants.

  7. The effects of the diterpenes isolated from the Brazilian brown algae Dictyota pfaffii and Dictyota menstrualis against the herpes simplex type-1 replicative cycle.

    PubMed

    Abrantes, Juliana L; Barbosa, Jussara; Cavalcanti, Diana; Pereira, Renato C; Frederico Fontes, Carlos L; Teixeira, Valeria L; Moreno Souza, Thiago L; Paixão, Izabel C P

    2010-03-01

    We describe in this paper that the diterpenes 8,10,18-trihydroxy-2,6-dolabelladiene ( 1) and (6 R)-6-hydroxydichotoma-4,14-diene-1,17-dial ( 2), isolated from the marine algae DICTYOTA PFAFFII and D. MENSTRUALIS, respectively, inhibited HSV-1 infection in Vero cells. We initially observed that compounds 1 and 2 inhibited HSV-1 replication in a dose-dependent manner, resulting in EC (50) values of 5.10 and 5.90 microM, respectively, for a multiplicity of infection (MOI) of 5. Moreover, the concentration required to inhibit HSV-1 replication was not cytotoxic, resulting in good selective index (SI) values. Next, we found that compound 1 sustained its anti-herpetic activity even when added to HSV-1-infected cells at 6 h after infection, while compound 2 sustained its activity for up to 3 h after infection, suggesting that these compounds inhibit initial events during HSV-1 replication. We also observed that both compounds were incapable of impairing HSV-1 adsorption and penetration. In addition, the tested molecules could decrease the contents of some HSV-1 early proteins, such as UL-8, RL-1, UL-12, UL-30 and UL-9. Our results suggest that the structures of compounds 1 and 2, Brazilian brown algae diterpenes, might be promising for future antiviral design.

  8. Development and application of a monoclonal-antibody technique for counting Aureococcus anophagefferens, an alga causing recurrent brown tides in the Mid-Atlantic United States.

    PubMed

    Caron, David A; Dennett, Mark R; Moran, Dawn M; Schaffner, Rebecca A; Lonsdale, Darcy J; Gobler, Christopher J; Nuzzi, Robert; McLean, Tim I

    2003-09-01

    A method was developed for the rapid detection and enumeration of Aureococcus anophagefferens, the cause of harmful algal blooms called "brown tides" in estuaries of the Mid-Atlantic United States. The method employs a monoclonal antibody (MAb) and a colorimetric, enzyme-linked immunosorbent assay format. The MAb obtained exhibits high reactivity with A. anophagefferens and very low cross-reactivities with a phylogenetically diverse array of other protists and bacteria. Standard curves are constructed for each 96-well microtiter plate by using known amounts of a preserved culture of A. anophagefferens. This approach allows estimation of the abundance of the alga in natural samples. The MAb method was compared to an existing method that employs polyclonal antibodies and epifluorescence microscopy and to direct microscopic counts of A. anophagefferens in samples with high abundances of the alga. The MAb method provided increased quantitative accuracy and greatly reduced sample processing time. A spatial survey of several Long Island estuaries in May 2000 using this new approach documented a range of abundances of A. anophagefferens in these bays spanning nearly 3 orders of magnitude.

  9. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus.

    PubMed

    Lee, Seung-Hong; Min, Kwan-Hee; Han, Ji-Sook; Lee, Dae-Ho; Park, Deok-Bae; Jung, Won-Kyo; Park, Pyo-Jam; Jeon, Byong-Tae; Kim, Se-Kwon; Jeon, You-Jin

    2012-03-01

    Recently, there has been a growing interest in alternative therapies of marine algae for diabetes. Therefore, the anti-diabetic effects of brown alga, Ecklonia cava was investigated in type 2 diabetic animal. Male C57BL/KsJ-db/db (db/db) mice were divided into control, dieckol rich extract of E. cava (AG-dieckol), or rosiglitazone (RG) groups. The blood glucose, blood glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the AG-dieckol and RG groups than in the control db/db mice group, while glucose tolerance was significantly improved in the AG-dieckol group. AG-dieckol markedly lowered plasma and hepatic lipids concentration compared to the control db/db mice group. The antioxidant enzyme activities were significantly higher in the AG-dieckol group than in the control db/db mice group, yet its TBARS level was markedly lower compared to the RG group. With regard to hepatic glucose regulating enzyme activities, glucokinase activity was enhanced in the AG-dieckol group mice, while glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities in the AG-dieckol group mice were significantly lowered than those in the control db/db mice group. These results suggest that AG-dieckol exert an anti-diabetic effect in type 2 diabetic mice by improving the glucose and lipid metabolism and antioxidant enzymes.

  10. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  11. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  12. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  13. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  14. Isolation of fucoxanthin and highly unsaturated monogalactosyldiacylglycerol from brown alga Fucus evanescens C Agardh and in vitro investigation of their antitumor activity.

    PubMed

    Imbs, Tatiana I; Ermakova, Svetlana P; Fedoreyev, Sergey A; Anastyuk, Stanislav D; Zvyagintseva, Tatiana N

    2013-10-01

    Fucoxanthin (FX) and highly unsaturated monogalactosyldiacylglycerol (MGDG) were isolated from the ethanol extract of brown alga Fucus evanescens. Their structures were identified by nuclear magnetic resonance, complemented by electrospray ionization mass spectrometry (ESIMS). MGDG was identified as 1-O-(5Z,8Z,11Z,14Z,17Z-eicosapentanoyl)-2-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galactopiranosyl-sn-glycerol. Antitumor activity of these compounds was tested on human melanoma (SK-MEL-28) cells. MGDG and FX inhibited the growth of human melanoma cells in a dose-dependent manner. IC50 values for growth inhibition were 104 and 114 μM, correspondently.

  15. Chemical profiling (HPLC-NMR & HPLC-MS), isolation, and identification of bioactive meroditerpenoids from the southern Australian marine brown alga Sargassum paradoxum.

    PubMed

    Brkljača, Robert; Urban, Sylvia

    2014-12-29

    A phytochemical investigation of a southern Australian marine brown alga, Sargassum paradoxum, resulted in the isolation and identification of four new (5, 9, 10, and 15) and nine previously reported (1, 2, 6-8, and 11-14) bioactive meroditerpenoids. HPLC-NMR and HPLC-MS were central to the identification of a new unstable compound, sargahydroquinal (9), and pivotal in the deconvolution of eight (1, 2, 5-7, and 10-12) other meroditerpenoids. In particular, the complete characterization and identification of the two main constituents (1 and 2) in the crude dichloromethane extract was achieved using stop-flow HPLC-NMR and HPLC-MS. This study resulted in the first acquisition of gHMBCAD NMR spectra in the stop-flow HPLC-NMR mode for a system solely equipped with a 60 μL HPLC-NMR flow cell without the use of a cold probe, microcoil, or any pre-concentration.

  16. Effects of pulp mill chlorate on Baltic Sea algae.

    PubMed

    Rosemarin, A; Lehtinen, K J; Notini, M; Mattson, J

    1994-01-01

    The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.

  17. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  18. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  19. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  20. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  1. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  2. Effect of Ocean acidification on growth, calcification and recruitment of calcifying and non-calcifying epibionts of brown algae

    NASA Astrophysics Data System (ADS)

    Saderne, V.; Wahl, M.

    2012-03-01

    Anthropogenic emissions of CO2 are leading to an acidification of the oceans by 0.4 pH units in the course of this century according to the more severe model scenarios. The excess of CO2 could notably affect the benthic communities of calcifiers and macrophytes in different aspects (photosynthesis, respiration and calcification). Seaweeds are key species of nearshore benthic ecosystems of the Baltic Sea. They frequently are the substratum of fouling epibionts like bryozoans and tubeworms. Most of those species secrete calcified structures and could therefore be impacted by the seawater pCO2. On the other hand, the biological activity of the host may substantially modulate the pH and pCO2 conditions in the thallus boundary layer where the epibionts live. The aim of the present study was to test the sensitivity of seaweed macrofouling communities to higher pCO2 concentrations. Fragments of the macroalga Fucus serratus bearing the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium gelatinosum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460 ± 59 μatm and enriched 1193 ± 166 μatm and 3150 ± 446 μatm. Our study showed a significant reduction of growth rates and recruitment of Spirorbis individuals only at the highest pCO2. At a finer temporal resolution, the tubeworm recruits exhibited enhanced calcification of 40% during irradiation hours compared to dark hours, presumably due to the effect of photosynthetic and respiratory activities of the host alga on the carbonate system. Electra colonies showed significantly increased growth rates at 1193 μatm. No effect on Alcyonidium colonies growth rates was observed. Those results suggest a remarkable resistance of the algal macro-epibiontic communities to the most elevated pCO2 foreseen in year 2100 for open ocean (~1000 μatm) conditions possibly due to the modulation of environmental conditions by the biological activities of the host

  3. Radionuclides and trace metals in eastern Mediterranean Sea algae.

    PubMed

    Al-Masri, M S; Mamish, S; Budier, Y

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that (137)Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg(-1) dry weight) while the levels of naturally occurring radionuclides, such as (210)Po and (210)Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg(-1) dry weight) for (210)Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate (210)Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br.

  4. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  5. Algae -- a poor man's HAART?

    PubMed

    Teas, Jane; Hebert, James R; Fitton, J Helen; Zimba, Paul V

    2004-01-01

    Drawing inferences from epidemiologic studies of HIV/AIDS and in vivo and in vitro HIV inhibition by algae, we propose algal consumption as one unifying characteristic of countries with anomalously low rates. HIV/AIDS incidence and prevalence in Eastern Asia ( approximately 1/10000 adults in Japan and Korea), compared to Africa ( approximately 1/10 adults), strongly suggest that differences in IV drug use and sexual behavior are insufficient to explain the 1000-fold variation. Even in Africa, AIDS/HIV rates vary. Chad has consistently reported low rates of HIV/AIDS (2-4/100). Possibly not coincidentally, most people in Japan and Korea eat seaweed daily and the Kanemba, one of the major tribal groups in Chad, eat a blue green alga (Spirulina) daily. Average daily algae consumption in Asia and Africa ranges between 1 and 2 tablespoons (3-13 g). Regular consumption of dietary algae might help prevent HIV infection and suppress viral load among those infected.

  6. Proteome Changes Driven by Phosphorus Deficiency and Recovery in the Brown Tide-Forming Alga Aureococcus anophagefferens

    PubMed Central

    Wurch, Louie L.; Bertrand, Erin M.; Saito, Mak A.; Van Mooy, Benjamin A. S.; Dyhrman, Sonya T.

    2011-01-01

    Shotgun mass spectrometry was used to detect proteins in the harmful alga, Aureococcus anophagefferens, and monitor their relative abundance across nutrient replete (control), phosphate-deficient (−P) and −P refed with phosphate (P-refed) conditions. Spectral counting techniques identified differentially abundant proteins and demonstrated that under phosphate deficiency, A. anophagefferens increases proteins involved in both inorganic and organic phosphorus (P) scavenging, including a phosphate transporter, 5′-nucleotidase, and alkaline phosphatase. Additionally, an increase in abundance of a sulfolipid biosynthesis protein was detected in −P and P-refed conditions. Analysis of the polar membrane lipids showed that cellular concentrations of the sulfolipid sulphoquinovosyldiacylglycerol (SQDG) were nearly two-fold greater in the −P condition versus the control condition, while cellular phospholipids were approximately 8-fold less. Transcript and protein abundances were more tightly coupled for gene products involved in P metabolism compared to those involved in a range of other metabolic functions. Comparison of protein abundances between the −P and P-refed conditions identified differences in the timing of protein degradation and turnover. This suggests that culture studies examining nutrient starvation responses will be valuable in interpreting protein abundance patterns for cellular nutritional status and history in metaproteomic datasets. PMID:22194955

  7. A simple and effective method for high quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the model brown alga.

    PubMed

    Greco, Maria; Sáez, Claudio A; Brown, Murray T; Bitonti, Maria Beatrice

    2014-01-01

    The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that co-precipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of high-quality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10-11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 µg mg(-1) fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this method

  8. A Simple and Effective Method for High Quality Co-Extraction of Genomic DNA and Total RNA from Low Biomass Ectocarpus siliculosus, the Model Brown Alga

    PubMed Central

    Greco, Maria; Sáez, Claudio A.; Brown, Murray T.; Bitonti, Maria Beatrice

    2014-01-01

    The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that co-precipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of high-quality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10–11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 µg mg−1 fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this

  9. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  10. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses

    PubMed Central

    2008-01-01

    Background Ectocarpus siliculosus virus-1 (EsV-1) is a lysogenic dsDNA virus belonging to the super family of nucleocytoplasmic large DNA viruses (NCLDV) that infect Ectocarpus siliculosus, a marine filamentous brown alga. Previous studies indicated that the viral genome is integrated into the host DNA. In order to find the integration sites of the viral genome, a genomic library from EsV-1-infected algae was screened using labelled EsV-1 DNA. Several fragments were isolated and some of them were sequenced and analyzed in detail. Results Analysis revealed that the algal genome is split by a copy of viral sequences that have a high identity to EsV-1 DNA sequences. These fragments are interspersed with DNA repeats, pseudogenes and genes coding for products involved in DNA replication, integration and transposition. Some of these gene products are not encoded by EsV-1 but are present in the genome of other members of the NCLDV family. Further analysis suggests that the Ectocarpus algal genome contains traces of the integration of a large dsDNA viral genome; this genome could be the ancestor of the extant NCLDV genomes. Furthermore, several lines of evidence indicate that the EsV-1 genome might have originated in these viral DNA pieces, implying the existence of a complex integration and recombination system. A protein similar to a new class of tyrosine recombinases might be a key enzyme of this system. Conclusion Our results support the hypothesis that some dsDNA viruses are monophyletic and evolved principally through genome reduction. Moreover, we hypothesize that phaeoviruses have probably developed an original replication system. PMID:18405387

  11. Effect of Ocean acidification on growth, calcification and reproduction of calcifying and non-calcifying epibionts of brown algae

    NASA Astrophysics Data System (ADS)

    Saderne, V.; Wahl, M.

    2012-04-01

    Anthropogenic emissions of CO2 are leading to an acidification of the oceans of 0.4 pH units in the course of this century according to the more severe model scenarios. The excess of CO2 could notably affect the benthic communities of calcifiers and macrophytes in different aspects (photosynthesis, respiration and calcification). Seaweeds are one of the key species of nearshore benthic ecosystems of the Baltic Sea. They are the substratum of several fouling epibionts like bryozoans and tubeworms. Most of those species are bearing calcified structures and could therefore be potentially impacted by the seawater pCO2. On the other hand, the biological activity of the host may substantially modulate the pH and pCO2 conditions in the boundary layer where the epibionts live. The aim of the present study was to test the sensitivity of seaweed macrofouling communities to higher pCO2 concentration. Fragments of macroalgae Fucus serratus bearing the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium gelatinosum (Bryozoa) were maintained for 30 days under three pCO2: natural 460 ± 59 µatm and enriched 1193 ± 166 µatm and 3150 ± 446 µatm. Our study showed a significant reduction of growth rates and reproduction of Spirorbis individuals at the highest pCO2. Tubeworms Juveniles exhibited enhanced calcification of 40 % when in the light compare to dark, presumably due to effect of photosynthetic and respiratory activities of the host alga. Electra colonies showed significantly improved growth rates at 1193 µatm. The overall net dissolution of the communities was significantly higher at 3150 µatm. No effect on Alcyonidium colonies growth rates was observed. Those results suggest a remarkable resistance of the algal macro-epibiontic communities to the most elevated pCO2 predicted for 2100 for open ocean (~1000 µatm) conditions. Concerns remains with regards to higher pCO2 possibly found in the future Baltic Sea.

  12. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  13. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  14. Algae control for hydrogeneration canals

    SciTech Connect

    Grahovac, P.

    1997-02-16

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to assess and develop control practices for nuisance algae growth in power canal that delivers water to hydro-generation facilities. This growth results in expenditures related not only to lost generation but also labor and materials costs associated with implementing remediation procedures. On an industry-wide basis these costs associated with nuisance algal growth are estimated to be several million dollars per year.

  15. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  16. Parasites in algae mass culture.

    PubMed

    Carney, Laura T; Lane, Todd W

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  17. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  18. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  19. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  20. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  1. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids.

    PubMed

    Le Corguillé, Gildas; Pearson, Gareth; Valente, Marta; Viegas, Carla; Gschloessl, Bernhard; Corre, Erwan; Bailly, Xavier; Peters, Akira F; Jubin, Claire; Vacherie, Benoit; Cock, J Mark; Leblanc, Catherine

    2009-10-16

    Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist

  2. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    PubMed Central

    2009-01-01

    Background Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. Results The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red

  3. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  4. Photobioreactors for mass cultivation of algae.

    PubMed

    Ugwu, C U; Aoyagi, H; Uchiyama, H

    2008-07-01

    Algae have attracted much interest for production of foods, bioactive compounds and also for their usefulness in cleaning the environment. In order to grow and tap the potentials of algae, efficient photobioreactors are required. Although a good number of photobioreactors have been proposed, only a few of them can be practically used for mass production of algae. One of the major factors that limits their practical application in algal mass cultures is mass transfer. Thus, a thorough understanding of mass transfer rates in photobioreactors is necessary for efficient operation of mass algal cultures. In this review article, various photobioreactors that are very promising for mass production of algae are discussed.

  5. Travelling in time with networks: Revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis.

    PubMed

    Moalic, Yann; Arnaud-Haond, Sophie; Perrin, Cécile; Pearson, Gareth A; Serrao, Ester A

    2011-01-31

    Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence) and the Shared Allele (SAD; based on alleles identity) distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization.

  6. Tissue Cu, Fe and Mn concentrations in different-aged and different functional thallus regions of three brown algae from western Ireland

    NASA Astrophysics Data System (ADS)

    Stengel, D. B.; McGrath, H.; Morrison, L. J.

    2005-12-01

    Copper and iron concentrations in three brown algae, Ascophyllum nodosum, Fucus vesiculosus and Laminaria digitata (and additionally Mn in L. digitata) from the Irish west coast were determined using flame atomic absorption spectrophotometry. Metal concentrations in the three species were indicative of prevailing bioavailable metal concentrations in situ but varied greatly between functional tissue parts, between sites and over time. Cu concentrations in actively growing tips of A. nodosum decreased over a 4-month period during autumn/winter, while Fe concentrations increased. Both Fe and Cu concentrations in different thallus sections of A. nodosum and F. vesiculosus increased with increasing age of thallus part in a clean site, but there was no consistent trend for F. vesiculosus from an industrialized site. Within sites, concentrations of all Cu and Fe were similar in both fucoids, but concentrations at the industrialized site were about twice as high as at the pristine site. In L. digitata, all three metals were highest in holdfasts, but had distinctly different distribution patterns in stipes and blade sections, which were most likely related to growth pattern and tissue function. Fe was lowest in meristematic and young blade regions, suggesting small-scale Fe limitation in actively growing tissue. Mn concentrations were higher in distal blade sections than in stipes, and Cu concentrations were highest in meristematic and young thallus parts.

  7. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  8. Assessment of oxidative stress indices in a marine macro brown alga Padina tetrastromatica (Hauck) from comparable polluted coastal regions of the Arabian Sea, west coast of India.

    PubMed

    Maharana, Dusmant; Jena, Karmabeer; Pise, Navnath M; Jagtap, Tanaji G

    2010-01-01

    Oxidative stress and antioxidant defence systems were assessed in a marine brown alga Padina tetrastromatica, commonly occurring from the tropics. Lipid peroxidation (LPX) and H2O2 were measured as oxidative stress markers, and antioxidant defences were measured as catalase (CAT), glutathione S-transferase (GST) and ascorbic acid (AsA), in order to understand their dissimilarity with respect to pollution levels from selective locations along the central west coast of India. A significant increased levels of LPX, H2O2, CAT and GST were observed in samples from relatively polluted localities (Colaba and Karwar) when compared to less polluted locality (Anjuna), while AsA concentration was higher in algal samples from worst polluted region of Colaba. Heavy metals such as Cd and Pb were also higher in the vicinity of polluted areas compared to reference area. Variation of oxidative stress indices in response to accumulation of heavy metals within P. tetrastromatica could be used as molecular biomarkers in assessment and monitoring environmental quality of ecologically sensitive marine habitats.

  9. Travelling in time with networks: Revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis

    PubMed Central

    2011-01-01

    Background Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. Results Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence) and the Shared Allele (SAD; based on alleles identity) distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. Conclusion These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization PMID:21281515

  10. In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes.

    PubMed

    Parys, Sabine; Kehraus, Stefan; Krick, Anja; Glombitza, Karl-Werner; Carmeli, Shmuel; Klimo, Karin; Gerhäuser, Clarissa; König, Gabriele M

    2010-02-01

    Within a project focusing on the chemopreventive potential of algal phenols, two phloroglucinol derivatives, belonging to the class of fucophlorethols, and the known fucotriphlorethol A were obtained from the ethanolic extract of the brown alga Fucus vesiculosus L. The compounds trifucodiphlorethol A and trifucotriphlorethol A are composed of six and seven units of phloroglucinol, respectively. The compounds were examined for their cancer chemopreventive potential, in comparison with the monomer phloroglucinol. Trifucodiphlorethol A, trifucotriphlorethol A as well as fucotriphlorethol A were identified as strong radical scavengers, with IC(50) values for scavenging of 1,1-diphenyl-2 picrylhydrazyl radicals (DPPH) in the range of 10.0-14.4 microg/ml. All three compounds potently scavenged peroxyl radicals in the oxygen radical absorbance capacity (ORAC) assay. In addition, the compounds were shown to inhibit cytochrome P450 1A activity with IC(50) values in the range of 17.9-33 microg/ml, and aromatase (Cyp19) activity with IC(50) values in the range of 1.2-5.6 microg/ml.

  11. Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae

    PubMed Central

    Dittami, Simon M.; Barbeyron, Tristan; Boyen, Catherine; Cambefort, Jeanne; Collet, Guillaume; Delage, Ludovic; Gobet, Angélique; Groisillier, Agnès; Leblanc, Catherine; Michel, Gurvan; Scornet, Delphine; Siegel, Anne; Tapia, Javier E.; Tonon, Thierry

    2014-01-01

    Rhizobiales and related orders of Alphaproteobacteria comprise several genera of nodule-inducing symbiotic bacteria associated with plant roots. Here we describe the genome and the metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a member of a new candidate genus closely related to Rhizobiales and found in association with cultures of the filamentous brown algal model Ectocarpus. The “Ca. P. ectocarpi” genome encodes numerous metabolic pathways that may be relevant for this bacterium to interact with algae. Notably, it possesses a large set of glycoside hydrolases and transporters, which may serve to process and assimilate algal metabolites. It also harbors several proteins likely to be involved in the synthesis of algal hormones such as auxins and cytokinins, as well as the vitamins pyridoxine, biotin, and thiamine. As of today, “Ca. P. ectocarpi” has not been successfully cultured, and identical 16S rDNA sequences have been found exclusively associated with Ectocarpus. However, related sequences (≥97% identity) have also been detected free-living and in a Fucus vesiculosus microbiome barcoding project, indicating that the candidate genus “Phaeomarinobacter” may comprise several species, which may colonize different niches. PMID:25120558

  12. The Effect of Sulfated (1→3)-α-L-Fucan from the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in Colon Carcinoma Cells

    PubMed Central

    Vishchuk, Olesia S.; Ermakova, Svetlana P.; Zvyagintseva, Tatyana N.

    2013-01-01

    Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3)-α-L-fucan with sulfate groups at C2 and C4 of the α-L-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer. PMID:23337253

  13. Chemical Profiling (HPLC-NMR & HPLC-MS), Isolation, and Identification of Bioactive Meroditerpenoids from the Southern Australian Marine Brown Alga Sargassum paradoxum

    PubMed Central

    Brkljača, Robert; Urban, Sylvia

    2014-01-01

    A phytochemical investigation of a southern Australian marine brown alga, Sargassum paradoxum, resulted in the isolation and identification of four new (5, 9, 10, and 15) and nine previously reported (1, 2, 6–8, and 11–14) bioactive meroditerpenoids. HPLC-NMR and HPLC-MS were central to the identification of a new unstable compound, sargahydroquinal (9), and pivotal in the deconvolution of eight (1, 2, 5–7, and 10–12) other meroditerpenoids. In particular, the complete characterization and identification of the two main constituents (1 and 2) in the crude dichloromethane extract was achieved using stop-flow HPLC-NMR and HPLC-MS. This study resulted in the first acquisition of gHMBCAD NMR spectra in the stop-flow HPLC-NMR mode for a system solely equipped with a 60 μL HPLC-NMR flow cell without the use of a cold probe, microcoil, or any pre-concentration. PMID:25551779

  14. Radiocarbon behaviour in seawater and the brown algae Fucus serratus in the vicinity of the COGEMA La Hague spent fuel reprocessing plant (Goury)--France.

    PubMed

    Douville, Eric; Fiévet, Bruno; Germain, Pierre; Fournier, Marc

    2004-01-01

    Extensive studies of the radiocarbon (14C) distribution and transfer in the marine environment of the North-Cotentin peninsula and along the English Channel have been carried out. The main aims of these studies have been to estimate the spatial and temporal variation of the 14C concentration in seawater and to calculate 14C concentration factors for some biological species. Such information will be helpful in order to calculate precisely radiation doses to humans. First results obtained in the vicinity of the COGEMA La Hague nuclear plant (Goury) indicate a 14C labelling of the dissolved inorganic carbon (DIC) in seawater (8.0-26.2 Bq.m(-3)) and a tight relationship between the 14C in the liquid releases from the plant and the 14C concentrations in DIC. The particulate organic carbon (POC) is also labelled. The concentration factor calculations for the brown algae (Fucus serratus) sampled from Goury, and also along the English Channel, give 14C values around 3000 Bq.kg(-1) fresh weight / Bq.L(-1).

  15. Effects of the Polysaccharide from the Sporophyll of Brown Alga Undaria Pinnatifida on Serum Lipid Profile and Fat Tissue Accumulation in Rats Fed a High-Fat Diet.

    PubMed

    Kim, Byoung-Mok; Park, Jae-Ho; Kim, Dong-Soo; Kim, Young-Myung; Jun, Joon-Young; Jeong, In-Hak; Chi, Young-Min

    2016-07-01

    We investigated the effects of the polysaccharide from the sporophyll of a selected brown alga Undaria pinnatifida on serum lipid profile, fat tissue accumulation, and gastrointestinal transit time in rats fed a high-fat diet. The algal polysaccharide (AP) was prepared by the treatment of multiple cellulase-producing fungi Trichoderma reesei and obtained from the sporophyll with a yield of 38.7% (dry basis). The AP was mostly composed of alginate and fucoidan (up to 89%) in a ratio of 3.75:1. The AP was added to the high-fat diet in concentrations of 0.6% and 1.7% and was given to male Sprague-Dawley rats (5-wk-old) for 5 wk. The 1.7% AP addition notably reduced body weight gain and fat tissue accumulation, and it improved the serum lipid profile, including triglycerides, total cholesterol, and very low-density lipoprotein-cholesterol. The effects were associated with increased feces weight and shortened gastrointestinal transit time. In addition, the lipid peroxidation of the liver was decreased in both groups.

  16. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae.

    PubMed

    Montazer-Rahmati, Mohammad Mehdi; Rabbani, Parisa; Abdolali, Atefeh; Keshtkar, Ali Reza

    2011-01-15

    The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl(2)) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model best describes the biosorption of cadmium, nickel and lead ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Vitamin B(12), a chlorophyll-related analog to pheophytin a from marine brown algae, promotes neurite outgrowth and stimulates differentiation in PC12 cells.

    PubMed

    Ina, Atsutoshi; Kamei, Yuto

    2006-11-01

    We previously isolated an analog to chlorophyll-related compounds, pheophytin a, from the marine brown alga Sargassum fulvellum and demonstrated that it is a neurodifferentiation compound. In the current study, we investigated the effects of the pheophytin a analog vitamin B(12) on PC12 cell differentiation. In the presence of a low level of nerve growth factor (10 ng ml(-1)), vitamin B(12 )demonstrated neurite outgrowth-promoting activity in PC12 cells. The effect was dose-dependent in the range of 6-100 muM. In the absence of nerve growth factor, vitamin B(12) did not promote differentiation. To investigate the mechanism for this effect, we conducted differentiation assays and western blot analysis with signal transduction inhibitors and found that vitamin B(12) did not promote PC12 cell differentiation in the presence of K252a or U0126 inhibitors. These results suggest that vitamin B(12 )stimulates PC12 cell differentiation through enhancement of the mitogen-activated protein kinase signal transduction pathway, which is also induced by nerve growth factor. Thus, vitamin B(12) may be a good candidate for treatment of neurodegenerative diseases such as Alzheimer's disease.

  18. Polyphenol-Rich Fraction of Brown Alga Ecklonia cava Collected from Gijang, Korea, Reduces Obesity and Glucose Levels in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Park, Eun Young; Kim, Eung Hwi; Kim, Mi Hwi; Seo, Young Wan; Lee, Jung Im; Jun, Hee Sook

    2012-01-01

    Ecklonia cava (E. cava) is a brown alga that has beneficial effects in models of type 1 and type 2 diabetes. However, the effects of E. cava extracts on diet-induced obesity and type 2 diabetes have not been specifically examined. We investigated the effects of E. cava on body weight, fat content, and hyperglycemia in high-fat diet- (HFD) induced obese mice and sought the mechanisms involved. C57BL/6 male mice were fed a HFD (60% fat) diet or normal chow. After 3 weeks, the HFD diet group was given extracts (200 mg/kg) of E. cava harvested from Jeju (CA) or Gijang (G-CA), Korea or PBS by oral intubation for 8 weeks. Body weights were measured weekly. Blood glucose and glucose tolerance were measured at 7 weeks, and fat pad content and mRNA expression of adipogenic genes and inflammatory cytokines were measured after 8 weeks of treatment. G-CA was effective in reducing body weight gain, body fat, and hyperglycemia and improving glucose tolerance as compared with PBS-HFD mice. The mRNA expression of adipogenic genes was increased, and mRNA expression of inflammatory cytokines and macrophage marker gene was decreased in G-CA-treated obese mice. We suggest that G-CA reduces obesity and glucose levels by anti-inflammatory actions and improvement of lipid metabolism. PMID:22844333

  19. [Effect of probiotic product containing bifidobacteria and biogel from brown algae on the intestinal microflora and parameters of innate immunity in mice with experimental drug dysbacteriosis].

    PubMed

    Kuznetsova, T A; Makarenkova, I D; Koneva, E L; Aminina, N M; Yakush, E V

    2015-01-01

    The article represents the results of studying the effect of a new fermented product (FP) containing the probiotic strain Bifidobacterium bifidum 791 and Biogel from brown algae Laminariajaponica on the composition of intestinal microflora and parameters of innate immunity in mice with experimental dysbacteriosis, induced by administration of gentamicin in dose of 25 mg per kg body weight during 7 days. The experimental animals received for 6 weeks in addition to the diet FP, which was 2% of the average volume of feed intake. The FP influence was manifested by more rapid reduction of dyspepsia symptoms, restoration of body weight and balance the intestinal microbiocenosis (increasing of bifido- and lactobacteria, typical E. coli, reducing of the bacteria genus Proteus and Clostridium, elimination of S. aureus). As the results of FP administration we observed the statistically significant reduction of endogenous intoxication values and increasing of the phagocyte activity of neutrophils, related to effector cells of innate immunity, compared with animals not receiving FP. Identified effects of FP are due to both its probiotic properties through the presence of bifidobacteria and immunomodulating and enteral sorbtion activities of alginate component.

  20. Expression of a xanthine permease and phosphate transporter in cultures and field populations of the harmful alga Aureococcus anophagefferens: tracking nutritional deficiency during brown tides.

    PubMed

    Wurch, Louie L; Gobler, Christopher J; Dyhrman, Sonya T

    2014-08-01

    Targeted gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) was employed to track patterns in the expression of genes indicative of nitrogen or phosphorus deficiency in the brown tide-forming alga Aureococcus anophagefferens. During culture experiments, a xanthine/uracil/vitamin C permease (XUV) was upregulated ∼20-fold under nitrogen-deficient conditions relative to a nitrogen-replete control and rapidly returned to nitrogen-replete levels after nitrogen-deficient cells were resupplied with nitrate or ammonium. It was not responsive to phosphorus deficiency. Expression of an inorganic phosphate transporter (PTA3) was enriched ∼10-fold under phosphorus-deficient conditions relative to a phosphorus-replete control, and this signal was rapidly lost upon phosphate resupply. PTA3 was not upregulated by nitrogen deficiency. Natural A. anophagefferens populations from a dense brown tide that occurred in Long Island, NY, in 2009 were assayed for XUV and PTA3 expression and compared with nutrient concentrations over the peak of a bloom. Patterns in XUV expression were consistent with nitrogen-replete growth, never reaching the values observed in N-deficient cultures. PTA3 expression was highest prior to peak bloom stages, reaching expression levels within the range of P-deficient cultures. These data highlight the value of molecular-level assessments of nutrient deficiency and suggest that phosphorus deficiency could play a role in the dynamics of destructive A. anophagefferens blooms. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. ["Depilation" by micro-algae?].

    PubMed

    Ditrich, H

    1996-01-01

    Itching, reddening and depilation of body hairs was reported by swimmers in the Attersee-lake in Austria. Initially, an environmental crime was suspected. However, further investigations showed that a biological cause was probably responsible for these symptoms. The accrustations found on body hairs turned out in the scanning electron microscope to be dried mucus containing numerous diatoms. The prevailing micro-algae were identified as Cyclotella comensis. Thus, although the phenomenon had a natural, harmless cause, it may happen again given the appropriate environmental conditions.

  2. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    PubMed Central

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  3. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  4. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  5. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  6. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  7. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  8. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  9. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  10. Regulation of Oil Biosynthesis in Algae

    DTIC Science & Technology

    2008-06-25

    genes and mutants are currently under investigation for their potential roles in oil biosynthesis in microalgae . 15. SUBJECT TERMS Target genes for oil ...engineering, transcriptional profile comparison, lipid mutants, microalgae oil biosynthesis, enzymes involved in oil body formation in micro algae 16...addressed by exploring oil (triacylglycerol) biosynthesis in microalgae . Many algae including Chlamydomonas accumulate triacylglycerols when cultures

  11. Potential biomedical applications of marine algae.

    PubMed

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  14. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  15. Advances in genetic engineering of marine algae.

    PubMed

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.

  16. Streptophyte algae and the origin of embryophytes.

    PubMed

    Becker, Burkhard; Marin, Birger

    2009-05-01

    Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major

  17. Streptophyte algae and the origin of embryophytes

    PubMed Central

    Becker, Burkhard; Marin, Birger

    2009-01-01

    Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Recent Progress Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. Conclusions The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater

  18. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  19. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  20. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes.

    PubMed

    Jung, Hyun Ah; Jung, Hee Jin; Jeong, Hyun Young; Kwon, Hyun Ju; Kim, Min-Sun; Choi, Jae Sue

    2014-06-01

    Fucosterol is a sterol metabolite of brown algae and regulates genes involved with cholesterol homeostasis. As a part of our continuous search for anti-obesity agents from natural marine sources, the anti-adipogenic activities of Ecklonia stolonifera and its sterol, fucosterol, were evaluated for the inhibition of adipocyte differentiation and lipid formation. Oil Red O staining was used to evaluate triglyceride contents in 3T3-L1 pre-adipocytes primed by differentiation medium (DM) I and DM II. The methanolic extract of E. stolonifera showed strong anti-adipogenic activity, and was thus fractionated with several solvents. Among the tested fractions, the dichloromethane (CH2Cl2) fraction was found to be the most active fraction, with significant inhibition (40.5 %) of intracellular lipid accumulation at a non-toxic concentration, followed by the ethyl acetate fraction (30.2 %) at the same concentration, while the n-butanol and water fractions did not show inhibitory activity within the tested concentrations. The strong anti-adipogenic CH2Cl2-soluble fraction was further purified by a repeated chromatography to yield fucosterol. Fucosterol reduced lipid contents in a concentration-dependent manner without showing any cytotoxicity. Fucosterol treatment also yielded a decrease in the expression of the adipocyte marker proteins peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) in a concentration-dependent manner. Taken together, these results suggest that fucosterol inhibits expression of PPARγ and C/EBPα, resulting in a decrease of lipid accumulation in 3T3-L1 pre-adipocytes, indicating that the potential use of E. stolonifera and its bioactive fucosterol as an anti-obesity agent.

  1. Contrasting Geographical Distributions as a Result of Thermal Tolerance and Long-Distance Dispersal in Two Allegedly Widespread Tropical Brown Algae

    PubMed Central

    Tronholm, Ana; Leliaert, Frederik; Sansón, Marta; Afonso-Carrillo, Julio; Tyberghein, Lennert; Verbruggen, Heroen; De Clerck, Olivier

    2012-01-01

    Background Many tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic. Methodology/Principal Findings Species delimitation was based on 184 chloroplast encoded psbA sequences, using a Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset. Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature tolerance. Conclusions/Significance Tectonically driven rearrangements of physical barriers left an unequivocal imprint on the current diversity patterns of marine macroalgae, as witnessed by the D. crenulata–complex. The nearly circumglobal tropical distribution of D. ciliolata, however, demonstrates that the north

  2. Determination of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios in Brown Algae (Fucus distichus) Collected from Amchitka Island, Alaska.

    SciTech Connect

    Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

    2005-05-02

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) activity concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for Brown Algae (Fucus distichus) collected from the littoral zone of Amchitka Island (Alaska) and at a control site on the Alaskan peninsula. Plutonium isotope measurements were performed in replicate using Accelerator Mass Spectrometry (AMS). The average {sup 240}Pu/{sup 239}Pu atom ratio observed in dried Fucus d. collected from Amchitka Island was 0.227 {+-} 0.007 (n=5) and compares with the expected {sup 240}Pu/{sup 239}Pu atom ratio in integrated worldwide fallout deposition in the Northern Hemisphere of 0.1805 {+-} 0.0057 (Cooper et al., 2000). In general, the characteristically high {sup 240}Pu/{sup 239}Pu content of Fucus d. analyzed in this study appear to indicate the presence of a discernible basin-wide secondary source of plutonium entering the marine environment. Of interest to the study of plutonium source terms within the Pacific basin are reports of elevated {sup 240}Pu/{sup 239}Pu atom ratios in fallout debris from high-yield atmospheric nuclear tests conducted in the Marshall Islands during the 1950s (Diamond et al., 1960), the wide range of {sup 240}Pu/{sup 239}Pu atom ratio values (0.19 to 0.34) observed in sea water, sediments, coral and other environmental media from the North Pacific Ocean (Hirose et al., 1992; Buesseler, 1997) and updated estimates of the relative contributions of close-in and intermediate fallout deposition on oceanic inventories of radionuclidies, especially in the Northern Pacific Ocean (Hamilton, 2004).

  3. Halosimplex pelagicum sp. nov. and Halosimplex rubrum sp. nov., isolated from salted brown alga Laminaria, and emended description of the genus Halosimplex.

    PubMed

    Han, Dong; Cui, Heng-Lin

    2014-01-01

    Two halophilic archaeal strains, R2(T) and R27(T), were isolated from the brown alga Laminaria produced at Dalian, Liaoning Province, China. Both had pleomorphic cells that lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. They grew optimally at 42 °C, pH 7.0 and in the presence of 3.1-3.4 M NaCl and 0.03-0.5 M Mg(2+). The major polar lipids of the two strains were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and four major glycolipids chromatographically identical to those of Halosimplex carlsbadense JCM 11222(T). 16S rRNA gene analysis revealed that each strain had two dissimilar 16S rRNA genes and both strains were phylogenetically related to Halosimplex carlsbadense JCM 11222(T) (92.7-98.8 % similarities). The rpoB' gene similarities between strains R2(T) and R27(T) and between these strains and Halosimplex carlsbadense JCM 11222(T) were 95.7 %, 96.1 % and 95.8 %, respectively. The DNA G+C contents of strains R2(T) and R27(T) were 62.5 mol% and 64.0 mol%, respectively. The DNA-DNA hybridization values between strains R2(T) and R27(T) and between the two strains and Halosimplex carlsbadense JCM 11222(T) were 43 %, 52 % and 47 %, respectively. It was concluded that strain R2(T) ( = CGMCC 1.10586(T) = JCM 17263(T)) and strain R27(T) ( = CGMCC 1.10591(T) = JCM 17268(T)) represent two novel species of the genus Halosimplex, for which the names Halosimplex pelagicum sp. nov. and Halosimplex rubrum sp. nov. are proposed. An emended description of the genus Halosimplex is also presented.

  4. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).

    PubMed

    Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin

    2017-02-01

    Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.

  5. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  6. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  7. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  8. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    PubMed

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  9. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  10. Method and apparatus for processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  11. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  12. Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera).

    PubMed

    Gomez, César G; Pérez Lambrecht, María V; Lozano, Jorge E; Rinaudo, Marguerite; Villar, Marcelo A

    2009-05-01

    In this work, three methods (ethanol, HCl, and CaCl(2) routes) of sodium alginate extraction-purification from brown seaweeds (Macrocystis pyrifera) were used in order to study the influence of process conditions on final properties of the polymer. In the CaCl(2) route, was found that the precipitation step in presence of calcium ions followed by proton-exchange in acid medium clearly gives alginates with the lowest molecular weight and poor mechanical properties. It is well known that the acid treatment degrade the ether bonds on the polymeric chain. Ethanol route displayed the best performance, where the highest yield and rheological properties were attained with the lowest number of steps. Although the polymer I.1 showed a molar mass and polydispersity index (M(w)/M(n)) similar to those of commercial sample, its mechanical properties were lower. This performance is related to the higher content of guluronic acid in the commercial alginate, which promotes a more successful calcium chelation. Moreover, the employment of pH 4 in the acid pre-treatment improved the yield of the ethanol route, avoiding the ether linkage hydrolysis. Therefore, samples I.2 and I.3 displayed a higher M(w) and a narrower distribution of molecular weights than commercial sample, which gave a higher viscosity and better viscoelastic properties.

  13. UV Sensitivity of Vegetative and Reproductive Tissues of Two Antarctic Brown Algae is Related to Differential Allocation of Phenolic Substances.

    PubMed

    Huovinen, Pirjo; Gómez, Iván

    2015-11-01

    UV sensitivity of the vegetative and reproductive tissues of two Antarctic brown macroalgae was compared. Photosynthesis as well as the content and localization of phenolic substances were determined. Responses to UV radiation were quantified as chlorophyll fluorescence (Fv /Fm ). Ascoseira mirabilis showed high UV tolerance, while in Cystosphaera jacquinotii Fv /Fm decreased by 15-21%, the receptacles being more tolerant than the vegetative blades. The phlorotannin contents showed an opposite pattern: the soluble fraction dominated in C. jacquinotii while in A. mirabilis the insoluble fraction was more abundant. Soluble phlorotannins were higher in the reproductive than in vegetative tissues in both species. Images of tissue cross-sections under violet-blue light excitation confirmed a high allocation of phenolic compounds (as blue autofluorescence) in C. jacquinotii, both in reproductive and vegetative blades. The allocation and proportions of the soluble and insoluble phlorotannins could be related with the observed UV tolerance of the vegetative and reproductive tissues. © 2015 The American Society of Photobiology.

  14. Attachment, penetration and early host defense mechanisms during the infection of filamentous brown algae by Eurychasma dicksonii.

    PubMed

    Tsirigoti, Amerssa; Beakes, Gordon W; Hervé, Cécile; Gachon, Claire M M; Katsaros, Christos

    2015-05-01

    Eurychasma dicksonii is one of the most common and widespread marine pathogens and attacks a broad spectrum of more than 45 brown algal species. The present study focuses on the mechanism used by the pathogen to attach on the host cell wall and force its way into algal cells. Ultrastructural examination revealed a needle-like structure which develops within the attached spore and extends along its main axis. Particular cell wall modifications are present at the basal part of the spore (adhesorium pad) and guide the needle-like tool to penetrate perpendicularly the host cell wall. The unique injection mechanism is shared with Haptoglossa species which suggests that this is an important characteristic of early diverging oomycetes. Furthermore, the encystment and adhesion mechanism of E. dicksonii shows significant similarities with other oomycetes, some of which are plant pathogens. Staining and immunolabelling techniques showed the deposition of β-1,3-glucans on the host cell wall at the pathogen penetration site, a strategy similar to physical responses previously described only in infected plant cells. It is assumed that the host defense in terms of callose-like deposition is an ancient response to infection.

  15. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation.

    PubMed

    Chan, Sze Wai; Cheang, Chi Chiu; Chirapart, Anong; Gerung, Grevo; Tharith, Chea; Ang, Put

    2013-01-01

    Southeast Asia has been known as one of the biodiversity hotspots in the world. Repeated glacial cycles during Pleistocene were believed to cause isolation of marine taxa in refugia, resulting in diversification among lineages. Recently, ocean current was also found to be another factor affecting gene flow by restricting larval dispersal in animals. Macroalgae are unique in having mode of reproduction that differs from that of animals. Our study on the phylogeographical pattern of the brown macroalga Sargassum polycystum using nuclear Internal Transcribed Spacer 2 (ITS2), plastidal RuBisCO spacer (Rub spacer) and mitochondrial cytochrome oxidase subunit-III (Cox3) as molecular markers revealed genetic homogeneity across 27 sites in Southeast Asia and western Pacific, in sharp contrast to that revealed from most animal studies. Our data suggested that S. polycystum persisted in single refugium during Pleistocene in a panmixia pattern. Expansion occurred more recently after the Last Glacial Maximum and recolonization of the newly flooded Sunda Shelf could have involved asexual propagation of the species. High dispersal ability through floating fronds carrying developing germlings may also contribute to the low genetic diversity of the species.

  16. Homogeneous Population of the Brown Alga Sargassum polycystum in Southeast Asia: Possible Role of Recent Expansion and Asexual Propagation

    PubMed Central

    Chan, Sze Wai; Cheang, Chi Chiu; Chirapart, Anong; Gerung, Grevo; Tharith, Chea; Ang, Put

    2013-01-01

    Southeast Asia has been known as one of the biodiversity hotspots in the world. Repeated glacial cycles during Pleistocene were believed to cause isolation of marine taxa in refugia, resulting in diversification among lineages. Recently, ocean current was also found to be another factor affecting gene flow by restricting larval dispersal in animals. Macroalgae are unique in having mode of reproduction that differs from that of animals. Our study on the phylogeographical pattern of the brown macroalga Sargassum polycystum using nuclear Internal Transcribed Spacer 2 (ITS2), plastidal RuBisCO spacer (Rub spacer) and mitochondrial cytochrome oxidase subunit-III (Cox3) as molecular markers revealed genetic homogeneity across 27 sites in Southeast Asia and western Pacific, in sharp contrast to that revealed from most animal studies. Our data suggested that S. polycystum persisted in single refugium during Pleistocene in a panmixia pattern. Expansion occurred more recently after the Last Glacial Maximum and recolonization of the newly flooded Sunda Shelf could have involved asexual propagation of the species. High dispersal ability through floating fronds carrying developing germlings may also contribute to the low genetic diversity of the species. PMID:24147050

  17. Biomonitoring heavy metals in estuaries: a field comparison of two brown algae species inhabiting upper estuarine reaches.

    PubMed

    Barreiro, Rodolfo; Picado, Laura; Real, Carlos

    2002-04-01

    Biomonitoring dissolved heavy metals within estuaries, particularly at their upper reaches, frequently has to rely on several biomonitors; rarely a single species thrives all along the salinity gradient. To properly do so, it must be established whether those biomonitors actually accumulate heavy metals alike. In this study, two brown seaweeds from the upper section of three NW Spain estuaries--the widely-known Fucus vesiculosus and the estuarine Fucus ceranoides--were compared as metal biomonitors. Both species were collected at five locations where they either coexist or live close to each other and their heavy metal content (Cu, Cr, Mn, Zn, Fe, Al) was measured. Analyses were appropriately replicated for each species x location combination to allow a statistically reliable detection of differences in bioaccumulation, with particular emphasis on the magnitude of interspecific differences. The lack of significant differences for Cu, Mn, and Zn contents in F. ceranoides and F. vesiculosus supports the feasibility of their joint use to monitor these metals along the estuaries. Conversely, F. ceranoides concentrated significantly higher levels of Cr, Fe, and Al than F. vesiculosus and hence combining data for both fucoids to monitor these elements seems impractical. The correlation of species differences together with a similar Al:Fe ratio in both weed tissue and sediment suggest that Cr, Fe, and Al tissue-burdens might be considerably biased by sediment retained on the surface of the weed. Parallel analyses of Al and/or Fe in seaweeds and sediments could serve to keep track of this interference and may help to combine data from both fucoids for monitoring elements like Cr.

  18. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  19. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  20. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  1. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately.

  2. The Alga Ochromonas danica Produces Bromosulfolipids.

    PubMed

    White, Alexander R; Duggan, Brendan M; Tsai, Shiou-Chuan; Vanderwal, Christopher D

    2016-03-04

    Many halogenases interchangeably incorporate chlorine and bromine into organic molecules. On the basis of an unsubstantiated report that the alga Ochromonas danica, a prodigious producer of chlorosulfolipids, was able to produce bromosulfolipids, we have investigated the promiscuity of its halogenases toward bromine incorporation. We have found that bromosulfolipids are produced with the exact positional and stereochemical selectivity as in the chlorosulfolipid danicalipin A when this alga is grown under modified conditions containing excess bromide ion.

  3. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  4. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  5. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  6. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  7. Antioxidant activity of Hawaiian marine algae.

    PubMed

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J; Tabandera, Nicole K; Wright, Patrick R; Wright, Anthony D

    2012-02-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  8. Granulosicoccus undariae sp. nov., a member of the family Granulosicoccaceae isolated from a brown algae reservoir and emended description of the genus Granulosicoccus.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Won, Sung-Min; Park, Ja-Min; Yoon, Jung-Hoon

    2014-11-01

    A Gram-stain-negative, aerobic, non-flagellated and coccoid bacterial strain, W-BA3(T), which was isolated from a brown algae reservoir in Wando of South Korea, was characterized taxonomically. Strain W-BA3(T) was found to grow optimally at 30 °C, at pH 7.0-8.0 and in presence of 2.0 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain W-BA3(T) clustered with the type strains of Granulosicoccus antarcticus and Granulosicoccus coccoides, with which it exhibited sequence similarity values of 98.4-99.3 %. Sequence similarity values of strain W-BA3(T) to the type strains of the other recognized species were less than 90.2 %. Strain W-BA3(T) was found to contain Q-8 as the predominant ubiquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C18:1 ω7c and C16:0 as the major fatty acids. The major polar lipids of strain W-BA3(T), which were identified as phosphatidylethanolamine and phosphatidylglycerol, were similar to those of the type strains of G. antarcticus and G. coccoides. The DNA G+C content of strain W-BA3(T) was 56.0 mol % and its mean DNA-DNA relatedness values with the type strains of G. coccoides and G. antarcticus were 27 and 17 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain W-BA3(T) is separated from the two Granulosicoccus species. On the basis of the data presented, strain W-BA3(T) is considered to represent a novel species of the genus Granulosicoccus, for which the name Granulosicoccus undariae sp. nov. is proposed. The type strain is W-BA3(T) (=KCTC 42134(T) = NBRC 110411(T)). An emended description of the genus Granulosicoccus is also proposed.

  9. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  10. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  11. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  12. [Algae removal of high algae raw water by coagulation enhanced by ozonation].

    PubMed

    Liu, Hai-Long; Yang, Dong; Zhao, Zhi-Yong; Li, Zheng-Jian; Cheng, Fang-Qin

    2009-07-15

    Apparent molecular weight distribution (AMWD) and resin fractionation were used to characterize organic matters of the raw water. Removal of algae, change and removal of dissolved organic carbon (DOC), disinfection by products (DBPs) control during the preozonation enhanced coagulation treatments in the jar-scale and pilot-scale experiment were studied. Algae activity (AA) was measured and used to elucidate the mechanisms of algae removal by above treatments. Results show that algae removal can be improved distinctively by proper preozonation, as the ozone dose 1.0 mg x L(-1), for instance. Algae removal could be increased from 55%-85% by traditional coagulation to 95% by enhanced coagulation after preozonation; and the best removal achieved 99.3% with ozone 1.0 mg x L(-1) and PACl 3.0 mg x L(-1); the residual THMFP (Trihalomethanes formation potential) was lowered from 117 microg x L(-1) by traditional coagulation to 46 microg x L(-1). But higher dose of ozone (as > or = 2.0 mg x L(-1)) impairs organic matter removal, although it decreases algae activity further. Significant differences were found in algae removal by AA detection between ozonation and traditional coagulation. Traditional coagulation had little effect on AA no matter the different PAC1 doses; while AA decreased clearly after ozonation. AA was lowered below 12 under 0.5-2.0 mg x L(-1) ozonation; and it kept decreasing with increase of ozone dosage. During the following coagulation, coagulant or some of its hydrolysised components enhanced the AA decrease by ozonation. Compared to the method of normal microscopy counting, AA test expresses the influence of algae living state by water treatment processes more clearly; which would provide treatment process designer with more distinct information about algae removal mechanisms and how to arrange the treatment processes to improve algae removal.

  13. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  14. Effect of ferrate on green algae removal.

    PubMed

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-08-05

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  15. Oil from algae; salvation from peak oil?

    PubMed

    Rhodes, Christopher J

    2009-01-01

    A review is presented of the use of algae principally to produce biodiesel fuel, as a replacement for conventional fuel derived from petroleum. The imperative for such a strategy is that cheap supplies of crude oil will begin to wane within a decade and land-based crops cannot provide more than a small amount of the fuel the world currently uses, even if food production were allowed to be severely compromised. For comparison, if one tonne of biodiesel might be produced say, from rape-seed per hectare, that same area of land might ideally yield 100 tonnes of biodiesel grown from algae. Placed into perspective, the entire world annual petroleum demand which is now provided for by 31 billion barrels of crude oil might instead be met from algae grown on an area equivalent to 4% of that of the United States. As an additional benefit, in contrast to growing crops it is not necessary to use arable land, since pond-systems might be placed anywhere, even in deserts, and since algae grow well on saline water or wastewaters, no additional burden is imposed on freshwater-a significant advantage, as water shortages threaten. Algae offer the further promise that they might provide future food supplies, beyond what can be offered by land-based agriculture to a rising global population.

  16. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  17. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. [Functional components in fish and algae oils].

    PubMed

    Conchillo, A; Valencia, I; Puente, A; Ansorena, D; Astiasarán, I

    2006-01-01

    An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated omega-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The omega-6/omega-3 ratio was lower than 0.4 in both oils. In the unsaponificable fraction, algae oil had a Mold lower cholesterol content and a higher proportion of squalene than fish oil. The phytosterol content was significantly higher in the algae oil.

  19. Macrofauna associated with the brown algae Dictyota spp. (Phaeophyceae, Dictyotaceae) in the Sebastião Gomes Reef and Abrolhos Archipelago, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Cunha, Tauana Junqueira; Güth, Arthur Ziggiatti; Bromberg, Sandra; Sumida, Paulo Yukio Gomes

    2013-11-01

    The taxonomic richness and distributional patterns of the macrofauna associated with the algae genus Dictyota from the Abrolhos Bank (Eastern Brazilian coast) are analyzed. Macrofauna comprised a total of 9586 specimens; a complete faunal list of the most abundant taxa (Crustacea, Polychaeta and Mollusca, accounting for 95.6%) resulted in 64 families and 120 species. Forty six species are registered for the first time for the Abrolhos Bank, of which 3 are also new for the Brazilian coast. The most abundant families were Ampithoidae amphipods (with Ampithoe ramondi as the main faunal component), Janiridae isopods, Rissoellidae gastropods and Syllidae polychaetes. Comparisons were made between summer and winter periods and among sites from Sebastião Gomes Reef, near the coast, and from Siriba Island, in the Abrolhos Archipelago, away from the mainland. Algae size was lower in the summer, when faunal density was higher, suggesting a possible effect of grazing. Macrofaunal communities were significantly different among sites and periods. Coastal and external communities were markedly different and winter had the greatest effects on the fauna. Environmental conditions related to sediment type and origin and turbidity appear to be a good scenario for our macrofauna distribution results.

  20. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling.

    PubMed

    Freitas, Olga M M; Martins, Ramiro J E; Delerue-Matos, Cristina M; Boaventura, Rui A R

    2008-05-01

    Specific marine macro algae species abundant at the Portuguese coast (Laminaria hyperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75-100 mg L(-1). The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9-39.5, 18.6-32.0 and 32.3-50.4 mg g(-1), respectively. Kinetic studies revealed that the metal uptake rate was rather fast, with 75% of the total amount occurring in the first 10 min for all algal species. Experimental data were well fitted by a pseudo-second order rate equation. The contribution of internal diffusion mechanism was significant only to the initial biosorption stage. Results indicate that all the studied macro algae species can provide an efficient and cost-effective technology for eliminating heavy metals from industrial effluents.

  1. Snow algae-microbe-mineral interactions and implications for snow algae growth

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Harrold, Z.; Hausrath, E.; Garcia, A. H.; Murray, A. E.; Raymond, J. A.; Bartlett, C. L.

    2016-12-01

    Snow algae, which can reach densities of millions of cells per mL [1], can accelerate the melting of snow and ice fields by significantly lowering their albedo [2-4]. Studies have even suggested the effect of snow algae on albedo should be considered in quantitative albedo models. One of the factors controlling snow algae growth is nutrient availability. Previous observations of minerals and microbes attached to the cell walls of snow algae, and the preferential growth of snow algae in dusty snow, have suggested that snow algae-microbe-mineral interactions may help snow algae meet their trace nutrient needs. Understanding how snow algae are able to reach such high concentrations in a low nutrient snow environment is critical for predicting the extent to which snow algae blooms can impact snow albedo, snow and ice melt rate, and global climate change. We use synchrotron X-ray fluorescence (XRF), X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) to study the interactions between snow algae, microbes and minerals in both field and laboratory samples. Field samples were collected from Mt. Anderson Ridge, CA, and prepared using a Percoll density separation technique to isolate algae cells from bulk dust. Cell and mineral fractions were analyzed using synchrotron micro-XRF, micro-XRD and XANES. Results show the presence of ferric material similar to ferrihydrite surrounding snow alga. Growth experiments of xenic Chloromonas brevispina cultures incubated with Fe-bearing minerals, including nontronite, goethite, pyrite and olivine, suggest Fe-bearing minerals can support snow algae growth. Synchrotron XRF, XRD and XANES analyses of Cr. brevispinaalgae cell communities indicate the formation of cell-associated Fe-bearing mineral phases not present in the unreacted minerals. The sample preparation and synchrotron techniques described herein provide an approach for investigating a wide range of microbe-mineral interactions and their impacts on microbial

  2. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  3. OPTIMIZATION OF SOME HEAVY METALS BIOSORPTION BY REPRESENTATIVE EGYPTIAN MARINE ALGAE(1).

    PubMed

    Elrefaii, Abdelmonem H; Sallam, Lotfy A; Hamdy, Abdelhamid A; Ahmed, Eman F

    2012-04-01

    Marine algae-as inexpensive and renewable natural biomass-have attracted the attention of many investigators to be used to preconcentrate and biosorb many heavy metal ions. Impressed by this concept, the metal uptake capacity of Egyptian marine algae was examined using representatives of green and brown algae, namely, Ulva lactuca L. and Sargassum latifolium (Turner) C. Agardh, respectively. The biosorption efficiencies of Cu(2+) , Co(2+) , Ni(2+) , Cd(2+) , Hg(2+) , Ag(2+) , and Pb(2+) ions seem to depend on the type of the algae used as well as the conditions under which the uptake processes were conducted. It was demonstrated that a pH range of 7.5-8.8 was optimum for the removal of the tested metals. Similarly, the uptake process was markedly accelerated during the first 2 h using relatively low metal level and sufficient amounts of the dried powdered tested algae.

  4. Genome of the red alga Porphyridium purpureum

    PubMed Central

    Bhattacharya, Debashish; Price, Dana C.; Xin Chan, Cheong; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P. M.; Cecilia Arias, Maria; Henrissat, Bernard; Coutinho, Pedro M.; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life. PMID:23770768

  5. Genome of the red alga Porphyridium purpureum.

    PubMed

    Bhattacharya, Debashish; Price, Dana C; Chan, Cheong Xin; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P M; Arias, Maria Cecilia; Henrissat, Bernard; Coutinho, Pedro M; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.

  6. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  7. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2016-07-12

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  8. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  9. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  10. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  11. Enzyme-Enhanced Extraction of Antioxidant Ingredients from Algae.

    PubMed

    Adalbjörnsson, Björn V; Jónsdóttir, Rósa

    2015-01-01

    Marine algae are not only a rich source of dietary fibre, proteins, vitamins, and minerals, but also contain a great variety of secondary metabolites with diverse biological activities. Marine macroalgae are a rich source of various natural antioxidants such as polyphenols, especially phlorotannins (made of polyphloroglucinol units) derived from brown algae, which play an important role in preventing lipid peroxidation. In recent years, a number of potent antioxidant compounds have been isolated and identified from different types of edible seaweeds. Extraction methods commonly used for the isolation of antioxidants are based on conventional water or organic solvent extractions. However, recent advances have shown that enzymatic hydrolysis can achieve higher yield of bioactive compounds from algae. Here we describe a method based on enzymatic hydrolysis which both increases yield and decreases cost associated with organic solvents. This method achieves cell wall disruption and breakdown of internal storage components for more effective release of intracellular bioactive compounds. In addition, hydrolysis of proteins produces peptides which may have antioxidant properties, thus enhancing the bioactivity of the algal extract. The method described can be used for production of extracts from red and brown macroalgal species.

  12. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  13. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  14. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  15. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  16. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  17. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution.

  18. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae.

    PubMed

    Wang, Jing; Jin, Weihua; Hou, Yun; Niu, Xizhen; Zhang, Hong; Zhang, Quanbin

    2013-06-01

    In this study, we prepared seven polysaccharides extracted from five algae including one brown alga Saccharina japonica, one red alga Porphyra haitanensis and three green algae Codium fragile, Enteromorpha linza and Bryopsis plumose. The chemical composition and capability of moisture-absorption and moisture-retention were investigated in comparison with those of hyaluronic acid (HA). The low molecular weight polysaccharides extracted from brown seaweed exhibited the highest moisture-absorption and moisture-retention abilities of all of the polysaccharides studied and performed better than HA. The relationships between chemical composition (including sulfated groups, monosaccharide, and molecular weight) and the functions of polysaccharides were also studied. We found the sulfated group was a main active site for moisture-absorption and moisture-retention abilities. These abilities were also related to molecular weight; with the exception of the low molecular weight polysaccharide extracted from red seaweed, lower molecular weight improved moisture-absorption and moisture-retention abilities.

  19. Neonatal sepsis caused by Shewanella algae: A case report.

    PubMed

    Charles, Marie Victor Pravin; Srirangaraj, Sreenivasan; Kali, Arunava

    2015-01-01

    Sepsis remains a leading cause of mortality among neonates, especially in developing countries. Most cases of neonatal sepsis are attributed to Escherichia coli and other members of the Enterobacteriaceae family. Shewanella algae (S. algae) is a gram-negative saprophytic bacillus, commonly associated with the marine environment, which has been isolated from humans. Early onset neonatal sepsis caused by S. algae is uncommon. We report a case of S. algae blood stream infection in a newborn with early onset neonatal sepsis.

  20. Biosorption of lead and nickel by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B. . Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  1. Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics.

    PubMed

    Khani, Mohammad Hassan

    2011-11-01

    Kinetic, thermodynamic, and equilibrium isotherms of the biosorption of uranium ions onto Padina sp., a brown algae biomass, in a batch system have been studied. The kinetic data were found to follow the pseudo-second-order model. Intraparticle diffusion is not the sole rate-controlling factor. The equilibrium experimental results were analyzed in terms of Langmuir isotherm depending with temperature. Equilibrium data fitted very well to the Langmuir model. The maximum uptakes estimated by using the Langmuir model were 434.8, 416.7, 400.0, and 370.4 mg/g at 10°C, 20°C, 30°C, and 40°C, respectively. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. Padina sp. algae were shown to be a favorable biosorbent for uranium removal from aqueous solutions.

  2. Mediterranean and Black Sea organisms and algae from mariculture as sources of antitumor drugs.

    PubMed

    Apryshko, Galina N; Ivanov, Valeriy N; Milchakova, Natalya A; Nekhoroshev, Mikhail V

    2005-06-01

    Mussels and tunicates cultivated in Mediterranean and Black Sea are the sources of antitumor drugs. Three compounds isolated from these animals (ET-743, aplidin and bryostatin-1) are on the II-III stages of clinical trials. Carotenoid fucoxantin that is present in edible brown algae possesses antitumor activity. The consumption of brown macrophyts decreases the risk of cancer development.

  3. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  4. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  5. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  6. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  7. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  8. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  9. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  11. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  12. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  13. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  14. Modulation of platelet aggregation-related eicosanoid production by dietary F-fucoidan from brown alga Laminaria japonica in human subjects.

    PubMed

    Ren, Rendong; Azuma, Yosuke; Ojima, Takao; Hashimoto, Takashi; Mizuno, Masashi; Nishitani, Yosuke; Yoshida, Masaru; Azuma, Takeshi; Kanazawa, Kazuki

    2013-09-14

    Laminaria japonica is traditionally eaten in Japan as a beneficial food for thrombosis. The alga contains two specific ingredients, a xanthophyll fucoxanthin (FX) and a polysaccharide, F-fucoidan (FD). The aim of the present study was to investigate whether FX or FD exhibited anti-thrombotic effects. For this purpose, three types of capsules, containing 1 mg FX, 400 mg fucoidan, and both, were prepared from the alga and administered to volunteers for 5 weeks. The dose of FD or FD+FX significantly shortened lysis time (LT) of the thrombus measured by a global thrombosis test in the blood, but FX did not. Examining the mechanism, dietary FD increased H2O2 and the secretion of prostacyclin (PGI2), a potent inhibitor of platelet aggregation, in the blood, although FD was under the detection limit in the blood, determining with its monoclonal antibody. Furthermore, in mouse experiments, dietary FD was totally excreted into the faeces and was not incorporated into the blood. We then employed a co-culture system of a Caco-2 cell monolayer with fresh human blood. The addition of FD to Caco-2 cells stimulated the expression of NADPH oxidase 1 (NOX1) and dual oxidase 2 (DUOX2) mRNA and secreted H2O2 onto the blood side accompanied by a significant increase in serum PGI2 production. These effects were invalidated by the combined addition of FD with its monoclonal antibody. The results suggested that dietary FD stimulated the expression of H2O2-producing enzymes in intestinal epithelial cells and released H2O2 into the blood, which played a signalling role to increase PGI2 production and then shortened LT for thrombi.

  15. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    PubMed

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  16. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  17. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  19. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  20. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  1. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  2. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  3. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  4. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice.

  5. Polyamine biosynthetic diversity in plants and algae.

    PubMed

    Fuell, Christine; Elliott, Katherine A; Hanfrey, Colin C; Franceschetti, Marina; Michael, Anthony J

    2010-07-01

    Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.

  6. Washington State University Algae Biofuels Research

    SciTech Connect

    chen, Shulin; McCormick, Margaret; Sutterlin, Rusty

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  7. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD... coastal waters. The material is dried and ground or chopped for use in food. (b) The ingredient meets the...

  8. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth

    PubMed Central

    Wang, Zhe; Ermakova, Svetlana P.; Xiao, JuanJuan; Lu, Tao; Xue, PeiPei; Zvyagintseva, Tatyana N.; Xiong, Hua; Shao, Chen; Yan, Wei; Duan, Qiuhong; Zhu, Feng

    2016-01-01

    The fucoidan with high anticancer activity was isolated from brown alga Fucus evanescens. The compound effectively prevented EGF-induced neoplastic cell transformation through inhibition of TOPK/ERK1/2/MSK 1 signaling axis. In vitro studies showed that the fucoidan attenuated mitogen-activated protein kinases downstream signaling in a colon cancer cells with different expression level of TOPK, resulting in growth inhibition. The fucoidan exerts its effects by directly interacting with TOPK kinase in vitro and ex vivo and inhibits its kinase activity. In xenograft animal model, oral administration of the fucoidan suppressed HCT 116 colon tumor growth. The phosphorylation of TOPK downstream signaling molecules in tumor tissues was also inhibited by the fucoidan. Taken together, our findings support the cancer preventive efficacy of the fucoidan through its targeting of TOPK for the prevention of neoplastic cell transformation and progression of colon carcinomas in vitro and ex vivo. PMID:26936995

  9. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth.

    PubMed

    Vishchuk, Olesia S; Sun, Huimin; Wang, Zhe; Ermakova, Svetlana P; Xiao, JuanJuan; Lu, Tao; Xue, PeiPei; Zvyagintseva, Tatyana N; Xiong, Hua; Shao, Chen; Yan, Wei; Duan, Qiuhong; Zhu, Feng

    2016-04-05

    The fucoidan with high anticancer activity was isolated from brown alga Fucus evanescens. The compound effectively prevented EGF-induced neoplastic cell transformation through inhibition of TOPK/ERK1/2/MSK 1 signaling axis. In vitro studies showed that the fucoidan attenuated mitogen-activated protein kinases downstream signaling in a colon cancer cells with different expression level of TOPK, resulting in growth inhibition. The fucoidan exerts its effects by directly interacting with TOPK kinase in vitro and ex vivo and inhibits its kinase activity. In xenograft animal model, oral administration of the fucoidan suppressed HCT 116 colon tumor growth. The phosphorylation of TOPK downstream signaling molecules in tumor tissues was also inhibited by the fucoidan. Taken together, our findings support the cancer preventive efficacy of the fucoidan through its targeting of TOPK for the prevention of neoplastic cell transformation and progression of colon carcinomas in vitro and ex vivo.

  10. Uptake and distribution of technetium in several marine algae

    SciTech Connect

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  11. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  12. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    NASA Astrophysics Data System (ADS)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in algae were fully encrusted with Fe-precipitates, the brown algae often exhibited discontinuous series of precipitates. This pattern was likely due to the intercalary growth of algal filaments which allowed them to avoid detrimental encrustation. 16S rRNA gene-targeted studies revealed that Gallionella-related FeOB dominated the bacterial RNA and DNA communities (70-97 and 63-96 %, respectively), suggesting their capacity to compete with the abiotic Fe-oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including

  13. Uric acid deposits in symbiotic marine algae.

    PubMed

    Clode, Peta L; Saunders, Martin; Maker, Garth; Ludwig, Martha; Atkins, Craig A

    2009-02-01

    The symbiosis between cnidarians and dinoflagellate algae is not understood at the cell or molecular level, yet this relationship is responsible for the formation of thousands of square kilometres of coral reefs. We have investigated the nature of crystalline material prominent within marine algal symbionts of Aiptasia sp. anemones. This material, which has historically been considered to be calcium oxalate, is shown to be uric acid. We demonstrate that these abundant uric acid stores can be mobilized rapidly, thereby allowing the algal symbionts to flourish in an otherwise N-poor environment. This is the first report of uric acid accumulation by symbiotic marine algae. These data provide new insight and considerations for understanding the physiological basis of algal symbioses, and represent a new and previously unconsidered aspect of N metabolism in cnidarian, and a variety of other, marine symbioses.

  14. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  15. Engineering algae for biohydrogen and biofuel production.

    PubMed

    Beer, Laura L; Boyd, Eric S; Peters, John W; Posewitz, Matthew C

    2009-06-01

    There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.

  16. Algae columns with anodic stripping voltammetric detection

    SciTech Connect

    Kubiak, W.W.; Wang, J.; Darnall, D.

    1989-03-01

    The use of silica-immobilized algal cells for on-line column separation in conjunction with continuous monitoring of trace metals is described. Algae-silica preparations are highly suitable for flow analysis as they couple the unique reactivity patterns and high binding capacity of algal biomass with the hydrodynamic and mechanical features of porous silica. Such advantages are illustrated by using on-line anodic stripping voltammetry and the alga Chlorella pyrenidosa. Selective and exhaustive removal of interfering constituents circumvents common problems such as overlapping peaks and intermetallic effects. Effects of flow rate, pH, operation time, and other variables are reported. The system is characterized by high durability, simplicity, and economy and offers an attractive alternative to prevalent columns used for flow analysis.

  17. Biofuels from algae: challenges and potential.

    PubMed

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2010-09-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.

  18. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  19. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  20. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  1. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  2. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  3. Algae as reservoirs for coral pathogens.

    PubMed

    Sweet, Michael J; Bythell, John C; Nugues, Maggy M

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  4. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  5. Fermentation metabolism and its evolution in algae

    PubMed Central

    Catalanotti, Claudia; Yang, Wenqiang; Posewitz, Matthew C.; Grossman, Arthur R.

    2013-01-01

    Fermentation or anoxic metabolism allows unicellular organisms to colonize environments that become anoxic. Free-living unicellular algae capable of a photoautotrophic lifestyle can also use a range of metabolic circuitry associated with different branches of fermentation metabolism. While algae that perform mixed-acid fermentation are widespread, the use of anaerobic respiration is more typical of eukaryotic heterotrophs. The occurrence of a core set of fermentation pathways among the algae provides insights into the evolutionary origins of these pathways, which were likely derived from a common ancestral eukaryote. Based on genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism has been examined in more detail in Chlamydomonas reinhardtii (Chlamydomonas) than in any other photosynthetic protist. This green alga is metabolically flexible and can sustain energy generation and maintain cellular redox balance under a variety of different environmental conditions. Fermentation metabolism in Chlamydomonas appears to be highly controlled, and the flexible use of the different branches of fermentation metabolism has been demonstrated in studies of various metabolic mutants. Additionally, when Chlamydomonas ferments polysaccharides, it has the ability to eliminate part of the reductant (to sustain glycolysis) through the production of H2, a molecule that can be developed as a source of renewable energy. To date, little is known about the specific role(s) of the different branches of fermentation metabolism, how photosynthetic eukaryotes sense changes in environmental O2 levels, and the mechanisms involved in controlling these responses, at both the transcriptional and post-transcriptional levels. In this review, we focus on fermentation metabolism in Chlamydomonas and other protists, with only a brief discussion of plant fermentation when relevant, since it is thoroughly discussed in other articles in this volume. PMID:23734158

  6. Studies on Polyethers Produced by Red Algae

    PubMed Central

    Cen-Pacheco, Francisco; Nordström, Laurette; Souto, María Luisa; Martín, Manuel Norte; Fernández, José Javier; Daranas, Antonio Hernández

    2010-01-01

    Two novel squalene-derived triterpenes, spirodehydrovenustatriol (3) and 14-keto-dehydrothyrsiferol (4) were isolated from the red alga Laurencia viridis, together with two new and unusual C17 terpenoids, adejen A (5) and B (6). These truncated structures possess structural similarities with other known squalene metabolites and their biogenetic origin has been proposed on the basis of an oxidative process of the squalene skeleton. All the structures were elucidated by extensive use of 2D NMR spectroscopic methods. PMID:20479973

  7. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  8. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  9. Algae: America’s Pathway to Independence

    DTIC Science & Technology

    2007-03-30

    Bioenergy, Biofuel, Energy Policy CLASSIFICATION: Unclassified The United States is dependent on foreign oil to meet 63% of its petroleum demand...source of bioenergy. ALGAE: AMERICA’S PATHWAY TO INDEPENDENCE Ensuring a secure supply of energy is a strategic challenge for...150 years,6 the U.S. will be competing with other nations to procure the 2 finite commodity. The Department of Energy (DOE) estimates that by the

  10. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.

  11. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  12. Functional properties of carotenoids originating from algae.

    PubMed

    Christaki, Efterpi; Bonos, Eleftherios; Giannenas, Ilias; Florou-Paneri, Panagiota

    2013-01-15

    Carotenoids are isoprenoid molecules which are synthesised de novo by photosynthetic plants, fungi and algae and are responsible for the orange, yellow and some red colours of various fruits and vegetables. Carotenoids are lipophilic compounds, some of which act as provitamins A. These compounds can be divided into xanthophylls and carotenes. Many macroalgae and microalgae are rich in carotenoids, where these compounds aid in the absorption of sunlight. Industrially, these carotenoids are used as food pigments (in dairy products, beverages, etc.), as feed additives, in cosmetics and in pharmaceuticals, especially nowadays when there is an increasing demand by consumers for natural products. Production of carotenoids from algae has many advantages compared to other sources; for example, their production is cheap, easy and environmentally friendly; their extraction is easier, with higher yields, and there is no lack of raw materials or limited seasonal variation. Recently, there has been considerable interest in dietary carotenoids with respect to their antioxidant properties and their ability to reduce the incidence of some chronic diseases where free radicals are involved. Possibly, carotenoids protect cells from oxidative stress by quenching singlet oxygen damage with various mechanisms. Therefore, carotenoids derived from algae could be a leading natural resource in the research for potential functional ingredients. Copyright © 2012 Society of Chemical Industry.

  13. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  14. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  15. Deoxyribonucleotide biosynthesis in synchronous algae cells.

    PubMed

    Feller, W; Schimpff-Weiland, G; Follmann, H

    1980-09-01

    Synchronous cells of the green alga, Scenedesmus obliquus, cultured in a 14-h/10-h light/dark regime, contain a peak of ribonucleoside-diphosphate reductase activity and maximum deoxyribonucleoside 5'-triphosphate concentrations at the 12th hour of the cell cycle, coinciding with DNA synthesis and preceding the formation of eight daughter cells. The intracellular dTTP pool reaches 4.5 pmol and the other pools 2-3 pmol/10(6) cells. Algal reductase activity is sensitive to cycloheximide, but not to lincomycin. These correlations demonstrate the functioning of the NDP leads to dNDP leads to dNTP pathway of DNA precursor biosynthesis in plant cells. In the presence of 20 micrograms 5-fluorodeoxyuridine/ml, an inhibitor of thymidylate synthesis, the dTTP pool is rapidly depleted and DNA synthesis ceases. 5-Fluorouracil and methotrexate produce similar effects. At the same time the ribonucleotide reductase activity and also the dATP pool are greatly increased, especially when fluorodeoxyuridine treatment is combined with continued illumination of the algae. In contrast, arabinosylcytosine, an inhibitor of DNA replication, has no effect on ribonucleotide reduction. The control of de novo enzyme synthesis in the eucaryotic algae therefore appears to depend on the presence of dTTP (or a related nucleotide), but not directly coupled to DNA synthesis. This interdependence resembles the situation observed in HeLa cells, while it may differ in detail from control mechanisms of ribonucleotide reductase studied in bacteria.

  16. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  17. Regulating cellular trace metal economy in algae

    DOE PAGES

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2017-06-30

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  18. Regulating cellular trace metal economy in algae.

    PubMed

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2017-10-01

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. Starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. In this review, we focus on recent progress made toward understanding the pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. New experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research.

  20. Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products.

    PubMed

    Dawczynski, Christine; Schäfer, Ulrich; Leiterer, Matthias; Jahreis, Gerhard

    2007-12-12

    The content of 5 macro elements (Na, K, Ca, Mg, and P), 6 trace elements (Fe, Mn, Zn, Cu, Se, and I), and 4 ultra-trace elements (As, Pb, Cd, and Hg) in 34 edible dried seaweed products of brown algae (Laminaria sp., Undaria pinnatifida, and Hizikia fusiforme) and red algae (Porphyra sp.) originated from China, Japan, and Korea and bought by retail in Germany was determined. The content of these elements was analyzed by spectrometric methods (ICP-AES, ICP-MS, HGAAS, and CVAAS). Assuming a daily intake with 5 g FM of algae, the contribution of the essential elements to the diet is low, with the exception of I. Brown algae contained as much as 1316 +/- 1669 mg of I/kg FM. More than 4000 mg of I/kg FM were found in several Laminaria sp. Moreover, some brown algae, such as Hizikia fusiforme, had high contents of total As (87.7 +/- 8.2 mg/kg FM).

  1. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?

    PubMed

    Happe, Thomas; Hemschemeier, Anja; Winkler, Martin; Kaminski, Annette

    2002-06-01

    Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Electrons from reducing equivalents generated during fermentation enter the photosynthetic electron transport chain via the plastoquinone pool. They are transferred to the hydrogenase by photosystem I and ferredoxin. Thus, the [Fe]-hydrogenase is an electron 'valve' that enables the algae to survive under anaerobic conditions. During sulfur deprivation, illuminated algal cultures evolve large quantities of hydrogen gas, and this promises to be an alternative future energy source.

  2. Algae to Economically Viable Low-Carbon-Footprint Oil.

    PubMed

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  3. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Global dynamics of zooplankton and harmful algae in flowing habitats

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Wang, Feng-Bin; Zhao, Xiao-Qiang

    This paper is devoted to the study of two advection-dispersion-reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.

  5. Microplate technique for determining accumulation of metals by algae

    SciTech Connect

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than did blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.

  6. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  7. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2016-07-12

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  8. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  9. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  10. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  11. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  12. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  13. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  14. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  15. Acetone, butanol, and ethanol production from wastewater algae.

    PubMed

    Ellis, Joshua T; Hengge, Neal N; Sims, Ronald C; Miller, Charles D

    2012-05-01

    Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.

  16. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  17. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  18. Application of synthetic biology in cyanobacteria and algae.

    PubMed

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO(2) and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.

  19. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses.

  20. Chloroplast division checkpoint in eukaryotic algae

    PubMed Central

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  1. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  2. Marine algae as a prospective source for antidiabetic compounds - A brief review.

    PubMed

    Unnikrishnan, S P; Jayasri, A M

    2016-12-29

    Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed by several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications.

  3. Pheromones in marine algae: A technical approach

    NASA Astrophysics Data System (ADS)

    Gassmann, G.; Müller, D. G.; Fritz, P.

    1995-03-01

    It is now well known that many marine organisms use low-molecular volatile substances as signals, in order to coordinate activities between different individuals. The study of such pheromones requires the isolation and enrichment of the secretions from undisturbed living cells or organisms over extended periods of time. The Grob-Hersch extraction device, which we describe here, avoids adverse factors for the biological materials such as strong water currents, rising gas bubbles or chemical solvents. Furthermore, the formation of sea-water spray is greatly reduced. The application of this technique for the isolation of pheromones of marine algae and animals is described.

  4. Biodiesel from algae: challenges and prospects.

    PubMed

    Scott, Stuart A; Davey, Matthew P; Dennis, John S; Horst, Irmtraud; Howe, Christopher J; Lea-Smith, David J; Smith, Alison G

    2010-06-01

    Microalgae offer great potential for exploitation, including the production of biodiesel, but the process is still some way from being carbon neutral or commercially viable. Part of the problem is that there is little established background knowledge in the area. We should look both to achieve incremental steps and to increase our fundamental understanding of algae to identify potential paradigm shifts. In doing this, integration of biology and engineering will be essential. In this review we present an overview of a potential algal biofuel pipeline, and focus on recent work that tackles optimization of algal biomass production and the content of fuel molecules within the algal cell.

  5. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  6. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  7. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia.

    PubMed

    Al-Saif, Sarah Saleh Abdu-Llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A; Aref, Ibrahim A

    2014-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.

  8. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  9. The ecology of viruses that infect eukaryotic algae.

    PubMed

    Short, Steven M

    2012-09-01

    Because viruses of eukaryotic algae are incredibly diverse, sweeping generalizations about their ecology are rare. These obligate parasites infect a range of algae and their diversity can be illustrated by considering that isolates range from small particles with ssRNA genomes to much larger particles with 560 kb dsDNA genomes. Molecular research has also provided clues about the extent of their diversity especially considering that genetic signatures of algal viruses in the environment rarely match cultivated viruses. One general concept in algal virus ecology that has emerged is that algal viruses are very host specific and most infect only certain strains of their hosts; with the exception of viruses of brown algae, evidence for interspecies infectivity is lacking. Although some host-virus systems behave with boom-bust oscillations, complex patterns of intraspecies infectivity can lead to host-virus coexistence obfuscating the role of viruses in host population dynamics. Within the framework of population dynamics, host density dependence is an important phenomenon that influences virus abundances in nature. Variable burst sizes of different viruses also influence their abundances and permit speculations about different life strategies, but as exceptions are common in algal virus ecology, life strategy generalizations may not be broadly applicable. Gaps in knowledge of virus seasonality and persistence are beginning to close and investigations of environmental reservoirs and virus resilience may answer questions about virus inter-annual recurrences. Studies of algal mortality have shown that viruses are often important agents of mortality reinforcing notions about their ecological relevance, while observations of the surprising ways viruses interact with their hosts highlight the immaturity of our understanding. Considering that just two decades ago algal viruses were hardly acknowledged, recent progress affords the optimistic perspective that future studies

  10. Characterization of the Proteomic Profiles of the Brown Tide Alga Aureoumbra lagunensis under Phosphate- and Nitrogen-Limiting Conditions and of Its Phosphate Limitation-Specific Protein with Alkaline Phosphatase Activity

    PubMed Central

    Sun, Ming-Ming; Sun, Jin; Qiu, Jian-Wen; Jing, Hongmei

    2012-01-01

    The persistent bloom of the brown tide alga Aureoumbra lagunensis has been reported in coastal embayments along southern Texas, but the molecular mechanisms that sustain such algal bloom are unknown. We compared the proteome and physiological parameters of A. lagunensis grown in phosphate (P)-depleted, P- and nitrogen (N)-depleted, and nutrient-replete cultures. For the proteomic analysis, samples from three conditions were subjected to two-dimensional electrophoresis and tandem mass spectrometry analysis. Because of the paucity of genomic resources in this species, a de novo cross-species protein search was used to identify the differentially expressed proteins, which revealed their involvement in several key biological processes, such as chlorophyll synthesis, antioxidative protection, and protein degradation, suggesting that A. lagunensis may adopt intracellular nutrient compensation, extracellular organic nutrient regeneration, and damage protection to thrive in P-depleted environments. A highly abundant P limitation-specific protein, tentatively identified as a putative alkaline phosphatase, was further characterized by enzyme activity assay on nondenaturing gel and confocal microscopy, which confirmed that this protein has alkaline phosphatase activity, is a cytoplasmic protein, and is closely associated with the cell membrane. The abundance, location, and functional expression of this alkaline phosphatase all indicate the importance of organic P utilization for A. lagunensis under P limitation and the possible role of this alkaline phosphatase in regenerating phosphate from extra- or intracellular organic phosphorus. PMID:22247172

  11. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin D; Critchley, Alan T; Zhang, Junzeng; Fitton, J H; Stringer, Damien N; Gardiner, Vicki-Anne; Prithiviraj, Balakrishnan

    2014-02-01

    The extracts of the brown alga, Ascophyllum nodosum, which contains several bioactive compounds, have been shown to impart biotic and abiotic stress tolerance properties when consumed by animals. However, the physiological, biochemical and molecular mechanism underlying such effects remain elusive. We investigated the effect of A. nodosum fucose-containing polymer (FCP) on tolerance to thermally induced stress using the invertebrate animal model, Caenorhabditis elegans. FCP at a concentration of 150 μg mL(-1) significantly improved the life span and tolerance against thermally induced stress in C. elegans. The treatment increased the C. elegans survival by approximately 24%, when the animals were under severe thermally induced stress (i.e. 35 °C) and 27% under mild stress (i.e. 30 °C) conditions. The FCP induced differential expression of genes and proteins is associated with stress response pathways. Under thermal stress, FCP treatment significantly altered the expression of 65 proteins (54 up-regulated & 11 down-regulated). Putative functional analysis of FCP-induced differential proteins signified an association of altered proteins in stress-related molecular and biochemical pathways of the model worm.

  12. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  13. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  14. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  15. Sterols from the Green Alga Ulva australis.

    PubMed

    Li, Guo-Liang; Guo, Wei-Jie; Wang, Guang-Bao; Wang, Rong-Rong; Hou, Yu-Xue; Liu, Kun; Liu, Yang; Wang, Wei

    2017-09-28

    Three new sterols, (24R)-5,28-stigmastadiene-3β,24-diol-7-one (1), (24S)-5,28-stigmastadiene-3β,24-diol-7-one (2), and 24R and 24S-vinylcholesta-3β,5α,6β,24-tetraol (3), together with three known sterols (4-6) were isolated from the green alga Ulva australis. The structures of the new compounds (1-3) were elucidated through 1D and 2D nuclear magnetic resonance spectroscopy as well as mass spectrometry. Compounds 4-6 were identified as isofucoterol (4), 24R,28S and 24S,28R-epoxy-24-ethylcholesterol (5), and (24S)-stigmastadiene-3β,24-diol (6) on the basis of spectroscopic data analyses and comparison with those reported in the literature. Compounds 4-6 were isolated from U. australis for the first time. These compounds, together with the previously isolated secondary metabolites of this alga, were investigated for their inhibitory effects on human recombinant aldose reductase in vitro. Of the compounds, 24R,28S and 24S,28R-epoxy-24-ethylcholesterol (5), 1-O-palmitoyl-3-O-(6'-sulfo-α-d-quinovopyranosyl) glycerol, (2S)-1-O-palmitoyl-3-O-[α-d-galactopyranosyl(1→2)β-d-galactopyranosyl] glycerol, 4-hydroxybenzoic acid, 4-hydroxyphenylacetic acid, and 8-hydroxy-(6E)-octenoic acid weakly inhibited the enzyme, while the three new sterols, 1-3, were almost inactive.

  16. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  17. Morphogenesis in giant-celled algae.

    PubMed

    Mine, Ichiro; Menzel, Diedrik; Okuda, Kazuo

    2008-01-01

    The giant-celled algae, which consist of cells reaching millimeters in size, some even centimeters, exhibit unique cell architecture and physiological characteristics. Their cells display a variety of morphogenetic phenomena, that is, growth, division, differentiation, and reproductive cell formation, as well as wound-healing responses. Studies using immunofluorescence microscopy and pharmacological approaches have shown that microtubules and/or actin filaments are involved in many of these events through the generation of intracellular movement of cell components or entire protoplasmic contents and the spatial control of cell activities in specific areas of the giant cells. A number of environmental factors including physical stimuli, such as light and gravity, invoke localized but also generalized cellular reactions. These have been extensively investigated to understand the regulation of morphogenesis, in particular addressing cytoskeletal and endomembrane dynamics, electrophysiological elements affecting ion fluxes, and the synthesis and mechanical properties of the cell wall. Some of the regulatory pathways involve signal transduction and hormonal control, as in other organisms. The giant unicellular green alga Acetabularia, which has proven its usefulness as an experimental model in early amputation/grafting experiments, will potentially once again serve as a useful model organism for studying the role of gene expression in orchestrating cellular morphogenesis.

  18. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppM (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppM NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppM NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx. 4.2 was not appreciably affected by 15.0 ppM of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  19. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppm (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppm NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppm NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx 4.2 was not appreciably affected by 15.0 ppm of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  20. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404