Science.gov

Sample records for algae chlamydomonas reinhardtii

  1. Autophagy in the model alga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Crespo, José L

    2010-05-01

    Degradation and recycling of intracellular components via autophagy is conserved among eukaryotes. This catabolic process is mediated by autophagy-related (ATG) proteins, which have been identified in different systems including yeasts, mammals and plants. The genome of the model alga Chlamydomonas reinhardtii contains homologues to yeast and plant ATG genes although autophagy has not been previously described in this organism. In our study, we report the molecular characterization of autophagy in Chlamydomonas. Using the ATG8 protein from Chlamydomonas as a molecular autophagy marker, we demonstrate that this degradative process is induced in stationary cells or under different stresses such as nutrient limitation, oxidative stress or the accumulation of misfolded proteins in the endoplasmic reticulum. Our results also indicate that TOR, a major regulator of autophagy, inhibits this process in Chlamydomonas.

  2. Genetic transformation of the model green alga Chlamydomonas reinhardtii.

    PubMed

    Neupert, Juliane; Shao, Ning; Lu, Yinghong; Bock, Ralph

    2012-01-01

    Over the past three decades, the single-celled green alga Chlamydomonas reinhardtii has become an invaluable model organism in plant biology and an attractive production host in biotechnology. The genetic transformation of Chlamydomonas is relatively simple and efficient, but achieving high expression levels of foreign genes has remained challenging. Here, we provide working protocols for algal cultivation and transformation as well as for selection and analysis of transgenic algal clones. We focus on two commonly used transformation methods for Chlamydomonas: glass bead-assisted transformation and particle gun-mediated (biolistic) transformation. In addition, we describe available tools for promoting efficient transgene expression and highlight important considerations for designing transformation vectors.

  3. How the green alga Chlamydomonas reinhardtii keeps time.

    PubMed

    Schulze, Thomas; Prager, Katja; Dathe, Hannes; Kelm, Juliane; Kiessling, Peter; Mittag, Maria

    2010-08-01

    The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly

  4. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.

  5. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  6. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell.

    PubMed

    Rosenbaum, Miriam; Schröder, Uwe; Scholz, Fritz

    2005-10-01

    By employing living cells of the green alga Chlamydomonas reinhardtii, we demonstrate the possibility of direct electricity generation from microbial photosynthetic activity. The presented concept is based on an in situ oxidative depletion of hydrogen, photosynthetically produced by C. reinhardtii under sulfur-deprived conditions, by polymer-coated electrocatalytic electrodes. PMID:15696280

  7. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures.

  8. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures. PMID:26614282

  9. Purification, properties and complete amino acid sequence of the ferredoxin from a green alga, Chlamydomonas reinhardtii.

    PubMed

    Schmitter, J M; Jacquot, J P; de Lamotte-Guéry, F; Beauvallet, C; Dutka, S; Gadal, P; Decottignies, P

    1988-03-01

    The ferredoxin was purified from the green alga, Chlamydomonas reinhardtii. The protein showed typical absorption and circular dichroism spectra of a [2Fe-2S] ferredoxin. When compared with spinach ferredoxin, the C. reinhardtii protein was less effective in the catalysis of NADP+ photoreduction, but its activity was higher in the light activation of C. reinhardtii malate dehydrogenase (NADP). The complete amino acid sequence was determined by automated Edman degradation of the whole protein and of peptides obtained by trypsin and chymotrypsin digestions and by CNBr cleavage. The protein consists of 94 residues, with Tyr at both NH2 and COOH termini. The positions of the four cysteines binding the two iron atoms are similar to those found in other [2Fe-2S] ferredoxins. The primary structure of C. reinhardtii ferredoxin showed a great homology (about 80%) with ferredoxins from two other green algae.

  10. D-lactate metabolism in the alga, Chlamydomonas Reinhardtii

    SciTech Connect

    Husic, D.W.; Tolbert, N.E.

    1986-05-01

    (/sup 14/C)D-lactate rapidly accumulates in Chlamydomonas cells under anaerobic conditions from the sugar-phosphate pools which are labeled during photosynthesis with /sup 14/CO/sub 2/. A soluble D-lactate dehydrogenase (30 ..mu..mol NADH oxidized/h/mg Chl), which functions only in the direction of pyruvate reduction, has been partially purified and characterized. The D-lactate is reoxidized in Chlamydomonas by a mitochondrial membrane-bound dehydrogenase. This enzyme is known in the plant literature as glycolate dehydrogenase, an enzyme of the oxidative photosynthetic carbon (C/sub 2/) cycle. This dehydrogenase may be linked to the mitochondrial electron transport chain, although the direct electron acceptor is unknown. Therefore, D-lactate accumulation may be, in part, due to the shut down of electron transport during anaerobiosis. In vivo chase experiments have shown that the D-lactate turns over rapidly when algal cells, which have been grown with air levels of CO/sub 2/ (0.04%), are returned to aerobic conditions in the light. Such turnover is not observed in cells which had been grown with 1 to 5% CO/sub 2/. Cells grown with high CO/sub 2/ have lower levels of glycolate dehydrogenase activity. They are currently using mutants of Chlamydomonas deficient in mitochondrial respiration to study the role of D-lactate oxidation in these algae.

  11. Growth of the green algae Chlamydomonas reinhardtii under red and blue lasers

    NASA Astrophysics Data System (ADS)

    Kuwahara, Sara S.; Cuello, Joel L.; Myhre, Graham; Pau, Stanley

    2011-03-01

    Red and blue lasers, holding promise as an electric light source for photosynthetic systems on account of being true monochromatic, high-power, and having high electrical-conversion efficiency, were employed in growing a green alga, Chlamydomonas reinhardtii. The laser treatments tested included: 655-nm Red; 680-nm Red; 655-nm Red+474-nm Blue and 680-nm Red+474-nm Blue. A white cold cathode lamp with spectral output similar to that of white fluorescent lamp served as control. C. reinhardtii successfully grew and divided under the 655 and 680-nm red lasers as well as under the white-light control. Supplementing either red with blue laser, however, resulted in increased algae cell count that significantly exceeded those under both red lasers and the white-light control on average by 241%.

  12. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    SciTech Connect

    Amos, W. A.

    2004-01-01

    This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are also included in this study. Based on this analysis, the estimated future selling price of hydrogen produced from algae ranges $0.57/kg to $13.53/kg.

  13. Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Grossman, Arthur R; Catalanotti, Claudia; Yang, Wenqiang; Dubini, Alexandra; Magneschi, Leonardo; Subramanian, Venkataramanan; Posewitz, Matthew C; Seibert, Michael

    2011-04-01

    Many microbes in the soil environment experience micro-oxic or anoxic conditions for much of the late afternoon and night, which inhibit or prevent respiratory metabolism. To sustain the production of energy and maintain vital cellular processes during the night, organisms have developed numerous pathways for fermentative metabolism. This review discusses fermentation pathways identified for the soil-dwelling model alga Chlamydomonas reinhardtii, its ability to produce molecular hydrogen under anoxic conditions through the activity of hydrogenases, and the molecular flexibility associated with fermentative metabolism that has only recently been revealed through the analysis of specific mutant strains. PMID:21563367

  14. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Crespo, José L; Díaz-Troya, Sandra; Florencio, Francisco J

    2005-12-01

    The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. Here, we report TOR inactivation by rapamycin treatment in a photosynthetic organism. We identified and characterized TOR and FKBP12 homologs in the unicellular green alga Chlamydomonas reinhardtii. Whereas growth of wild-type Chlamydomonas cells is sensitive to rapamycin, cells lacking FKBP12 are fully resistant to the drug, indicating that this protein mediates rapamycin action to inhibit cell growth. Unlike its plant homolog, Chlamydomonas FKBP12 exhibits high affinity to rapamycin in vivo, which was increased by mutation of conserved residues in the drug-binding pocket. Furthermore, pull-down assays demonstrated that TOR binds FKBP12 in the presence of rapamycin. Finally, rapamycin treatment resulted in a pronounced increase of vacuole size that resembled autophagic-like processes. Thus, our findings suggest that Chlamydomonas cell growth is positively controlled by a conserved TOR kinase and establish this unicellular alga as a useful model system for studying TOR signaling in photosynthetic eukaryotes.

  15. Genome-wide characterization of genetic variation in the unicellular, green alga Chlamydomonas reinhardtii.

    PubMed

    Jang, Hyosik; Ehrenreich, Ian M

    2012-01-01

    Chlamydomonas reinhardtii is a model system for studying cilia, photosynthesis, and other core features of eukaryotes, and is also an emerging source of biofuels. Despite its importance to basic and applied biological research, the level and pattern of genetic variation in this haploid green alga has yet to be characterized on a genome-wide scale. To improve understanding of C. reinhardtii's genetic variability, we generated low coverage whole genome resequencing data for nearly all of the available isolates of this species, which were sampled from a number of sites in North America over the past ∼70 years. Based on the analysis of more than 62,000 single nucleotide polymorphisms, we identified two groups of isolates that represent geographical subpopulations of the species. We also found that measurements of genetic diversity were highly variable throughout the genome, in part due to technical factors. We studied the level and pattern of linkage disequilibrium (LD), and observed one chromosome that exhibits elevated LD. Furthermore, we detected widespread evidence of recombination across the genome, which implies that outcrossing occurs in natural populations of this species. In summary, our study provides multiple insights into the sequence diversity of C. reinhardtii that will be useful to future studies of natural genetic variation in this organism.

  16. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii.

    PubMed

    Economou, Chloe; Wannathong, Thanyanan; Szaub, Joanna; Purton, Saul

    2014-01-01

    The availability of routine techniques for the genetic manipulation of the chloroplast genome of Chlamydomonas reinhardtii has allowed a plethora of reverse-genetic studies of chloroplast biology using this alga as a model organism. These studies range from fundamental investigations of chloroplast gene function and regulation to sophisticated metabolic engineering programs and to the development of the algal chloroplast as a platform for producing high-value recombinant proteins. The established method for delivering transforming DNA into the Chlamydomonas chloroplast involves microparticle bombardment, with the selection of transformant lines most commonly involving the use of antibiotic resistance markers. In this chapter we describe a simpler and cheaper delivery method in which cell/DNA suspensions are agitated with glass beads: a method that is more commonly used for nuclear transformation of Chlamydomonas. Furthermore, we highlight the use of an expression vector (pASapI) that employs an endogenous gene as a selectable marker, thereby avoiding the contentious issue of antibiotic resistance determinants in transgenic lines.

  17. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii.

    PubMed

    Economou, Chloe; Wannathong, Thanyanan; Szaub, Joanna; Purton, Saul

    2014-01-01

    The availability of routine techniques for the genetic manipulation of the chloroplast genome of Chlamydomonas reinhardtii has allowed a plethora of reverse-genetic studies of chloroplast biology using this alga as a model organism. These studies range from fundamental investigations of chloroplast gene function and regulation to sophisticated metabolic engineering programs and to the development of the algal chloroplast as a platform for producing high-value recombinant proteins. The established method for delivering transforming DNA into the Chlamydomonas chloroplast involves microparticle bombardment, with the selection of transformant lines most commonly involving the use of antibiotic resistance markers. In this chapter we describe a simpler and cheaper delivery method in which cell/DNA suspensions are agitated with glass beads: a method that is more commonly used for nuclear transformation of Chlamydomonas. Furthermore, we highlight the use of an expression vector (pASapI) that employs an endogenous gene as a selectable marker, thereby avoiding the contentious issue of antibiotic resistance determinants in transgenic lines. PMID:24599870

  18. Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii

    PubMed Central

    Miller, Matthew B.; Haubrich, Brad A.; Wang, Qian; Snell, William J.; Nes, W. David

    2012-01-01

    Ergosterol is the predominant sterol of fungi and green algae. Although the biosynthetic pathway for sterol synthesis in fungi is well established and is known to use C24-methylation-C24 (28)-reduction (Δ24(28)-olefin pathway) steps, little is known about the sterol pathway in green algae. Previous work has raised the possibility that these algae might use a novel pathway because the green alga Chlamydomonas reinhardtii was shown to possess a mevalonate-independent methylerythritol 4-phosphate not present in fungi. Here, we report that C. reinhardtii synthesizes the protosterol cycloartenol and converts it to ergosterol (C24β-methyl) and 7-dehydroporiferasterol (C24β-ethyl) through a highly conserved sterol C24- methylation-C25-reduction (Δ25(27)-olefin) pathway that is distinct from the well-described acetate-mevalonate pathway to fungal lanosterol and its conversion to ergosterol by the Δ24 (28)-olefin pathway. We isolated and characterized 23 sterols by a combination of GC-MS and proton nuclear magnetic resonance spectroscopy analysis from a set of mutant, wild-type, and 25-thialanosterol-treated cells. The structure and stereochemistry of the final C24-alkyl sterol side chains possessed different combinations of 24β-methyl/ethyl groups and Δ22(23)E and Δ25 (27)-double bond constructions. When incubated with [methyl-2H3]methionine, cells incorporated three (into ergosterol) or five (into 7-dehydroporiferasterol) deuterium atoms into the newly biosynthesized 24β-alkyl sterols, consistent only with a Δ25 (27)-olefin pathway. Thus, our findings demonstrate that two separate isoprenoid-24-alkyl sterol pathways evolved in fungi and green algae, both of which converge to yield a common membrane insert ergosterol. PMID:22591742

  19. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    PubMed

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. PMID:21376011

  20. Lack of mutagenic activity of crude and refined oils in the unicellular alga Chlamydomonas reinhardtii

    SciTech Connect

    Vandermeulen, J.H.; Lee, R.W.

    1986-02-01

    Over the past several years, an increasing number of studies have presented evidence for the mutagenicity and/or carcinogenic potential of petroleum-derived hydrocarbons. These most usually were obtained with individual hydrocarbons, and using either specialized bacterial strains (e.g. Ames' strains) or mammalian tissue preparations. While providing important insights into mutagenic mechanisms involving xenobiotic compounds, the relevance of these studies to the natural aquatic environment is not always evident. This applies especially to the mutagenic potential of water-soluble fractions of hydrocarbon mixtures, as in whole oils or in complex distillate fractions, and involving typical marine biota. Accordingly, the authors have examined the mutagenic potential of the water-soluble fractions of four oils (two crude oils and two refined oils) using the unicellular haploid alga Chlamydomonas reinhardtii.

  1. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Jonikas, Martin C

    2016-01-01

    Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593-607, 2008; Hu et al Plant J 54(4):621-639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.

  2. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Jonikas, Martin C

    2016-01-01

    Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593-607, 2008; Hu et al Plant J 54(4):621-639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas. PMID:27023238

  3. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii.

    PubMed

    Yin, Xixiang; Wang, Lihong; Duan, Guilan; Sun, Guoxin

    2011-01-01

    Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in freshwater aquatic systems. Arsenic metabolism processes of this alga through arsenate reduction and sequent store and efflux were investigated. When supplied with 10 micromol/L arsenate, arsenic speciation analysis showed that arsenite concentration increased from 5.7 to 15.7 mg/kg dry weight during a 7-day period, accounting for 18%-24% of the total As in alga. When treated with different levels of arsenate (10, 20, 30, 40, 50 micromol/L) for 7 days, the arsenite concentration increased with increasing external arsenate concentrations, the proportion of arsenite was up to 23%-28% of the total As in alga. In efflux experiments, both arsenate and arsenite could be found in the efflux solutions. Additionally, the efflux of arsenate was more than that of arsenite. Furthermore, two arsenate reductase genes of C. reinhardtii (CrACR2s) were cloned and expressed in Escherichia coli strain WC3110 (deltaarsC) for the first time. The abilities of both CrACR2s genes to complement the arsenate-sensitive strain were examined. CrACR2.1 restored arsenate resistance at 0.8 mmol/L. However, CrACR2.2 showed much less ability to complement. The gene products were demonstrated to reduce arsenate to arsenite in vivo. In agreement with the complementation results, CrACR2.1 showed higher reduction ability than CrACR2.2, when treated with 0.4 mmol/L arsenate for 16 hr incubation.

  4. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    PubMed

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts.

  5. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    PubMed

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts. PMID:25554634

  6. Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii.

    PubMed

    Meslet-Cladière, Laurence; Vallon, Olivier

    2011-12-01

    The green alga Chlamydomonas reinhardtii today is a premier model organism for the study of green algae and plants. Yet the efficient engineering of its nuclear genome requires development of new antibiotic resistance markers. We have recoded, based on codon usage in the nuclear genome, the AadA marker that has been used previously for chloroplast transformation. The recoded AadA gene, placed under the control of the HSP70A-RBCS2 hybrid promoter and preceded by the RbcS2 chloroplast-targeting peptide, can be integrated into the nuclear genome by electroporation, conferring resistance to spectinomycin and streptomycin. Transformation efficiency is markedly increased when vector sequences are completely eliminated from the transforming DNA. Antibiotic resistance is stable for several months in the absence of selection pressure. Shuttle markers allowing selection in both Chlamydomonas and Escherichia coli would also be a useful asset. By placing an artificial bacterial promoter and Shine-Dalgarno sequence in frame within the AadA coding sequence, we generated such a shuttle marker. To our surprise, we found that the classical AphVIII construct already functions as a shuttle marker. Finally, we developed a method to introduce the AadA and AphVIII markers into the vector part of the bacterial artificial chromosomes (BACs) of the Chlamydomonas genomic DNA library. Our aim was to facilitate complementation studies whenever the test gene cannot be selected for directly. After transformation of a petC mutant with a modified BAC carrying the AphVIII marker along with the PETC gene in the insert, almost half of the paromomycin-resistant transformants obtained showed restoration of phototrophy, indicating successful integration of the unselected test gene. With AadA, cotransformation was also observed, but with a lower efficiency.

  7. Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii.

    PubMed

    Meslet-Cladière, Laurence; Vallon, Olivier

    2011-12-01

    The green alga Chlamydomonas reinhardtii today is a premier model organism for the study of green algae and plants. Yet the efficient engineering of its nuclear genome requires development of new antibiotic resistance markers. We have recoded, based on codon usage in the nuclear genome, the AadA marker that has been used previously for chloroplast transformation. The recoded AadA gene, placed under the control of the HSP70A-RBCS2 hybrid promoter and preceded by the RbcS2 chloroplast-targeting peptide, can be integrated into the nuclear genome by electroporation, conferring resistance to spectinomycin and streptomycin. Transformation efficiency is markedly increased when vector sequences are completely eliminated from the transforming DNA. Antibiotic resistance is stable for several months in the absence of selection pressure. Shuttle markers allowing selection in both Chlamydomonas and Escherichia coli would also be a useful asset. By placing an artificial bacterial promoter and Shine-Dalgarno sequence in frame within the AadA coding sequence, we generated such a shuttle marker. To our surprise, we found that the classical AphVIII construct already functions as a shuttle marker. Finally, we developed a method to introduce the AadA and AphVIII markers into the vector part of the bacterial artificial chromosomes (BACs) of the Chlamydomonas genomic DNA library. Our aim was to facilitate complementation studies whenever the test gene cannot be selected for directly. After transformation of a petC mutant with a modified BAC carrying the AphVIII marker along with the PETC gene in the insert, almost half of the paromomycin-resistant transformants obtained showed restoration of phototrophy, indicating successful integration of the unselected test gene. With AadA, cotransformation was also observed, but with a lower efficiency. PMID:22002656

  8. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.

    PubMed

    Berger, Hanna; Blifernez-Klassen, Olga; Ballottari, Matteo; Bassi, Roberto; Wobbe, Lutz; Kruse, Olaf

    2014-10-01

    The unicellular green alga Chlamydomonas reinhardtii is capable of using organic and inorganic carbon sources simultaneously, which requires the adjustment of photosynthetic activity to the prevailing mode of carbon assimilation. We obtained novel insights into the regulation of light-harvesting at photosystem II (PSII) following altered carbon source availability. In C. reinhardtii, synthesis of PSII-associated light-harvesting proteins (LHCBMs) is controlled by the cytosolic RNA-binding protein NAB1, which represses translation of particular LHCBM isoform transcripts. This mechanism is fine-tuned via regulation of the nuclear NAB1 promoter, which is activated when linear photosynthetic electron flow is restricted by CO(2)-limitation in a photoheterotrophic context. In the wild-type, accumulation of NAB1 reduces the functional PSII antenna size, thus preventing a harmful overexcited state of PSII, as observed in a NAB1-less mutant. We further demonstrate that translation control as a newly identified long-term response to prolonged CO(2)-limitation replaces LHCII state transitions as a fast response to PSII over-excitation. Intriguingly, activation of the long-term response is perturbed in state transition mutant stt7, suggesting a regulatory link between the long- and short-term response. We depict a regulatory circuit operating on distinct timescales and in different cellular compartments to fine-tune light-harvesting in photoheterotrophic eukaryotes.

  9. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii.

    PubMed

    Jamers, An; Blust, Ronny; De Coen, Wim; Griffin, Julian L; Jones, Oliver A H

    2013-01-15

    The effects of cadmium were assessed in the freshwater alga Chlamydomonas reinhardtii. Algae were exposed to concentrations of 0, 8.1 or 114.8 μM of cadmium and growth rates, gene transcription and metabolite profiles were examined after 48 and 72 h of exposure. In algae exposed to 8.1 μM Cd, several genes were differentially transcribed after 48 h but no adverse growth related effects were detected. A transient effect on both gene transcription patterns and metabolite profiles could be discerned after 48 h of exposure but the majority of these changes disappeared after 72 h. In contrast, all effects were more pronounced at the 114.8 μM cadmium exposure. Here growth was clearly reduced and transcription of a large number of genes involved in oxidative stress defense mechanisms was differentially increased. Metabolites involved in the glutathione synthesis pathway (an important antioxidant defense) were also affected but the effects of cadmium were found to be more pronounced at the transcript level than in the metabolome, suggesting that the former exhibits greater sensitivity toward cadmium exposure. PMID:23063003

  10. 5'-monohydroxyphylloquinone is the dominant naphthoquinone of PSI in the green alga Chlamydomonas reinhardtii.

    PubMed

    Ozawa, Shin-ichiro; Kosugi, Makiko; Kashino, Yasuhiro; Sugimura, Takashi; Takahashi, Yuichiro

    2012-01-01

    Thylakoid membranes contain two types of quinones, benzoquinone (plastoquinone) and naphthoquinone, which are involved in photosynthetic electron transfer. Unlike the benzoquinone, the chemical species of naphthoquinone present (phylloquinone, menaquinone-4 and 5'-monohydroxyphylloquinone) varies depending on the oxygenic photosynthetic organisms. The green alga Chlamydomonas reinhardtii has been used as a model organism to study the function of the naphthoquinone bound to PSI. However, the level of phylloquinone and the presence of other naphthoquinones in this organism remain unknown. In the present study, we found that 5'-monohydroxyphylloquinone is the predominant naphthoquinone in cell and thylakoid extracts based on the retention time during reverse phase HPLC, absorption and mass spectrometry measurements. It was shown that 5'-monohydroxyphylloquinone is enriched 2.5-fold in the PSI complex as compared with thylakoid membranes but that it is absent from PSI-deficient mutant cells. We also found a small amount of phylloquinone in the cells and in the PSI complex and estimated that accumulated 5'-monohydroxyphylloquinone and phylloquinone account for approximately 90 and 10%, respectively, of the total naphthoquinone content. The ratio of these two naphthoquinones remained nearly constant in the cells and in the PSI complexes from logarithmic and stationary cell growth stages. We conclude that both 5'-monohydroxyphylloquinone and phylloquinone stably co-exist as major and minor naphthoquinones in Chlamydomonas PSI.

  11. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.

    2013-01-01

    Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of

  12. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  13. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kobayashi, Isao; Fujiwara, Shoko; Saegusa, Hirotaka; Inouhe, Masahiro; Matsumoto, Hiroko; Tsuzuki, Mikio

    2006-01-01

    In most photosynthetic organisms, inorganic arsenic taken up into the cells inhibits photosynthesis and cellular growth. In a green alga, Chlamydomonas reinhardtii, 0.5 mM arsenate inhibited photosynthesis almost completely within 30 min. However, in cells acclimated with a sublethal concentration (0.05 to 0.1 mM) of Cd, the inhibition of photosynthesis at 30 min after the addition of arsenate was relieved by more than 50%. The concentrations of arsenic incorporated into the cells were not significantly different between the Cd-acclimated and the non-acclimated cells. The Cd-acclimated cells accumulated Cd and synthesized phytochelatin (PC) peptides, which are known to play an important role in detoxification of heavy metals in plants. By the addition of an inhibitor of glutathione (an intermediate in the PC biosynthetic pathway) biosynthesis, buthionine sulfoximine, cells lost not only Cd tolerance but also arsenate tolerance. These results suggest that glutathione and/or PCs synthesized in Cd-acclimated cells are involved in mechanisms of arsenate tolerance.

  14. Uranium accumulation and toxicity in the green alga Chlamydomonas reinhardtii is modulated by pH.

    PubMed

    Lavoie, Michel; Sabatier, Sébastien; Garnier-Laplace, Jacqueline; Fortin, Claude

    2014-06-01

    The effects of pH on metal uptake and toxicity in aquatic organisms are currently poorly understood and remain an evolving topic in studies about the biotic ligand model (BLM). In the present study, the authors investigated how pH may influence long-term (4 d) uranium (U) accumulation and chronic toxicity in batch cultures of the freshwater green alga Chlamydomonas reinhardtii. The toxicity expressed as a function of the free uranyl ion was much greater at pH 7 (effective concentration, 50% [EC50] = 1.8 × 10(-9)  M UO2 (2+) ) than at pH 5 (EC50 = 1.2 × 10(-7)  M UO2 (2+) ). The net accumulation rate of U in algal cells was much higher at pH 7 than at pH 5 for the same free [UO2 (2+) ], but the cells exposed at pH 5 were also more sensitive to intracellular U than the cells at pH 7 with EC50s of 4.0 × 10(-15) and 7.1 × 10(-13)  mol of internalized U cell(-1) , respectively. The higher cellular sensitivity to U at pH 5 than at pH 7 could be explained partly by the increase in cytosolic U binding to algal soluble proteins or enzymes at pH 5 as observed by subcellular fractionation. To predict U accumulation and toxicity in algae accurately, the important modulating effects of pH on U accumulation and U cellular sensitivity should be considered in the BLM. PMID:24596137

  15. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii.

    PubMed

    Yamasaki, Yasuhiro; Yokose, Takeshi; Nishikawa, Toru; Kim, Daekyung; Jiang, Zedong; Yamaguchi, Kenichi; Oda, Tatsuya

    2012-01-01

    Alginate is a natural acidic linear polysaccharide that is produced by brown seaweeds. It is currently used in a broad range of commercial enterprises, such as the food and medical products industries. Recent evidence has demonstrated that alginate oligosaccharides may function as growth promoting agents for certain plant cells, including those of some green algae. Chlamydomonas reinhardtii is a green alga that is used as a model organism in fundamental molecular biology studies; it is also a producer of biohydrogen. In the present study, we examined effects of two types of alginate oligosaccharide mixtures (AOMs), which were prepared by either enzymatic degradation (ED) or acid hydrolysis (AH), on the growth of C. reinhardtii. Growth was significantly promoted by AOM (ED) in a concentration-dependent manner. The maximum effect was observed on day 4 of treatment. The fatty acid composition of C. reinhardtii was also influenced by AOM (ED); the levels of C16:0, C18:2 cis and C18:3 n-3 increased in treated cells. AOM (AH) and the other saccharides that we tested did not affect the growth of C. reinhardtii. The effects that we identified could promote efficient biomass production by reducing culture times and by changing cellular fatty acid levels.

  16. Iron economy in Chlamydomonas reinhardtii

    PubMed Central

    Glaesener, Anne G.; Merchant, Sabeeha S.; Blaby-Haas, Crysten E.

    2013-01-01

    While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance. PMID:24032036

  17. The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Wobbe, Lutz; Nixon, Peter J

    2013-07-01

    The molecular function of mTERFs (mitochondrial transcription termination factors) has so far only been described for metazoan members of the protein family and in animals they control mitochondrial replication, transcription and translation. Cells of photosynthetic eukaryotes harbour chloroplasts and mitochondria, which are in an intense cross-talk that is vital for photosynthesis. Chlamydomonas reinhardtii is a unicellular green alga widely used as a model organism for photosynthesis research and green biotechnology. Among the six nuclear C. reinhardtii mTERF genes is mTERF-like gene of Chlamydomonas (MOC1), whose inactivation alters mitorespiration and interestingly also light-acclimation processes in the chloroplast that favour the enhanced production of biohydrogen. We show here from in vitro studies that MOC1 binds specifically to a sequence within the mitochondrial rRNA-coding module S3, and that a knockout of MOC1 in the mutant stm6 increases read-through transcription at this site, indicating that MOC1 acts as a transcription terminator in vivo. Whereas the level of certain antisense RNA species is higher in stm6, the amount of unprocessed mitochondrial sense transcripts is strongly reduced, demonstrating that a loss of MOC1 causes perturbed mitochondrial DNA (mtDNA) expression. Overall, we provide evidence for the existence of mitochondrial antisense RNAs in C. reinhardtii and show that mTERF-mediated transcription termination is an evolutionary-conserved mechanism occurring in phototrophic protists and metazoans.

  18. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.

    PubMed

    Cheloni, Giulia; Marti, Elodie; Slaveykova, Vera I

    2016-01-01

    The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24h were found under all studied conditions. Concentrations of CuO-NPs below 1mgL(-1) do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8μgL(-1) or 0.8mgL(-1) CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8mgL(-1) CuO-NPs and SNL for 4 and 8h. Combination of UVR* and 0.8mgL(-1) CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO4 confirmed the important role of dissolution as toxicity driving force for lower CuO-NP concentration. However, they failed to clarify the contribution of dissolved Cu on the combined effects at 0.8mgL(-1) CuO-NPs. The results point out the necessity of taking into account the possible interactions between ENPs and changing light conditions when evaluating the potential effects of ENPs to phytoplankton in natural waters.

  19. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.

    PubMed

    Cheloni, Giulia; Marti, Elodie; Slaveykova, Vera I

    2016-01-01

    The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24h were found under all studied conditions. Concentrations of CuO-NPs below 1mgL(-1) do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8μgL(-1) or 0.8mgL(-1) CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8mgL(-1) CuO-NPs and SNL for 4 and 8h. Combination of UVR* and 0.8mgL(-1) CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO4 confirmed the important role of dissolution as toxicity driving force for lower CuO-NP concentration. However, they failed to clarify the contribution of dissolved Cu on the combined effects at 0.8mgL(-1) CuO-NPs. The results point out the necessity of taking into account the possible interactions between ENPs and changing light conditions when evaluating the potential effects of ENPs to phytoplankton in natural waters. PMID:26655656

  20. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii.

    PubMed

    Jiang, Yongguang; Zhu, Yanli; Hu, Zhangli; Lei, Anping; Wang, Jiangxin

    2016-09-01

    Toxic effects of copper on aquatic organisms in polluted water bodies have garnered particular attention in recent years. Microalgae play an important role in aquatic ecosystems, and they are sensitive to heavy metal pollution. Thus, it is important to clarify the mechanism of copper toxicity first for ecotoxicology studies. In this study, the physiological, biochemical and gene expression characteristics of a model green microalga, Chlamydomonas reinhardtii, with 0, 50, 150 and 250 μM copper treatments were investigated. The response of C. reinhardtii to copper stress was significantly shown at a dose dependent manner. Inhibition of cell growth and variation of total chlorophyll content were observed with copper treatments. The maximum photochemical efficiency of PSII, actual photochemical efficiency of PSII and photochemical quenching value decreased in the 250 μM copper treatment with minimum values equal to 28, 24 and 60 % of the control values respectively. The content of lipid peroxidation biomarker malondialdehyde with copper treatments increased with a maximum value sevenfold higher than the control value. Inhibition of cell growth and photosynthesis was ascribed to peroxidation of membrane lipids. The glutathione content and activities of antioxidant enzymes, glutathione S-transferase, glutathione peroxidase, superoxide dismutase and peroxidase were induced by copper. Interestingly, the expression of antioxidant genes and the photosynthetic gene decreased in most copper treatments. In conclusion, oxidative stress caused by production of excess reactive oxidative species might be the major mechanism of copper toxicity on C. reinhardtii. PMID:27395008

  1. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii.

    PubMed

    Flowers, Jonathan M; Hazzouri, Khaled M; Pham, Gina M; Rosas, Ulises; Bahmani, Tayebeh; Khraiwesh, Basel; Nelson, David R; Jijakli, Kenan; Abdrabu, Rasha; Harris, Elizabeth H; Lefebvre, Paul A; Hom, Erik F Y; Salehi-Ashtiani, Kourosh; Purugganan, Michael D

    2015-09-01

    We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales. Examination of predicted loss-of-function mutations in field isolates indicates conservation of genes associated with core cellular functions, while genes in large gene families and poorly characterized genes show a greater incidence of major effect mutations. De novo assembly of unmapped reads recovered genes in the field isolates that are absent from the CC-503 assembly. The laboratory reference strains show a genomic pattern of polymorphism consistent with their origin as the recombinant progeny of a diploid zygospore. Large duplications or amplifications are a prominent feature of laboratory strains and appear to have originated under laboratory culture. Extensive natural variation offers a new source of genetic diversity for studies of Chlamydomonas, including naturally occurring alleles that may prove useful in studies of gene function and the dissection of quantitative genetic traits.

  2. Contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic alga (Chlamydomonas reinhardtii) and an extremophilic alga (Cyanidium caldarium).

    PubMed

    Mikulic, Paulina; Beardall, John

    2014-10-01

    This study aimed to determine the contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic (Chlamydomonas reinhardtii) and an extremophilic (Cyanidium caldarium) alga. Experiments were carried out to see if cells acclimated to zinc would respond differently to cells that were unexposed to zinc. The study also aimed to see if extremophiles displayed different acclimation properties to neutrophiles. Results showed that the neutrophilic alga C. reinhardtii, was more susceptible to free zinc and had a lower IC50 value than the extremophile, however its stress response protected the photosynthetic apparatus. Upon acclimation, the photosynthetic abilities of C. reinhardtii were not significantly compromised when exposed to toxic levels of free zinc. On the other hand, C. caldarium had a stress response which allowed it to tolerate significantly higher amounts of free zinc in its environment compared to C. reinhardtii , however the stress response did not protect the photosynthetic apparatus, and upon acclimation C. caldarium was no better equipped to protect its photosynthetic integrity than unexposed cells. PMID:25048933

  3. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.

    PubMed

    Ma, Weimin; Chen, Ming; Wang, Lianjun; Wei, Lanzhen; Wang, Quanxi

    2011-09-01

    Treatment with NaHSO3 induces a 10-fold increase in H2 photoproduction in the filamentous N2-fixing cyanobacterium Anabaena sp. strain PCC 7120. However, it is unclear whether this treatment also increases H2 photoproduction in green alga. In this study, treatment with 13 mM NaHSO3 resulted in about a 200-fold increase in H2 production in Chlamydomonas reinhardtii, and this increase was most probably the result of reduced O2 content and enhanced hydrogenase activity. Compared to the conventional strategy of sulfur deprivation, NaHSO3 treatment results in a higher maximum rate of H2 photoproduction, greater efficiency of conversion of light energy into H2, shorter half-time to produce the maximum accumulated H2 levels, and reduced costs because no centrifugation is involved. We therefore conclude that NaHSO3 treatment is an efficient, rapid, and economic strategy for improving photobiological H2 production in the green alga C. reinhardtii. PMID:21489780

  4. SPONTANEOUS MUTATION ACCUMULATION IN MULTIPLE STRAINS OF THE GREEN ALGA, CHLAMYDOMONAS REINHARDTII

    PubMed Central

    Morgan, Andrew D; Ness, Rob W; Keightley, Peter D; Colegrave, Nick

    2014-01-01

    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ∼10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters. PMID:24826801

  5. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.

    PubMed

    Morgan, Andrew D; Ness, Rob W; Keightley, Peter D; Colegrave, Nick

    2014-09-01

    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ~10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters. PMID:24826801

  6. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations

    PubMed Central

    Taylor, Nadine S.; Merrifield, Ruth; Williams, Tim D.; Chipman, J. Kevin; Lead, Jamie R.; Viant, Mark R.

    2016-01-01

    Abstract Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level. PMID:25740379

  7. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations.

    PubMed

    Taylor, Nadine S; Merrifield, Ruth; Williams, Tim D; Chipman, J Kevin; Lead, Jamie R; Viant, Mark R

    2016-01-01

    Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4-5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level.

  8. Refactoring the Six-Gene Photosystem II Core in the Chloroplast of the Green Algae Chlamydomonas reinhardtii.

    PubMed

    Gimpel, Javier A; Nour-Eldin, Hussam H; Scranton, Melissa A; Li, Daphne; Mayfield, Stephen P

    2016-07-15

    Oxygenic photosynthesis provides the energy to produce all food and most of the fuel on this planet. Photosystem II (PSII) is an essential and rate-limiting component of this process. Understanding and modifying PSII function could provide an opportunity for optimizing photosynthetic biomass production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct. Complementation of the knockout strain with the core PSII synthetic module from three different green algae resulted in reconstitution of photosynthetic activity to 85, 55, and 53% of that of the wild-type, demonstrating that the PSII core can be exchanged between algae species and retain function. The strains, synthetic cassettes, and refactoring strategy developed for this study demonstrate the potential of synthetic biology approaches for tailoring oxygenic photosynthesis and provide a powerful tool for unraveling PSII structure-function relationships.

  9. Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in Neuro 2A cells and Chlamydomonas reinhardtii alga.

    PubMed

    Melegari, Silvia P; Perreault, François; Moukha, Serge; Popovic, Radovan; Creppy, Edmond E; Matias, William G

    2012-09-01

    Saxitoxin (STX) is a cyanotoxin, which can cause neurotoxic effects and induce ecological changes in aquatic environments, a potential risk to public and environmental health. Many studies of cytotoxicity on animal cells and algae have been performed, although few compare the toxic effects between the two models. In this sense, we investigated the oxidative stress induced by STX (0.4-3.0 nM) in two different cellular models: Neuro-2A (N2A) cells and Chlamydomonas reinhardtii alga by quantification of malondialdehyde (MDA) levels as indicative of lipid peroxidation (LPO). Also was evaluated the antioxidant defense of these cells systems after exposure to STX by the addition of antioxidants in N2A cells culture, and by the measure of antioxidants enzymes activity in C. reinhardtii cells. The MDA levels of N2A cells increased from 15% to 113% for 0.4 and 3.0 nM of STX, respectively, as compared to control. Superoxide-dismutase and catalase did not appear to protect the cell from STX effect while, in cells treated with vitamin E, the rates of MDA production decreased significantly, except for higher concentrations of STX. No MDA productions were observed in algal cells however some effects on antioxidant enzymes activity were observed when algae were exposed to 3.0 nM STX. Our results indicate that the concentrations of STX that may induce oxidative stress through LPO are different in animal and phytoplankton communities. A combination of algal and animal bioassays should be conducted for reliable assessment of oxidative stress induced by STX. PMID:22546629

  10. Composition and structure of the 80S ribosome from the green alga Chlamydomonas reinhardtii: 80S ribosomes are conserved in plants and animals.

    PubMed

    Manuell, Andrea L; Yamaguchi, Kenichi; Haynes, Paul A; Milligan, Ronald A; Mayfield, Stephen P

    2005-08-12

    We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.

  11. Lumped pathway metabolic model of organic carbon accumulation and mobilization by the alga Chlamydomonas reinhardtii.

    PubMed

    Guest, Jeremy S; van Loosdrecht, Mark C M; Skerlos, Steven J; Love, Nancy G

    2013-04-01

    Phototrophic microorganisms have significant potential as bioenergy feedstocks, but the sustainability of large-scale cultivation will require the use of wastewater as a renewable resource. A key barrier to this advancement is a lack of bioprocess understanding that would enable the design and implementation of efficient and resilient mixed community, naturally lit cultivation systems. In this study, a lumped pathway metabolic model (denoted the phototrophic process model or PPM) was developed for mixed phototrophic communities subjected to day/night cycling. State variables included functional biomass (XCPO), stored carbohydrates (XCH), stored lipids (XLI), nitrate (SNO), phosphate (SP), and others. PPM metabolic reactions and stoichiometry were based on Chlamydomonas reinhardtii , but experiments for model calibration and validation were performed in flat panel photobioreactors (PBRs) originally inoculated with biomass from a phototrophic system at a wastewater treatment plant. PBRs were operated continuously as cyclostats to poise cells for intrinsic kinetic parameter estimation in batch studies, which included nutrient-available conditions in light and dark as well as nitrogen-starved and phosphorus-starved conditions in light. The model was calibrated and validated and was shown to be a reasonable predictor of growth, lipid and carbohydrate storage, and lipid and carbohydrate mobilization by a mixed microbial community. PMID:23452258

  12. The basal bodies of Chlamydomonas reinhardtii.

    PubMed

    Dutcher, Susan K; O'Toole, Eileen T

    2016-01-01

    The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone. PMID:27252853

  13. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Jiangxin; Zhang, Xuezhi; Chen, Yongsheng; Sommerfeld, Milton; Hu, Qiang

    2008-10-01

    With the rapid development of nanotechnology, there is an increasing risk of human and environmental exposure to nanotechnology-based materials and products. As water resources are particularly vulnerable to direct and indirect contamination of nonomaterials (NMs), the potential toxicity and environmental implication of NMs to aquatic organisms must be evaluated. In this study, we assessed potential toxicity of two commercially used NMs, titanium dioxide (TiO(2)) and quantum dots (QDs), using the unicellular green alga Chlamydomonas reinhartii as a model system. The response of the organism to NMs was assessed at physiological, biochemical, and molecular genetic levels. Growth kinetics showed that growth inhibition occurred during the first two to three days of cultivation in the presence of TiO(2) or QDs. Measurements of lipid peroxidation measurement indicated that oxidative stress of the cells occurred as early as 6 h after exposure to TiO(2) or QDs. The transcriptional expression profiling of four stress response genes (sod1, gpx, cat, and ptox2) revealed that transient up-regulation of these genes occurred in cultures containing as low as 1.0 mg L(-1) of TiO(2) or 0.1 mg L(-1) of QDs, and the maximum transcripts of cat, sod1, gpx, and ptox2 occurred at 1.5, 3, 3, and 6 h, respectively, and were proportional to the initial concentration of the NMs. As the cultures continued, recovery in growth was observed and the extent of recovery, as indicated by the final cell concentration, was dosage-dependent. QDs were found to be more toxic to Chlamydomonas cells than TiO(2) under our experimental conditions.

  14. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Jiangxin; Zhang, Xuezhi; Chen, Yongsheng; Sommerfeld, Milton; Hu, Qiang

    2008-10-01

    With the rapid development of nanotechnology, there is an increasing risk of human and environmental exposure to nanotechnology-based materials and products. As water resources are particularly vulnerable to direct and indirect contamination of nonomaterials (NMs), the potential toxicity and environmental implication of NMs to aquatic organisms must be evaluated. In this study, we assessed potential toxicity of two commercially used NMs, titanium dioxide (TiO(2)) and quantum dots (QDs), using the unicellular green alga Chlamydomonas reinhartii as a model system. The response of the organism to NMs was assessed at physiological, biochemical, and molecular genetic levels. Growth kinetics showed that growth inhibition occurred during the first two to three days of cultivation in the presence of TiO(2) or QDs. Measurements of lipid peroxidation measurement indicated that oxidative stress of the cells occurred as early as 6 h after exposure to TiO(2) or QDs. The transcriptional expression profiling of four stress response genes (sod1, gpx, cat, and ptox2) revealed that transient up-regulation of these genes occurred in cultures containing as low as 1.0 mg L(-1) of TiO(2) or 0.1 mg L(-1) of QDs, and the maximum transcripts of cat, sod1, gpx, and ptox2 occurred at 1.5, 3, 3, and 6 h, respectively, and were proportional to the initial concentration of the NMs. As the cultures continued, recovery in growth was observed and the extent of recovery, as indicated by the final cell concentration, was dosage-dependent. QDs were found to be more toxic to Chlamydomonas cells than TiO(2) under our experimental conditions. PMID:18768203

  15. Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii.

    PubMed

    Ruecker, Ovidiu; Zillner, Karina; Groebner-Ferreira, Regina; Heitzer, Markus

    2008-08-01

    For the model organism Chlamydomonas reinhardtii, a codon-adapted gene variant of the extracellular luciferase of Gaussia princeps was generated as a sensitive molecular tool to study gene expression from the nuclear genome. In the past, monitoring promoter activity in Chlamydomonas employing the commonly used luciferase encoded by Renilla reniformis was hampered due to the detection limit of the reporter assay, especially if analyzing weak promoters. In this work, the expression of Gaussia-luciferase from such promoters resulted in an average luminescent activity at least 500 times higher than that detected for the Renilla enzyme. The wildtype signal peptide of Gaussia princeps efficiently mediated the export of the luciferase into the culture medium of Chlamydomonas strain cw15arg ( - ), and the characterization of the secreted protein showed an unexpected temperature instability, probably arising from post-translational modifications made by the algae. To further test the utility of Gaussia-luciferase, promoter sequences originating from different viral genomes were analyzed for their ability to drive transgene expression in Chlamydomonas. Solely, the 35S-promoter of the Cauliflower mosaic virus (CaMV) displayed a significant transcriptional activity and this happened only when the shunting region of the 5'-untranslated region of the 35S-sequence was omitted from the luciferase expression cassette. Gaussia-luciferase proved to be a superior quantifiable reporter gene for the analysis of constitutive promoter sequences in Chlamydomonas reinhardtii.

  16. RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii.

    PubMed

    Godman, James E; Molnár, Attila; Baulcombe, David C; Balk, Janneke

    2010-11-01

    The genome of the green alga Chlamydomonas reinhardtii encodes two [FeFe]-hydrogenases, HydA1 and HydA2, and the hydrogenase-like protein HYD3. The unique combination of these proteins in one eukaryotic cell allows for direct comparison of their in vivo functions, which have not been established for HydA2 and HYD3. Using an artificial microRNA silencing method developed recently, the expression of HydA1, HydA2 and HYD3 was specifically down-regulated. Silencing of HydA1 resulted in 4-fold lower hydrogenase protein and activity under anaerobic conditions. In contrast, silencing of HydA2 or HYD3 did not affect hydrogen production. Cell lines with strongly (>90%) decreased HYD3 transcript levels grew more slowly than wild-type. The activity of aldehyde oxidase, a cytosolic Fe-S enzyme, was decreased in HYD3-knockdown lines, whereas Fe-S dependent activities in the chloroplast and mitochondria were unaffected. In addition, the HYD3-knockdown lines grew poorly on hypoxanthine, indicating impaired function of xanthine dehydrogenase, another cytosolic Fe-S enzyme. The expression levels of selected genes in response to hypoxia were unaltered upon HYD3 silencing. Together, our results clearly distinguish the cellular roles of HydA1 and HYD3, and indicate that HYD3, like its yeast and human homologues, has an evolutionary conserved role in the biogenesis or maintenance of cytosolic Fe-S proteins.

  17. [Computational analysis of a cys-loop ligand gated ion channel from the green alga Chlamydomonas reinhardtii].

    PubMed

    Mukherjee, Ashutosh

    2015-01-01

    Plants possess several neurotransmitters with well-known physiological roles. Currently only receptors for glutamate were reported to be found in plants, while receptors for acetylcholine, serotonin and GABA have not yet been reported. In animals, these neurotransmitters act via one class of ligand binding ion channels called Cys-loop receptors which play a major role in fast synaptic transmission. They show the presence of two domains namely Neurotransmitter-gated ion-channel ligand-binding domain (Pfam: PF02931) and Neurotransmitter-gated transmembrane domain (Pfam: PF02932). Cys-loop receptors are also known in prokaryotes. No cys-loop receptor has been characterized from plants yet. In this study, the Ensembl plants database was searched for proteins with these two domains in the sequenced plant genomes, what resulted in only one protein (LIC1) from the alga Chlamydomonas reinhardtii. BLAST and profile HMM searches against the pdb structure database showed that this protein is related to animal and prokaryotic cys-loop receptors, although the cysteine residues characteristic of the cys-loop are absent. Physico-chemical and sequence analysis indicate that LIC1 is an anionic receptor. A model of this protein was generated using homology modeling based on a nicotinic acetylcholine receptor of Torpedo marmorata. The characteristic extracellular domain (ECD) and transmembrane domain (TMD) are well structured but the intercellular region is poorly formed. This is the first report on a detailed characterization of a cys-loop receptor from the plant kingdom. PMID:26510602

  18. Light stress and photoprotection in Chlamydomonas reinhardtii.

    PubMed

    Erickson, Erika; Wakao, Setsuko; Niyogi, Krishna K

    2015-05-01

    Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments. PMID:25758978

  19. Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii.

    PubMed

    Fischer, Beat B; Rüfenacht, Karin; Dannenhauer, Kerstin; Wiesendanger, Manuela; Eggen, Rik I L

    2010-10-01

    Exposure of the green alga Chlamydomonas reinhardtii Dangeard to a combination of environmental stress by high light irradiance and chemical stress by each of the three herbicides paraquat, atrazine, and norflurazon resulted in diverse multiple stressor effects on growth and survival of the cells. Under low light conditions, growth analyzed by cell numbers was generally more sensitive to herbicide treatment than optical density-based growth rates or colony-forming unit endpoints, which both also analyzed the viability of the cells. However, growth analyzed by optical density and colony-forming units in herbicide-treated cultures was affected much more strongly by high light irradiance, as shown by reduced 50% effective concentrations, indicating extensive multiple stressor effects of the combined treatment on the viability of the cells. None of the currently used concepts for mixture toxicity (concentration addition, independent action, or effect summation) could accurately describe the effects measured by the two stressors in combination. Both synergistic and antagonistic interactions seem to occur depending on the light conditions and the parameter analyzed. The strong stimulation of toxicity by the combined stresses can be explained by the similar mode of toxic action of the treatments, all increasing the production of reactive oxygen species. Antagonistic effects, conversely, are probably attributable to the various protection mechanisms of photosynthetic organisms to increased light irradiance, which help the cells acclimate to specific light conditions and defend against the deleterious effects of excess light. These protection mechanisms can affect growth and viability under increased light conditions and also might influence the toxicity of the photosynthetic herbicides.

  20. Acclimation of Photosynthetic Light Reactions during Induction of Inorganic Carbon Accumulation in the Green Alga Chlamydomonas reinhardtii12

    PubMed Central

    Palmqvist, Kristin; Sundblad, Lars-Göran; Wingsle, Gunnar; Samuelsson, Göran

    1990-01-01

    Cells of the unicellular green algae Chlamydomonas reinhardtii were grown in high dissolved inorganic carbon (DIC) concentrations (supplied with 50 milliliters per liter CO2[g]) and transferred to low DIC concentrations (supplied with ≤ 100 microliters per liter CO2[g]). Immediately after transfer from high to low DIC the emission of photosystem II related chlorophyll a fluorescence was substantially quenched. It is hypothesized that the suddenly induced inorganic carbon limitation of photosynthesis resulted in a phosphorylation of LHCII, leading to the subsequent state 1 to state 2 transition. After 2 hours of low-DIC acclimation, 77 K fluorescence measurements revealed an increase in the fluorescence emitted from photosystem I, due to direct excitation, suggesting a change in photosystem II/photosystem I stoichiometry or an increased light harvesting capacity of photosystem I. After 5 to 6 hours of acclimation a considerable increase in spillover from photosystem II to photosystem I was observed. These adjustments of the photosynthetic light reactions reached steady-state after about 12 hours of low DIC treatment. The quencher of fluorescence could be removed by 5 minutes of dark treatment followed by 5 minutes of weak light treatment, of any of four different light qualities. It is hypothesized that this restoration of fluorescence was due to a state 2 to state 1 transition in low-DIC acclimated cells. A decreased ratio of violaxanthin to zeaxanthin was also observed in 12 hour low DIC treated cells, compared with high DIC grown cells. This ratio was not coupled to the level of fluorescence quenching. The role of different processes during the induction of a DIC accumulating mechanism is discussed. PMID:16667710

  1. Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii.

    PubMed

    Fischer, Beat B; Rüfenacht, Karin; Dannenhauer, Kerstin; Wiesendanger, Manuela; Eggen, Rik I L

    2010-10-01

    Exposure of the green alga Chlamydomonas reinhardtii Dangeard to a combination of environmental stress by high light irradiance and chemical stress by each of the three herbicides paraquat, atrazine, and norflurazon resulted in diverse multiple stressor effects on growth and survival of the cells. Under low light conditions, growth analyzed by cell numbers was generally more sensitive to herbicide treatment than optical density-based growth rates or colony-forming unit endpoints, which both also analyzed the viability of the cells. However, growth analyzed by optical density and colony-forming units in herbicide-treated cultures was affected much more strongly by high light irradiance, as shown by reduced 50% effective concentrations, indicating extensive multiple stressor effects of the combined treatment on the viability of the cells. None of the currently used concepts for mixture toxicity (concentration addition, independent action, or effect summation) could accurately describe the effects measured by the two stressors in combination. Both synergistic and antagonistic interactions seem to occur depending on the light conditions and the parameter analyzed. The strong stimulation of toxicity by the combined stresses can be explained by the similar mode of toxic action of the treatments, all increasing the production of reactive oxygen species. Antagonistic effects, conversely, are probably attributable to the various protection mechanisms of photosynthetic organisms to increased light irradiance, which help the cells acclimate to specific light conditions and defend against the deleterious effects of excess light. These protection mechanisms can affect growth and viability under increased light conditions and also might influence the toxicity of the photosynthetic herbicides. PMID:20872684

  2. Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii.

    PubMed

    Liguori, Nicoletta; Novoderezhkin, Vladimir; Roy, Laura M; van Grondelle, Rienk; Croce, Roberta

    2016-09-01

    LHCSR3 is a member of the Light-Harvesting Complexes (LHC) family, which is mainly composed of pigment-protein complexes responsible for collecting photons during the first steps of photosynthesis. Unlike related LHCs, LHCSR3 is expressed in stress conditions and has been shown to be essential for the fast component of photoprotection, non-photochemical quenching (NPQ), in the green alga Chlamydomonas reinhardtii. In plants, which do not possess LHCSR homologs, NPQ is triggered by the PSBS protein. Both PSBS and LHCSR3 possess the ability to sense pH changes but, unlike PSBS, LHCSR3 binds multiple pigments. In this work we have analyzed the properties of the pigments bound to LHCSR3 and their excited state dynamics. The data show efficient excitation energy transfer between pigments with rates similar to those observed for the other LHCs. Application of an exciton model based on a template of LHCII, the most abundant LHC, satisfactorily explains the collected steady state and time-resolved spectroscopic data, indicating that LHCSR3 has a LHC-like molecular architecture, although it probably binds less pigments. The model suggests that most of the chlorophylls have similar energy and interactions as in LHCII. The most striking difference is the localization of the lowest energy state, which is not on the Chlorophyll a (Chl a) 610-611-612 triplet as in all the LHCB antennas, but on Chl a613, which is located close to the lumen and to the pH-sensing region of the protein. PMID:27150505

  3. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; de Lamotte-Guery, F.; Buchanan, B. B.

    1990-01-01

    The components of the ferredoxin-thioredoxin (FT) system of Chlamydomonas reinhardtii have been purified and characterized. The system resembled that of higher plants in consisting of a ferredoxin-thioredoxin reductase (FTR) and two types of thioredoxin, a single f and two m species, m1 and m2. The Chlamydomonas m and f thioredoxins were antigenically similar to their higher-plant counterparts, but not to one another. The m thioredoxins were recognized by antibodies to both higher plant m and bacterial thioredoxins, whereas the thioredoxin f was not. Chlamydomonas thioredoxin f reacted, although weakly, with the antibody to spinach thioredoxin f. The algal thioredoxin f differed from thioredoxins studied previously in behaving as a basic protein on ion-exchange columns. Purification revealed that the algal thioredoxins had molecular masses (Mrs) typical of thioredoxins from other sources, m1 and m2 being 10700 and f 11500. Chlamydomonas FTR had two dissimilar subunits, a feature common to all FTRs studied thus far. One, the 13-kDa ("similar") subunit, resembled its counterpart from other sources in both size and antigenicity. The other, 10-kDa ("variable") subunit was not recognized by antibodies to any FTR tested. When combined with spinach, (Spinacia oleracea L.) thylakoid membranes, the components of the FT system functioned in the light activation of the standard target enzymes from chloroplasts, corn (Zea mays L.) NADP-malate dehydrogenase (EC 1.1.1.82) and spinach fructose 1,6-bisphosphatase (EC 3.1.3.11) as well as the chloroplast-type fructose 1,6-bisphosphatase from Chlamydomonas. Activity was greatest if ferredoxin and other components of the FT system were from Chlamydomonas. The capacity of the Chlamydomonas FT system to activate autologous FBPase indicates that light regulates the photosynthetic carbon metabolism of green algae as in other oxygenic photosynthetic organisms.

  4. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    PubMed Central

    2011-01-01

    Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results

  5. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Hazzouri, Khaled M.; Rosas, Ulises; Bahmani, Tayebeh; Nelson, David R.; Abdrabu, Rasha; Harris, Elizabeth H.; Salehi-Ashtiani, Kourosh; Purugganan, Michael D.

    2015-01-01

    We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales. Examination of predicted loss-of-function mutations in field isolates indicates conservation of genes associated with core cellular functions, while genes in large gene families and poorly characterized genes show a greater incidence of major effect mutations. De novo assembly of unmapped reads recovered genes in the field isolates that are absent from the CC-503 assembly. The laboratory reference strains show a genomic pattern of polymorphism consistent with their origin as the recombinant progeny of a diploid zygospore. Large duplications or amplifications are a prominent feature of laboratory strains and appear to have originated under laboratory culture. Extensive natural variation offers a new source of genetic diversity for studies of Chlamydomonas, including naturally occurring alleles that may prove useful in studies of gene function and the dissection of quantitative genetic traits. PMID:26392080

  6. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kodru, Sireesha; Malavath, Tirupathi; Devadasu, Elsinraju; Nellaepalli, Sreedhar; Stirbet, Alexandrina; Subramanyam, Rajagopal; Govindjee

    2015-08-01

    The green alga Chlamydomonas (C.) reinhardtii is a model organism for photosynthesis research. State transitions regulate redistribution of excitation energy between photosystem I (PS I) and photosystem II (PS II) to provide balanced photosynthesis. Chlorophyll (Chl) a fluorescence induction (the so-called OJIPSMT transient) is a signature of several photosynthetic reactions. Here, we show that the slow (seconds to minutes) S to M fluorescence rise is reduced or absent in the stt7 mutant (which is locked in state 1) in C. reinhardtii. This suggests that the SM rise in wild type C. reinhardtii may be due to state 2 (low fluorescence state; larger antenna in PS I) to state 1 (high fluorescence state; larger antenna in PS II) transition, and thus, it can be used as an efficient and quick method to monitor state transitions in algae, as has already been shown in cyanobacteria (Papageorgiou et al. 1999, 2007; Kaňa et al. 2012). We also discuss our results on the effects of (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea, an inhibitor of electron transport; (2) n-propyl gallate, an inhibitor of alternative oxidase (AOX) in mitochondria and of plastid terminal oxidase in chloroplasts; (3) salicylhydroxamic acid, an inhibitor of AOX in mitochondria; and (4) carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an uncoupler of phosphorylation, which dissipates proton gradient across membranes. Based on the data presented in this paper, we conclude that the slow PSMT fluorescence transient in C. reinhardtii is due to the superimposition of, at least, two phenomena: qE dependent non-photochemical quenching of the excited state of Chl, and state transitions.

  7. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii.

    PubMed

    Gangl, Doris; Zedler, Julie A Z; Włodarczyk, Artur; Jensen, Poul Erik; Purton, Saul; Robinson, Colin

    2015-02-01

    The unicellular green alga Chlamydomonas reinhardtii has potential as a cell factory for the production of recombinant proteins and other compounds, but mainstream adoption has been hindered by a scarcity of genetic tools and a need to identify products that can be generated in a cost-effective manner. A promising strategy is to use algal chloroplasts as a site for synthesis of high value bioactive compounds such as diterpenoids since these are derived from metabolic building blocks that occur naturally within the organelle. However, synthesis of these complex plant metabolites requires the introduction of membrane-associated enzymes including cytochrome P450 enzymes (P450s). Here, we show that a gene (CYP79A1) encoding a model P450 can be introduced into the C. reinhardtii chloroplast genome using a simple transformation system. The gene is stably expressed and the P450 is efficiently targeted into chloroplast membranes by means of its endogenous N-terminal anchor domain, where it is active and accounts for 0.4% of total cell protein. These results provide proof of concept for the introduction of diterpenoid synthesis pathways into the chloroplast of C. reinhardtii. PMID:25556316

  8. Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii.

    PubMed

    Kobayashi, Yusuke; Harada, Naomi; Nishimura, Yoshiki; Saito, Takafumi; Nakamura, Mami; Fujiwara, Takayuki; Kuroiwa, Tsuneyoshi; Misumi, Osami

    2014-09-29

    The primitive red alga Cyanidioschyzon merolae inhabits acidic hot springs and shows robust resistance to heat shock treatments up to 63 °C. Microarray analysis was performed to identify the key genes underlying the high temperature tolerance of this organism. Among the upregulated genes that were identified, we focused on two small heat shock proteins (sHSPs) that belong to a unique class of HSP families. These two genes are located side by side in an inverted repeat orientation on the same chromosome and share a promoter. These two genes were simultaneously and rapidly upregulated in response to heat shock treatment (>1,000-fold more than the control). Interestingly, upregulation appeared to be triggered not by a difference in temperatures, but rather by the absolute temperature. Similar sHSP structural genes have been reported in the green alga Chlamydomonas reinhardtii, but the threshold temperature for the expression of these sHSP-encoding genes in Ch. reinhardtii was different from the threshold temperature for the expression of the sHSP genes from Cy. merolae. These results indicate the possible importance of an absolute temperature sensing system in the evolution and tolerance of high-temperature conditions among unicellular microalgae.

  9. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii.

    PubMed

    Murik, Omer; Elboher, Ahinoam; Kaplan, Aaron

    2014-04-01

    Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not. PMID:24345283

  10. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and

  11. New Insights into the Unique Structure of the F0F1-ATP Synthase from the Chlamydomonad Algae Polytomella sp. and Chlamydomonas reinhardtii1

    PubMed Central

    van Lis, Robert; Mendoza-Hernández, Guillermo; Groth, Georg; Atteia, Ariane

    2007-01-01

    In this study, we investigate the structure of the mitochondrial F0F1-ATP synthase of the colorless alga Polytomella sp. with respect to the enzyme of its green close relative Chlamydomonas reinhardtii. It is demonstrated that several unique features of the ATP synthase in C. reinhardtii are also present in Polytomella sp. The α- and β-subunits of the ATP synthase from both algae are highly unusual in that they exhibit extensions at their N- and C-terminal ends, respectively. Several subunits of the Polytomella ATP synthase in the range of 9 to 66 kD have homologs in the green alga but do not have known equivalents as yet in mitochondrial ATP synthases of mammals, plants, or fungi. The largest of these so-called ASA (ATP Synthase-Associated) subunits, ASA1, is shown to be an extrinsic protein. Short heat treatment of isolated Polytomella mitochondria unexpectedly dissociated the otherwise highly stable ATP synthase dimer of 1,600 kD into subcomplexes of 800 and 400 kD, assigned as the ATP synthase monomer and F1-ATPase, respectively. Whereas no ASA subunits were found in the F1-ATPase, all but two were present in the monomer. ASA6 (12 kD) and ASA9 (9 kD), predicted to be membrane bound, were not detected in the monomer and are thus proposed to be involved in the formation or stabilization of the enzyme. A hypothetical configuration of the Chlamydomonad dimeric ATP synthase portraying its unique features is provided to spur further research on this topic. PMID:17468226

  12. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    PubMed

    Winck, Flavia Vischi; Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can

  13. A High-Throughput Fatty Acid Profiling Screen Reveals Novel Variations in Fatty Acid Biosynthesis in Chlamydomonas reinhardtii and Related Algae

    PubMed Central

    Pflaster, Erin L.; Schwabe, Michael J.; Becker, Joyanne; Wilkinson, Melissa S.; Parmer, Ashley; Clemente, Thomas E.; Cahoon, Edgar B.

    2014-01-01

    Analysis of fatty acid methyl esters (FAMEs) by gas chromatography (GC) is a common technique for the quantitative and qualitative analysis of acyl lipids. Methods for FAME preparation are typically time-consuming and labor-intensive and require multiple transfers of reagents and products between reaction tubes and autosampler vials. In order to increase throughput and lower the time and materials costs required for FAME preparation prior to GC analysis, we have developed a method in which 10-to-20-mg samples of microbial biomass are transferred to standard GC autosampler vials, transesterified using an emulsion of methanolic trimethylsulfonium hydroxide and hexane, and analyzed directly by GC without further sample handling. This method gives results that are essentially identical to those obtained by the more labor- and material-intensive FAME preparation methods, such as transmethylation with methanolic HCl. We applied this method to the screening of laboratory and environmental isolates of the green alga Chlamydomonas for variations in fatty acid composition. This screening method facilitated two novel discoveries. First, we identified a common laboratory strain of C. reinhardtii, CC-620, completely lacking all ω-3 fatty acids normally found in this organism and showed that this strain contains an inactivating mutation in the CrFAD7 gene, encoding the sole ω-3 desaturase activity in this organism. Second, we showed that some species of Chlamydomonas make Δ6-unsaturated polyunsaturated fatty acids (PUFA) rather than the Δ5 species normally made by the previously characterized laboratory strains of Chlamydomonas, suggesting that there is species-specific variation in the regiospecificity and substrate selectivity of front-end desaturases in this algal genus. PMID:25239975

  14. Developing molecular tools for Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Noor-Mohammadi, Samaneh

    Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome. To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway. In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced

  15. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii.

    PubMed

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr2O3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr2O3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr2O3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05±0.20 and 1.35±0.06gL(-1) Cr2O3-NP were obtained after 24 and 72h of exposure, respectively. In addition, ROS levels were increased to 160.24±2.47% and 59.91±0.15% of the control value after 24 and 72h of exposition to 10gL(-1) Cr2O3-NP. At 24h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr2O3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr2O3-NP after 24h of treatment. PMID:26803219

  16. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    PubMed

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  17. Fermentative metabolism of Chlamydomonas reinhardtii. II. Role of plastoquinone

    SciTech Connect

    Gfeller, R.P.; Gibbs, M.

    1985-02-01

    Evidence is presented to substantiate a chloroplastic respiratory pathway in the green alga, Chlamydomonas reinhardtii, whereby reducing equivalents generated during the degradation of starch enter the thylakoidal chain at the plastoquinone site catalyzed by NADH-plastoquinone reductase. In this formulation, the reduced plastoquinone is oxidized either by the photoevolution (photosystem 1) of H/sub 2/ under anaerobic conditions or by O/sub 2/ during dark respiration.

  18. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.

    PubMed

    Röhder, Lena A; Brandt, Tanja; Sigg, Laura; Behra, Renata

    2014-07-01

    Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140nm and agglomerated in absence of phosphate with a mean size of 2000nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5±0.84μM for wild type and EC50 of 6.3±0.53μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of photosynthetic yield at the highest concentrations (100μM), while no effect was observed for dispersed CeO2 NP. The low toxicity of agglomerated CeO2 NP was attributed quantitatively to Ce(3+) ions co-occurring in the nanoparticle suspension whereas for dispersed CeO2 NP, dissolved Ce(3+) was precipitated with phosphate and not bioavailable. Furthermore CeO2 NP did not affect the intracellular ROS level. The cell wall free mutant and wild type of C

  19. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.

    PubMed

    Röhder, Lena A; Brandt, Tanja; Sigg, Laura; Behra, Renata

    2014-07-01

    Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140nm and agglomerated in absence of phosphate with a mean size of 2000nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5±0.84μM for wild type and EC50 of 6.3±0.53μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of photosynthetic yield at the highest concentrations (100μM), while no effect was observed for dispersed CeO2 NP. The low toxicity of agglomerated CeO2 NP was attributed quantitatively to Ce(3+) ions co-occurring in the nanoparticle suspension whereas for dispersed CeO2 NP, dissolved Ce(3+) was precipitated with phosphate and not bioavailable. Furthermore CeO2 NP did not affect the intracellular ROS level. The cell wall free mutant and wild type of C

  20. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Almaraz-Delgado, Alma Lorena; Flores-Uribe, José; Pérez-España, Víctor Hugo; Salgado-Manjarrez, Edgar; Badillo-Corona, Jesús Agustín

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals.

  1. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals. PMID:25136510

  2. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Almaraz-Delgado, Alma Lorena; Flores-Uribe, José; Pérez-España, Víctor Hugo; Salgado-Manjarrez, Edgar; Badillo-Corona, Jesús Agustín

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals. PMID:25136510

  3. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii.

    PubMed

    Wannathong, Thanyanan; Waterhouse, Janet C; Young, Rosanna E B; Economou, Chloe K; Purton, Saul

    2016-06-01

    In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone. PMID:26887319

  4. Swimming of Chlamydomonas reinhardtii in weakly elastic fluids

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Gollub, Jerry; Arratia, Paulo

    2012-11-01

    The swimming behavior of the algae Chlamydomonas reinhardtii in weakly elastic fluids is investigated in experiments using microscopy and tracking methods. The effects of fluid viscosity and elasticity on the swimming speed, flagellar shape, beating frequency, and efficiency are examined. Here, the fluid viscosity is varied using water and sucrose solutions, while fluid elasticity is introduced by adding flexible polymer CMC (carboxymethyl cellulose) to the buffer solution. Swimming experiments are performed in a thin-film apparatus equipped with a microscope and high-speed camera. We find that even small amounts of fluid elasticity can have a significant effect on the swimming kinematics and dynamics of Chlamydomonas because of the relatively high beating frequency of its flagella (50-60 Hz). For example, the Chlamydomonas swimming speed is hindered by fluid elasticity compared to Newtonian fluids. In addition, the algae swimming speed decreases as the fluid elasticity is increased. This research is supported by the NSF through grant DMR-1104705.

  5. Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii.

    PubMed

    Minagawa, Jun; Tokutsu, Ryutaro

    2015-05-01

    Plants and algae have acquired the ability to acclimatize to ever-changing environments to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2 . The efficiency of photosynthesis is modulated by many environmental factors, including temperature, drought, CO2 concentration, and the quality and quantity of light. Recently, our understanding of such regulators of photosynthesis and the underlying molecular mechanisms has increased considerably. The photosynthetic supercomplexes undergo supramolecular reorganizations within a short time after receiving environmental cues. These reorganizations include state transitions that balance the excitation of the two photosystems: qE quenching, which thermally dissipates excess energy at the level of the light-harvesting antenna, and cyclic electron flow, which supplies the increased ATP demanded by CO2 assimilation and the pH gradient to activate qE quenching. This review focuses on the recent findings regarding the environmental regulation of photosynthesis in model organisms, paying particular attention to the unicellular green alga Chlamydomonas reinhardtii, which offer a glimpse into the dynamic behavior of photosynthetic machinery in nature.

  6. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Yamasaki, Tomohito; Onishi, Masayuki; Kim, Eun-Jeong; Cerutti, Heriberto; Ohama, Takeshi

    2016-09-20

    Canonical microRNAs (miRNAs) are embedded in duplexed stem-loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes. PMID:27582463

  7. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  8. Requirement for Asn298 on D1 protein for oxygen evolution: analyses by exhaustive amino acid substitution in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kuroda, Hiroshi; Kodama, Natsumi; Sun, Xiao-Yu; Ozawa, Shin-ichiro; Takahashi, Yuichiro

    2014-07-01

    PSII generates strong oxidants used for water oxidation. The secondary electron donor, Y(Z), is Tyr161 on PSII reaction center D1 protein and mediates electron transfer from the oxygen-evolving Mn(4)CaO(5) cluster to the primary electron donor, P680. The latest PSII crystal structure revealed the presence of a hydrogen bond network around Y(Z), which is anticipated to play important roles in the electron and proton transfer reactions. Y(Z) forms a hydrogen bond with His190 which in turn forms a hydrogen bond with Asn298 on D1 protein. Although functional roles of Y(Z) and His190 have already been characterized, little is known about the functional role of Asn298. Here we have generated 19 mutants from a green alga Chlamydomonas reinhardtii, in which the Asn298 has been substituted by each of the other 19 amino acid residues. All mutants showed significantly impaired or no photosynthetic growth. Seven mutants capable of photosynthetic growth showed oxygen-evolving activity although at a significantly reduced rate. Interestingly the oxygen-evolving activity of these mutants was markedly photosensitive. The 19 mutants accumulated PSII at variable levels and showed a light-induced electron transfer reaction from 1,5-diphenylcarbazide (DPC) to 2,6-dichlorophenolindophenol (DCIP), suggesting that Asn298 is important for the function and photoprotection of the Mn(4)CaO(5) cluster. PMID:24853102

  9. Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock.

    PubMed

    Matsuo, Takuya; Ishiura, Masahiro

    2011-05-20

    The genome of the unicellular green alga Chlamydomonas reinhardtii has both plant-like and animal-like genes. It is of interest to know which types of clock genes this alga has. Recent forward and reverse genetic studies have revealed that its clock has both plant-like and algal clock components. In addition, since C. reinhardtii is a useful model organism also called "green yeast", the identification of clock genes will make C. reinhardtii a powerful model for studying the molecular basis of the eukaryotic circadian clock. In this review, we describe our forward genetic approach in C. reinhardtii and discuss some recent findings about its circadian clock.

  10. Negative impact on growth and photosynthesis in the green alga Chlamydomonas reinhardtii in the presence of the estrogen 17α-ethynylestradiol.

    PubMed

    Pocock, Tessa; Falk, Stefan

    2014-01-01

    It is well known that estrogenic compounds affect development of fertilized eggs of many species of birds, fish and amphibians through disrupted activity of carbonic anhydrase (CA). The most potent activity comes from the most commonly occurring synthetic sterol, 17α-Ethynylestradiol (EE2). Less is known about the responses of aquatic phytoplankton to these compounds. Here we show for the first time that, in comparision to the control, the addition of 7 µM EE2 reduced the growth rate of the green alga Chlamydomonas reinhardtii by 68% for cells grown at high CO2. When cells were grown in ambient air (low Ci) with a fully activated carbon concentrating mechanism through the induction of CA activity, the growth rates were reduced by as much as 119%. A reduced growth rate could be observed at EE2 concentrations as low as 10 pM. This was accompanied by a reduced maximum capacity for electron transport in photosystem II as determined by a lower FV/FM for low Ci-grown cells, which indicates the involvement of CAH3, a CA specifically located in the thylakoid lumen involved in proton pumping across the thylakoid membranes. These results were in agreement with an observed reduction in the chloroplastic affinity for Ci as shown by a strong increase in the Michaelis-Menten K0.5 for HCO3-. In itself, a lowering of the growth rate of a green alga by addition of the sterol EE2 warrants further investigation into the potential environmental impact by the release of treated waste water.

  11. N-ACYL HOMOSERINE LACTONe LACTONASE, AiiA, INACTIVATION OF QUORUM-SENSING AGONISTS PRODUCED BY CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) AND CHARACTERIZATION OF aiiA TRANSGENIC ALGAE(1).

    PubMed

    Rajamani, Sathish; Teplitski, Max; Kumar, Anil; Krediet, Cory J; Sayre, Richard T; Bauer, Wolfgang D

    2011-10-01

    Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N-acyl homoserine lactone (AHL) bacterial quorum-sensing (QS) signals and alter QS-regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal-mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR-stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal-mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL-producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS.

  12. Action spectrum for expression of the high intensity light-inducible Lhc-like gene Lhl4 in the green alga Chlamydomonas reinhardtii.

    PubMed

    Teramoto, Haruhiko; Ishii, Asako; Kimura, Yukihiro; Hasegawa, Koji; Nakazawa, Shigeaki; Nakamura, Takanori; Higashi, Sho-ichi; Watanabe, Masakatsu; Ono, Taka-aki

    2006-03-01

    Lhl4 encodes a distant relative of light-harvesting Chl-a/b proteins in the green alga Chlamydomonas reinhardtii. Lhl4 mRNA markedly accumulated within 30 min after illumination and in proportion to the light intensity up to a fluence rate much higher than that required for photosynthesis. The high intensity light (HL)-induced accumulation of Lhl4 mRNA required continuous illumination, and the mRNA level rapidly decreased when the cells were placed in the dark. HL only slightly stabilized the mRNA, suggesting that the HL-induced expression of the Lhl4 gene is primarily regulated at the level of transcription. Blue light was more effective for inducing Lhl4 gene expression than green or red light, and far-red light had no effect. The action spectrum for Lhl4 gene expression was examined at wavelengths between 325 and 775 nm using the Okazaki Large Spectrograph. The obtained spectrum showed a distinct peak in the blue region (450 nm) and a shoulder in the UV-A region (375 nm). The curve in the spectrum rose steeply in the short wavelength UV region. In addition, we observed two minor peaks in the green (575 nm) and the red (675 nm) regions. The action spectrum suggests that a blue/UV-A light photoreceptor with a flavin-based chromophore participates in the HL response of Lhl4 gene expression. However, the hypersensitivity to near UV-B light suggests the involvement of an unidentified UV light perception system in the expression of the Lhl4 gene.

  13. RNAi Knock-Down of LHCBM1, 2 and 3 Increases Photosynthetic H2 Production Efficiency of the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Oey, Melanie; Ross, Ian L.; Stephens, Evan; Steinbeck, Janina; Wolf, Juliane; Radzun, Khairul Adzfa; Kügler, Johannes; Ringsmuth, Andrew K.; Kruse, Olaf; Hankamer, Ben

    2013-01-01

    Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m−2 s−1) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems. PMID:23613840

  14. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.

    PubMed

    Oey, Melanie; Ross, Ian L; Stephens, Evan; Steinbeck, Janina; Wolf, Juliane; Radzun, Khairul Adzfa; Kügler, Johannes; Ringsmuth, Andrew K; Kruse, Olaf; Hankamer, Ben

    2013-01-01

    Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m(-2) s(-1)) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems. PMID:23613840

  15. Phytochelatin formation kinetics and toxic effects in the freshwater alga Chlamydomonas reinhardtii upon short- and long-term exposure to lead(II).

    PubMed

    Scheidegger, Christian; Behra, Renata; Sigg, Laura

    2011-01-25

    Phytochelatins (PC) are metal-binding ligands synthesized by algae in response to elevated concentrations of various metals, such as Pb. Kinetics of PC synthesis and Pb accumulation in Chlamydomonas reinhardtii were investigated as a function of [Pb(2+)]=10(-11)-10(-7)M (pPb11-pPb7.1) in the exposure medium for up to 6h. The role of PC in Pb detoxification was explored by relating PC synthesis to the effects of Pb on growth and photosynthetic yield upon exposure to pPb9 and pPb8.3 for up to 72h. Pb accumulation increased with increasing [Pb(2+)], reaching a maximum concentration of 596±77amol/cell (intracellular concentration 2.98mM) at pPb7.1. Low concentrations of PC(2)-PC(4) were present in C. reinhardtii grown in control media without Pb addition. Upon short-term exposure, PC(2) and PC(3) synthesis was induced within minutes at [Pb(2+)]≥pPb8 and PC(4) synthesis after a lag phase at pPb7.1. Cellular PC(2)-PC(4) concentrations increased with time over 6h and with increasing [Pb(2+)]. PC concentrations after 6h exposure to pPb7.1 were 28.5±0.2amol/cell (142μM) PC(2), 2.8±0.05amol/cell (14μM) PC(3) and 0.30±0.01amol/cell (1.5μM) PC(4). Upon long-term exposure, induction of PC synthesis was detected at pPb9 and synthesis of PCs with a higher degree of polymerization was observed (PC(5)). PC concentrations were lower than intracellular Pb and were thus not present at sufficiently high concentrations to immobilize accumulated Pb. Inhibition of photosynthesis and growth up to 100% was observed upon long-term exposure, whereas in short-term experiments no inhibitory effects were detected.

  16. Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Picaud, A.; Buchanan, B. B.; Miginiac-Maslow, M.

    1991-01-01

    The protein components of the NADP/thioredoxin system, NADP-thioredoxin reductase (NTR) and thioredoxin h, have been purified and characterized from the green alga, Chlamydomonas reinhardtii. The analysis of this system confirms that photoautotrophic Chlamydomonas cells resemble leaves in having both an NADP- and ferrodoxin-linked thioredoxin redox system. Chlamydomonas thioredoxin h, which is smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than thioredoxin m from the same source, cross-reacted with antisera to thioredoxin h from spinach (Spinacia oleracea L.) and wheat germ (Triticum vulgaris L.) but not with antisera to m or f thioredoxins. In these properties, the thioredoxin h resembled a thioredoxin from Chlamydomonas, designated Ch1, whose sequence was reported recently (P. Decottignies et al., 1991, Eur. J. Biochem. 198, 505-512). The differential reactivity of thioredoxin h with antisera was used to demonstrate that thioredoxin h is enriched outside the chloroplast. The NTR was purified from Chlamydomonas using thioredoxin h from the same source. Similar to its counterpart from other organisms, Chlamydomonas NTR had a subunit size of approx. 36 kDa and was specific for NADPH. Chlamydomonas NTR effectively reduced thioredoxin h from the same source but showed little activity with the other thioredoxins tested, including spinach thioredoxin h and Escherichia coli thioredoxin. Comparison of the reduction of Chlamydomonas thioredoxins m and h by each of the endogenous thioredoxin reductases, NTR and ferredoxin-thioredoxin reductase, revealed a differential specificity of each enzyme for thioredoxin. Thus, NTR showed increased activity with thioredoxin h and ferredoxin-thioredoxin reductase with thioredoxins m and f.

  17. Effective viscosity of non-gravitactic Chlamydomonas Reinhardtii microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Mussler, Matthias; Rafaï, Salima; Peyla, Philippe; Wagner, Christian

    2013-03-01

    Active microswimmers are known to affect the macroscopic viscosity of suspensions in a more complex manner than passive particles. For puller-like microswimmers an increase in the viscosity has been observed. It has been suggested that the persistence of the orientation of the microswimmers hinders the rotation that is normally caused by the vorticity. It was previously shown that some sorts of algae are bottom-heavy swimmers, i.e., their centre of mass is not located in the centre of the body. In this way, the algae affect the vorticity of the flow when they are perpendicularly oriented to the axis of gravity. This orientation of gravity to vorticity is given in a rheometer that is equipped with a cone-plate geometry. Here we present measurements of the viscosity both in a cone-plate and a Taylor-Couette cell. The two set-ups yielded the same increase in viscosity although the axis of gravitation in the Taylor-Couette cell is parallel to the direction of vorticity. In a complementary experiment we tested the orientation of the direction of swimming through microscopic observation of single Chlamydomonas reinhardtii and could not identify a preferred orientation, i.e., our specific strain of Chlamydomonas reinhardtii are not bottom-heavy swimmers. We thus conclude that bottom heaviness is not a prerequisite for the increase of viscosity and that the effect of gravity on the rheology of our strain of Chlamydomonas reinhardtii is negligible. This finding reopens the question of whether the origin of persistence in the orientation of cells is actually responsible for the increased viscosity of the suspension.

  18. Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.

    PubMed

    Bedhomme, Mariette; Zaffagnini, Mirko; Marchand, Christophe H; Gao, Xing-Huang; Moslonka-Lefebvre, Mathieu; Michelet, Laure; Decottignies, Paulette; Lemaire, Stéphane D

    2009-12-25

    Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.

  19. Reconstructing the mitochondrial protein import machinery of Chlamydomonas reinhardtii.

    PubMed

    Figueroa-Martínez, Francisco; Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2008-05-01

    In Chlamydomonas reinhardtii several nucleus-encoded proteins that participate in the mitochondrial oxidative phosphorylation are targeted to the organelle by unusually long mitochondrial targeting sequences. Here, we explored the components of the mitochondrial import machinery of the green alga. We mined the algal genome, searching for yeast and plant homologs, and reconstructed the mitochondrial import machinery. All the main translocation components were identified in Chlamydomonas as well as in Arabidopsis thaliana and in the recently sequenced moss Physcomitrella patens. Some of these components appear to be duplicated, as is the case of Tim22. In contrast, several yeast components that have relatively large hydrophilic regions exposed to the cytosol or to the intermembrane space seem to be absent in land plants and green algae. If present at all, these components of plants and algae may differ significantly from their yeast counterparts. We propose that long mitochondrial targeting sequences in some Chlamydomonas mitochondrial protein precursors are involved in preventing the aggregation of the hydrophobic proteins they carry.

  20. Apparent lack of an O/sup 6/-methylguanine repair mechanism in the unicellular alga, Chlamydomonas ReinhardtII

    SciTech Connect

    Frost, B.; Small, G.D.

    1986-05-01

    O/sup 6/-Methylguanine (O/sup 6/meG) is the presumed major mutagenic lesion formed by the treatment of DNA with methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The repair of this lesion has been shown to involve a protein which selectively removes the O/sup 6/-methyl group by transferring the group to one of the protein's cysteinyl residues. Several prokaryotic and eukaryotic organisms have this O/sup 6/-meG transferase (O/sup 6/MGT) activity, while other (e.g., yeast) lack any apparent O/sup 6/MGT. In some organisms, the O/sup 6/MGT is inducible in response to sublethal doses of methylating agent. The authors have examined Chlamydomonas for such a repair system. This is the first report of a search for O/sup 6/meG repair in a plant system. O/sup 6/meG repair was examined on three levels: in vivo removal of O/sup 6/meG, inducible repair of O/sup 6/meG, the presence of O/sup 6/MGT activity in cellular extracts. They observed no obvious removal of O/sup 6/meG from cellular DNA at various times (up to 30 hours) after treatment of cells with MNNG. The authors were unable to detect any inducible repair of O/sup 6/meG upon pretreatment of cells with sublethal doses of MNNG. Finally, they observed no apparent O/sup 6/MGT activity in cell-free extracts prepared two different ways following the protocols used in E. coli and in rat liver. These results suggest Chlamydomonas apparently lacks a repair mechanism for O/sup 6/meG.

  1. Spectral and kinetic analysis of the energy coupling in the PS I-LHC I supercomplex from the green alga Chlamydomonas reinhardtii at 77 K.

    PubMed

    Melkozernov, Alexander N; Kargul, Joanna; Lin, Su; Barber, James; Blankenship, Robert E

    2005-11-01

    Energy transfer processes in the chlorophyll antenna of the PS I-LHCI supercomplexes from the green alga Chlamydomonas reinhardtii have been studied at 77 K using transient absorption spectroscopy with multicolor excitation in the 640-670 nm region. Comparison of the kinetic data obtained at low and room temperatures indicates that the slow approximately approximately 100 ps excitation equilibration phase that is characteristic of energy coupling of the LHCI peripheral antenna to the PS I core at physiological temperatures (Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2004) J Phys Chem B 108: 10547-10555) is not observed in the excitation dynamics of the PS I-LHCI supercomplex at 77 K. This suggests that at low temperatures the peripheral antenna is energetically uncoupled from the PS I core antenna. Under these conditions the observed kinetic phases on the time scales from subpicoseconds to tens of picoseconds represent the superposition of the processes occurring independently in the PS I core antenna and the Chl a/b containing LHCI antenna. In the PS I-LHCI supercomplex with two uncoupled antennas the excitation is channeled to the excitation sinks formed at low temperature by clusters of red pigments. A better spectral resolution of the transient absorption spectra at 77 K results in detection of two DeltaA bands originating from the rise of photobleaching on the picosecond time scale of two clearly distinguished pools of low energy absorbing Chls in the PS I-LHCI supercomplex. The first pool of low energy pigments absorbing at 687 nm is likely to originate from the red pigments in the LHCI where the Lhca1 protein is most abundant. The second pool at 697 nm is suggested to result either from the structural interaction of the LHCI and the PS I core or from other Lhca proteins in the antenna. The kinetic data are discussed based on recent structural models of the PS I-LHCI. It is proposed that the uncoupling of pigment pools may be a control

  2. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.

    PubMed

    Nagy, Valéria; Vidal-Meireles, André; Tengölics, Roland; Rákhely, Gábor; Garab, Győző; Kovács, László; Tóth, Szilvia Z

    2016-07-01

    In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation. PMID:26714836

  3. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.

    PubMed

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-07-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([(13)C(6)]arginine/[(12)C(6)]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  4. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.

    PubMed

    Liu, Bensheng; Vieler, Astrid; Li, Chao; Jones, A Daniel; Benning, Christoph

    2013-10-01

    Triacylglycerols (TAGs) from microalgae can serve as feedstock for the production of biofuels. To gain a comprehensive understanding of TAG metabolism in algae through genetic and molecular approaches, and to improve algal biofuel production, efficient and quantitative phenotyping methods focusing on TAGs are required. Towards this end, a facile ultrahigh performance liquid chromatography-mass spectrometry protocol was developed for TAG profiling, achieving identification and quantification of intact TAG molecular species in two algae. TAG profiling was performed in Chlamydomonas reinhardtii and Nannochloropsis oceanica grown in nitrogen (N)-replete or N-depleted medium. For the quantification of algal TAGs and fatty acids, two sets of internal standards were developed by taking advantage of the presence of pheophytin and specific fatty acids in algal samples. Comparison of algal TAG levels was simplified by using these internal standards for TAG analysis, paving the way for high-throughput mutant screening. PMID:23948268

  5. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch.

    PubMed

    Liguori, Nicoletta; Roy, Laura M; Opacic, Milena; Durand, Grégory; Croce, Roberta

    2013-12-11

    Feedback mechanisms that dissipate excess photoexcitations in light-harvesting complexes (LHCs) are necessary to avoid detrimental oxidative stress in most photosynthetic eukaryotes. Here we demonstrate the unique ability of LHCSR, a stress-related LHC from the model organism Chlamydomonas reinhardtii, to sense pH variations, reversibly tuning its conformation from a light-harvesting state to a dissipative one. This conformational change is induced exclusively by the acidification of the environment, and the magnitude of quenching is correlated to the degree of acidification of the environment. We show that this ability to respond to different pH values is missing in the related major LHCII, despite high structural homology. Via mutagenesis and spectroscopic characterization, we show that LHCSR's uniqueness relies on its peculiar C-terminus subdomain, which acts as a sensor of the lumenal pH, able to tune the quenching level of the complex.

  6. Genetic tools and techniques for Chlamydomonas reinhardtii.

    PubMed

    Mussgnug, Jan H

    2015-07-01

    The development of tools has always been a major driving force for the advancement of science. Optical microscopes were the first instruments that allowed discovery and descriptive studies of the subcellular features of microorganisms. Although optical and electron microscopes remained at the forefront of microbiological research tools since their inventions, the advent of molecular genetics brought about questions which had to be addressed with new "genetic tools". The unicellular green microalgal genus Chlamydomonas, especially the most prominent species C. reinhardtii, has become a frequently used model organism for many diverse fields of research and molecular genetic analyses of C. reinhardtii, as well as the available genetic tools and techniques, have become increasingly sophisticated throughout the last decades. The aim of this review is to provide an overview of the molecular key features of C. reinhardtii and summarize the progress related to the development of tools and techniques for genetic engineering of this organism, from pioneering DNA transformation experiments to state-of-the-art techniques for targeted nuclear genome editing and high-throughput screening approaches.

  7. UV-B Perception and Acclimation in Chlamydomonas reinhardtii.

    PubMed

    Tilbrook, Kimberley; Dubois, Marine; Crocco, Carlos D; Yin, Ruohe; Chappuis, Richard; Allorent, Guillaume; Schmid-Siegert, Emanuel; Goldschmidt-Clermont, Michel; Ulm, Roman

    2016-04-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection.

  8. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.

  9. Activation of Autophagy by Metals in Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Martín, Marta; Blaby-Haas, Crysten E.; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K.; Merchant, Sabeeha S.

    2015-01-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  10. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  11. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features.

    PubMed

    Terashima, Mia; Specht, Michael; Hippler, Michael

    2011-06-01

    The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.

  12. Individual Flagellar Waveform Affects Collective Behavior of Chlamydomonas reinhardtii.

    PubMed

    Kage, Azusa; Mogami, Yoshihiro

    2015-08-01

    Bioconvection is a form of collective motion that occurs spontaneously in the suspension of swimming microorganisms. In a previous study, we quantitatively described the "pattern transition," a phase transition phenomenon that so far has exclusively been observed in bioconvection of the unicellular green alga Chlamydomonas. We suggested that the transition could be induced by changes in the balance between the gravitational and shear-induced torques, both of which act to determine the orientation of the organism in the shear flow. As both of the torques should be affected by the geometry of the Chlamydomonas cell, alteration in the flagellar waveform might change the extent of torque generation by altering overall geometry of the cell. Based on this working hypothesis, we examined bioconvection behavior of two flagellar mutants of Chlamydomonas reinhardtii, ida1 and oda2, making reference to the wild type. Flagella of ida1 beat with an abnormal waveform, while flagella of oda2 show a normal waveform but lower beat frequency. As a result, both mutants had swimming speed of less than 50% of the wild type. ida1 formed bioconvection patterns with smaller spacing than those of wild type and oda2. Two-axis view revealed the periodic movement of the settling blobs of ida1, while oda2 showed qualitatively similar behavior to that of wild type. Unexpectedly, ida1 showed stronger negative gravitaxis than did wild type, while oda2 showed relatively weak gravitaxis. These findings suggest that flagellar waveform, not swimming speed or beat frequency, strongly affect bioconvection behavior in C. reinhardtii.

  13. Individual Flagellar Waveform Affects Collective Behavior of Chlamydomonas reinhardtii.

    PubMed

    Kage, Azusa; Mogami, Yoshihiro

    2015-08-01

    Bioconvection is a form of collective motion that occurs spontaneously in the suspension of swimming microorganisms. In a previous study, we quantitatively described the "pattern transition," a phase transition phenomenon that so far has exclusively been observed in bioconvection of the unicellular green alga Chlamydomonas. We suggested that the transition could be induced by changes in the balance between the gravitational and shear-induced torques, both of which act to determine the orientation of the organism in the shear flow. As both of the torques should be affected by the geometry of the Chlamydomonas cell, alteration in the flagellar waveform might change the extent of torque generation by altering overall geometry of the cell. Based on this working hypothesis, we examined bioconvection behavior of two flagellar mutants of Chlamydomonas reinhardtii, ida1 and oda2, making reference to the wild type. Flagella of ida1 beat with an abnormal waveform, while flagella of oda2 show a normal waveform but lower beat frequency. As a result, both mutants had swimming speed of less than 50% of the wild type. ida1 formed bioconvection patterns with smaller spacing than those of wild type and oda2. Two-axis view revealed the periodic movement of the settling blobs of ida1, while oda2 showed qualitatively similar behavior to that of wild type. Unexpectedly, ida1 showed stronger negative gravitaxis than did wild type, while oda2 showed relatively weak gravitaxis. These findings suggest that flagellar waveform, not swimming speed or beat frequency, strongly affect bioconvection behavior in C. reinhardtii. PMID:26245228

  14. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds.

  15. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  16. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii.

    PubMed

    Deng, Xiaodong; Cai, Jiajia; Li, Yajun; Fei, Xiaowen

    2014-11-01

    The regulation of lipid biosynthesis is important in photosynthetic eukaryotic cells. This regulation is facilitated by the direct synthesis of fatty acids and triacylglycerol (TAG), and by other controls of the main carbon metabolic pathway. In this study, knockdown of the mRNA expression of the Chlamydomonas phosphoenolpyruvate carboxylase isoform 1 (CrPEPC1) gene by RNA interference increased TAG level by 20 % but decreased PEPC activities in the corresponding transgenic algae by 39-50 %. The decrease in CrPEPC1 expression increased the expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, CrPEPC1 over-expression decreased TAG level by 37 % and increased PEPC activities by 157-184 %. These observations suggest that the lipid content of algal cells can be controlled by regulating the CrPEPC1 gene. PMID:24966045

  17. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    PubMed

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  18. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    DOE PAGES

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; Bryant, Donald A.; Peters, John W.

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  19. Successful expression of heterologous egfp gene in the mitochondria of a photosynthetic eukaryote Chlamydomonas reinhardtii.

    PubMed

    Hu, Zhangli; Zhao, Zhonglin; Wu, Zhihua; Fan, Zhun; Chen, Jun; Wu, Jinxia; Li, Jiancheng

    2011-09-01

    The efficient expression of exogenous gene in mitochondria of photosynthetic organism has been an insurmountable problem. In this study, the pBsLPNCG was constructed by inserting the egfp gene into a site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA of Chlamydomonas reinhardtii CC-124 and introduced into the mitochondria of respiratory deficient dum-1 mutation of C. reinhardtii CC-2654. Sequencing and DNA Southern analyses revealed that egfp gene had been integrated into the mitochondrial genome of transgenic algae as expected and no other copy of egfp existed in their nucleic genome. Both the fluorescence detection and Western blot analysis confirmed the presence of eGFP protein in the transgenic algae; it indicated that the egfp gene was successfully expressed in the mitochondria of C. reinhardtii. PMID:21664493

  20. Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii

    PubMed Central

    2013-01-01

    Background The regulation of lipid biosynthesis is essential in photosynthetic eukaryotic cells. This regulation occurs during the direct synthesis of fatty acids and triacylglycerols (TAGs), as well as during other controlling processes in the main carbon metabolic pathway. Results In this study, the mRNA levels of Chlamydomonas citrate synthase (CrCIS) were found to decrease under nitrogen-limited conditions, which suggests suppressed gene expression. Gene silencing by RNA interference (RNAi) was conducted to determine whether CrCIS suppression affected the carbon flux in TAG biosynthesis. Results showed that the TAG level increased by 169.5%, whereas the CrCIS activities in the corresponding transgenic algae decreased by 16.7% to 37.7%. Moreover, the decrease in CrCIS expression led to the increased expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, overexpression of CrCIS gene decreased the TAG level by 45% but increased CrCIS activity by 209% to 266% in transgenic algae. Conclusions The regulation of CrCIS gene can indirectly control the lipid content of algal cells. Our findings propose that increasing oil by suppressing CrCIS expression in microalgae is feasible. PMID:24373252

  1. A photorespiratory mutant of Chlamydomonas reinhardtii

    SciTech Connect

    Suzuki, K.; Marek, L.F.; Spalding, M.H. )

    1990-05-01

    A mutant strain of Chlamydomonas reinhardtii, designated 18-7F, has been isolated and characterized. 18-7F requires a high CO{sub 2} concentration for photoautrophic growth in spite of the apparent induction of a functional CO{sub 2} concentrating mechanism in air-adapted cells. In 2% O{sub 2} the photosynthetic characteristics of 18-7F and wild type are similar. In 21% O{sub 2}, photosynthetic O{sub 2} evolution is severely inhibited in the mutant by preillumination in limiting CO{sub 2}, although the apparent photosynthetic affinity for inorganic carbon is similar in preilluminated cells and in cells incubated in the dark prior to O{sub 2} evolution measurements. Net CO{sub 2} uptake is also inhibited when the cells are exposed to air (21% O{sub 2}, 0.035% CO{sub 2}, balance N{sub 2}) for longer than a few minutes. ({sup 14}C)Phosphoglycolate accumulates within 5 minutes of photosynthetic {sup 14}CO{sub 2} fixation in cells of 18-7F. Phosphoglycolate does not accumulate in wild type. Phosphoglycolate phosphatase activity in extracts from air-adapted cells of 18-7F is 10 to 20% of that in wild-type Chlamydomonas. The activity of phosphoglycolate phosphatase in heterozygous diploids is intermediate between that of homozygous mutant and wild-type diploids. It was concluded that the high-CO{sub 2} requiring phenotype in 18-7F results from a phosphoglycolate phosphatase deficiency. Genetic analyses indicate that this deficiency results from a single-gene, nuclear mutation. We have named the locus pgp-1.

  2. Nuclear transformation of Chlamydomonas reinhardtii with silicon carbide fibers

    SciTech Connect

    Dunahay, T.G. )

    1992-01-01

    Efficient nuclear transformation of cell wall-deficient strains of the green alga Chlamydomonas reinhardtii can be accomplished by vortexing the cells in the presence of glass beads and polyethylene glycol (Kindle 1990 PNAS 87:1228). Intact (walled) cells can also be transformed using this protocol, but at very low efficiencies. Two recent reports have described the use of silicon carbide fibers to mediate DNA entry into plant suspension cells (Kaeppler et al. 1990 Plant Cell Rep. 9:414; Asano et al. 1991 Plant Sci. 79:247). The author has found that nuclear transformation efficiencies of walled cells of C. reinhardtii can be increased 3 to 10 fold by vortexing the cells in the presence of silicon carbide fibers and PEG. Using a modification of the glass bead transformation procedure, the wild-type nitrate reductase structural gene was used to complement a NR-deficient mutant of C. reinhardtii, nit-1-305. The transformation efficiency increased with longer vortexing times, although the absolute number of transformants varied between experiments, ranging from 10 to 40 transformants per 10[sup 7] cells. In contrast to vortexing with glass beads, cell viability was very high, with greater than 80% cell survival even after vortexing for 10 minutes. Neither cell death nor transformation efficiency increased when cell wall-deficient mutants (cw15 nit-1-305) were used as compared to intact cells. Experiments are in progress to test the applicability of silicon carbide-mediated transformation to other algal strains for which cell wall mutants or protoplasting procedures are unavailabile.

  3. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii.

    PubMed

    Bräutigam, Anja; Schaumlöffel, Dirk; Preud'homme, Hugues; Thondorf, Iris; Wesenberg, Dirk

    2011-12-01

    Chlamydomonas reinhardtii is a common model organism for investigation of metal stress. This green alga produces phytochelatins in the presence of metal ions. The influence of cadmium is of main interest, because it is a strong activator of phytochelatin synthase. Cell wall bound and intracellular cadmium content was determined after exposition to 70 µm CdCl(2), showing the main portion of the metal outside the cell. Nevertheless, imported cadmium was sufficient to cause significant changes in thiolpeptide metabolism and its transcriptional regulation. Modern analytical approaches enable new insights into phytochelatin (PC) distribution. A new rapid and precise UPLC-MS method allowed high-throughput PC quantification in algal samples after 1, 4, 24 and 48 h cadmium stress. Initially, canonic PCs were synthesized in C. reinhardtii during cadmium exposition, but afterwards CysPCs became the major thiolpeptides. Thus, after 48 h the concentration of the PC-isoforms CysPC(2-3) and CysGSH attained between 105 and 199 nmol g(-1) fresh weight (FW), whereas the PC(2-3) concentrations were only 15 nmol g(-1) FW. The relative quantification of γ-glutamyl transpeptidase (γ-GT) mRNA suggests the generation of CysPCs by glutamate cleavage from canonic PCs by γ-GT. Furthermore, a homology model of C. reinhardtii phytochelatin synthase was constructed to verify the use of crystal structures from Anabaena sp. phytochelatin synthase (PCS) for docking studies with canonical PCs and CysPCs. From the difference in energy scores, we hypothesize that CysPC may prevent the synthesis of canonical PCs by blocking the binding pocket. Finally, possible physiological reasons for the high abundance of CysPC compared with their canonic precursors are discussed.

  4. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii.

    PubMed

    Gille, Andrea; Trautmann, Andreas; Posten, Clemens; Briviba, Karlis

    2015-08-01

    Microalgae can contribute to a balanced diet because of their composition. Beside numerous essential nutrients, carotenoids are in the focus for food applications. The bioavailability of carotenoids from photoautotrophic-cultivated Chlorella vulgaris (C. vulgaris) and Chlamydomonas reinhardtii (C. reinhardtii) was compared. An in vitro digestion model was used to investigate carotenoid bioaccessibility. Furthermore, the effect of sonication on bioaccessibility was assessed. Lutein was the main carotenoid in both species. C. reinhardtii showed higher amounts of lutein and β-carotene than C. vulgaris. In contrast to C. reinhardtii, no β-carotene and only 7% of lutein were bioaccessible in nonsonicated C. vulgaris. Sonication increased the bioaccessibility of carotenoids from C. vulgaris to a level comparable with C. reinhardtii (β-carotene: ≥ 10%; lutein: ≥ 15%). Thus, C. reinhardtii represents a good carotenoid source for potential use in foods without processing, while the application of processing methods, like sonication, is necessary for C. vulgaris. PMID:27146695

  5. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors.

    PubMed

    Pugliara, Alessandro; Makasheva, Kremena; Despax, Bernard; Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice; Sancho, Maria Carmen; Navarro, Enrique; Echegoyen, Yolanda; Bonafos, Caroline

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. PMID:26953143

  6. Studies on flagellar shortening in Chlamydomonas reinhardtii

    SciTech Connect

    Cherniack, J.

    1985-01-01

    Flagellar shortening of Chlamydomonas reinhardtii was promoted by sodium chloride, pyrophosphate (sodium, potassium and ammonium salts), EDTA and EGTA, succinate, citrate and oxalate (sodium salts), caffeine and aminophylline. Removal of calcium from the medium potentiated the effects of these agents in inducing shortening. Investigations of the release of phosphorylated compounds to the medium during pyrophosphate-induced flagellar shortening of cells pre-labelled with /sup 32/P, revealed an as yet unidentified /sup 32/P-labelled compound with distinct chromatographic properties. Chromatography and electrophoresis indicates that it is a small, highly polar molecule with a high charge to mass ratio, containing thermo- and acid-labile phosphate linkages. Investigations showed of the release of /sup 35/S-labelled protein to the medium from cells pre-labelled with /sup 35/S-sulfate showed that flagellated cells released two prominent polypeptides which comigrated with ..cap alpha..- and ..beta..-flagellar tubulin on SDS polyacrylamide gel electrophoresis, while deflagellated cells did not.

  7. Assembly of the Light-Harvesting Chlorophyll Antenna in the Green Alga Chlamydomonas reinhardtii Requires Expression of the TLA2-CpFTSY Gene1[C][W][OA

    PubMed Central

    Kirst, Henning; García-Cerdán, Jose Gines; Zurbriggen, Andreas; Melis, Anastasios

    2012-01-01

    The truncated light-harvesting antenna2 (tla2) mutant of Chlamydomonas reinhardtii showed a lighter-green phenotype, had a lower chlorophyll (Chl) per-cell content, and higher Chl a/b ratio than corresponding wild-type strains. Physiological analyses revealed a higher intensity for the saturation of photosynthesis and greater Pmax values in the tla2 mutant than in the wild type. Biochemical analyses showed that the tla2 strain was deficient in the Chl a-b light-harvesting complex, and had a Chl antenna size of the photosystems that was only about 65% of that in the wild type. Molecular and genetic analyses showed a single plasmid insertion in the tla2 strain, causing a chromosomal DNA rearrangement and deletion/disruption of five nuclear genes. The TLA2 gene, causing the tla2 phenotype, was cloned by mapping the insertion site and upon complementation with each of the genes that were deleted. Successful complementation was achieved with the C. reinhardtii TLA2-CpFTSY gene, whose occurrence and function in green microalgae has not hitherto been investigated. Functional analysis showed that the nuclear-encoded and chloroplast-localized CrCpFTSY protein specifically operates in the assembly of the peripheral components of the Chl a-b light-harvesting antenna. In higher plants, a cpftsy null mutation inhibits assembly of both the light-harvesting complex and photosystem complexes, thus resulting in a seedling-lethal phenotype. The work shows that cpftsy deletion in green algae, but not in higher plants, can be employed to generate tla mutants. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions. PMID:22114096

  8. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria

    PubMed Central

    Xie, Bo; Bishop, Shawn; Stessman, Dan; Wright, David; Spalding, Martin H; Halverson, Larry J

    2013-01-01

    Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase (METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve. PMID:23486253

  9. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    PubMed Central

    2010-01-01

    Background Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much smaller than observed in

  10. Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins.

    PubMed

    Ciaccio, Chiara; Ocaña-Calahorro, Francisco; Droghetti, Enrica; Tundo, Grazia R; Sanz-Luque, Emanuel; Polticelli, Fabio; Visca, Paolo; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2015-01-01

    The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2- binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2- concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2-binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles. PMID:25993270

  11. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  12. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts

    PubMed Central

    Burgess, Steven J.; Taha, Hussein; Yeoman, Justin A.; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G.; Bialek, Wojciech; Murray, James W.; Nixon, Peter J.

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD+-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a ‘lactate valve’ for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  13. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.

    PubMed

    Burgess, Steven J; Taha, Hussein; Yeoman, Justin A; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G; Bialek, Wojciech; Murray, James W; Nixon, Peter J

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm.

  14. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.

    PubMed

    Burgess, Steven J; Taha, Hussein; Yeoman, Justin A; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G; Bialek, Wojciech; Murray, James W; Nixon, Peter J

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  15. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  16. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.

    PubMed

    Davis, Maria C; Fiehn, Oliver; Durnford, Dion G

    2013-07-01

    There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress.

  17. Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion

    PubMed Central

    Min, Seul Ki; Yoon, Gwang Heum; Joo, Jung Hyun; Sim, Sang Jun; Shin, Hwa Sung

    2014-01-01

    Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid metabolism. C. reinhardtii showed a prolonged G1 phase with an extended total cell cycle time, and upregulated Mat3 regulated a cell size and cell cycle. Additionally, increased TAG compensated for the loss of cell mass. Overall, this study suggest that cell biology that requires direct membrane distortion can be realized using this system, and the implication of cell cycle with Mat3 expression of C. reinhardtii was first demonstrated. Finally, membrane distortion can be an attractive inducer for biodiesel production since it is reliable and robust. PMID:24728350

  18. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus.

    PubMed

    Hu, Changwei; Luo, Qi; Huang, Qingguo

    2014-05-01

    As a persistent bioaccumulative compound, perfluorooctanoic acid (PFOA) is found in various ecosystems and receives growing attention. The acute toxicity of PFOA was tested on 2 freshwater microalgae, Chlamydomonas reinhardtii and Scenedesmus obliquus. The 96-h concentration for 50% of maximal effect (EC50) values were measured, physiological responses of the algae were investigated, and uptake of PFOA by the algae was quantified. The EC50 values for C. reinhardtii and S. obliquus were 51.9 ± 1.0 mg/L and 44.0 ± 1.5 mg/L PFOA, respectively. After 8-d exposure to PFOA ranging from 10 mg/L to 40 mg/L, the growth of C. reinhardtii was significantly inhibited, whereas that of S. obliquus was only slightly suppressed. Increases in malonaldehyde and proline levels were observed in the 2 algae when exposed to PFOA at certain concentrations, for instance, 20 mg/L and 40 mg/L, which is indicative of the trigger of a defensive mechanism. The percentage of PFOA that was adsorbed by the algae after 8-d exposure at a dosage between 5 mg/L and 20 mg/L ranged from 5.5% to 7.5%, and the uptake of PFOA by the algae exceeded 10%. PMID:24464740

  19. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes.

    PubMed

    Vlcek, Daniel; Sevcovicová, Andrea; Sviezená, Barbara; Gálová, Eliska; Miadoková, Eva

    2008-01-01

    The green alga Chlamydomonas reinhardtii is a convenient model organism for the study of basic biological processes, including DNA repair investigations. This review is focused on the studies of DNA repair pathways in C. reinhardtii. Emphasis is given to the connection of DNA repair with other cellular functions, namely the regulation of the cell cycle. Comparison with the results of repair investigations that are already available revealed the presence of all basic repair pathways in C. reinhardtii as well as special features characteristic of this alga. Among others, the involvement of UVSE1 gene in recombinational repair and uniparental inheritance of chloroplast genome, the specific role of TRXH1 gene in strand break repair, the requirement of PHR1 gene for full activity of PHR2 gene, or encoding of two excision repair proteins by the single REX1 gene. Contrary to yeast, mammals and higher plants, C. reinhardtii does not appear to contain the ortholog of RAD6 gene, which plays an important role in DNA translesion synthesis and mutagenesis. Completed genome sequences will be a basis for molecular analyses allowing to explain the differences that have been observed in DNA repair of this alga in comparison with other model organisms.

  20. Metabolism of D-lactate and structurally related organic acids in Chlamydomonas reinhardtii

    SciTech Connect

    Husic, D.W.

    1986-01-01

    During the initial minutes of anaerobiosis, /sup 14/C-labeled D-lactate, derived from the photosynthetic sugar phosphate pool, accumulated in the unicellular green alga, Chlamydomonas reinhardtii. The production of the D-isomer of lactate by algae is in contrast to plant and mammalian cells in which L-lactate is formed. After initial lactate formation, Chlamydomonas exhibits a mixed-acid type fermentation, thereby avoiding lactate accumulation and enabling the cells to tolerate extended periods of anaerobiosis. A pyruvate reductase which catalyzes the formation of D-lactate in Chlamydomonas was partially purified and characterized. Lactate produced anaerobically was metabolized only when Chlamydomonas cells were returned to aerobic conditions, and reoxidation of the D-lactate was apparently catalyzed by a mitochondrial membrane-bound dehydrogenase, rather than by the soluble pyruvate reductase. Mutants of Chlamydomonas, deficient in mitochondrial respiration, were used to demonstrate that lactate metabolism was linked to the mitochondrial electron transport chain. In addition, the oxidation of glycolate, a structural analog of lactate, was also linked to mitochondrial electron transport in vivo.

  1. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture.

    PubMed

    Wang, Yingjun; Duanmu, Deqiang; Spalding, Martin H

    2011-09-01

    Many microalgae are capable of acclimating to CO(2) limited environments by operating a CO(2) concentrating mechanism (CCM), which is driven by various energy-coupled inorganic carbon (Ci; CO(2) and HCO(3)(-)) uptake systems. Chlamydomonas reinhardtii (hereafter, Chlamydomonas), a versatile genetic model organism, has been used for several decades to exemplify the active Ci transport in eukaryotic algae, but only recently have many molecular details behind these Ci uptake systems emerged. Recent advances in genetic and molecular approaches, combined with the genome sequencing of Chlamydomonas and several other eukaryotic algae have unraveled some unique characteristics associated with the Ci uptake mechanism and the Ci-recapture system in eukaryotic microalgae. Several good candidate genes for Ci transporters in Chlamydomonas have been identified, and a few specific gene products have been linked with the Ci uptake systems associated with the different acclimation states. This review will focus on the latest studies on characterization of functional components involved in the Ci uptake and the Ci-recapture in Chlamydomonas.

  2. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii sustainable over 2 weeks with the original cell culture without supply of fresh cells nor exchange of the whole culture medium.

    PubMed

    Yagi, Takafumi; Yamashita, Kyohei; Okada, Norihide; Isono, Takumi; Momose, Daisuke; Mineki, Shigeru; Tokunaga, Eiji

    2016-07-01

    Unicellular green algae Chlamydomonas reinhardtii are known to make hydrogen photoproduction under the anaerobic condition with water molecules as the hydrogen source. Since the hydrogen photoproduction occurs for a cell to circumvent crisis of its survival, it is only temporary. It is a challenge to realize persistent hydrogen production because the cells must withstand stressful conditions to survive with alternation of generations in the cell culture. In this paper, we have found a simple and cost-effective method to sustain the hydrogen production over 14 days in the original culture, without supply of fresh cells nor exchange of the culture medium. This is achieved for the cells under hydrogen production in a sulfur-deprived culture solution on the {anaerobic, intense light} condition in a desiccator, by periodically providing a short period of the recovery time (2 h) with a small amount of TAP(+S) supplied outside of the desiccator. As this operation is repeated, the response time of transition into hydrogen production (preparation time) is shortened and the rate of hydrogen production (build up time) is increased. The optimum states of these properties favorable to the hydrogen production are attained in a few days and stably sustained for more than 10 days. Since generations are alternated during this consecutive hydrogen production experiment, it is suggested that the improved hydrogen production properties are inherited to next generations without genetic mutation. The properties are reset only when the cells are placed on the {sulfur-sufficient, aerobic, moderate light} conditions for a long time (more than 1 day at least). PMID:27083446

  3. [Ultrastructural organization and composition of carotenoids in the eyespot in the mutant Chlamydomonas reinhardtii].

    PubMed

    Ladygin, V G; Semenova, G A

    2014-01-01

    Biogenesis of the ultrastructure of the eyespot in the chloroplasts of unicellular green algae Chlamydomonas reinhardtii has been studied. We have found that the development of the structure of the eyespot correlates with the accumulation of carotenoids. Depending on their accumulation, the eyespots form from 1 to 4 lines of lipid-carotenoid globules. It has been shown that only carotenes are accumulated in the globules of the eyespots. We first have found that the composition of carotenes in the eyespots of the mutants may vary due to the changes in their composition in the membranes of chloroplasts. PMID:25509143

  4. Protocol: methodology for chromatin immunoprecipitation (ChIP) in Chlamydomonas reinhardtii

    PubMed Central

    2011-01-01

    We report on a detailed chromatin immunoprecipitation (ChIP) protocol for the unicellular green alga Chlamydomonas reinhardtii. The protocol is suitable for the analysis of nucleosome occupancy, histone modifications and transcription factor binding sites at the level of mononucleosomes for targeted and genome-wide studies. We describe the optimization of conditions for crosslinking, chromatin fragmentation and antibody titer determination and provide recommendations and an example for the normalization of ChIP results as determined by real-time PCR. PMID:22050920

  5. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  6. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  7. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    PubMed

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. PMID:22883605

  8. The sac Mutants of Chlamydomonas reinhardtii Reveal Transcriptional and Posttranscriptional Control of Cysteine Biosynthesis1

    PubMed Central

    Ravina, Cristina G.; Chang, Chwenn-In; Tsakraklides, George P.; McDermott, Jeffery P.; Vega, Jose M.; Leustek, Thomas; Gotor, Cecilia; Davies, John P.

    2002-01-01

    Algae and vascular plants are cysteine (Cys) prototrophs. They are able to import, reduce, and assimilate sulfate into Cys, methionine, and other organic sulfur-containing compounds. Characterization of genes encoding the enzymes required for Cys biosynthesis from the unicellular green alga Chlamydomonas reinhardtii reveals that transcriptional and posttranscriptional mechanisms regulate the pathway. The derived amino acid sequences of the C. reinhardtii genes encoding 5′-adenylylsulfate (APS) reductase and serine (Ser) acetyltransferase are orthologous to sequences from vascular plants. The Cys biosynthetic pathway of C. reinhardtii is regulated by sulfate availability. The steady-state level of transcripts and activity of ATP sulfurylase, APS reductase, Ser acetyltransferase, and O-acetyl-Ser (thiol) lyase increase when cells are deprived of sulfate. The sac1 mutation, which impairs C. reinhardtii ability to acclimate to sulfur-deficient conditions, prevents the increase in accumulation of the transcripts encoding these enzymes and also prevents the increase in activity of all the enzymes except APS reductase. The sac2 mutation, which does not affect accumulation of APS reductase transcripts, blocks the increase in APS reductase activity. These results suggest that APS reductase activity is regulated posttranscriptionally in a SAC2-dependent process. PMID:12481091

  9. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host

    PubMed Central

    Scaife, Mark A; Nguyen, Ginnie TDT; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-01-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. Significance Statement Chlamydomonas reinhardtii offers potential as a host for the production of high value compounds for industrial biotechnology. Synthetic biology provides a mechanism to generate generic, well characterised tools for application in the rational genetic manipulation of organisms: if synthetic biology principles were adopted for manipulation of C. reinhardtii, development of this microalga as an industrial biotechnology platform would be expedited. PMID:25641561

  10. Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii

    SciTech Connect

    Howe, G.; Merchant, S. )

    1992-01-01

    In this study, the authors have addressed the capacity of the green alga Chlamydomonas reinhardtii to produce metal-binding peptides in response to stress induced by the heavy metals Cd{sup 2+}, Hg{sup 2+}, and Ag{sup +}. Cells cultured in the presence of sublethal concentrations of Cd{sup 2+} synthesized and accumulated oligopeptides consisting solely of glutamic acid, cysteine, and glycine in an average ratio of 3:3:1. Cadmium-induced peptides were isolated in their native form as higher molecular weight peptide-metal complexes with an apparent molecular weight of approximately 6.5 {times} 10{sup 3}. The isolated complex bound cadmium (as evidenced by absorption spectroscopy) and sequestered (with a stoichiometry of 0.7 moles of cadmium per mole of cysteine) up to 70% of the total cadmium found in extracts of cadmium-treated cells. In Hg{sup 2+}-treated cells, the principal thiol-containing compound induced by Hg{sup 2+} ion was glutathione. It is possible that glutathione functions in plant cells (as it does in animal cells) to detoxify heavy metals. Cells treated with Ag{sup +} ions also synthesized a sulfur-containing component with a charge to mass ratio similar to Cd{sup 2+}-induced peptides. But, in contrast to the results obtained using Cd{sup 2+} as an inducer, these molecules did not accumulate to significant levels in Ag{sup +}-treated cells. The presence of physiological concentrations of Cu{sup 2+} in the growth medium blocked the synthesis of the Ag{sup +}-inducible component(s) and rendered cells resistant to the toxic effects of Ag{sup +}, suggesting competition between Cu{sup 2+} and Ag{sup +} ions, possibly at the level of metal uptake.

  11. Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii.

    PubMed

    Kato, Naohiro; Dong, Trung; Bailey, Michael; Lum, Tony; Ingram, Drury

    2013-10-01

    Brefeldin A suppresses vesicle trafficking by inhibiting exchange of GDP for GTP in ADP-ribosylation factor. We report that brefeldin A suppresses mobilization of triacylglycerols in Chlamydomonas reinhardtii, a model organism of green microalgae. Analyses revealed that brefeldin A causes Chlamydomonas to form lipid droplets in which triacylglycerols accumulate in a dose-dependent manner. Pulse labeling experiment using fluorescent fatty acids suggested that brefeldin A inhibits the cells from degrading fatty acids. The experiment also revealed that the cells transiently form novel compartments that accumulate exogenously added fatty acids in the cytoplasm, designated fatty acid-induced microbodies (FAIMs). Brefeldin A up-regulates the formation of FAIMs, whereas nitrogen deprivation that up-regulates triacylglycerol synthesis in Chlamydomonas does not cause the cells to form FAIMs. These results underscore the role of the vesicle trafficking machinery in triacylglycerol metabolism in green microalgae.

  12. State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I.

    PubMed

    Ünlü, Caner; Drop, Bartlomiej; Croce, Roberta; van Amerongen, Herbert

    2014-03-01

    Plants and green algae optimize photosynthesis in changing light conditions by balancing the amount of light absorbed by photosystems I and II. These photosystems work in series to extract electrons from water and reduce NADP(+) to NADPH. Light-harvesting complexes (LHCs) are held responsible for maintaining the balance by moving from one photosystem to the other in a process called state transitions. In the green alga Chlamydomonas reinhardtii, a photosynthetic model organism, state transitions are thought to involve 80% of the LHCs. Here, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that, although LHCs indeed detach from photosystem II in state 2 conditions, only a fraction attaches to photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants.

  13. Identification and molecular characterization of a novel Chlamydomonas reinhardtii mutant defective in chlorophyll biosynthesis.

    PubMed

    Grovenstein, Phillip B; Wilson, Darryel A; Lennox, Cameron G; Smith, Katherine P; Contractor, Alisha A; Mincey, Jonathan L; Lankford, Kathryn D; Smith, Jacqueline M; Haye, Tashana C; Mitra, Mautusi

    2013-01-01

    The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg (2+) into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 (chli1-1) mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1-1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1-1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis in Chlamydomonas, which has never been studied before.

  14. Identification and molecular characterization of a novel Chlamydomonas reinhardtii mutant defective in chlorophyll biosynthesis

    PubMed Central

    Mitra, Mautusi

    2013-01-01

    The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg 2+ into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 (chli1-1) mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1-1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1-1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis in Chlamydomonas, which has never been studied before. PMID:24555064

  15. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.

    PubMed

    Kosourov, Sergey; Tsygankov, Anatoly; Seibert, Michael; Ghirardi, Maria L

    2002-06-30

    The green alga, Chlamydomonas reinhardtii, is capable of sustained H(2) photoproduction when grown under sulfur-deprived conditions. This phenomenon is a result of the partial deactivation of photosynthetic O(2)-evolution activity in response to sulfur deprivation. At these reduced rates of water-oxidation, oxidative respiration under continuous illumination can establish an anaerobic environment in the culture. After 10-15 hours of anaerobiosis, sulfur-deprived algal cells induce a reversible hydrogenase and start to evolve H(2) gas in the light. Using a computer-monitored photobioreactor system, we investigated the behavior of sulfur-deprived algae and found that: (1) the cultures transition through five consecutive phases: an aerobic phase, an O(2)-consumption phase, an anaerobic phase, a H(2)-production phase and a termination phase; (2) synchronization of cell division during pre-growth with 14:10 h light:dark cycles leads to earlier establishment of anaerobiosis in the cultures and to earlier onset of the H(2)-production phase; (3) re-addition of small quantities of sulfate (12.5-50 microM MgSO(4), final concentration) to either synchronized or unsynchronized cell suspensions results in an initial increase in culture density, a higher initial specific rate of H(2) production, an increase in the length of the H(2)-production phase, and an increase in the total amount of H(2) produced; and (4) increases in the culture optical density in the presence of 50 microM sulfate result in a decrease in the initial specific rates of H(2) production and in an earlier start of the H(2)-production phase with unsynchronized cells. We suggest that the effects of sulfur re-addition on H(2) production, up to an optimal concentration, are due to an increase in the residual water-oxidation activity of the algal cells. We also demonstrate that, in principle, cells synchronized by growth under light:dark cycles can be used in an outdoor H(2)-production system without loss of

  16. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  17. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  18. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii.

    PubMed

    Mittag, Maria; Wagner, Volker

    2003-05-01

    The green unicellular alga Chlamydomonas reinhardtii, also called 'green yeast', emerged in the past years as a model organism for specific scientific questions such as chloroplast biogenesis and function, the composition of the flagella including its basal apparatus, or the mechanism of the circadian clock. Sequencing of its chloroplast and mitochondrial genomes have already been completed and a first draft of its nuclear genome has also been released recently. In C. reinhardtii several circadian rhythms are physiologically well characterized, and one of them has even been shown to operate in outer space. Circadian expression patterns of nuclear and plastid genes have been studied. The mode of regulation of these genes occurs at the transcriptional level, although there is also evidence for posttranscriptional control. A clock-controlled, phylogenetically conserved RNA-binding protein was characterized in this alga, which interacts with several mRNAs that all contain a common cis-acting motif. Its function within the circadian system is currently under investigation. This review summarizes the current state of the knowledge about the circadian system in C. reinhardtii and points out its potential for future studies.

  19. The Chlamydomonas reinhardtii alternative oxidase 1 is regulated by heat stress.

    PubMed

    Zalutskaya, Zhanneta; Lapina, Tatiana; Ermilova, Elena

    2015-12-01

    The alternative oxidase (AOX) is a non-energy conserving terminal oxidase that has emerged as an important mitochondrial component of the cell stress responses. Although the most studied abiotic condition in relation to Chlamydomonas reinhardtii is high temperature, changes in AOX capacity of the alga were studied only under oxidative stress and cold. To examine whether elevated temperatures affected AOX1 expression, we applied quantitative real-time PCR and pharmaceutical approaches. In this work, we demonstrated a sharp increase in AOX1 transcript and protein abundance under heat stress. Furthermore, C. reinhardtii cells displayed a large increase in alternative respiration in response to high temperature. Feeding with the protein kinase inhibitor staurosporine strongly retarded the AOX1 transcription. Finally, the addition of the calcium chelator EGTA prevented heat-induced AOX1 expression. Together, our results imply that heat-inducible Ca(2+) influx and protein kinase(s) may mediate AOX1 expression at elevated temperatures. Characterization of heat-induced AOX1 regulation in the green alga C. reinhardtii provides a framework for a more complete understanding of the function of this conserved protein.

  20. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    PubMed

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach.

  1. Three light-inducible heat shock genes of Chlamydomonas reinhardtii.

    PubMed Central

    von Gromoff, E D; Treier, U; Beck, C F

    1989-01-01

    Genomic clones representing three Chlamydomonas reinhardtii genes homologous to the Drosophila hsp70 heat shock gene were isolated. The mRNAs of genes hsp68, hsp70, and hsp80 could be translated in vitro into proteins of Mr 68,000, 70,000, and 80,000, respectively. Transcription of these genes increased dramatically upon heat shock, and the corresponding mRNAs rapidly accumulated, reaching a peak at around 30 min after a shift to the elevated temperature. Light also induced the accumulation of the mRNAs encoded by these heat shock genes. A shift of dark-grown cells to light resulted in a drastic increase in mRNA levels, which reached a maximum at around 1 h after the shift. Thus, in Chlamydomonas, expression of hsp70-homologous heat shock genes appears to be regulated by thermal stress and light. Images PMID:2779571

  2. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii.

    PubMed

    Zalutskaya, Zhanneta; Kharatyan, Nina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    In all examined organisms that have the PII signal transduction machinery, PII coordinates the central C/N anabolic metabolism. In green algae and land plants, PII is localized in the chloroplast and controls the L-arginine biosynthetic pathway pathway. To elucidate additional functions of PII in the model photosynthetic organism Chlamydomonas reinhardtii (CrPII), we generated and analyzed four strains, in which PII was strongly under-expressed by artificial microRNA (GLB1-amiRNA strains). In response to nitrogen deficiency, Chlamydomonas produces triacylglycerols (TAGs) that are accumulated in lipid bodies (LB). Quantification of LBs by confocal microscopy in four GLB1-amiRNA strains showed that reduced PII levels resulted in over-accumulation of LBs compared to their parental strains. Moreover, knock-down of PII caused also an increase in the total TAG level. We propose that the larger yields of TAG-filled LBs in N-starved GLB1-amiRNA cells can be attributed to the strain's depleted PII level and their inability to properly control acetyl-CoA carboxylase activity (ACCase). Together, our results imply that PII in Chlamydomonas negatively controls TAG accumulation in LBs during acclimation to nitrogen starvation of the alga.

  3. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.

    PubMed

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-08-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. PMID:27329221

  4. A simple method for chloroplast transformation in Chlamydomonas reinhardtii.

    PubMed

    Ramesh, Vellupillai M; Bingham, Scott E; Webber, Andrew N

    2011-01-01

    Photosystem I (PSI) is a multisubunit pigment-protein complex that uses light energy to transfer electrons from plastocyanin to ferredoxin. Application of genetic engineering to photosynthetic reaction center proteins has led to a significant advancement in our understanding of primary electron transfer events and the role of the protein environment in modulating these processes. Chlamydomonas reinhardtii provides a system particularly amenable to analyze the structure-function relationship of Photosystem I. C. reinhardtii is also a particularly favorable organism for chloroplast transformation because it contains only a single chloroplast and grows heterotrophically when supplemented with acetate. Chlamydomonas has, therefore, served as a model organism for the development of chloroplast transformation procedures and the study of photosynthetic mutants generated using this method. Exogenous cloned cpDNA can be introduced into the chloroplast by using this biolistic gene gun method. DNA-coated tungsten or gold particles are bombarded onto cells. Upon its entry into chloroplasts, the transforming DNA is released from the particles and integrated into the chloroplast genome through homologous recombination. The most versatile chloroplast selectable marker is aminoglycoside adenyl transferase (aadA), which can be expressed in the chloroplast to confer resistance to spectinomycin or streptomycin. This article describes the procedures for chloroplast transformation.

  5. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii.

    PubMed

    Jiang, Wenzhi; Brueggeman, Andrew J; Horken, Kempton M; Plucinak, Thomas M; Weeks, Donald P

    2014-11-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms. Initial attempts to apply this technology to a model, the single-cell alga, Chlamydomonas reinhardtii, failed to yield cells containing edited genes. To determine if the Cas9 and single guide RNA (sgRNA) genes were functional in C. reinhardtii, we tested the ability of a codon-optimized Cas9 gene along with one of four different sgRNAs to cause targeted gene disruption during a 24-h period immediately following transformation. All three exogenously supplied gene targets as well as the endogenous FKB12 (rapamycin sensitivity) gene of C. reinhardtii displayed distinct Cas9/sgRNA-mediated target site modifications as determined by DNA sequencing of cloned PCR amplicons of the target site region. Success in transient expression of Cas9 and sgRNA genes contrasted with the recovery of only a single rapamycin-resistant colony bearing an appropriately modified FKB12 target site in 16 independent transformation experiments involving >10(9) cells. Failure to recover transformants with intact or expressed Cas9 genes following transformation with the Cas9 gene alone (or even with a gene encoding a Cas9 lacking nuclease activity) provided strong suggestive evidence for Cas9 toxicity when Cas9 is produced constitutively in C. reinhardtii. The present results provide compelling evidence that Cas9 and sgRNA genes function properly in C. reinhardtii to cause targeted gene modifications and point to the need for a focus on development of methods to properly stem Cas9 production and/or activity following gene editing.

  6. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    SciTech Connect

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  7. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation

    PubMed Central

    Yang, Dawei; Song, Donghui; Kind, Tobias; Ma, Yan; Hoefkens, Jens; Fiehn, Oliver

    2015-01-01

    Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation. PMID:26375463

  8. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.

    PubMed

    Wang, Ye; Cheng, Zhen Zhen; Chen, Xi; Zheng, Qi; Yang, Zhi Min

    2015-11-01

    Excess copper (Cu) in environment affects the growth and metabolism of plants and green algae. However, the molecular mechanism for regulating plant tolerance to excess Cu is not fully understood. Here, we report a gene CrGNAT enconding an acetyltransferase in Chlamydomonas reinhardtii and identified its role in regulating tolerance to Cu toxicity. Expression of CrGNAT was significantly induced by 75-400μM Cu. The top induction occurred at 100μM. Transgenic algae overexpressing CrGNAT (35S::CrGNAT) in C. reinhardtii showed high tolerance to excess Cu, with improved cell population, chlorophyll accumulation and photosynthesis efficiency, but with low degree of oxidation with regard to reduced hydrogen peroxide, lipid peroxides and non-protein thiol compounds. In contrast, CrGNAT knock-down lines with antisense led to sensitivity to Cu stress. 35S::CrGNAT algae accumulated more Cu and other metals (Zn, Fe, Cu, Mn and Mg) than wild-type, whereas the CrGNAT down-regulated algae (35S::AntiCrGNAT) had moderate levels of Cu and Mn, but no effects on Zn, Fe and Mg accumulation as compared to wild-type. The elevated metal absorption in CrGNAT overexpression algae implies that the metals can be removed from water media. Quantitative RT-PCR analysis revealed that expression of two genes encoding N-lysine histone methyltransferases was repressed in 35S::CrGNAT algae, suggesting that CrGNAT-regulated algal tolerance to Cu toxicity is likely associated with histone methylation and chromatin remodeling. The present work provided an example a basis to develop techniques for environmental restoration of metal-contaminated aquatic ecosystems. PMID:26475193

  9. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.

    PubMed

    Kosourov, Sergey; Patrusheva, Elena; Ghirardi, Maria L; Seibert, Michael; Tsygankov, Anatoly

    2007-03-10

    Continuous photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O(2) evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H(2) photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H(2) gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H(2) photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO(2) are required for the most rapid inactivation of photosystem II and the highest yield of H(2) gas production. Although, the presence of acetate in the system is not critical for the process, H(2) photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H(2) production, which in turn may have a positive impact on the economics of applied systems for H(2) production. PMID:17275940

  10. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs

    PubMed Central

    Valli, Adrian A.; Santos, Bruno A.C.M.; Hnatova, Silvia; Bassett, Andrew R.; Molnar, Attila; Chung, Betty Y.; Baulcombe, David C.

    2016-01-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species, Chlamydomonas reinhardtii. Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  11. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs.

    PubMed

    Valli, Adrian A; Santos, Bruno A C M; Hnatova, Silvia; Bassett, Andrew R; Molnar, Attila; Chung, Betty Y; Baulcombe, David C

    2016-04-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species,Chlamydomonas reinhardtii Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  12. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  13. Functional Genomics of Eukaryotic Photosynthesis Using Insertional Mutagenesis of Chlamydomonas reinhardtii1

    PubMed Central

    Dent, Rachel M.; Haglund, Cat M.; Chin, Brian L.; Kobayashi, Marilyn C.; Niyogi, Krishna K.

    2005-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and insertional mutants were selected in the dark on acetate-containing medium to recover light-sensitive and nonphotosynthetic mutants. The population of insertional mutants was subjected to a battery of primary and secondary phenotypic screens to identify photosynthesis-related mutants that were pigment deficient, light sensitive, nonphotosynthetic, or hypersensitive to reactive oxygen species. Approximately 9% of the insertional mutants exhibited 1 or more of these phenotypes. Molecular analysis showed that each mutant line contains an average of 1.4 insertions, and genetic analysis indicated that approximately 50% of the mutations are tagged by the transforming DNA. Flanking DNA was isolated from the mutants, and sequence data for the insertion sites in 50 mutants are presented and discussed. PMID:15653810

  14. The Purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features

    PubMed Central

    Derrien, Benoît; Majeran, Wojciech; Effantin, Grégory; Ebenezer, Joseph; Friso, Giulia; van Wijk, Klaas J.; Steven, Alasdair C.; Maurizi, Michael R.; Vallon, Olivier

    2012-01-01

    The ClpP peptidase is a major constituent of the proteolytic machinery of bacteria and organelles. The chloroplast ClpP complex is unusual, in that it associates a large number of subunits, one of which (ClpP1) is encoded in the chloroplast, the others in the nucleus. The complexity of these large hetero-oligomeric complexes has been a major difficulty in their overproduction and biochemical characterization. In this paper, we describe the purification of native chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii, using a strain that carries the Strep-tag II at the C-terminus of the ClpP1 subunit. Similar to land plants, the algal complex comprises active and inactive subunits (3 ClpP and 5 ClpR, respectively). Evidence is presented that a sub-complex can be produced by dissociation, comprising ClpP1 and ClpR1, 2, 3 and 4, similar to the ClpR-ring described in land plants. Our Chlamydomonas ClpP preparation also contains two ClpT subunits, ClpT3 and ClpT4, which like the land plant ClpT1 and ClpT2 show 2 Clp-N domains. ClpTs are believed to function in substrate binding and/or assembly of the two heptameric rings. Phylogenetic analysis indicates that ClpT subunits have appeared independently in Chlorophycean algae, in land plants and in dispersed cyanobacterial genomes. Negative staining electron microscopy shows that the Chlamydomonas complex retains the barrel-like shape of homo-oligomeric ClpPs, with 4 additional peripheral masses that we speculate represent either the additional IS1 domain of ClpP1 (a feature unique to algae) or ClpTs or extensions of ClpR subunits PMID:22772861

  15. The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features.

    PubMed

    Derrien, Benoît; Majeran, Wojciech; Effantin, Grégory; Ebenezer, Joseph; Friso, Giulia; van Wijk, Klaas J; Steven, Alasdair C; Maurizi, Michael R; Vallon, Olivier

    2012-09-01

    The ClpP peptidase is a major constituent of the proteolytic machinery of bacteria and organelles. The chloroplast ClpP complex is unusual, in that it associates a large number of subunits, one of which (ClpP1) is encoded in the chloroplast, the others in the nucleus. The complexity of these large hetero-oligomeric complexes has been a major difficulty in their overproduction and biochemical characterization. In this paper, we describe the purification of native chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii, using a strain that carries the Strep-tag II at the C-terminus of the ClpP1 subunit. Similar to land plants, the algal complex comprises active and inactive subunits (3 ClpP and 5 ClpR, respectively). Evidence is presented that a sub-complex can be produced by dissociation, comprising ClpP1 and ClpR1, 2, 3 and 4, similar to the ClpR-ring described in land plants. Our Chlamydomonas ClpP preparation also contains two ClpT subunits, ClpT3 and ClpT4, which like the land plant ClpT1 and ClpT2 show 2 Clp-N domains. ClpTs are believed to function in substrate binding and/or assembly of the two heptameric rings. Phylogenetic analysis indicates that ClpT subunits have appeared independently in Chlorophycean algae, in land plants and in dispersed cyanobacterial genomes. Negative staining electron microscopy shows that the Chlamydomonas complex retains the barrel-like shape of homo-oligomeric ClpPs, with 4 additional peripheral masses that we speculate represent either the additional IS1 domain of ClpP1 (a feature unique to algae) or ClpTs or extensions of ClpR subunits.

  16. Methanol-Promoted Lipid Remodelling during Cooling Sustains Cryopreservation Survival of Chlamydomonas reinhardtii.

    PubMed

    Yang, Duanpeng; Li, Weiqi

    2016-01-01

    Cryogenic treatments and cryoprotective agents (CPAs) determine the survival rate of organisms that undergo cryopreservation, but their mechanisms of operation have not yet been characterised adequately. In particular, the way in which membrane lipids respond to cryogenic treatments and CPAs is unknown. We developed comparative profiles of the changes in membrane lipids among cryogenic treatments and between the CPAs dimethyl sulfoxide (DMSO) and methanol (MeOH) for the green alga Chlamydomonas reinhardtii. We found that freezing in liquid nitrogen led to a dramatic degradation of lipids, and that thawing at warm temperature (35°C) induced lipid remodelling. DMSO did not protect membranes, but MeOH significantly attenuated lipid degradation. The presence of MeOH during cooling (from 25°C to -55°C at a rate of 1°C/min) sustained the lipid composition to the extent that membrane integrity was maintained; this phenomenon accounts for successful cryopreservation. An increase in monogalactosyldiacylglycerol and a decrease in diacylglycerol were the major changes in lipid composition associated with survival rate, but there was no transformation between these lipid classes. Phospholipase D-mediated phosphatidic acid was not involved in freezing-induced lipid metabolism in C. reinhardtii. Lipid unsaturation changed, and the patterns of change depended on the cryogenic treatment. Our results provide new insights into the cryopreservation of, and the lipid metabolism in, algae. PMID:26731741

  17. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    PubMed Central

    Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael

    2013-01-01

    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369

  18. [LIGHT-DEPENDENT SYNTHESIS OF CELL MEMBRANES IN THE Brc-1 MUTANT OF CHLAMYDOMONAS REINHARDTII].

    PubMed

    Semenova, G A; Chekunova, E M; Ladygin, V G

    2015-01-01

    The structural organization of cells of the Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii grown in the light and in the dark has been studied. The Brc-1 mutant contains the brc-1 mutation in the nucleus gene LTS3. In the light, all membrane structures in mutant cells form normally and are well developed. In the dark under heterotrophic conditions, the mutant cells grew and divided well, however, all its cell membranes: plasmalemma, tonoplast, mitochondrial membranes, membranes of the nucleus shell and chloroplast, thylakoids, and the membranes of dictiosomes of the Golgi apparatus were not detected. In the dark under heterotrophic conditions, mutant cells well grow and divide. It were shown that a short-term (1-10 min) exposure of Brc-1 mutant cells to light leads to the restoration of all above-mentioned membrane structures. Possible reasons for the alterations of membrane structures are discussed.

  19. Effects of a cationic PAMAM dendrimer on photosynthesis and ROS production of Chlamydomonas reinhardtii.

    PubMed

    Petit, Anne-Noëlle; Debenest, Timothée; Eullaffroy, Philippe; Gagné, François

    2012-05-01

    Poly(amidoamine) (PAMAM) dendrimers hold great promises for biomedicine. This study sought to examine the toxicity of generation 4 (G4) cationic PAMAM dendrimer to the green microalga, Chlamydomonas reinhardtii, using physiological and molecular biomarkers. Results revealed that the G4 dendrimer at 15 and 25 nM stimulated the photosynthetic process and the production of reactive oxygen species (ROS) in algae. However, the over-production of ROS did not induce the expression of antioxidant enzyme genes, catalase and glutathione peroxidase. In addition, genes encoding light-harvesting proteins (lhca and lhcb), a ferredoxin (fdx) and an oxygen-evolving enhancer protein (psb) involved in photosynthesis were repressed after treatment. Nevertheless, the expression of the lhcbm9 gene, encoding a major light harvesting polypeptide, was increased. These results suggest that the strong modulation of photosynthesis induced by the dendrimer could lead to elevated ROS levels in microalgae.

  20. [LIGHT-DEPENDENT SYNTHESIS OF CELL MEMBRANES IN THE Brc-1 MUTANT OF CHLAMYDOMONAS REINHARDTII].

    PubMed

    Semenova, G A; Chekunova, E M; Ladygin, V G

    2015-01-01

    The structural organization of cells of the Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii grown in the light and in the dark has been studied. The Brc-1 mutant contains the brc-1 mutation in the nucleus gene LTS3. In the light, all membrane structures in mutant cells form normally and are well developed. In the dark under heterotrophic conditions, the mutant cells grew and divided well, however, all its cell membranes: plasmalemma, tonoplast, mitochondrial membranes, membranes of the nucleus shell and chloroplast, thylakoids, and the membranes of dictiosomes of the Golgi apparatus were not detected. In the dark under heterotrophic conditions, mutant cells well grow and divide. It were shown that a short-term (1-10 min) exposure of Brc-1 mutant cells to light leads to the restoration of all above-mentioned membrane structures. Possible reasons for the alterations of membrane structures are discussed. PMID:26281212

  1. Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii.

    PubMed

    Long, Hai; Chang, Christopher H; King, Paul W; Ghirardi, Maria L; Kim, Kwiseon

    2008-10-01

    The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer. PMID:18621810

  2. Chlororespiration: An adaptation to nitrogen deficiency in Chlamydomonas reinhardtii

    SciTech Connect

    Peltier, G.; Schmidt, G.W. )

    1991-06-01

    When grown under nitrogen limitation, pronounced chlororespiratory activity develops together with an altered composition of thylakoid membranes in Chlamydomonas reinhardtii. Relative to control cultures, the flash-inhibited, chlororespiration-dependent O{sub 2} consumption signal increases 10-fold. Also augmented is the light-sensitive respiratory activity responsible of the Kok effect, reflecting competitive inhibition of chlororespiratory electron transport by photosystem I. Fluoresscence measurements show that the thylakoid plastoquinone pool is extensively reduced in dark-adapted, N-limited cells. Thylakoids of N-limited cells have reduced amounts of cytochrome b{sub 6}, cytochrome f, and light-harvesting complexes. However, thylakoid-bound NADH-PQ oxidoreductase, with major subunits of 51 kDa and 17 kDa, is increased 7-fold and two novel cytochromes of 34 and 12.5 kDa are highly abundant. Thus, components of photosynthetic and chlororespiratory electron transport pathways are differentially regulated by N availability.

  3. Isolation of intraflagellar transport particle proteins from Chlamydomonas reinhardtii.

    PubMed

    Richey, Elizabeth; Qin, Hongmin

    2013-01-01

    Cilia, the hair-like protrusions found on most eukaryotic cells, were once considered vestigial organelles. The recent renaissance of research in cilia arose from the discoveries of intraflagellar transport (IFT) and the involvement of IFT particle proteins in human diseases. Many IFT particle proteins have since been identified, and research on IFT particle complexes and their protein components continues to provide insight into the mechanism of IFT and the etiology of ciliopathies. In this chapter, we describe the methods of isolating IFT particles from the flagella of Chlamydomonas reinhardtii. Two methods, sucrose density gradient fractionation and immunoprecipitation, are explained in detail. Troubleshooting information is presented to illustrate the critical steps of the procedure to ensure successful implementation of these methods in individual labs.

  4. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.

    PubMed

    Roach, Thomas; Sedoud, Arezki; Krieger-Liszkay, Anja

    2013-10-01

    Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition.

  5. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains

    PubMed Central

    Rühle, Thilo; Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2008-01-01

    Background Sealed Chlamydomonas reinhardtii cultures evolve significant amounts of hydrogen gas under conditions of sulfur depletion. However, the eukaryotic green alga goes through drastic metabolic changes during this nutritional stress resulting in cell growth inhibition and eventually cell death. This study aimed at isolating C. reinhardtii transformants which produce hydrogen under normal growth conditions to allow a continuous hydrogen metabolism without the stressful impact of nutrient deprivation. Results To achieve a steady photobiological hydrogen production, a screening protocol was designed to identify C. reinhardtii DNA insertional mutagenesis transformants with an attenuated photosynthesis to respiration capacity ratio (P/R ratio). The screening protocol entails a new and fast method for mutant strain selection altered in their oxygen production/consumption balance. Out of 9000 transformants, four strains with P/R ratios varying from virtually zero to three were isolated. Strain apr1 was found to have a slightly higher respiration rate and a significantly lower photosynthesis rate than the wild type. Sealed cultures of apr1 became anaerobic in normal growth medium (TAP) under moderate light conditions and induced [FeFe]-hydrogenase activity, yet without significant hydrogen gas evolution. However, Calvin-Benson cycle inactivation of anaerobically adapted apr1 cells in the light led to a 2-3-fold higher in vivo hydrogen production than previously reported for the sulfur-deprived C. reinhardtii wild type. Conclusion Attenuated P/R capacity ratio in microalgal mutants constitutes a platform for achieving steady state photobiological hydrogen production. Using this platform, algal hydrogen metabolism can be analyzed without applying nutritional stress. Furthermore, these strains promise to be useful for biotechnological hydrogen generation, since high in vivo hydrogen production rates are achievable under normal growth conditions, when the photosynthesis

  6. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation.

    PubMed

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; Ng, Patrick; Khraiwesh, Basel; Jaiswal, Ashish; Jijakli, Kenan; Koussa, Joseph; Nelson, David R; Cai, Hong; Yang, Xinping; Chang, Roger L; Papin, Jason; Yu, Haiyuan; Balaji, Santhanam; Salehi-Ashtiani, Kourosh

    2016-07-19

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites. PMID:27357594

  7. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation.

    PubMed

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; Ng, Patrick; Khraiwesh, Basel; Jaiswal, Ashish; Jijakli, Kenan; Koussa, Joseph; Nelson, David R; Cai, Hong; Yang, Xinping; Chang, Roger L; Papin, Jason; Yu, Haiyuan; Balaji, Santhanam; Salehi-Ashtiani, Kourosh

    2016-07-19

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.

  8. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    PubMed Central

    2011-01-01

    Background Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro) and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro) SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver nanoparticles using C. reinhardtii as

  9. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.

    PubMed

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist.

  10. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.

    PubMed

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  11. Insight into Protein S-nitrosylation in Chlamydomonas reinhardtii

    PubMed Central

    Morisse, Samuel; Zaffagnini, Mirko; Gao, Xing-Huang

    2014-01-01

    Abstract Aims: Protein S-nitrosylation, a post-translational modification (PTM) consisting of the covalent binding of nitric oxide (NO) to a cysteine thiol moiety, plays a major role in cell signaling and is recognized to be involved in numerous physiological processes and diseases in mammals. The importance of nitrosylation in photosynthetic eukaryotes has been less studied. The aim of this study was to expand our knowledge on protein nitrosylation by performing a large-scale proteomic analysis of proteins undergoing nitrosylation in vivo in Chlamydomonas reinhardtii cells under nitrosative stress. Results: Using two complementary proteomic approaches, 492 nitrosylated proteins were identified. They participate in a wide range of biological processes and pathways, including photosynthesis, carbohydrate metabolism, amino acid metabolism, translation, protein folding or degradation, cell motility, and stress. Several proteins were confirmed in vitro by western blot, site-directed mutagenesis and activity measurements. Moreover, 392 sites of nitrosylation were also identified. These results strongly suggest that S-nitrosylation could constitute a major mechanism of regulation in C. reinhardtii under nitrosative stress conditions. Innovation: This study constitutes the largest proteomic analysis of protein nitrosylation reported to date. Conclusion: The identification of 381 previously unrecognized targets of nitrosylation further extends our knowledge on the importance of this PTM in photosynthetic eukaryotes. The data have been deposited to the ProteomeXchange repository with identifier PXD000569. Antioxid. Redox Signal. 21, 1271–1284. PMID:24328795

  12. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii.

    PubMed

    Bafana, Amit

    2013-06-20

    Chlamydomonas reinhardtii strain RAC was isolated based on its ability to secrete large amount of exopolysaccharide (EPS). The purified EPS had a molecular weight of 2.25×10(5)Da, and showed fibrillar structure with surfaces having sheet-like appearance. Chemical analysis showed the presence of galacturonic acid, ribose, arabinose, xylose, glucose, galactose and rhamnose sugars. The production of EPS was optimized by the classical one-at-a-time approach and Plackett-Burman design, followed by response surface methodology. The resulting response surface model was statistically significant (p<0.5) and predicted maximum EPS production of 628 mg/L. The optimum production medium consisted of CaCl2 - 74, NaNO3 - 422, K2HPO4 - 10 and MgSO4 - 200mg/L with a pH 7. The EPS showed significant antioxidant activity, which can have several industrial applications. This is the first report on characterization and production of EPS from a Chlamydomonas strain isolated from India. Its differences from the earlier reported EPS are discussed.

  13. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii.

    PubMed

    Tokutsu, Ryutaro; Minagawa, Jun

    2013-06-11

    Plants and green algae have a low pH-inducible mechanism in photosystem II (PSII) that dissipates excess light energy, measured as the nonphotochemical quenching of chlorophyll fluorescence (qE). Recently, nonphotochemical quenching 4 (npq4), a mutant strain of the green alga Chlamydomonas reinhardtii that is qE-deficient and lacks the light-harvesting complex stress-related protein 3 (LHCSR3), was reported [Peers G, et al. (2009) Nature 462(7272):518-521]. Here, applying a newly established procedure, we isolated the PSII supercomplex and its associated light-harvesting proteins from both WT C. reinhardtii and the npq4 mutant grown in either low light (LL) or high light (HL). LHCSR3 was present in the PSII supercomplex from the HL-grown WT, but not in the supercomplex from the LL-grown WT or mutant. The purified PSII supercomplex containing LHCSR3 exhibited a normal fluorescence lifetime at a neutral pH (7.5) by single-photon counting analysis, but a significantly shorter lifetime at pH 5.5, which mimics the acidified lumen of the thylakoid membranes in HL-exposed chloroplasts. The switch from light-harvesting mode to energy-dissipating mode observed in the LHCSR3-containing PSII supercomplex was sensitive to dicyclohexylcarbodiimide, a protein-modifying agent specific to protonatable amino acid residues. We conclude that the PSII-LHCII-LHCSR3 supercomplex formed in the HL-grown C. reinhardtii cells is capable of energy dissipation on protonation of LHCSR3. PMID:23716695

  14. Chlamydomonas proteomics.

    PubMed

    Rolland, Norbert; Atteia, Ariane; Decottignies, Paulette; Garin, Jérôme; Hippler, Michael; Kreimer, Georg; Lemaire, Stéphane D; Mittag, Maria; Wagner, Volker

    2009-06-01

    Chlamydomonas reinhardtii is a biflagellate and photosynthetic unicellular alga that has long fascinated scientists because it combines characteristics of both plants and animals. Chlamydomonas offers the simplicity of a unicellular organism that is amenable to genetic screening, molecular, and biochemical approaches, as well as to transformation of its nuclear, plastid, or mitochondrial genomes. Over the past decade, proteomics based studies of Chlamydomonas have provided major research contributions in the areas of photosynthesis, molecular biology, and evolution. This review refers to technical and biological aspects of proteomics studies that have been recently performed on the C. reinhardtii model organism.

  15. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii.

    PubMed

    Johnson, Xenie; Steinbeck, Janina; Dent, Rachel M; Takahashi, Hiroko; Richaud, Pierre; Ozawa, Shin-Ichiro; Houille-Vernes, Laura; Petroutsos, Dimitris; Rappaport, Fabrice; Grossman, Arthur R; Niyogi, Krishna K; Hippler, Michael; Alric, Jean

    2014-05-01

    The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits similar to mutants in the Arabidopsis (Arabidopsis thaliana) ortholog, Atpgr5, providing strong evidence for conservation of PGR5-mediated cyclic electron flow (CEF). Comparing the Crpgr5 mutant with the wild type, we discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient regulation-like1 (PGRL1) ferredoxin (Fd) pathway, involved in recycling excess reductant to increase ATP synthesis, may be controlled by extreme photosystem I acceptor side limitation or ATP depletion. Here, we show that PGR5/PGRL1-Fd CEF functions in accordance with an ATP/redox control model. In the absence of Rubisco and PGR5, a sustained electron flow is maintained with molecular oxygen instead of carbon dioxide serving as the terminal electron acceptor. When photosynthetic control is decreased, compensatory alternative pathways can take the full load of linear electron flow. In the case of the ATP synthase pgr5 double mutant, a decrease in photosensitivity is observed compared with the single ATPase-less mutant that we assign to a decreased proton motive force. Altogether, our results suggest that PGR5/PGRL1-Fd CEF is most required under conditions when Fd becomes overreduced and photosystem I is subjected to photoinhibition. CEF is not a valve; it only recycles electrons, but in doing so, it generates a proton motive force that controls the rate of photosynthesis. The conditions where the PGR5 pathway is most required may vary in photosynthetic organisms like C. reinhardtii from anoxia to high light to limitations imposed at the level of carbon dioxide fixation. PMID:24623849

  16. Measurement of ethanol formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier Transform Infrared spectromicroscopy

    SciTech Connect

    Goff, Kira L.; Quaroni, Luca; Pedersen, Tor; Wilson, Kenneth E.

    2010-02-03

    We demonstrate the capability of Fourier-Transform Infra-Red (FITR) spectroscopy to detect metabolite formation by the unicellular algae Chlamydomonas reinhardtii in solution. We show that using a synchrotron source in the microscopy configuration provides a sufficient s/n ratio to detect small molecular species accumulating at a single cell, allowing an increased sensitivity relative to measurements of bulk cultures. The formation of small molecular species, including ethanol and at least one carbonyl containing compound, can be detected with a time resolution of the order of one minute.

  17. Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii.

    PubMed

    Hu, Zhangli; Fan, Zhun; Zhao, Zhonglin; Chen, Jun; Li, Jiancheng

    2012-01-01

    The mitochondrial expression of exogenous antibiotic resistance genes has not been demonstrated successfully to date, which has limited the development of antibiotic resistance genes as selectable markers for mitochondrial site-directed transformation in Chlamydomonas reinhardtii. In this work, the plasmid pBSLPNCB was constructed by inserting the gene ble of Streptoalloteichus hindustanus (Sh ble), encoding a small (14-kilodalton) protective protein into the site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA (mtDNA) of C. reinhardtii. The fusion DNA-construct, which contained TERMINVREP-Left, Sh ble, cob, and partial nd4 sequence, were introduced into the mitochondria of the respiratory deficient dum-1 mutant CC-2654 of C. reinhardtii by biolistic particle delivery system. A large number of transformants were obtained after eight weeks in the dark. Subsequent subculture of the transformants on the selection TAP media containing 3 ìg/mL Zeomycin for 12 months resulted in genetically modified transgenic algae MT-Bs. Sequencing and Southern analyses on the mitochondrial genome of the different MT-B lines revealed that Sh ble gene had been integrated into the mitochondrial genome of C. reinhardtii. Both Western blot, using the anti-BLE monoclonal antibody, and Zeomycin tolerance analysis confirmed the presence of BLE protein in the transgenic algal cells. It indicates that the Sh ble gene can be stably expressed in the mitochondria of C. reinhardtii. PMID:22530046

  18. Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii1[W

    PubMed Central

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D.; Crespo, José L.

    2014-01-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  19. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii

    PubMed Central

    Li, Hui; Wang, Yuting; Chen, Meirong; Xiao, Peng; Hu, Changxing; Zeng, Zhiyong; Wang, Chaogang; Wang, Jiangxin; Hu, Zhangli

    2016-01-01

    Microalgae are regarded as the most promising biofuel candidates and extensive metabolic engineering were conducted but very few improvements were achieved. Long non-coding RNA (lncRNA) investigation and manipulation may provide new insights for this issue. LncRNAs refer to transcripts that are longer than 200 nucleotides, do not encode proteins but play important roles in eukaryotic gene regulation. However, no information of potential lncRNAs has been reported in eukaryotic alga. Recently, we performed RNA sequencing in Chlamydomonas reinhardtii, and obtained totally 3,574 putative lncRNAs. 1440 were considered as high-confidence lncRNAs, including 936 large intergenic, 310 intronic and 194 anti-sense lncRNAs. The average transcript length, ORF length and numbers of exons for lncRNAs are much less than for genes in this green alga. In contrast with human lncRNAs of which more than 98% are spliced, the percentage in C. reinhardtii is only 48.1%. In addition, we identified 367 lncRNAs responsive to sulfur deprivation, including 36 photosynthesis-related lncRNAs. This is the first time that lncRNAs were explored in the unicellular model organism C. reinhardtii. The lncRNA data could also provide new insights into C. reinhardtii hydrogen production under sulfur deprivation. PMID:27659799

  20. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis.

    PubMed

    Park, Jeong-Jin; Wang, Hongxia; Gargouri, Mahmoud; Deshpande, Rahul R; Skepper, Jeremy N; Holguin, F Omar; Juergens, Matthew T; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-02-01

    Drastic alteration in macronutrients causes large changes in gene expression in the photosynthetic unicellular alga Chlamydomonas reinhardtii. Preliminary data suggested that cells follow a biphasic response to this change hinging on the initiation of lipid accumulation, and we hypothesized that drastic repatterning of metabolism also followed this biphasic modality. To test this hypothesis, transcriptomic, proteomic, and metabolite changes that occur under nitrogen (N) deprivation were analyzed. Eight sampling times were selected covering the progressive slowing of growth and induction of oil synthesis between 4 and 6 h after N deprivation. Results of the combined, systems-level investigation indicated that C. reinhardtii cells sense and respond on a large scale within 30 min to a switch to N-deprived conditions turning on a largely gluconeogenic metabolic state, which then transitions to a glycolytic stage between 4 and 6 h after N depletion. This nitrogen-sensing system is transduced to carbon- and nitrogen-responsive pathways, leading to down-regulation of carbon assimilation and chlorophyll biosynthesis, and an increase in nitrogen metabolism and lipid biosynthesis. For example, the expression of nearly all the enzymes for assimilating nitrogen from ammonium, nitrate, nitrite, urea, formamide/acetamide, purines, pyrimidines, polyamines, amino acids and proteins increased significantly. Although arginine biosynthesis enzymes were also rapidly up-regulated, arginine pool size changes and isotopic labeling results indicated no increased flux through this pathway.

  1. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Olson, Adam C.; Carter, Clay J.

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways. PMID:26930496

  2. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  3. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways. PMID:26930496

  4. Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803

    PubMed Central

    Hung, Chun-Hsien; Endo, Kaichiro; Kobayashi, Koichi; Nakamura, Yuki; Wada, Hajime

    2015-01-01

    Phosphatidylglycerol (PG) is an indispensable phospholipid class with photosynthetic function in plants and cyanobacteria. However, its biosynthesis in eukaryotic green microalgae is poorly studied. Here, we report the isolation and characterization of two homologs (CrPGP1 and CrPGP2) of phosphatidylglycerophosphate synthase (PGPS), the rate-limiting enzyme in PG biosynthesis, in Chlamydomonas reinhardtii. Heterologous complementation of Synechocystis sp. PCC 6803 pgsA mutant by CrPGP1 and CrPGP2 rescued the PG-dependent growth phenotype, but the PG level and its fatty acid composition were not fully rescued in the complemented strains. As well, oxygen evolution activity was not fully recovered, although electron transport activity of photosystem II was restored to the wild-type level. Gene expression study of CrPGP1 and CrPGP2 in nutrient-starved C. reinhardtii showed differential response to phosphorus and nitrogen deficiency. Taken together, these results highlight the distinct and overlapping function of PGPS in cyanobacteria and eukaryotic algae. PMID:26379630

  5. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    SciTech Connect

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  6. The Chloroplast Calcium Sensor CAS Is Required for Photoacclimation in Chlamydomonas reinhardtii[W

    PubMed Central

    Petroutsos, Dimitris; Busch, Andreas; Janßen, Ingrid; Trompelt, Kerstin; Bergner, Sonja Verena; Weinl, Stefan; Holtkamp, Michael; Karst, Uwe; Kudla, Jörg; Hippler, Michael

    2011-01-01

    The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca2+ homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca2+ are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression. PMID:21856795

  7. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii.

    PubMed

    Drop, Bartlomiej; Webber-Birungi, Mariam; Yadav, Sathish K N; Filipowicz-Szymanska, Alicja; Fusetti, Fabrizia; Boekema, Egbert J; Croce, Roberta

    2014-01-01

    LHCII is the most abundant membrane protein on earth. It participates in the first steps of photosynthesis by harvesting sunlight and transferring excitation energy to the core complex. Here we have analyzed the LHCII complex of the green alga Chlamydomonas reinhardtii and its association with the core of Photosystem II (PSII) to form multiprotein complexes. Several PSII supercomplexes with different antenna sizes have been purified, the largest of which contains three LHCII trimers (named S, M and N) per monomeric core. A projection map at a 13Å resolution was obtained allowing the reconstruction of the 3D structure of the supercomplex. The position and orientation of the S trimer are the same as in plants; trimer M is rotated by 45° and the additional trimer (named here as LHCII-N), which is taking the position occupied in plants by CP24, is directly associated with the core. The analysis of supercomplexes with different antenna sizes suggests that LhcbM1, LhcbM2/7 and LhcbM3 are the major components of the trimers in the PSII supercomplex, while LhcbM5 is part of the "extra" LHCII pool not directly associated with the supercomplex. It is also shown that Chlamydomonas LHCII has a slightly lower Chlorophyll a/b ratio than the complex from plants and a blue shifted absorption spectrum. Finally the data indicate that there are at least six LHCII trimers per dimeric core in the thylakoid membranes, meaning that the antenna size of PSII of C. reinhardtii is larger than that of plants.

  8. Atomic Resolution Modeling of the Ferredoxin:[FeFe] Hydrogenase Complex from Chlamydomonas reinhardtii

    SciTech Connect

    Chang, C. H.; King, P. W.; Ghirardi, M. L.; Kim, K.

    2007-11-01

    The [FeFe] hydrogenases HydA1 and HydA2 in the green alga Chlamydomonas reinhardtii catalyze the final reaction in a remarkable metabolic pathway allowing this photosynthetic organism to produce H2 from water in the chloroplast. A [2Fe-2S] ferredoxin is a critical branch point in electron flow from Photosystem I toward a variety of metabolic fates, including proton reduction by hydrogenases. To better understand the binding determinants involved in ferredoxin:hydrogenase interactions, we have modeled Chlamydomonas PetF1 and HydA2 based on amino-acid sequence homology, and produced two promising electron-transfer model complexes by computational docking. To characterize these models, quantitative free energy calculations at atomic resolution were carried out, and detailed analysis of the interprotein interactions undertaken. The protein complex model we propose for ferredoxin:HydA2 interaction is energetically favored over the alternative candidate by 20kcal/mol. This proposed model of the electron-transfer complex between PetF1 and HydA2 permits a more detailed view of the molecular events leading up to H2 evolution, and suggests potential mutagenic strategies to modulate electron flow to HydA2.

  9. Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii.

    PubMed Central

    Quisel, J D; Wykoff, D D; Grossman, A R

    1996-01-01

    We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells. PMID:8754684

  10. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Zhang, Ru; Patena, Weronika; Gang, Spencer S; Blum, Sean R; Ivanova, Nina; Yue, Rebecca; Robertson, Jacob M; Lefebvre, Paul A; Fitz-Gibbon, Sorel T; Grossman, Arthur R; Jonikas, Martin C

    2016-02-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids. PMID:26764374

  11. System Response of Metabolic Networks in Chlamydomonas reinhardtii to Total Available Ammonium

    PubMed Central

    Lee, Do Yup; Park, Jeong-Jin; Barupal, Dinesh K.; Fiehn, Oliver

    2012-01-01

    Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25–100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted. PMID:22787274

  12. C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas reinhardtii.

    PubMed

    Mittelmeier, Telsa M; Berthold, Peter; Danon, Avihai; Lamb, Mary Rose; Levitan, Alexander; Rice, Michael E; Dieckmann, Carol L

    2008-12-01

    Assembly and asymmetric localization of the photosensory eyespot in the biflagellate, unicellular green alga Chlamydomonas reinhardtii requires coordinated organization of photoreceptors in the plasma membrane and pigment granule/thylakoid membrane layers in the chloroplast. min1 (mini-eyed) mutant cells contain abnormally small, disorganized eyespots in which the chloroplast envelope and plasma membrane are no longer apposed. The MIN1 gene, identified here by phenotypic rescue, encodes a protein with an N-terminal C2 domain and a C-terminal LysM domain separated by a transmembrane sequence. This novel domain architecture led to the hypothesis that MIN1 is in the plasma membrane or the chloroplast envelope, where membrane association of the C2 domain promotes proper eyespot organization. Mutation of conserved C2 domain loop residues disrupted association of the MIN1 C2 domain with the chloroplast envelope in moss cells but did not abolish eyespot assembly in Chlamydomonas. In min1 null cells, channelrhodopsin-1 (ChR1) photoreceptor levels were reduced, indicating a role for MIN1 in ChR1 expression and/or stability. However, ChR1 localization was only minimally disturbed during photoautotrophic growth of min1 cells, conditions under which the pigment granule layers are disorganized. The data are consistent with the hypothesis that neither MIN1 nor proper organization of the plastidic components of the eyespot is essential for localization of ChR1. PMID:18849467

  13. Experimental Genome-Wide Determination of RNA Polyadenylation in Chlamydomonas reinhardtii

    PubMed Central

    Bell, Stephen A.; Shen, Chi; Brown, Alishea; Hunt, Arthur G.

    2016-01-01

    The polyadenylation of RNA is a near-universal feature of RNA metabolism in eukaryotes. This process has been studied in the model alga Chlamydomonas reinhardtii using low-throughput (gene-by-gene) and high-throughput (transcriptome sequencing) approaches that recovered poly(A)-containing sequence tags which revealed interesting features of this critical process in Chlamydomonas. In this study, RNA polyadenylation has been studied using the so-called Poly(A) Tag Sequencing (PAT-Seq) approach. Specifically, PAT-Seq was used to study poly(A) site choice in cultures grown in four different media types—Tris-Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt (HS), and High-Salt-Acetate (HAS). The results indicate that: 1. As reported before, the motif UGUAA is the primary, and perhaps sole, cis-element that guides mRNA polyadenylation in the nucleus; 2. The scope of alternative polyadenylation events with the potential to change the coding sequences of mRNAs is limited; 3. Changes in poly(A) site choice in cultures grown in the different media types are very few in number and do not affect protein-coding potential; 4. Organellar polyadenylation is considerable and affects primarily ribosomal RNAs in the chloroplast and mitochondria; and 5. Organellar RNA polyadenylation is a dynamic process that is affected by the different media types used for cell growth. PMID:26730730

  14. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Zhang, Ru; Patena, Weronika; Gang, Spencer S; Blum, Sean R; Ivanova, Nina; Yue, Rebecca; Robertson, Jacob M; Lefebvre, Paul A; Fitz-Gibbon, Sorel T; Grossman, Arthur R; Jonikas, Martin C

    2016-02-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.

  15. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    SciTech Connect

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; Bryant, Donald A.; Peters, John W.

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  16. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium

    PubMed Central

    Baselga-Cervera, Beatriz; Costas, Eduardo; Bustillo-Avendaño, Estéfano

    2016-01-01

    The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population’s adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics—a fluctuation analysis—and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be) is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10−6 and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER). Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be-resistant genotype

  17. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium.

    PubMed

    Baselga-Cervera, Beatriz; Costas, Eduardo; Bustillo-Avendaño, Estéfano; García-Balboa, Camino

    2016-01-01

    The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population's adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics-a fluctuation analysis-and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be) is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10(-6) and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER). Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be-resistant genotype suggest

  18. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii.

    PubMed

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury

    2016-01-01

    The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO.

  19. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii

    PubMed Central

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury

    2016-01-01

    The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO. PMID:27149516

  20. Glucose respiration in the intact chloroplast of Chlamydomonas reinhardtii

    SciTech Connect

    Changguo Chen; Gibbs, M. )

    1991-01-01

    Chloroplastic respiration was monitored by measuring {sup 14}CO{sub 2} from {sup 14}C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast, The patterns of {sup 14}CO{sub 2} evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolypyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The K{sub m} for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of {sup 14}CO{sub 2} was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO{sub 2} evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO{sub 2} evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH{sub 4}Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolypyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to Co{sub 2} and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.

  1. Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii.

    PubMed

    Liang, Yinwen; Pan, Junmin

    2013-01-01

    Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs--CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas.

  2. Calcium titration of Chlamydomonas reinhardtii centrin and its structural changes

    NASA Astrophysics Data System (ADS)

    Ocaña, Wanda; Pastrana-Ríos, Belinda

    2014-07-01

    Chlamydomonas reinhardtii centrin is a highly conserved calcium binding protein belonging to the EF-hand superfamily. Centrin, like other calcium binding proteins, changes conformation upon calcium binding. In addition, the calcium binding sites are comprised mainly of aspartates and glutamates which would serve as probes for a calcium binding event. 2D IR correlation spectroscopy has proven to be a valuable technique to determine the differences in the molecular behavior of the EF-hand domains within centrin. Moreover, the differences in affinity for calcium displayed by these domains were correlated to differences in the molecular behavior of these EF-hand domains when compared with each other and the full-length protein. We were able to confirm the nature of the two independent domains within centrin. Furthermore, we established the mechanism of aggregation was self-association due to adsorption of centrin to the ZnSe ATR crystal and estimated the extent of aggregation of the full-length protein.

  3. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei

    PubMed Central

    Höög, Johanna L; Lacomble, Sylvain; O’Toole, Eileen T; Hoenger, Andreas; McIntosh, J Richard; Gull, Keith

    2014-01-01

    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects. DOI: http://dx.doi.org/10.7554/eLife.01479.001 PMID:24448408

  4. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei.

    PubMed

    Höög, Johanna L; Lacomble, Sylvain; O'Toole, Eileen T; Hoenger, Andreas; McIntosh, J Richard; Gull, Keith

    2014-01-01

    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects. DOI: http://dx.doi.org/10.7554/eLife.01479.001. PMID:24448408

  5. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei.

    PubMed

    Höög, Johanna L; Lacomble, Sylvain; O'Toole, Eileen T; Hoenger, Andreas; McIntosh, J Richard; Gull, Keith

    2014-01-01

    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects. DOI: http://dx.doi.org/10.7554/eLife.01479.001.

  6. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    PubMed Central

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  7. Partial Purification of Intact Chloroplasts from Chlamydomonas reinhardtii.

    PubMed

    Belknap, W R

    1983-08-01

    Partially purified intact chloroplasts were prepared from batch cultures of both wild type (Wt) and a mutant strain of Chlamydomonas reinhardtii. Protoplasts were generated from log phase cultures of Wt (137c) and the phosphoribulokinase-deficient mutant F60 by incubation of the cells in autolysine. These protoplasts were suspended in an osmoticum, cooled, and then subjected to a 40 pounds per square inch pressure shock using a Yeda pressure bomb. The resulting preparation was fractionated on a Percoll step gradient which separated the intact chloroplasts from both broken chloroplasts and protoplasts.The chloroplast preparation was not significantly contaminated with the cytoplasmic enzyme activity phosphoenolpyruvate carboxylase (>5%), and contained (100%) stromal enzyme activity ribulose-1,5-bisphosphate carboxylase. The chloroplast preparation is significantly contaminated by mitochondria, as determined by succinate dehydrogenase activity. Chloroplasts prepared from Wt cells retained CO(2)-dependent O(2) photoevolution at rates in excess of 60 micromoles per milligram chlorophyll per hour, an activity which is severely inhibited by the addition of 10 millimolar KH(2)PO(4). The chloroplasts are osmotically sensitive as determined by ferricyanide-dependent O(2) photoevolution.

  8. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast.

    PubMed

    Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin

    2016-08-01

    Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes. PMID:26969037

  9. The Regulation of Photosynthetic Structure and Function during Nitrogen Deprivation in Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Juergens, Matthew T.; Deshpande, Rahul R.; Lucker, Ben F.; Park, Jeong-Jin; Wang, Hongxia; Gargouri, Mahmoud; Holguin, F. Omar; Disbrow, Bradley; Schaub, Tanner; Skepper, Jeremy N.; Kramer, David M.; Gang, David R.; Hicks, Leslie M.; Shachar-Hill, Yair

    2015-01-01

    The accumulation of carbon storage compounds by many unicellular algae after nutrient deprivation occurs despite declines in their photosynthetic apparatus. To understand the regulation and roles of photosynthesis during this potentially bioenergetically valuable process, we analyzed photosynthetic structure and function after nitrogen deprivation in the model alga Chlamydomonas reinhardtii. Transcriptomic, proteomic, metabolite, and lipid profiling and microscopic time course data were combined with multiple measures of photosynthetic function. Levels of transcripts and proteins of photosystems I and II and most antenna genes fell with differing trajectories; thylakoid membrane lipid levels decreased, while their proportions remained similar and thylakoid membrane organization appeared to be preserved. Cellular chlorophyll (Chl) content decreased more than 2-fold within 24 h, and we conclude from transcript protein and 13C labeling rates that Chl synthesis was down-regulated both pre- and posttranslationally and that Chl levels fell because of a rapid cessation in synthesis and dilution by cellular growth rather than because of degradation. Photosynthetically driven oxygen production and the efficiency of photosystem II as well as P700+ reduction and electrochromic shift kinetics all decreased over the time course, without evidence of substantial energy overflow. The results also indicate that linear electron flow fell approximately 15% more than cyclic flow over the first 24 h. Comparing Calvin-Benson cycle transcript and enzyme levels with changes in photosynthetic 13CO2 incorporation rates also pointed to a coordinated multilevel down-regulation of photosynthetic fluxes during starch synthesis before the induction of high triacylglycerol accumulation rates. PMID:25489023

  10. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii.

    PubMed

    Nama, Srilatha; Madireddi, Sai Kiran; Devadasu, Elsin Raju; Subramanyam, Rajagopal

    2015-11-01

    The green alga Chlamydomonas (C.) reinhardtii is used as a model organism to understand the efficiency of photosynthesis along with the organization and protein profile of photosynthetic apparatus under various intensities of high light exposure for 1h. Chlorophyll (Chl) a fluorescence induction, OJIPSMT transient was decreased with increase in light intensity indicating the reduction in photochemical efficiency. Further, circular dichroism studies of isolated thylakoids from high light exposed cells showed considerable change in the pigment-pigment interactions and pigment-proteins interactions. Furthermore, the organization of supercomplexes from thylakoids is studied, in which, one of the hetero-trimer of light harvesting complex (LHC) II is affected significantly in comparison to other complexes of LHC's monomers. Also, other supercomplexes, photosystem (PS)II reaction center dimer and PSI complexes are reduced. Additionally, immunoblot analysis of thylakoid proteins revealed that PSII core proteins D1 and D2 were significantly decreased during high light treatment. Similarly, the PSI core proteins PsaC, PsaD and PsaG were drastically changed. Further, the LHC antenna proteins of PSI and PSII were differentially affected. From our results it is clear that LHCs are damaged significantly, consequently the excitation energy is not efficiently transferred to the reaction center. Thus, the photochemical energy transfer from PSII to PSI is reduced. The inference of the study deciphers the structural and functional changes driven by light may therefore provide plants/alga to regulate the light harvesting capacity in excess light conditions.

  11. Effects of Differently Coated Silver Nanoparticles on the Photosynthesis of Chlamydomonas reinhardtii.

    PubMed

    Navarro, Enrique; Wagner, Bettina; Odzak, Niksa; Sigg, Laura; Behra, Renata

    2015-07-01

    Various factors have been invoked to explain the toxicity of silver nanoparticles (AgNP) to microorganisms including particle size and the nature of stabilizing coatings as well as the amount of dissolved silver occurring in AgNP suspensions. In this study we have assessed the effects of nine differently coated AgNP (chitosan, lactate, polyvinylpyrrolidone, polyethelene glycol, gelatin, sodium dodecylbenzenesulfonate, citrate, dexpanthenol, and carbonate) and AgNO3 on the photosynthesis of the freshwater algae Chlamydomonas reinhardtii. We have thus examined how AgNP effects on algae relate to particle size, measured dissolved silver (Agd), and bioavailable silver (Agbioav). Agbioav was indirectly estimated in toxicity experiments by cysteine-silver complexation at the EC50. The EC50 calculated as a function of measured Agd concentrations showed for some coatings values similar to that of dissolved Ag, whereas other coated AgNP displayed lower EC50 values. In all cases, excess cysteine completely prevented effects on photosynthetic yield, confirming the role of Agd as a cause of the observed effect on the photosynthesis. Toxicity was related neither to particle size nor to the coatings. For all differently coated AgNP suspensions, the EC50 values calculated as a function of Agbioav were comparable to the value of AgNO3. Depending on the coatings Agbioav was comparable to or higher than measured Agd. PMID:26018638

  12. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  13. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity.

    PubMed

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I L

    2015-10-01

    The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the herbicides paraquat and diuron, suggesting that the fast physiological and biochemical defence mechanisms that conferred tolerance of algae towards higher UVR levels were related to singlet oxygen defence. The presented study suggests that knowledge of the molecular toxicity mechanisms of chemicals, rather than their general physiological target, is needed in order to predict co-tolerance between environmental and chemical stressors. PMID:26349947

  14. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity.

    PubMed

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I L

    2015-10-01

    The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the herbicides paraquat and diuron, suggesting that the fast physiological and biochemical defence mechanisms that conferred tolerance of algae towards higher UVR levels were related to singlet oxygen defence. The presented study suggests that knowledge of the molecular toxicity mechanisms of chemicals, rather than their general physiological target, is needed in order to predict co-tolerance between environmental and chemical stressors.

  15. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1

    PubMed Central

    Teplitski, Max; Chen, Hancai; Rajamani, Sathish; Gao, Mengsheng; Merighi, Massimo; Sayre, Richard T.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2004-01-01

    The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-l-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria. PMID:14671013

  16. Photo-cycle dynamics of LOV1-His domain of phototropin from Chlamydomonas reinhardtii with roseoflavin monophosphate cofactor

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-09-01

    The wild-type phototropin protein phot from the green alga Chlamydomonas reinhardtii consists of two N-terminal LOV domains LOV1 and LOV2 with flavin mononucleotide (FMN) cofactor and a C-terminal serine-threonine kinase domain. It controls multiple steps in the sexual lifecycle of the alga. Here the LOV1-His domain of phot with modified cofactor is studied. FMN is replaced by roseoflavin monophosphate (8-dimethylamino-8-demethyl-FMN, RoFMN). The modified LOV1 domain is called RoLOV1. The photo-dynamics consequences of the cofactor change are studied. The absorption, emission, and photo-cyclic behaviour of LOV1-His and RoLOV1-His are compared. A spectroscopic characterisation of the cofactors FMN and RoFMN (roseoflavin) is given.

  17. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia.

    PubMed

    Duquesnoy, Philippe; Escudier, Estelle; Vincensini, Laetitia; Freshour, Judy; Bridoux, Anne-Marie; Coste, André; Deschildre, Antoine; de Blic, Jacques; Legendre, Marie; Montantin, Guy; Tenreiro, Henrique; Vojtek, Anne-Marie; Loussert, Céline; Clément, Annick; Escalier, Denise; Bastin, Philippe; Mitchell, David R; Amselem, Serge

    2009-12-01

    Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion. Following a candidate-gene approach based on data from a mutant strain of the biflagellated alga Chlamydomonas reinhardtii carrying an ODA7 defect, we identified four families with a PCD phenotype characterized by the absence of both dynein arms and loss-of-function mutations in the human orthologous gene called LRRC50. Functional analyses performed in Chlamydomonas reinhardtii and in another flagellated protist, Trypanosoma brucei, support a key role for LRRC50, a member of the leucine-rich-repeat superfamily, in cytoplasmic preassembly of dynein arms.

  18. Appearance of Novel Glucose-6-Phosphate Dehydrogenase Isoforms in Chlamydomonas reinhardtii during Growth on Nitrate.

    PubMed Central

    Huppe, H. C.; Turpin, D. H.

    1996-01-01

    Extractable glucose-6-phosphate dehydrogenase activity is higher from N-limited Chlamydomonas reinhardtii cells than from N-sufficient cells. Native gels reveal that the isoform complexity varies depending on the form of N supplied. The isoforms associated with NO3- growth appear within 2 h of switching cells from NH4+ to NO3-. PMID:12226271

  19. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.

    PubMed

    Morisse, Samuel; Michelet, Laure; Bedhomme, Mariette; Marchand, Christophe H; Calvaresi, Matteo; Trost, Paolo; Fermani, Simona; Zaffagnini, Mirko; Lemaire, Stéphane D

    2014-10-24

    In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (-335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys(227) and Cys(361). Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view. PMID:25202015

  20. Potassium Fluxes in Chlamydomonas reinhardtii (I.Kinetics and Electrical Potentials).

    PubMed Central

    Malhotra, B.; Glass, ADM.

    1995-01-01

    Potassium influx and cellular [K+] were measured in the unicellular green alga Chlamydomonas reinhardtii after pretreatment in either 10 or 0 mM external K+ ([K]0). K+ (42K+ or 86Rb+) influx was mediated by a saturable, high-affinity transport system (HATS) at low [K+]0 and a linear, low-affinity transport system at high [K+]o. The HATS was typically more sensitive to metabolic inhibition (and darkness) than the low-affinity transport system. Membrane electrical potentials were determined by measuring the equilibrium distribution of tetraphenylphosphonium. These values, together with estimates of cytoplasmic [K+] (B. Malhotra and A.D.M. Glass [1995] Plant Physiol 108: 1537-1545), demonstrated that at 0.1 mM [K+]0 K+ uptake must be active. At higher [K+]0 (>0.3 mM) K+ influx appeared to be passive and possibly channel mediated. When cells were deprived of K+ for 24 h, the Vmax for the HATS increased from 50 x 10-6 to 85 x 10-6 nmol h-1 cell-1 and the Km value decreased from 0.25 to 0.162 mM. Meanwhile, cellular [K+] declined from 24 x 10-6 to 9 x 10-6 nmol cell-1. During this period influx increased exponentially, reaching its peak value after 18 h of K+ deprivation. This increase of K+ influx was not expressed when cells were exposed to inhibitors of protein synthesis. The use of 42K+ and 86Rb+ in parallel experiments demonstrated that Chlamydomonas discriminated in favor of K+ over Rb+, and this effect increased with the duration of K+ deprivation. PMID:12228559

  1. An electro-optic monitor of the behavior of Chlamydomonas reinhardtii cilia.

    PubMed

    Josef, Keith; Saranak, Jureepan; Foster, Kenneth W

    2005-06-01

    The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia.

  2. An electro-optic monitor of the behavior of Chlamydomonas reinhardtii cilia.

    PubMed

    Josef, Keith; Saranak, Jureepan; Foster, Kenneth W

    2005-06-01

    The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia. PMID:15838839

  3. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    PubMed Central

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  4. Systematic prediction of cis-regulatory elements in the Chlamydomonas reinhardtii genome using comparative genomics.

    PubMed

    Ding, Jun; Li, Xiaoman; Hu, Haiyan

    2012-10-01

    Chlamydomonas reinhardtii is one of the most important microalgae model organisms and has been widely studied toward the understanding of chloroplast functions and various cellular processes. Further exploitation of C. reinhardtii as a model system to elucidate various molecular mechanisms and pathways requires systematic study of gene regulation. However, there is a general lack of genome-scale gene regulation study, such as global cis-regulatory element (CRE) identification, in C. reinhardtii. Recently, large-scale genomic data in microalgae species have become available, which enable the development of efficient computational methods to systematically identify CREs and characterize their roles in microalgae gene regulation. Here, we performed in silico CRE identification at the whole genome level in C. reinhardtii using a comparative genomics-based method. We predicted a large number of CREs in C. reinhardtii that are consistent with experimentally verified CREs. We also discovered that a large percentage of these CREs form combinations and have the potential to work together for coordinated gene regulation in C. reinhardtii. Multiple lines of evidence from literature, gene transcriptional profiles, and gene annotation resources support our prediction. The predicted CREs will serve, to our knowledge, as the first large-scale collection of CREs in C. reinhardtii to facilitate further experimental study of microalgae gene regulation. The accompanying software tool and the predictions in C. reinhardtii are also made available through a Web-accessible database (http://hulab.ucf.edu/research/projects/Microalgae/sdcre/motifcomb.html).

  5. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    PubMed

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.

  6. Phototropin Influence on Eyespot Development and Regulation of Phototactic Behavior in Chlamydomonas reinhardtii[W

    PubMed Central

    Trippens, Jessica; Greiner, Andre; Schellwat, Jana; Neukam, Martin; Rottmann, Theresa; Lu, Yinghong; Kateriya, Suneel; Hegemann, Peter; Kreimer, Georg

    2012-01-01

    The eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected. We restored this dysfunction in different phototropin complementation experiments. Complementation with the phototropin kinase fragment reduced the eyespot size, independent of light. Interestingly, overexpression of the N-terminal light, oxygen or voltage sensing domains (LOV1+LOV2) alone also affected eyespot size and phototaxis, suggesting that aside from activation of the kinase domain, they fulfill an independent signaling function in the cell. Moreover, phototropin is involved in adjusting the level of channelrhodopsin-1, the dominant primary receptor for phototaxis within the eyespot. Both the level of channelrhodopsin-1 at the onset of illumination and its steady state level during the light period are downregulated by phototropin, whereas the level of channelrhodopsin-2 is not significantly altered. Furthermore, a light intensity–dependent formation of a C-terminal truncated phototropin form was observed. We propose that phototropin is a light regulator of phototaxis that desensitizes the eyespot when blue light intensities increase. PMID:23204408

  7. Volatile fractions of landfill leachates and their effect on Chlamydomonas reinhardtii: In vivo chlorophyll a fluorescence

    SciTech Connect

    Brack, W.; Rottler, H.; Frank, H.

    1998-10-01

    Volatile organic compounds such as short-chain halogenated hydrocarbons and alkylated benzenes are widely used as solvents or as intermediates in the chemical industry, and some of them are fuel components. Dichloromethane, trichloroethene, 1,1,1-trichloroethane, and tetrachloroethene have been produced in amounts of 500,000 to 1 million t/year, 80 to 100% of which are released to the environment. The production of toluene, a major component of fuels for internal combustion engines, amounts to about 30 million t/year. A method for identification of toxic volatile constituents of landfill leachates is presented that combines bioassay-compatible sample preparation, chemical analysis, and a bioassay based on in vivo chlorophyll a fluorescence of the green alga Chlamydomonas reinhardtii. Two major pathways of toxicity were identified by comparing fluorescence patterns: specific toxicity of hydrogen sulfide, and narcotic action of nonreactive organic compounds. For quantification, the contributions of identified compounds were calculated using toxic units. The ecotoxicologic relevance of volatile fractions from hazardous waste leachates was shown.

  8. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey.

    PubMed

    Zaffagnini, Mirko; Bedhomme, Mariette; Groni, Hayam; Marchand, Christophe H; Puppo, Carine; Gontero, Brigitte; Cassier-Chauvat, Corinne; Decottignies, Paulette; Lemaire, Stéphane D

    2012-02-01

    Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.

  9. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism.

  10. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii

    PubMed Central

    1994-01-01

    This study was undertaken to prove that voltage-sensitive calcium channels controlling the photophobic stop response of the unicellular green alga Chlamydomonas reinhardtii are exclusively found in the flagellar region of the cell and to answer the question as to their exact localization within the flagellar membrane. The strategy used was to amputate flagella to a variable degree without perturbing the electrical properties of the cell and measure flagellar currents shortly after amputation and during the subsequent regeneration process. Under all conditions, a close correlation was found between current size and flagellar length, strongly suggesting that the channels that mediate increases in intraflagellar calcium concentration are confined to and distributed over the total flagellar length. Bald mutants yielded tiny flagellar currents, in agreement with the existence of residual flagellar stubs. In the presence of the protein synthesis inhibitor cycloheximide, flagellar length and flagellar currents also recovered in parallel. Recovery came to an earlier end, however, leveling off at a time when in the absence of cycloheximide only half maximal values were achieved. This suggests the existence of a pool of precursors, which permits the maintenance of a constant ratio between voltage-sensitive calcium channels and other intraflagellar proteins. PMID:8195293

  11. The Awesome Power of Dikaryons for Studying Flagella and Basal Bodies in Chlamydomonas reinhardtii

    PubMed Central

    Dutcher, Susan K.

    2014-01-01

    Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins’ function and assembly that have been discovered using dikaryons and discusses the potential for further analyses. PMID:24272949

  12. Genetic Analysis of the Chlamydomonas Reinhardtii I-Crei Mobile Intron Homing System in Escherichia Coli

    PubMed Central

    Seligman, L. M.; Stephens, K. M.; Savage, J. H.; Monnat-Jr., R. J.

    1997-01-01

    We have developed and used a genetic selection system in Escherichia coli to study functional requirements for homing site recognition and cleavage by a representative eukaryotic mobile intron endonuclease. The homing endonuclease, I-CreI, was originally isolated from the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. I-CreI homing site mutants contained base pair substitutions or single base deletions that altered the rate of homing site cleavage and/or product release. I-CreI endonuclease mutants fell into six phenotypic classes that differed in in vivo activity, toxicity or genetic dominance. Inactivating mutations clustered in the N-terminal 60% of the I-CreI amino acid sequence, and two frameshift mutations were isolated that resulted in premature translation termination though retained partial activity. These mutations indicate that the N-terminal two-thirds of the I-CreI endonuclease is sufficient for homing site recognition and cleavage. Substitution mutations altered in four potential active site residues were examined: D20N, Q47H or R70A substitutions inactivated endonuclease activity, whereas S22A did not. The genetic approach we have taken complements phylogenetic and structural studies of mobile intron endonucleases and has provided new information on the mechanistic basis of I-CreI homing site recognition and cleavage. PMID:9409828

  13. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    SciTech Connect

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-12-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.

  14. Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii.

    PubMed

    Zacks, D N; Derguini, F; Nakanishi, K; Spudich, J L

    1993-07-01

    The motile, unicellular, eukaryotic alga Chlamydomonas reinhardtii exhibits two distinct behavioral reactions to light stimuli, phototaxis and the photophobic response. Both are mediated by retinal-containing receptors. This paper focuses on a direct comparison of the two photoresponses and the chromophore requirements for their photoreceptor(s). Using computerized motion analysis assays for phototaxis and photophobic responses by the same populations of cells, we measured the ability of various isomers and analogues of retinal to reconstitute photobehavior in the pigment-deficient mutant FN68. The results indicate that photophobic and phototaxis responses each require chromophores with an all-trans polyene chain configuration, planar ionone ring/polyene chain conformation, and the ability to isomerize around the retinal C13-C14 double bond. One difference between the two behaviors is that the photophobic response becomes highly desensitized after light stimuli to which the phototaxis response does not become desensitized, indicating the existence of at least one distinct step in the photophobic response pathway. A second difference is that the retinal regeneration of the photophobic response but not of phototaxis is inhibited by a 5-membered ring 13-trans-locked analogue. While showing close similarity in the chromophore structural requirements of the two behaviors, the results indicate that differences exist between the two responses at the level of their photoreceptor proteins and/or in their transduction processes.

  15. Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization.

    PubMed

    Mittelmeier, Telsa M; Boyd, Joseph S; Lamb, Mary Rose; Dieckmann, Carol L

    2011-05-16

    The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells. PMID:21555459

  16. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation.

    PubMed

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  17. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation

    PubMed Central

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  18. Phosphoribulokinase from Chlamydomonas reinhardtii: a Benson-Calvin cycle enzyme enslaved to its cysteine residues.

    PubMed

    Thieulin-Pardo, Gabriel; Remy, Thérèse; Lignon, Sabrina; Lebrun, Régine; Gontero, Brigitte

    2015-04-01

    Phosphoribulokinase (PRK) in the green alga Chlamydomonas reinhardtii is a finely regulated and well-studied enzyme of the Benson-Calvin cycle. PRK can form a complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small chloroplast protein CP12. This study aimed to determine the molecular determinants on PRK involved in the complex and the mechanism of action of a recently described novel regulation of PRK that involves glutathionylation. A combination of mass spectrometry, mutagenesis and activity analyses showed that Cys16, besides its role as the binding site of ATP, was also the site for S-glutathionylation. Previous kinetic analysis of the C55S mutant showed that in the oxidized inactive form of PRK, this residue formed a disulfide bridge with the Cys16 residue. This is the only bridge reported for PRK in the literature. Our data show for the first time that a disulfide bridge between Cys243 and Cys249 on PRK is required to form the PRK-GAPDH-CP12 complex. These results uncover a new mechanism for the PRK-GAPDH-CP12 formation involving a thiol disulfide exchange reaction with CP12 and identify Cys16 of PRK as a target of glutathionylation acting against oxidative stress. Although Cys16 is the key residue involved in binding ATP and acting as a defense against oxidative damage, the formation of the algal ternary complex requires the formation of another disulfide bridge on PRK involving Cys243 and Cys249.

  19. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii

    PubMed Central

    Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.

    2015-01-01

    Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971

  20. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

    PubMed Central

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-01-01

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation. DOI: http://dx.doi.org/10.7554/eLife.02286.001 PMID:24859755

  1. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.

    PubMed

    Matthew, Timmins; Zhou, Wenxu; Rupprecht, Jens; Lim, Lysha; Thomas-Hall, Skye R; Doebbe, Anja; Kruse, Olaf; Hankamer, Ben; Marx, Ute C; Smith, Steven M; Schenk, Peer M

    2009-08-28

    The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H(2)) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate energy reserves during the first 24 h of sulfur depletion. In addition to the previously reported accumulation of starch, large amounts of triacylglycerides were deposited in the cells. During the early 24- to 72-h time period fermentative energy metabolism lowered the pH, H(2) was produced, and amino acid levels generally increased. In the final phase from 72 to 120 h, metabolism slowed down leading to a stabilization of pH, even though some starch and most triacylglycerides remained. We conclude that H(2) production does not slow down due to depletion of energy reserves but rather due to loss of essential functions resulting from sulfur depletion or due to a build-up of the toxic fermentative products formate and ethanol. PMID:19478077

  2. Adaptation of Chlamydomonas reinhardtii high-CO sub 2 -requiring mutants to limiting CO sub 2

    SciTech Connect

    Suzuki, K.; Spalding, M.H. )

    1989-07-01

    Photosynthetic characteristics of four high-CO{sub 2}-requiring mutants of Chlamydomonas reinhardtii were compared to those of wild type before and after a 24-hour exposure to limiting CO{sub 2} concentrations. The four mutants represent two loci involved in the CO{sub 2}-concentrating system of this unicellular alga. All mutants had a lower photosynthetic affinity for inorganic carbon than did the wild type when grown at an elevated CO{sub 2} concentration, indicating that the genetic lesion in each is expressed even at elevated CO{sub 2} concentrations. Wild type and all four mutants exhibited adaptive responses to limiting CO{sub 2} characteristic of the induction of the CO{sub 2}-concentrating system, resulting in an increased affinity for inorganic carbon only in wild type. Although other components of the CO{sub 2}-concentrating system were induced in these mutants, the defective component in each was sufficient to prevent any increase in the affinity for inorganic carbon. It was concluded that the genes corresponding to the ca-1 and pmp-1 loci exhibit at least partially constitutive expression and that all components of the CO{sub 2}-concentrating system may be required to significantly affect the photosynthetic affinity for inorganic carbon.

  3. Characterization of the EYE2 gene required for eyespot assembly in Chlamydomonas reinhardtii.

    PubMed Central

    Roberts, D G; Lamb, M R; Dieckmann, C L

    2001-01-01

    The unicellular biflagellate green alga Chlamydomonas reinhardtii can perceive light and respond by altering its swimming behavior. The eyespot is a specialized structure for sensing light, which is assembled de novo at every cell division from components located in two different cellular compartments. Photoreceptors and associated signal transduction components are localized in a discrete patch of the plasma membrane. This patch is tightly packed against an underlying sandwich of chloroplast membranes and carotenoid-filled lipid granules, which aids the cell in distinguishing light direction. In a prior screen for mutant strains with eyespot defects, the EYE2 locus was defined by the single eye2-1 allele. The mutant strain has no eyespot by light microscopy and has no organized carotenoid granule layers as judged by electron microscopy. Here we demonstrate that the eye2-1 mutant is capable of responding to light, although the strain is far less sensitive than wild type to low light intensities and orients imprecisely. Therefore, pigment granule layer assembly in the chloroplast is not required for photoreceptor localization in the plasma membrane. A plasmid-insertion mutagenesis screen yielded the eye2-2 allele, which allowed the isolation and characterization of the EYE2 gene. The EYE2 protein is a member of the thioredoxin superfamily. Site-directed mutagenesis of the active site cysteines demonstrated that EYE2 function in eyespot assembly is redox independent, similar to the auxiliary functions of other thioredoxin family members in protein folding and complex assembly. PMID:11454753

  4. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii.

    PubMed

    Zaffagnini, Mirko; Michelet, Laure; Sciabolini, Chiara; Di Giacinto, Nastasia; Morisse, Samuel; Marchand, Christophe H; Trost, Paolo; Fermani, Simona; Lemaire, Stéphane D

    2014-01-01

    Triosephosphate isomerase (TPI) catalyzes the interconversion of glyceraldehyde-3-phosphate to dihydroxyacetone phosphate. Photosynthetic organisms generally contain two isoforms of TPI located in both cytoplasm and chloroplasts. While the cytoplasmic TPI is involved in the glycolysis, the chloroplastic isoform participates in the Calvin-Benson cycle, a key photosynthetic process responsible for carbon fixation. Compared with its cytoplasmic counterpart, the functional features of chloroplastic TPI have been poorly investigated and its three-dimensional structure has not been solved. Recently, several studies proposed TPI as a potential target of different redox modifications including dithiol/disulfide interchanges, glutathionylation, and nitrosylation. However, neither the effects on protein activity nor the molecular mechanisms underlying these redox modifications have been investigated. Here, we have produced recombinantly and purified TPI from the unicellular green alga Chlamydomonas reinhardtii (Cr). The biochemical properties of the enzyme were delineated and its crystallographic structure was determined at a resolution of 1.1 Å. CrTPI is a homodimer with subunits containing the typical (β/α)8-barrel fold. Although no evidence for TRX regulation was obtained, CrTPI was found to undergo glutathionylation by oxidized glutathione and trans-nitrosylation by nitrosoglutathione, confirming its sensitivity to multiple redox modifications. PMID:24157611

  5. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii.

    PubMed

    Ueki, Noriko; Ide, Takahiro; Mochiji, Shota; Kobayashi, Yuki; Tokutsu, Ryutaro; Ohnishi, Norikazu; Yamaguchi, Katsushi; Shigenobu, Shuji; Tanaka, Kan; Minagawa, Jun; Hisabori, Toru; Hirono, Masafumi; Wakabayashi, Ken-Ichi

    2016-05-10

    The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign. PMID:27122315

  6. Partial purification of the chloroplast ATP synthase from Chlamydomonas reinhardtii and the cloning and sequencing of a cDNA encoding the gamma subunit

    SciTech Connect

    Yu, L.M.

    1988-01-01

    The chloroplast ATP synthase was partially purified from the green alga Chlamydomonas reinhardtii by extracting membranes with deoxycholate and KCl, followed by centrifugation and ammonium sulfate fractionation of the supernatant. The enzyme assay involved the reconstitution of such fractions with bacteriorhodopsin and soybean phospholipids to form vesicles capable of light-dependent ({sup 32}P)-phosphate esterification. A cDNA for the gamma subunit from Chlamydomonas was isolated, expressed in vitro and sequenced. It contains the entire coding region for the gamma subunit precursor. A 35 amino acid long transit peptide resides at the NH{sub 2}-terminus of a 323 amino acid long mature peptide that is 77% similar to the spinach gamma subunit. Six cysteines were found; three were conserved in Chlamydomonas and spinach.

  7. High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation.

    PubMed

    Zones, James Matt; Blaby, Ian K; Merchant, Sabeeha S; Umen, James G

    2015-10-01

    The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expression in Chlamydomonas. Over 80% of the measured transcriptome was expressed with strong periodicity, forming 18 major clusters. Genes associated with complex structures and processes, including cell cycle control, flagella and basal bodies, ribosome biogenesis, and energy metabolism, all had distinct signatures of coexpression with strong predictive value for assigning and temporally ordering function. Importantly, the frequent sampling regime allowed us to discern meaningful fine-scale phase differences between and within subgroups of genes and enabled the identification of a transiently expressed cluster of light stress genes. Coexpression was further used both as a data-mining tool to classify and/or validate genes from other data sets related to the cell cycle and to flagella and basal bodies and to assign isoforms of duplicated enzymes to their cognate pathways of central carbon metabolism. Our diurnal coexpression data capture functional relationships established by dozens of prior studies and are a valuable new resource for investigating a variety of biological processes in Chlamydomonas and other eukaryotes.

  8. High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation[OPEN

    PubMed Central

    2015-01-01

    The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expression in Chlamydomonas. Over 80% of the measured transcriptome was expressed with strong periodicity, forming 18 major clusters. Genes associated with complex structures and processes, including cell cycle control, flagella and basal bodies, ribosome biogenesis, and energy metabolism, all had distinct signatures of coexpression with strong predictive value for assigning and temporally ordering function. Importantly, the frequent sampling regime allowed us to discern meaningful fine-scale phase differences between and within subgroups of genes and enabled the identification of a transiently expressed cluster of light stress genes. Coexpression was further used both as a data-mining tool to classify and/or validate genes from other data sets related to the cell cycle and to flagella and basal bodies and to assign isoforms of duplicated enzymes to their cognate pathways of central carbon metabolism. Our diurnal coexpression data capture functional relationships established by dozens of prior studies and are a valuable new resource for investigating a variety of biological processes in Chlamydomonas and other eukaryotes. PMID:26432862

  9. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.

    PubMed

    Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao

    2016-04-01

    Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts. PMID:26919811

  10. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.

    PubMed

    Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao

    2016-04-01

    Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts.

  11. 3[prime] end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process

    SciTech Connect

    Stern, D.B.; Kindle, K.L. )

    1993-04-01

    The research studied the 3[prime] end maturation of green algae chloroplast atpB mRNA. Most data on transcription termination and 3[prime] end maturation in chloroplasts have been based on in vitro experiments. Newly developed chloroplast transformation techniques have allowed the use of a green algae, Chlamydomonas reinhardtii, to examine chloroplast mRNA 3[prime] end stability determinants and mRNA processing both in vitro and in vivo. The results of this research showed that Chlamydomonas chloroplast protein extracts contain an endonuclease activity that cleaves a synthetic precursor of atpB mRNA 10 nucleotides downstream on the mature 3[prime] end in vitro. Rapid cleavage by this endonuclease is followed by exonucleolytic removal of 10 nucleotides to yield the mature 3[prime] end.

  12. Purification and cDNA isolation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.

    PubMed Central

    Kitayama, M; Togasaki, R K

    1995-01-01

    Chloroplastic phosphoglycerate kinase (PGK) was purified to homogeneity from a soluble fraction of chloroplasts of a cell-wall-deficient mutant strain of Chlamydomonas reinhardtii (cw-15) using ammonium sulfate fractionation, Reactive Blue-72 column chromatography, and native polyacrylamide gel electrophoresis. PGK activity was attributed to a single polypeptide with a molecular mass of 42 kD. Relative purity and identity of the isolated enzyme was confirmed by N-terminal amino acid sequence determination. Antiserum against this enzyme was raised and a western blot analysis of whole-cell lysate from cw-15 cells using this anti-chloroplastic PGK serum detected a single polypeptide with a molecular mass of 42 kD. The cDNA clone corresponding to the Chlamydomonas chloroplastic PGK was isolated from a Chlamydomonas cDNA expression library using the anti-PGK serum. The cDNA sequence was determined and apparently codes for the entire precursor peptide, which consists of 461 codons. The results from Southern and northern blot analyses suggest that the chloroplastic PGK gene exists as a single copy in the nuclear genome of C. reinhardtii and is expressed as a 1.8-kb transcript. The C. reinhardtii chloroplastic PGK cDNA has 71 and 66% homology with wheat chloroplastic PGK and spinach chloroplastic PGK, respectively. Based on the deduced amino acid sequence, the chloroplastic PGK of C. reinhardtii has more similarity to plant PGKs than to other PGKs, having both prokaryotic and eukaryotic features. PMID:7724671

  13. The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state.

    PubMed

    Meyer Zu Tittingdorf, Jürgen M W; Rexroth, Sascha; Schäfer, Eva; Schlichting, Ralf; Giersch, Christoph; Dencher, Norbert A; Seelert, Holger

    2004-11-01

    The chloroplast H(+)-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO(2) concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H(+)-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.

  14. Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    SciTech Connect

    Kourosh Salehi-Ashtiani; Jason A. Papin

    2012-01-13

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and

  15. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light.

    PubMed

    Vejrazka, Carsten; Janssen, Marcel; Benvenuti, Giulia; Streefland, Mathieu; Wijffels, René H

    2013-02-01

    As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study was to determine the influence of different duty cycles on oxygen yield on absorbed light energy and photosynthetic oxygen evolution. Net oxygen evolution of Chlamydomonas reinhardtii was measured for four duty cycles (0.05, 0.1, 0.2, and 0.5) in a biological oxygen monitor (BOM). Oversaturating light flashes were applied in a square-wave fashion with four flash frequencies (5, 10, 50, and 100 Hz). Algae were precultivated in a turbidostat and acclimated to a low photon flux density (PFD). A photosynthesis-irradiance (PI) curve was measured under continuous illumination and used to calculate the net oxygen yield, which was maximal between a PFD of 100 and 200 μmol m⁻² s⁻¹. Net oxygen yield under flashing light was duty cycle-dependent: the highest yield was observed at a duty cycle of 0.1 (i.e., time-averaged PFD of 115 μmol m⁻² s⁻¹). At lower duty cycles, maintenance respiration reduced net oxygen yield. At higher duty cycles, photon absorption rate exceeded the maximal photon utilization rate, and, as a result, surplus light energy was dissipated which led to a reduction in net oxygen yield. This behavior was identical with the observation under continuous light. Based on these data, the optimal balance between oxygen yield and production rate can be determined to maximize PBR productivity.

  16. PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency.

    PubMed

    Le Quiniou, Clotilde; Tian, Lijin; Drop, Bartlomiej; Wientjes, Emilie; van Stokkum, Ivo H M; van Oort, Bart; Croce, Roberta

    2015-01-01

    Photosystem I (PSI) is an essential component of photosynthetic membranes. Despite the high sequence and structural homologies, its absorption properties differ substantially in algae, plants and cyanobacteria. In particular it is characterized by the presence of low-energy chlorophylls (red forms), the number and the energy of which vary in different organisms. The PSI-LHCI (PSI-light harvesting complex I) complex of the green alga Chlamydomonas reinhardtii (C.r.) is significantly larger than that of plants, containing five additional light-harvesting complexes (together binding≈65 chlorophylls), and contains red forms with higher energy than plants. To understand how these differences influence excitation energy transfer and trapping in the system, we studied two PSI-LHCI C.r. particles, differing in antenna size and red-form content, using time-resolved fluorescence and compared them to plant PSI-LHCI. The excited state kinetics in C.r. shows the same average lifetime (50 ps) as in plants suggesting that the effect of antenna enlargement is compensated by higher energy red forms. The system equilibrates very fast, indicating that all Lhcas are well-connected, despite their long distance to the core. The differences between C.r. PSI-LHCI with and without Lhca2 and Lhca9 show that these Lhcas bind red forms, although not the red-most. The red-most forms are in (or functionally close to) other Lhcas and slow down the trapping, but hardly affect the quantum efficiency, which remains as high as 97% even in a complex that contains 235 chlorophylls. PMID:25681242

  17. PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency.

    PubMed

    Le Quiniou, Clotilde; Tian, Lijin; Drop, Bartlomiej; Wientjes, Emilie; van Stokkum, Ivo H M; van Oort, Bart; Croce, Roberta

    2015-01-01

    Photosystem I (PSI) is an essential component of photosynthetic membranes. Despite the high sequence and structural homologies, its absorption properties differ substantially in algae, plants and cyanobacteria. In particular it is characterized by the presence of low-energy chlorophylls (red forms), the number and the energy of which vary in different organisms. The PSI-LHCI (PSI-light harvesting complex I) complex of the green alga Chlamydomonas reinhardtii (C.r.) is significantly larger than that of plants, containing five additional light-harvesting complexes (together binding≈65 chlorophylls), and contains red forms with higher energy than plants. To understand how these differences influence excitation energy transfer and trapping in the system, we studied two PSI-LHCI C.r. particles, differing in antenna size and red-form content, using time-resolved fluorescence and compared them to plant PSI-LHCI. The excited state kinetics in C.r. shows the same average lifetime (50 ps) as in plants suggesting that the effect of antenna enlargement is compensated by higher energy red forms. The system equilibrates very fast, indicating that all Lhcas are well-connected, despite their long distance to the core. The differences between C.r. PSI-LHCI with and without Lhca2 and Lhca9 show that these Lhcas bind red forms, although not the red-most. The red-most forms are in (or functionally close to) other Lhcas and slow down the trapping, but hardly affect the quantum efficiency, which remains as high as 97% even in a complex that contains 235 chlorophylls.

  18. The influence of pH and media composition on the uptake of inorganic selenium by Chlamydomonas reinhardtii

    SciTech Connect

    Riedel, G.F.; Sanders, J.G.

    1996-09-01

    The uptake of inorganic selenium species, selenate and selenite, by the green alga Chlamydomonas reinhardtii Dang was examined as a function of pH over the range 5 to 9 and in media with varying concentrations of major ions and nutrients using {sup 75}Se as a radiotracer. Little difference was noted in the uptake of selenate as a function of pH, with the maximum uptake occurring at pH 8; however, selenite uptake increased substantially at the lower pH values. Selenate uptake was significantly decreased by higher sulfate concentrations and increased significantly by calcium, magnesium, and ammonium. Selenite uptake was significantly increased when the phosphate concentrations in the media were reduced. The results of these experiments demonstrate that varying water chemistry may significantly affect the uptake of inorganic selenium by phytoplankton and the subsequent transfer of the selenium to higher trophic levels.

  19. Brownian Dynamics and Molecular Dynamics Study of the Association Between Hydrogenase and Ferredoxin from the Chlamydomonas reinhardtii

    SciTech Connect

    Long, H.; Chang, C. H.; King, P. W.; Ghirardi, M. L.; Kim, K.

    2008-10-01

    The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer.

  20. Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds.

    PubMed

    Stevenson, Louise M; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A; McCauley, Edward; Nisbet, Roger M

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles.

  1. Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds

    PubMed Central

    Stevenson, Louise M.; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A.; McCauley, Edward; Nisbet, Roger M.

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles. PMID:24086348

  2. Comparative analysis of cryopreservation methods in Chlamydomonas reinhardtii.

    PubMed

    Scarbrough, Chasity; Wirschell, Maureen

    2016-10-01

    Chlamydomonas is a model organism used for studies of many important biological processes. Traditionally, strains have been propagated on solid agar, which requires routine passaging for long-term maintenance. Cryopreservation of Chlamydomonas is possible, yet long-term viability is highly variable. Thus, improved cryopreservation methods for Chlamydomonas are an important requirement for sustained study of genetically defined strains. Here, we tested a commercial cryopreservation kit and directly compared it's effectiveness to a methanol-based method. We also tested thaw-back procedures comparing the growth of cells in liquid culture or on solid agar media. We demonstrated that methanol was the superior cryopreservation method for Chlamydomonas compared to the commercial kit and that post-thaw culture conditions dramatically affect viability. We also demonstrated that cryopreserved cells could be successfully thawed and plated directly onto solid agar plates. Our findings have important implications for the long-term storage of Chlamydomonas that can likely be extended to other algal species.

  3. Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii.

    PubMed Central

    Li, J; Goldschmidt-Clermont, M; Timko, M P

    1993-01-01

    A chloroplast-encoded gene, designated chlB, has been isolated from Chlamydomonas reinhardtii, its nucleotide sequence determined, and its role in the light-independent reduction of protochlorophyllide to chlorophyllide demonstrated by gene disruption experiments. The C. reinhardtii chlB gene is similar to open reading frame 563 (orf563) of C. moewusii, and its encoded protein is a homolog of the Rhodobacter capsulatus bchB gene product that encodes one of the polypeptide components of bacterial light-independent protochlorophyllide reduction. To determine whether the chlB gene product has a similar role in light-independent protochlorophyllide reduction in this alga, a series of plasmids were constructed in which the aadA gene conferring spectinomycin resistance was inserted at three different sites within the chlB gene. The mutated chlB genes were introduced into the Chlamydomonas chloroplast genome using particle gun-mediated transformation, and homoplasmic transformants containing the disrupted chlB genes were selected on the basis of conversion to antibiotic resistance. Individual transformed strains containing chlB disruptions were grown in the dark or light, and 17 of the 18 strains examined were found to have a "yellow-in-the-dark" phenotype and to accumulate the chlorophyll biosynthetic precursor protochlorophyllide. RNA gel blot analysis of chlB gene expression in wild-type cells indicated that the gene was transcribed at low levels in both dark- and light-grown cells. The results of these studies support the involvement of the chlB gene product in light-independent protochlorophyllide reduction, and they demonstrate that, similar to its eubacterial predecessors, this green alga requires at least three components (i.e., chlN, chlL, and chlB) for light-independent protochlorophyllide reduction. PMID:8305874

  4. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide.

    PubMed

    Wei, Yuan Yuan; Zheng, Qi; Liu, Zhao Pu; Yang, Zhi Min

    2011-09-01

    Investigation of heavy metal tolerance genes in green algae is of great importance because heavy metals have become one of the major contaminants in the aquatic ecosystem. In plants, accumulation of heavy metals modifies many aspects of cellular functions. However, the mechanism by which heavy metals exert detrimental effects is poorly understood. In this study, we identified a role for HO-1 (encoding heme oxygenase-1) in regulating the response of Chlamydomonas reinhardtii, a unicellular green alga, to mercury (Hg). Transgenic algae overexpressing HO-1 showed high tolerance to Hg exposure, with a 48.2% increase in cell number over the wild type, but accumulated less Hg. Physiological analysis revealed that expression of HO-1 suppressed the Hg-induced generation of reactive oxygen species. We further identified the effect of carbon monoxide (CO), a product of HO-1-mediated heme degradation, on growth and physiological parameters. Interestingly, administration of exogenous CO at non-toxic levels also conferred the tolerance of algae to Hg exposure. The CO-mediated alleviation of Hg toxicity was closely related to the lower accumulation of Hg and free radical species. These results indicate that functional identification of HO-1 is useful for molecular breeding designed to improve plant tolerance to heavy metals and reduce heavy metal accumulation in plant cells. PMID:21813461

  5. Chlamydomonas reinhardtii Chloroplasts Contain a Homodimeric Pyruvate:Ferredoxin Oxidoreductase That Functions with FDX11[W][OA

    PubMed Central

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min−1 mg−1 protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1–FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent Km values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  6. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    NASA Astrophysics Data System (ADS)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  7. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii.

    PubMed

    Wang, Ning-Xin; Huang, Bin; Xu, Shen; Wei, Zhong-Bo; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan

    2014-12-01

    We studied arsenite (iAs(III)) accumulation, oxidation, and toxicity in the freshwater green alga Chlamydomonas reinhardtii under nutrient-enriched (+NP), phosphorus-limited (-P), and nitrogen-limited (-N) conditions. The -P alga (55.1 μM) had a Michaelis constant (Kd) for uptake approximately one tenth of the +NP (419 μM) and -N (501 μM) cells, indicating iAs(III) uptake inhibition by extracellular phosphate. This conclusion was supported by the hyperbolic reduction in iAs(III) uptake rate (V) from 9.2 to 0.8 μmol/g-dw/h when the extracellular phosphate concentration went up from 0 to 250 μM. The maximal iAs(III) uptake rate (Vmax) of the -N alga (24.3 μmol/g-dw/h) was twice as much as that of the +NP (12 μmol/g-dw/h) and -P (8.1 μmol/g-dw/h) cells. It implies that more arsenic transporters were synthesized under the -N condition. Once accumulated, iAs(III) was oxidized and a higher proportion of arsenate (iAs(V)) was observed at lower [As]dis or under nutrient-limited conditions. Nevertheless, iAs(III) oxidation mainly occurred outside the cells with the extent of oxidation reciprocal to [As]dis. Based on the logistic modeling of the concentration-response curves in the +NP, -P, and -N toxicity tests, iAs(III) had an [As]dis-based EC50 of 1763, 13.1, and 1208 μM and an intracellular arsenic concentration based EC50 of 35.6, 28.8, and 195 μmol/g-dw, respectively. Higher iAs(III) toxicity to the -P cells occured because of their increased iAs(III) accumulation, whereas the underlying mechanisms why the -N alga was more tolerant need to be further revealed. Overall, both N and P had remarkable effects on the behavior and effects of iAs(III), which cannot be disregarded in the biogeochemical cycling research of arsenic. PMID:25456231

  8. Prolongation of H2 Photoproduction by Immobilized, Sulfur-Limited Chlamydomonas reinhardtii Cultures

    SciTech Connect

    Laurinavichene, T. V.; Kosourov, S. N.; Ghirardi, M. L.; Seibert, M.; Tsygankov, A. A.

    2008-04-30

    Two approaches to prolong the duration of hydrogen production by immobilized, sulfur-limited Chlamydomonas reinhardtii cells are examined. The results demonstrate that continuous H{sub 2} photoproduction can occur for at least 90 days under constant flow of TAP medium containing micromolar sulfate concentrations. Furthermore, it is also possible to prolong the duration of H{sub 2} production by cycling immobilized cells between minus and plus sulfate conditions.

  9. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane.

    PubMed

    Wang, Hongxia; Gau, Brian; Slade, William O; Juergens, Matthew; Li, Ping; Hicks, Leslie M

    2014-09-01

    Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.

  10. Photoevolution of hydrogen from Chlamydomonas sp. in the presence of CO/sub 2/. [Chlamydomonas reinhardtii, Chlamydomonas moewusii

    SciTech Connect

    Graves, D.A.; Greenbaum, E.

    1987-04-01

    Chlamydomonas reinhardtii and C. moewusii are known to photoevolve O/sub 2/ and H/sub 2/ at 22/sup 0/C under anaeroblosis and in the absence of CO/sub 2/. Under these conditions the ratio of H/sub 2/ and O/sub 2/ is very nearly 2, indicating that essentially all electrons generated by the photolysis of H/sub 2/O are expressed as H/sub 2/. In an atmosphere of 1% CO/sub 2/ in He, steady-state photoproduction of H/sub 2/ was completely inhibited at 22/sup 0/C, with the only detectable production of H/sub 2/ being a transient burst which accompanied the onset of irradiation. The maximum ratio of H/sub 2/ to O/sub 2/ during the burst was ca. 0.2. Carbon dioxide also caused a >10-fold increase in O/sub 2/ photoevolution. Chilling the cells to 0/sup 0/C in the presence of CO/sub 2/ reduced the rate of O/sub 2/ evolution to slightly less than that observed in the absence of CO/sub 2/; the maximum ratio of H/sub 2/ to O/sub 2/ approached 2; and sustained H/sub 2/ evolution occurred with an H/sub 2//O/sub 2/ ratio of approx. 1, indicating that as much as one-half of the electrons generated by the photolysis of H/sub 2/O were shunted to hydrogenase. The pathway for CO/sub 2/ reduction and the mechanism by which CO/sub 2/ regulates photosynthesis appear to be more sensitive to temperature than the pathway for H/sub 2/ evolution. This may be a reflection of the complexity of the relatively simple H/sub 2/ evolution pathway (ferredoxin ..-->.. hydrogenase) versus the more complex, multi-enzyme Calvin cycle.

  11. Draft Genome Sequences of Four Species of Chlamydomonas Containing Phosphatidylcholine

    PubMed Central

    Hirashima, Takashi; Tajima, Naoyuki

    2016-01-01

    Phosphatidylcholine (PC) is one of the essential phospholipids for most eukaryotes. Although the model green alga Chlamydomonas reinhardtii lacks PC, four species containing PC were found in the genus Chlamydomonas. Here, we report the draft genome sequences of the four species of Chlamydomonas containing PC. PMID:27688324

  12. Draft Genome Sequences of Four Species of Chlamydomonas Containing Phosphatidylcholine.

    PubMed

    Hirashima, Takashi; Tajima, Naoyuki; Sato, Naoki

    2016-01-01

    Phosphatidylcholine (PC) is one of the essential phospholipids for most eukaryotes. Although the model green alga Chlamydomonas reinhardtii lacks PC, four species containing PC were found in the genus Chlamydomonas Here, we report the draft genome sequences of the four species of Chlamydomonas containing PC. PMID:27688324

  13. Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity.

    PubMed

    Li, Xiaobo; Benning, Christoph; Kuo, Min-Hao

    2012-12-01

    When deprived of nitrogen (N), the photosynthetic microalga Chlamydomonas reinhardtii accumulates large quantities of triacylglycerols (TAGs), making it a promising source of biofuel. Prominent transcriptional changes associated with the conditions leading to TAG accumulation have been found, suggesting that the key enzymes for TAG metabolism might be among those that fluctuate in their expression during TAG synthesis and breakdown. Using a Saccharomyces cerevisiae lipase null mutant strain for functional complementation, we identified the CrLIP1 gene from Chlamydomonas based on its ability to suppress the lipase deficiency-related phenotypes of the yeast mutant. In Chlamydomonas, an inverse correlation was found between the CrLIP1 transcript level and TAG abundance when Chlamydomonas cultures were reversibly deprived of N. The CrLIP1 protein expressed and purified from Escherichia coli exhibited lipolytic activity against diacylglycerol (DAG) and polar lipids. The lipase domain of CrLIP1 is most similar to two human DAG lipases, DAGLα and DAGLβ. The involvement of CrLIP1 in Chlamydomonas TAG hydrolysis was corroborated by reducing the abundance of the CrLIP1 transcript with an artificial micro-RNA, which resulted in an apparent delay in TAG lipolysis when N was resupplied. Together, these data suggest that CrLIP1 facilitates TAG turnover in Chlamydomonas primarily by degrading the DAG presumably generated from TAG hydrolysis.

  14. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    SciTech Connect

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; Imam, Saheed; Carter, Warren; Bilgin, Damla D.; Yohn, Christopher B.; Turkarslan, Serdar; Reiss, David J.; Orellana, Monica V.; Price, Nathan D.; Baliga, Nitin S.

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation

  15. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGES

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; Imam, Saheed; Carter, Warren; Bilgin, Damla D.; Yohn, Christopher B.; Turkarslan, Serdar; Reiss, David J.; Orellana, Monica V.; et al

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  16. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii.

    PubMed

    Stoiber, Tasha L; Shafer, Martin M; Armstrong, David E

    2010-01-01

    The toxicity of cadmium to aquatic organisms is well known, but the mechanisms of toxicity are not as clearly understood. In the present study, Cd bioassay experiments incorporating both traditional endpoints and novel thiol-based endpoints were conducted with Chlamydomonas reinhardtii. The results were compared with results from previous bioassay experiments to probe the apparent contrasting biochemical mechanisms of toxicity of copper and cadmium as expressed in cellular glutathione and the glutathione cycle. Total glutathione and reduced to oxidized glutathione ratio (GSH/GSSG) measurements were remarkably different in Cd- compared with Cu-exposed cells. Whereas total glutathione in cells decreased with increasing Cu concentration, Cd caused dramatic increases. Total glutathione increased by 4.5-fold with 80 nM Cd treatment over concentrations in Cd-free controls. Glutathione reductase (GR) enzyme activity was positively correlated (r(2) (Cu) = 0.96, r(2) (Cd) = 0.85) with glutathione concentrations for both metals. Measurements of mRNA for GR were increased 2-fold in response to Cd exposure (80 nM) and correlated well with GR enzyme activity. Glutathione concentrations and GR enzyme activity are useful endpoints for both Cu and Cd toxicity in algae, even though the metals elicit opposing responses. We conclude that Cu decreases glutathione concentrations by inhibiting GR enzyme activity. In contrast, Cd stimulates GR enzyme activity and increases glutathione concentrations as cells respond to Cd-induced stress by producing increased antioxidant capacity. The present study demonstrates that determining the glutathione response in cells is important for understanding the metal-specific mechanisms of toxicity and that these associated novel endpoints may be useful metrics for accurately predicting toxicity.

  17. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

    PubMed Central

    Liu, Cuimin; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. PMID:26305355

  18. Comparative analysis of cryopreservation methods in Chlamydomonas reinhardtii.

    PubMed

    Scarbrough, Chasity; Wirschell, Maureen

    2016-10-01

    Chlamydomonas is a model organism used for studies of many important biological processes. Traditionally, strains have been propagated on solid agar, which requires routine passaging for long-term maintenance. Cryopreservation of Chlamydomonas is possible, yet long-term viability is highly variable. Thus, improved cryopreservation methods for Chlamydomonas are an important requirement for sustained study of genetically defined strains. Here, we tested a commercial cryopreservation kit and directly compared it's effectiveness to a methanol-based method. We also tested thaw-back procedures comparing the growth of cells in liquid culture or on solid agar media. We demonstrated that methanol was the superior cryopreservation method for Chlamydomonas compared to the commercial kit and that post-thaw culture conditions dramatically affect viability. We also demonstrated that cryopreserved cells could be successfully thawed and plated directly onto solid agar plates. Our findings have important implications for the long-term storage of Chlamydomonas that can likely be extended to other algal species. PMID:27452475

  19. The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot.

    PubMed

    Schulze, Thomas; Schreiber, Sandra; Iliev, Dobromir; Boesger, Jens; Trippens, Jessica; Kreimer, Georg; Mittag, Maria

    2013-05-01

    The flagellated green alga Chlamydomonas reinhardtii has a primitive visual system, the eyespot. It is situated at the cells equator and allows the cell to phototax. In a previous proteomic analysis of the eyespot, the SOUL3 protein was identified among 202 proteins. Here, we investigate the properties and functions of SOUL3. Heterologously expressed SOUL3 is able to bind specifically to hemin. In C. reinhardtii, SOUL3 is expressed at a constant level over the diurnal cycle, but forms protein complexes that differ in size during day and night phases. SOUL3 is primarily localized in the eyespot and it is situated in the pigment globule layer thereof. This is in contrast to the channelrhodopsin photoreceptors, which are localized in the plasma membrane region of the eyespot. Knockdown lines with a significantly reduced SOUL3 level are characterized by mislocalized eyespots, a decreased eyespot size, and alterations in phototactic behavior. Mislocalizations were either anterior or posterior and did not affect association with acetylated microtubules of the daughter four-membered rootlet. Our data suggest that SOUL3 is involved in the organization and placement of the eyespot within the cell. PMID:23180671

  20. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii

    PubMed Central

    Chapman, Stephen P.; Paget, Caroline M.; Johnson, Giles N.; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential—impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism. PMID:26175742

  1. Novel salvage of queuine from queuosine and absence of queuine synthesis in Chlorella pyrenoidosa and Chlamydomonas reinhardtii.

    PubMed Central

    Kirtland, G M; Morris, T D; Moore, P H; O'Brian, J J; Edmonds, C G; McCloskey, J A; Katze, J R

    1988-01-01

    Partially purified extracts from Chlorella pyrenoidosa and Chlamydomonas reinhardtii catalyze the cleavage of queuosine (Q), a modified 7-deazaguanine nucleoside found exclusively in the first position of the anticodon of certain tRNAs, to queuine, the base of Q. This is the first report of an enzyme that specifically cleaves a 7-deazapurine riboside. Guanosine is not a substrate for this activity, nor is the epoxide a derivative of Q. We also establish that both algae can incorporate exogenously supplied queuine into their tRNA but lack Q-containing tRNA when cultivated in the absence of queuine, indicating that they are unable to synthesize Q de novo. Although no physiological function for Q has been identified in these algae, Q cleavage to queuine would enable algae to generate queuine from exogenous Q in the wild and also to salvage (and recycle) queuine from intracellular tRNA degraded during the normal turnover process. In mammalian cells, queuine salvage occurs by the specific cleavage of queuine from Q-5'-phosphate. The present data also support the hypothesis that plants, like animals, cannot synthesize Q de novo. PMID:3142853

  2. The ubiquitin–proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate

    PubMed Central

    Vallentine, Patrick; Hung, Chiu-Yueh; Xie, Jiahua; Van Hoewyk, Doug

    2014-01-01

    The ubiquitin–proteasome pathway (UPP) coordinates a myriad of physiological processes in higher plants, including abiotic stress responses, but it is less well characterized in algal species. In this study, the green alga Chlamydomonas reinhardtii was used to gain insights into the role of the UPP during moderate and severe selenite stress at three different time points. The data indicate that activity of the UPP in response to selenium (Se) stress was both time and dose dependent. Moderate selenite stress increased proteasome activity, protein ubiquitination and the proteasomal removal of malformed selenoproteins. However, severe Se stress caused by prolonged selenite treatment or high selenite concentration decreased proteasome activity, inhibited protein ubiquitination and prevented the proteasomal removal of selenoproteins. The UPP impairment during severe Se stress was associated with the observed accumulation of reactive oxygen species (ROS), including mitochondrial superoxide. Additionally, proteasomal inhibition decreased the concentration of chlorophyll in cultures challenged with Se. Therefore, although the UPP protects Chlamydomonas against Se stress, severe oxidative stress induced by selenite toxicity likely hinders the UPP's capacity to mediate a stress response. The possibility that stress tolerance in plants is dependent upon optimal UPP activity and maintenance is discussed. PMID:25301821

  3. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Gang, Spencer S.; Blum, Sean R.; Ivanova, Nina; Yue, Rebecca; Grossman, Arthur R.

    2016-01-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids. PMID:26764374

  4. Adenosine 3′:5′-Cyclic Monophosphate in Chlamydomonas reinhardtii: Isolation and Characterization

    PubMed Central

    Amrhein, Nikolaus; Filner, Philip

    1973-01-01

    Chlamydomonas reinhardtii contains a factor that can replace adenosine 3′:5′-cyclic monophosphate (cAMP) in the stimulation of rabbit-muscle protein kinase. The factor cochromatographs and coelectrophoreses with authentic cAMP, and is inactivated by beef heart cyclic nucleotide phosphodiesterase. When C. reinhardtii is exposed to aminophylline (theophylline2 ethylenediamine), the concentration of the factor in the cells increases within 1 hr, from about 25 pmol of cAMP equivalents per g dry weight to more than 250 pmol. Cyclic nucleotide phosphodiesterase activity is present in crude extract of C. reinhardtii and is inhibited by theophylline. We conclude that cAMP occurs in C. reinhardtii and that the endogenous concentration is governed at least in part by a theophylline-sensitive cyclic nucleotide phosphodiesterase. These findings provide a sound basis for attributing the effects of methylxanthines on flagellar function and regeneration in C. reinhardtii to the resultant elevation of endogenous cAMP. PMID:16592076

  5. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Buchanan, B. B.

    1989-01-01

    A chloroplast type of fructose-1,6-bisphosphatase, a central regulatory enzyme of photosynthetic carbon metabolism, has been partially purified from Chlamydomonas reinhardtii. Unlike its counterpart from spinach chloroplasts, the algal FBPase showed a strict requirement for a dithiol reductant irrespective of Mg2+ concentration. The enzymes from the two sources resembled each other immunologically, in subunit molecular mass and response to pH. In the presence of dithiothreitol, the pH optimum for both the algal and spinach enzymes shifted from 8.5 to a more physiologic value of 8.0 as the Mg2+ concentration was increased from 1 to 16 mM. At 1 mM Mg2+, a concentration estimated to be close to physiological, the Chlamydomonas FBPase was active only in the presence of reduced thioredoxin and was most active with Chlamydomonas thioredoxin f. Under these conditions, the enzyme showed a pH optimum of 8.0. The data suggest that the Chlamydomonas enzyme resembles its spinach counterpart in most respects, but it has a stricter requirement for reduction and less strict reductant specificity. A comparison of the properties of the FBPases from Chlamydomonas and spinach will be helpful for elucidating the mechanism of the reductive activation of this enzyme.

  6. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae).

    PubMed

    Lukeš, Martin; Procházková, Lenka; Shmidt, Volha; Nedbalová, Linda; Kaftan, David

    2014-08-01

    Here, we report an effect of short acclimation to a wide span of temperatures on photosynthetic electron transfer, lipid and fatty acid composition in the snow alga Chlamydomonas cf. nivalis. The growth and oxygen evolution capacity were low at 2 °C yet progressively enhanced at 10 °C and were significantly higher at temperatures from 5 to 15 °C in comparison with the mesophilic control Chlamydomonas reinhardtii. In search of the molecular mechanisms responsible for the adaptation of photosynthesis to low temperatures, we have found unprecedented high rates of QA to QB electron transfer. The thermodynamics of the process revealed the existence of an increased structural flexibility that we explain with the amino acid changes in the D1 protein combined with the physico-chemical characteristics of the thylakoid membrane composed of > 80% negatively charged phosphatidylglycerol.

  7. Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage.

    PubMed

    Sarkar, Nandita; Lemaire, Stéphane; Wu-Scharf, Danxia; Issakidis-Bourguet, Emmanuelle; Cerutti, Heriberto

    2005-02-01

    DNA damage occurs as a by-product of intrinsic cellular processes, like DNA replication, or as a consequence of exposure to genotoxic agents. Organisms have evolved multiple mechanisms to avoid, tolerate, or repair DNA lesions. To gain insight into these processes, we have isolated mutants hypersensitive to DNA-damaging agents in the green alga Chlamydomonas reinhardtii. One mutant, Ble-1, showed decreased survival when it was treated with methyl methanesulfonate (MMS), bleomycin, or hydrogen peroxide (H2O2) but behaved like the wild type when it was exposed to UVC irradiation. Ble-1 carries an extensive chromosomal deletion that includes the gene encoding cytosolic thioredoxin h1 (Trxh1). Transformation of Ble-1 with a wild-type copy of Trxh1 fully corrected the MMS hypersensitivity and partly restored the tolerance to bleomycin. Trxh1 also complemented a defect in the repair of MMS-induced DNA strand breaks and alkali-labile sites. In addition, a Trxh1-beta-glucuronidase fusion protein translocated to the nucleus in response to treatment with MMS. However, somewhat surprisingly, Trxh1 failed to correct the Ble-1 hypersensitivity to H2O2. Moreover, Trxh1 suppression by RNA interference in a wild-type strain resulted in enhanced sensitivity to MMS and DNA repair defects but no increased cytotoxicity to H2O2. Thioredoxins have been implicated in oxidative-stress responses in many organisms. Yet our results indicate a specific role of Chlamydomonas Trxh1 in the repair of MMS-induced DNA damage, whereas it is dispensable for the response to H2O2. These observations also suggest functional specialization among cytosolic thioredoxins since another Chlamydomonas isoform (Trxh2) does not compensate for the lack of Trxh1. PMID:15701788

  8. Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy Dissipation in Chlamydomonas reinhardtii.

    PubMed

    Correa-Galvis, Viviana; Redekop, Petra; Guan, Katharine; Griess, Annika; Truong, Thuy B; Wakao, Setsuko; Niyogi, Krishna K; Jahns, Peter

    2016-08-12

    Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2 At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2 However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II. PMID:27358399

  9. HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation.

    PubMed

    Longworth, Joseph; Noirel, Josselin; Pandhal, Jagroop; Wright, Phillip C; Vaidyanathan, Seetharaman

    2012-12-01

    Nitrogen starvation induced changes in carbohydrate and lipid content is described in several algal species. Although these phenotypic changes are desirable, such manipulations also significantly deteriorate culture health, ultimately halting growth. To optimize biofuel production from algae, it is desirable to induce lipid accumulation without compromising cell growth and survival. In this study, we utilized an 8-plex iTRAQ-based proteomic approach to assess the model alga Chlamydomonas reinhardtii CCAP 11/32CW15+ under nitrogen starvation. First-dimension fractionation was conducted using HILIC and SCX. A total of 587 proteins were identified (≥3 peptides) of which 71 and 311 were differentially expressed at significant levels (p<0.05), during nitrogen stress induced carbohydrate and lipid production, respectively. Forty-seven percent more changes with significance were observed with HILIC compared to SCX. Several trends were observed including increase in energy metabolism, decrease in translation machinery, increase in cell wall production and a change of balance between photosystems I and II. These findings point to a severely compromised system where lipid is accumulated at the expense of normal functioning of the organism, suggesting that a more informed and controlled method of lipid induction than gross nutrient manipulation would be needed for development of sustainable processes.

  10. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells.

    PubMed

    Dinc, Emine; Tian, Lijin; Roy, Laura M; Roth, Robyn; Goodenough, Ursula; Croce, Roberta

    2016-07-01

    To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed. PMID:27335457

  11. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C.

    PubMed

    Kim, Eun Jae; Jung, Woongsic; Lim, Suyoun; Kim, Sanghee; Han, Se Jong; Choi, Han-Gu

    2016-01-01

    Biodiesel produced from microalgae is a promising source of alternative energy. In winter, however, outdoor mass cultivation for biodiesel production is hampered by poor growth. Here, we report that Arctic Chlamydomonas sp. KNM0029C exhibits optimal growth at 4 °C and reaches densities up to 1.4 × 10(7) cells mL(-1). Lipid body formation in the alga was visualized through BODIPY 505/515 staining and fluorescence microscopy. The fatty acid methyl ester (FAME) production level of KNM0029C was 178.6 mg L(-1) culture and 2.3-fold higher than that of C. reinhardtii CC-125 at 4 °C. Analysis of the FAME content showed a predominance of polyunsaturated fatty acids such as C16:3, C18:2, C18:3, and C20:2. C18:3 fatty acids comprised the largest fraction (20.7%), and the content of polyunsaturated fatty acids (39.6%) was higher than that of saturated fatty acids (6.8%) at 4 °C. These results indicate that Chlamydomonas sp. KNM0029C, as a psychrophilic microalga, might represent a favorable source for biodiesel production in cold environments.

  12. Identification and characterization of a cis-regulatory element for zygotic gene expression in Chlamydomonas reinhardtii

    DOE PAGES

    Hamaji, Takashi; Lopez, David; Pellegrini, Matteo; Umen, James

    2016-03-26

    Upon fertilization Chlamydomonas reinhardtii zygotes undergo a program of differentiation into a diploid zygospore that is accompanied by transcription of hundreds of zygote-specific genes. We identified a distinct sequence motif we term a zygotic response element (ZYRE) that is highly enriched in promoter regions of C. reinhardtii early zygotic genes. A luciferase reporter assay was used to show that native ZYRE motifs within the promoter of zygotic gene ZYS3 or intron of zygotic gene DMT4 are necessary for zygotic induction. A synthetic luciferase reporter with a minimal promoter was used to show that ZYRE motifs introduced upstream are sufficient tomore » confer zygotic upregulation, and that ZYRE-controlled zygotic transcription is dependent on the homeodomain transcription factor GSP1. Furthermore, we predict that ZYRE motifs will correspond to binding sites for the homeodomain proteins GSP1-GSM1 that heterodimerize and activate zygotic gene expression in early zygotes.« less

  13. Identification and Characterization of a cis-Regulatory Element for Zygotic Gene Expression in Chlamydomonas reinhardtii

    PubMed Central

    Hamaji, Takashi; Lopez, David; Pellegrini, Matteo; Umen, James

    2016-01-01

    Upon fertilization Chlamydomonas reinhardtii zygotes undergo a program of differentiation into a diploid zygospore that is accompanied by transcription of hundreds of zygote-specific genes. We identified a distinct sequence motif we term a zygotic response element (ZYRE) that is highly enriched in promoter regions of C. reinhardtii early zygotic genes. A luciferase reporter assay was used to show that native ZYRE motifs within the promoter of zygotic gene ZYS3 or intron of zygotic gene DMT4 are necessary for zygotic induction. A synthetic luciferase reporter with a minimal promoter was used to show that ZYRE motifs introduced upstream are sufficient to confer zygotic upregulation, and that ZYRE-controlled zygotic transcription is dependent on the homeodomain transcription factor GSP1. We predict that ZYRE motifs will correspond to binding sites for the homeodomain proteins GSP1-GSM1 that heterodimerize and activate zygotic gene expression in early zygotes. PMID:27172209

  14. Identification and Characterization of a cis-Regulatory Element for Zygotic Gene Expression in Chlamydomonas reinhardtii.

    PubMed

    Hamaji, Takashi; Lopez, David; Pellegrini, Matteo; Umen, James

    2016-01-01

    Upon fertilization Chlamydomonas reinhardtii zygotes undergo a program of differentiation into a diploid zygospore that is accompanied by transcription of hundreds of zygote-specific genes. We identified a distinct sequence motif we term a zygotic response element (ZYRE) that is highly enriched in promoter regions of C reinhardtii early zygotic genes. A luciferase reporter assay was used to show that native ZYRE motifs within the promoter of zygotic gene ZYS3 or intron of zygotic gene DMT4 are necessary for zygotic induction. A synthetic luciferase reporter with a minimal promoter was used to show that ZYRE motifs introduced upstream are sufficient to confer zygotic upregulation, and that ZYRE-controlled zygotic transcription is dependent on the homeodomain transcription factor GSP1. We predict that ZYRE motifs will correspond to binding sites for the homeodomain proteins GSP1-GSM1 that heterodimerize and activate zygotic gene expression in early zygotes. PMID:27172209

  15. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna.

    PubMed

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-06-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment.

  16. Mitochondrial Genetics of Chlamydomonas Reinhardtii: Resistance Mutations Marking the Cytochrome B Gene

    PubMed Central

    Bennoun, P.; Delosme, M.; Kuck, U.

    1991-01-01

    We describe the genetic and molecular analysis of the first non-Mendelian mutants of Chlamydomonas reinhardtii resistant to myxothiazol, an inhibitor of the respiratory cytochrome bc1 complex. Using a set of seven oligonucleotide probes, restriction fragments containing the mitochondrial cytochrome b (cyt b) gene from C. reinhardtii were isolated from a mitochondrial DNA library. This gene is located adjacent to the gene for subunit 4 of the mitochondrial NADH-dehydrogenase (ND4), near one end of the 15.8-kb linear mitochondrial genome of C. reinhardtii. The algal cytochrome b apoprotein contains 381 amino-acid residues and exhibits a sequence similarity of about 59% with other plant cytochrome b proteins. The cyt b gene from four myxothiazol resistant mutants of C. reinhardtii was amplified for DNA sequence analysis. In comparison to the wild-type strain, all mutants contain an identical point mutation in the cyt b gene, leading to a change of a phenylalanine codon to a leucine codon at amino acid position 129 of the cytochrome b protein. Segregation analysis in tetrads from reciprocal crosses of mutants with wild type shows a strict uniparental inheritance of this mutation from the mating type minus parent (UP(-)). However, mitochondrial markers from both parents are recovered in vegetative diploids in variable proportions from one experiment to the next for a given cross. On the average, a strong bias is seen for markers inherited from the mating type minus parent. PMID:2004707

  17. Generation of a phage-display library of single-domain camelid VH H antibodies directed against Chlamydomonas reinhardtii antigens, and characterization of VH Hs binding cell-surface antigens.

    PubMed

    Jiang, Wenzhi; Rosenberg, Julian N; Wauchope, Akelia D; Tremblay, Jacqueline M; Shoemaker, Charles B; Weeks, Donald P; Oyler, George A

    2013-11-01

    Single-domain antibodies (sdAbs) are powerful tools for the detection, quantification, purification and subcellular localization of proteins of interest in biological research. We have generated camelid (Lama pacos) heavy chain-only variable VH domain (VH H) libraries against antigens in total cell lysates from Chlamydomonas reinhardtii. The sdAbs in the sera from immunized animals and VH H antibody domains isolated from the library show specificity to C. reinhardtii and lack of reactivity to antigens from four other algae: Chlorella variabilis, Coccomyxa subellipsoidea, Nannochloropsis oceanica and Thalassiosira pseudonana. Antibodies were produced against a diverse representation of antigens as evidenced by sera ELISA and protein-blot analyses. A phage-display library consisting of the VH H region contained at least 10(6) individual transformants, and thus should represent a wide range of C. reinhardtii antigens. The utility of the phage library was demonstrated by using live C. reinhardtii cells to pan for VH H clones with specific recognition of cell-surface epitopes. The lead candidate VH H clones (designated B11 and H10) bound to C. reinhardtii with EC50 values ≤ 0.5 nm. Treatment of cells with VH H B11 fused to the mCherry or green fluorescent proteins allowed brilliant and specific staining of the C. reinhardtii cell wall and analysis of cell-wall genesis during cell division. Such high-complexity VH H antibody libraries for algae will be valuable tools for algal researchers and biotechnologists.

  18. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  19. Ciliary kinematics of Chlamydomonas reinhardtii in Complex Fluids: Role of viscosity

    NASA Astrophysics Data System (ADS)

    Gopinath, Arvind; Qin, Boyang; Arratia, Paulo

    2014-11-01

    The motility behavior of microorganisms can be significantly affected by the rheology of their fluidic environment. Guided by our experiments on the swimming gait of Chlamydomonas reinhardtii in viscoelastic fluids, we focus on ciliary waveforms in Newtonian fluids and systematically study the effect of increasing viscosity. We find that the beat frequency as well as the wave speed are both strongly influenced by fluid viscosity. Interestingly, ciliary waveforms at low viscosity show a larger influence of the cell body than waveforms at higher viscosity. We use slender body theory and principal component analysis to elucidate the role of fluid viscosity in regulating the kinematics of the swimming process.

  20. Stimulation of growth and photosynthetic carbon metabolism in Chlamydomonas reinhardtii with triacontanol

    SciTech Connect

    Houtz, R.L.

    1985-01-01

    Treatment of Chlamydomonas reinhardtii Dangeard cells (-, strain N. 90), cultured at 5% CO/sub 2/, with 1 to 1000 ..mu..g/L triacontanol (TRIA) resulted in a 21% to 35% increase in cell density, 7% to 31% increase in total chlorophyll, and 20% to 100% increase in photosynthetic CO/sub 2/ assimilation. Chlamydomonas cells responded to a broad range of TRIA concentrations that were at least 10-fold above the optimum concentration for higher plants. Octacosanol inhibited the effect of TRIA on photosynthetic CO/sub 2/ assimilation. TRIA did not alter glycolate excretion, the CO/sub 2/ compensation point or sensitivity of photosynthetic CO/sub 2/ assimilation to O/sub 2/ in Chlamydomonas. Kinetic analysis of TRIA-treated cells showed that the increase in photosynthetic CO/sub 2/ assimilation was a result of an increase in the whole-cell apparent Vmax. The activity of RuBP carboxylase/oxygenase was significantly higher in cell lysates from TRIA-treated cells than those from control cells. However, quantification of RuBP carboxylase/oxygenase levels by /sup 14/CABP binding did not show increased enzyme levels in TRIA-treated cells. Therefore, there was an increase in the specific activity of RuBP carboxylase/oxygenase extracted from Chlamydomonas cells treated with TRIA. TRIA alone had no effect in vitro on the activity of RuBPcarboxylase/oxygenase purified from spinach (Spinacia oleracea) leaves or from cell lysates of Chlamydomonas. RuBP levels were significantly higher in TRIA-treated cells at high and low CO/sub 2/. Increased RuBP levels in TRIA-treated Chlamydomonas cells were also observed in the absence of CO/sub 2/ with atmospheres of N/sub 2/ and 21% O/sub 2/.

  1. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    NASA Astrophysics Data System (ADS)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  2. Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2014-11-01

    Chlamydomonas reinhardtii possesses many potential advantages to be exploited as a biocatalyst in microbial fuel cells (MFCs) for electricity generation. In the present study, we performed computational studies based on flux balance analysis (FBA) to probe the maximum potential of C. reinhardtii for current output and identify the metabolic mechanisms supporting a high current generation in three different cultivation conditions, i.e., heterotrophic, photoautotrophic and mixotrophic growth. The results showed that flux balance limitations allow the highest current output for C. reinhardtii in the mixotrophic growth mode (2.368 A/gDW), followed by heterotrophic growth (1.141 A/gDW) and photoautotrophic growth the lowest (0.7035 A/gDW). The significantly higher mediated electron transfer (MET) rate in the mixotrophic mode is in complete contrast to previous findings for a photosynthetic cyanobacterium, and was attributed to the fact that for C. reinhardtii the photophosphorylation improved the efficiency of converting the acetate into biomass and NADH production. Overall, the cytosolic NADH-dependent current production was mainly associated with five reactions in both mixotrophic and photoautotrophic nutritional modes, whereas four reactions participated in the heterotrophic mode. The mixotrophic and photoautotrophic metabolisms were alike and shared the same set of reactions for maximizing current production, whereas in the heterotrophic mode, the current production was additionally contributed by the metabolic activities in the two organelles: glyoxysome and chloroplast. In conclusion, C. reinhardtii has a potential to be exploited in MFCs of MET mode to produce a high current output. PMID:24875305

  3. Filling Knowledge Gaps in Biological Networks: integrating global approaches to understand H2 metabolism in Chlamydomonas reinhardtii - Final Report

    SciTech Connect

    Posewitz, Matthew C

    2011-06-30

    The green alga Chlamydomonas reinhardtii (Chlamydomonas) has numerous genes encoding enzymes that function in fermentative pathways. Among these genes, are the [FeFe]-hydrogenases, pyruvate formate lyase, pyruvate ferredoxin oxidoreductase, acetate kinase, and phosphotransacetylase. We have systematically undertaken a series of targeted mutagenesis approaches to disrupt each of these key genes and omics techniques to characterize alterations in metabolic flux. Funds from DE-FG02-07ER64423 were specifically leveraged to generate mutants with disruptions in the genes encoding the [FeFe]-hydrogenases HYDA1 and HYDA2, pyruvate formate lyase (PFL1), and in bifunctional alcohol/aldehyde alcohol dehydrogenase (ADH1). Additionally funds were used to conduct global transcript profiling experiments of wildtype Chlamydomonas cells, as well as of the hydEF-1 mutant, which is unable to make H2 due to a lesion in the [FeFe]-hydrogenase biosynthetic pathway. In the wildtype cells, formate, acetate and ethanol are the dominant fermentation products with traces of CO2 and H2 also being produced. In the hydEF-1 mutant, succinate production is increased to offset the loss of protons as a terminal electron acceptor. In the pfl-1 mutant, lactate offsets the loss of formate production, and in the adh1-1 mutant glycerol is made instead of ethanol. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars, and a decline in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant performs a complete rerouting of the glycolytic carbon to lactate and glycerol. Lastly, transcriptome data have been analysed for both the wildtype and hydEF-1, that correlate with our

  4. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.

    PubMed

    Iwai, Masako; Ikeda, Keiko; Shimojima, Mie; Ohta, Hiroyuki

    2014-08-01

    When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)- and phosphorus (P)-starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic-growth-phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation-dependent overexpressor of a Chlamydomonas type-2 diacylglycerol acyl-CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up-regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation-inducible promoter.

  5. Loss-of-Function Mutations in the Human Ortholog of Chlamydomonas reinhardtii ODA7 Disrupt Dynein Arm Assembly and Cause Primary Ciliary Dyskinesia

    PubMed Central

    Duquesnoy, Philippe; Escudier, Estelle; Vincensini, Laetitia; Freshour, Judy; Bridoux, Anne-Marie; Coste, André; Deschildre, Antoine; de Blic, Jacques; Legendre, Marie; Montantin, Guy; Tenreiro, Henrique; Vojtek, Anne-Marie; Loussert, Céline; Clément, Annick; Escalier, Denise; Bastin, Philippe; Mitchell, David R.; Amselem, Serge

    2009-01-01

    Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion. Following a candidate-gene approach based on data from a mutant strain of the biflagellated alga Chlamydomonas reinhardtii carrying an ODA7 defect, we identified four families with a PCD phenotype characterized by the absence of both dynein arms and loss-of-function mutations in the human orthologous gene called LRRC50. Functional analyses performed in Chlamydomonas reinhardtii and in another flagellated protist, Trypanosoma brucei, support a key role for LRRC50, a member of the leucine-rich-repeat superfamily, in cytoplasmic preassembly of dynein arms. PMID:19944405

  6. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii.

    PubMed

    Nestler, Holger; Groh, Ksenia J; Schönenberger, René; Behra, Renata; Schirmer, Kristin; Eggen, Rik I L; Suter, Marc J-F

    2012-04-01

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24h of exposure, except for growth and pigment content, which were determined after 6 and 24h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae. PMID:22357416

  7. Differential Replication of Two Chloroplast Genome Forms in Heteroplasmic Chlamydomonas reinhardtii Gametes Contributes to Alternative Inheritance Patterns

    PubMed Central

    Nishimura, Yoshiki; Stern, David B.

    2010-01-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS−. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only ∼25% of tetrads, whereas the PS− genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS− genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS− genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies. PMID:20519744

  8. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010.

  9. Exploring the N-glycosylation Pathway in Chlamydomonas reinhardtii Unravels Novel Complex Structures*

    PubMed Central

    Mathieu-Rivet, Elodie; Scholz, Martin; Arias, Carolina; Dardelle, Flavien; Schulze, Stefan; Le Mauff, François; Teo, Gavin; Hochmal, Ana Karina; Blanco-Rivero, Amaya; Loutelier-Bourhis, Corinne; Kiefer-Meyer, Marie-Christine; Fufezan, Christian; Burel, Carole; Lerouge, Patrice; Martinez, Flor; Bardor, Muriel; Hippler, Michael

    2013-01-01

    Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of 18O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants. PMID:23912651

  10. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  11. Crystallization and preliminary X-ray characterization of full-length Chlamydomonas reinhardtii centrin

    SciTech Connect

    Alfaro, Elisa; Valle Sosa, Liliana del; Sanoguet, Zuleika; Pastrana-Ríos, Belinda; Schreiter, Eric R.

    2008-05-01

    C. reinhardtii centrin, an EF-hand calcium-binding protein localized to the microtubule-organizing center of eukaryotic organisms, has been crystallized in the presence of the model peptide melittin. X-ray diffraction data were collected to 2.2 Å resolution. Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner. To understand how C. reinhardtii centrin interacts with its protein targets, it has been crystallized in the presence of the model peptide melittin and X-ray diffraction data have been collected to 2.2 Å resolution. The crystals are orthorhombic, with unit-cell parameters a = 52.1, b = 114.4, c = 34.8 Å, and are likely to belong to space group P2{sub 1}2{sub 1}2.

  12. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures.

    PubMed

    Mathieu-Rivet, Elodie; Scholz, Martin; Arias, Carolina; Dardelle, Flavien; Schulze, Stefan; Le Mauff, François; Teo, Gavin; Hochmal, Ana Karina; Blanco-Rivero, Amaya; Loutelier-Bourhis, Corinne; Kiefer-Meyer, Marie-Christine; Fufezan, Christian; Burel, Carole; Lerouge, Patrice; Martinez, Flor; Bardor, Muriel; Hippler, Michael

    2013-11-01

    Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of (18)O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.

  13. Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii.

    PubMed

    Khona, Dolly K; Rao, Venkatramanan G; Motiwalla, Mustafa J; Varma, P C Sreekrishna; Kashyap, Anisha R; Das, Koyel; Shirolikar, Seema M; Borde, Lalit; Dharmadhikari, Jayashree A; Dharmadhikari, Aditya K; Mukhopadhyay, Siuli; Mathur, Deepak; D'Souza, Jacinta S

    2013-01-01

    Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved '9+2' axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26-57%) and beat frequencies (by 8-16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.

  14. Prevalence, Evolution, and cis-Regulation of Diel Transcription in Chlamydomonas reinhardtii

    PubMed Central

    Panchy, Nicholas; Wu, Guangxi; Newton, Linsey; Tsai, Chia-Hong; Chen, Jin; Benning, Christoph; Farré, Eva M.; Shiu, Shin-Han

    2014-01-01

    Endogenous (circadian) and exogenous (e.g., diel) biological rhythms are a prominent feature of many living systems. In green algal species, knowledge of the extent of diel rhythmicity of genome-wide gene expression, its evolution, and its cis-regulatory mechanism is limited. In this study, we identified cyclically expressed genes under diel conditions in Chlamydomonas reinhardtii and found that ~50% of the 17,114 annotated genes exhibited cyclic expression. These cyclic expression patterns indicate a clear succession of biological processes during the course of a day. Among 237 functional categories enriched in cyclically expressed genes, >90% were phase-specific, including photosynthesis, cell division, and motility-related processes. By contrasting cyclic expression between C. reinhardtii and Arabidopsis thaliana putative orthologs, we found significant but weak conservation in cyclic gene expression patterns. On the other hand, within C. reinhardtii cyclic expression was preferentially maintained between duplicates, and the evolution of phase between paralogs is limited to relatively minor time shifts. Finally, to better understand the cis regulatory basis of diel expression, putative cis-regulatory elements were identified that could predict the expression phase of a subset of the cyclic transcriptome. Our findings demonstrate both the prevalence of cycling genes as well as the complex regulatory circuitry required to control cyclic expression in a green algal model, highlighting the need to consider diel expression in studying algal molecular networks and in future biotechnological applications. PMID:25354782

  15. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  16. Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability.

    PubMed Central

    Hill, K L; Hassett, R; Kosman, D; Merchant, S

    1996-01-01

    A saturable and temperature-dependent copper uptake pathway has been identified in Chlamydomonas reinhardtii. The uptake system has a high affinity for copper ions (Km approximately 0.2 microM) and is more active in cells that are adapted to copper deficiency than to cells grown in a medium containing physiological (submicromolar to micromolar) copper ion concentrations. The maximum velocity of copper uptake by copper-deficient cells (169 pmol h-1 10(6) cells-1 or 62 ng min-1 mg-1 chlorophyll) is up to 20-fold greater than that of fully copper-supplemented cells, and the Km (approximately 2 x 10(2) nM) is unaffected. Thus, the same uptake system appears to operate in both copper-replete and copper-deficient cells, but its expression or activity must be induced under copper-deficient conditions. A cupric reductase activity is also increased in copper-deficient compared with copper-sufficient cells. The physiological characteristics of the regulation of this cupric reductase are compatible with its involvement in the uptake pathway. Despite the operation of the uptake pathway under both copper-replete and copper-deficient conditions, C. reinhardtii cells maintained in fully copper-supplemented cells do not accumulate copper in excess of their metabolic need. These results provide evidence for a homeostatic mechanism for copper metabolism in C. reinhardtii. PMID:8883382

  17. New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics.

    PubMed

    Toepel, Jörg; Illmer-Kephalides, Maike; Jaenicke, Sebastian; Straube, Jasmin; May, Patrick; Goesmann, Alexander; Kruse, Olaf

    2013-08-01

    Hydrogen production with Chlamydomonas reinhardtii induced by sulphur starvation is a multiphase process while the cell internal metabolism is completely remodelled. The first cellular response is characterized by induction of genes with regulatory functions, followed by a total remodelling of the metabolism to provide reduction equivalents for cellular processes. We were able to characterize all major processes that provide energy and reduction equivalents during hydrogen production. Furthermore, C. reinhardtii showed a strong transcript increase for gene models responsible for stress response and detoxification of oxygen radicals. Finally, we were able to determine potential bottlenecks and target genes for manipulation to increase hydrogen production or to prolong the hydrogen production phase. The investigation of transcriptomic changes during the time course of hydrogen production in C. reinhardtii with microarrays and RNA-seq revealed new insights into the regulation and remodelling of the cell internal metabolism. Both methods showed a good correlation. The microarray platform can be used as a reliable standard tool for routine gene expression analysis. RNA-seq additionally allowed a detailed time-dependent study of gene expression and determination of new genes involved in the hydrogen production process. PMID:23551401

  18. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization. PMID:22750091

  19. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    PubMed

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  20. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    SciTech Connect

    Katzman, G.; Togasaki, R.K. ); Marcus, Y. ); Moroney, J.V. )

    1989-04-01

    In a new assay of carbonic anhydrase, NaH{sup 14}CO{sub 3} solution at the bottom of a sealed vessel releases {sup 14}CO{sub 3} which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 {plus minus} 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 {plus minus} 1.9 and 2.8 {plus minus} 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 {plus minus} 14.7 and 2.8 {plus minus} 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity.

  1. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    PubMed Central

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; Schneider, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology. PMID:23300909

  2. Structure of Chlamydomonas reinhardtii THB1, a group 1 truncated hemoglobin with a rare histidine–lysine heme ligation

    PubMed Central

    Rice, Selena L.; Boucher, Lauren E.; Schlessman, Jamie L.; Preimesberger, Matthew R.; Bosch, Jürgen; Lecomte, Juliette T. J.

    2015-01-01

    THB1 is one of several group 1 truncated hemoglobins (TrHb1s) encoded in the genome of the unicellular green alga Chlamydomonas reinhardtii. THB1 expression is under the control of NIT2, the master regulator of nitrate assimilation, which also controls the expression of the only nitrate reductase in the cell, NIT1. In vitro and physiological evidence suggests that THB1 converts the nitric oxide generated by NIT1 into nitrate. To aid in the elucidation of the function and mechanism of THB1, the structure of the protein was solved in the ferric state. THB1 resembles other TrHb1s, but also exhibits distinct features associated with the coordination of the heme iron by a histidine (proximal) and a lysine (distal). The new structure illustrates the versatility of the TrHb1 fold, suggests factors that stabilize the axial ligation of a lysine, and highlights the difficulty of predicting the identity of the distal ligand, if any, in this group of proteins. PMID:26057801

  3. The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry.

    PubMed

    Barth, Johannes; Bergner, Sonja Verena; Jaeger, Daniel; Niehues, Anna; Schulze, Stefan; Scholz, Martin; Fufezan, Christian

    2014-04-01

    Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redox(II) was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O₂ and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.

  4. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    PubMed

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. PMID:25768714

  5. Miniature- and Multiple-Eyespot Loci in Chlamydomonas reinhardtii Define New Modulators of Eyespot Photoreception and Assembly.

    PubMed

    Boyd, Joseph S; Lamb, Mary Rose; Dieckmann, Carol L

    2011-11-01

    The photosensory eyespot of the green alga Chlamydomonas reinhardtii is a model system for the study of organelle biogenesis and placement. Eyespot assembly and positioning are governed by several genetic loci that have been identified in forward genetic screens for phototaxis-defective mutants. These include the previously described miniature-eyespot mutant min1, the multiple-eyespot mutant mlt1, the eyeless mutants eye2 and eye3, and two previously uncharacterized eyespot mutants, min2 and mlt2. In this study, effects of miniature- and multiple-eyespot mutations and their combinations on the localization and expression levels of the rhodopsin photoreceptor channelrhodopsin-1 (ChR1) and the localization of the eyespot-assembly proteins EYE2 and EYE3 were examined. min2 mutants assemble a properly organized, albeit nonfunctional, eyespot that is slightly smaller than wild-type; however, combination of the min2 and mlt1 mutations resulted in drastic reduction of photoreceptor levels. Both stationary-phase mlt1 and mlt2 cells have supernumerary, mislocalized eyespots that exhibit partial or total dissociation of the eyespot layers. In these mutant strains, photoreceptor patches in the plasma membrane were never associated with pigment granule arrays in the chloroplast stroma unless EYE2 was present in the intervening envelope. The data suggest that MIN2 is required for the photoreceptive ability of the eyespot and that MLT2 plays a major role in regulating eyespot number, placement, and integrity. PMID:22384359

  6. [Structural-functional organization of the cells of Brc-1 mutant Chlamydomonas reinhardtii, supplying protoporphyrin IX in the dark].

    PubMed

    Ladygin, V G; Chekunova, E M; Semenova, G A; Kosobriukhov, A A

    2014-01-01

    The structural-functional characteristics of the cells of wild type CC-124 and Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii while growing in the dark and light were studied. It has been shown that the cells of the wild type in heterotrophic and mixotrophic growth conditions had a well developed structure and high functional activity due to the ability of the cells to synthesize chlorophyll both in the light and in the dark. The cells of Brc-1 mutant lost their ability to synthesize chlorophyll in the dark and the cells' color was orange due to brc-1 mutation in the nuclear gene LTS3 that regulated the activity of Mg-chelatase enzyme. In the dark the mutant cells accumulated protoporphyrin IX and had a weakly developed structure with low functional activity. It has been ascertained that due to high content of protoporphyrin IX even a short-term exposure of the cells of Brc-1 mutant to the light was accompanied by very strong destructive changes in all the membranes in a cell: plasmalemma, chloroplast, mitochondrion, shells of the nucleus and vacuoles. The reasons of these significant damages of the membrane components and O2-gas exchange in the cells of Brc-1 mutant are discussed.

  7. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii[W

    PubMed Central

    Tolleter, Dimitri; Ghysels, Bart; Alric, Jean; Petroutsos, Dimitris; Tolstygina, Irina; Krawietz, Danuta; Happe, Thomas; Auroy, Pascaline; Adriano, Jean-Marc; Beyly, Audrey; Cuiné, Stéphan; Plet, Julie; Reiter, Ilja M.; Genty, Bernard; Cournac, Laurent; Hippler, Michael; Peltier, Gilles

    2011-01-01

    Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production. PMID:21764992

  8. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    PubMed

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.

  9. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions.

    PubMed

    Kosourov, Sergey N; Seibert, Michael

    2009-01-01

    A new technique for immobilizing H2-photoproducing green algae within a thin (<400 microm) alginate film has been developed. Alginate films with entrapped sulfur/phosphorus-deprived Chlamydomonas reinhardtii, strain cc124, cells demonstrate (a) higher cell density (up to 2,000 microg Chl mL(-1) of matrix), (b) kinetics of H2 photoproduction similar to sulfur-deprived suspension cultures, (c) higher specific rates (up to 12.5 micromol mg(-1) Chl h(-1)) of H2 evolution, (d) light conversion efficiencies to H2 of over 1% and (e) unexpectedly high resistance of the H2-photoproducing system to inactivation by atmospheric O2. The algal cells, entrapped in alginate and then placed in vials containing 21% O2 in the headspace, evolved up to 67% of the H2 gas produced under anaerobic conditions. The results indicate that the lower susceptibility of the immobilized algal H2-producing system to inactivation by O2 depends on two factors: (a) the presence of acetate in the medium, which supports higher rates of respiration and (b) the capability of the alginate polymer itself to effectively separate the entrapped cells from O2 in the liquid and headspace and restrict O2 diffusion into the matrix. The strategy presented for immobilizing algal cells within thin polymeric matrices shows the potential for scale-up and possible future applications. PMID:18823051

  10. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.

    PubMed

    Mus, Florence; Dubini, Alexandra; Seibert, Michael; Posewitz, Matthew C; Grossman, Arthur R

    2007-08-31

    Both prokaryotic and eukaryotic photosynthetic microbes experience conditions of anoxia, especially during the night when photosynthetic activity ceases. In Chlamydomonas reinhardtii, dark anoxia is characterized by the activation of an extensive set of fermentation pathways that act in concert to provide cellular energy, while limiting the accumulation of potentially toxic fermentative products. Metabolite analyses, quantitative PCR, and high density Chlamydomonas DNA microarrays were used to monitor changes in metabolite accumulation and gene expression during acclimation of the cells to anoxia. Elevated levels of transcripts encoding proteins associated with the production of H2, organic acids, and ethanol were observed in congruence with the accumulation of fermentation products. The levels of over 500 transcripts increased significantly during acclimation of the cells to anoxic conditions. Among these were transcripts encoding transcription/translation regulators, prolyl hydroxylases, hybrid cluster proteins, proteases, transhydrogenase, catalase, and several putative proteins of unknown function. Overall, this study uses metabolite, genomic, and transcriptome data to provide genome-wide insights into the regulation of the complex metabolic networks utilized by Chlamydomonas under the anaerobic conditions associated with H2 production. PMID:17565990

  11. Genome analysis of Chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins.

    PubMed

    Godman, James; Balk, Janneke

    2008-05-01

    The unicellular green alga Chlamydomonas reinhardtii is used extensively as a model to study eukaryotic photosynthesis, flagellar functions, and more recently the production of hydrogen as biofuel. Two of these processes, photosynthesis and hydrogen production, are highly dependent on iron-sulfur (Fe-S) enzymes. To understand how Fe-S proteins are assembled in Chlamydomonas, we have analyzed its recently sequenced genome for orthologs of genes involved in Fe-S cluster assembly. We found a total of 32 open reading frames, most single copies, that are thought to constitute a mitochondrial assembly pathway, mitochondrial export machinery, a cytosolic assembly pathway, and components for Fe-S cluster assembly in the chloroplast. The chloroplast proteins are also expected to play a role in the assembly of the H-cluster in [FeFe]-hydrogenases, together with the recently identified HydEF and HydG proteins. Comparison with the higher plant model Arabidopsis indicated a strong degree of conservation of Fe-S cofactor assembly pathways in the green lineage, the pathways being derived from different origins during the evolution of the photosynthetic eukaryote. As a haploid, unicellular organism with available forward and reverse genetic tools, Chlamydomonas provides an excellent model system to study Fe-S cluster assembly and its regulation in photosynthetic eukaryotes.

  12. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors.

    PubMed

    Bonente, Giulia; Formighieri, Cinzia; Mantelli, Manuela; Catalanotti, Claudia; Giuliano, Giovanni; Morosinotto, Tomas; Bassi, Roberto

    2011-09-01

    Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H(2)) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H(2) productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H(2) production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1-State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the

  13. The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching.

    PubMed

    Bonente, Giulia; Passarini, Francesca; Cazzaniga, Stefano; Mancone, Carmine; Buia, Maria Cristina; Tripodi, Marco; Bassi, Roberto; Caffarri, Stefano

    2008-01-01

    To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function. PMID:19067957

  14. The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching.

    PubMed

    Bonente, Giulia; Passarini, Francesca; Cazzaniga, Stefano; Mancone, Carmine; Buia, Maria Cristina; Tripodi, Marco; Bassi, Roberto; Caffarri, Stefano

    2008-01-01

    To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.

  15. Isolation and genetic analysis of Chlamydomonas reinhardtii strains resistant to cadmium.

    PubMed Central

    Collard, J M; Matagne, R F

    1990-01-01

    In Chlamydomonas reinhardtii, cadmium induces reduction of growth, reduction of chlorophyll content, and lethality. The toxicity was higher in a cell wall-deficient strain than in the wild type. By growing the cells on agar medium containing cadmium at concentrations inducing high lethality, stable resistant clones were isolated. The resistance was due to a nuclear mutation (cadAR) which probably preexisted in the wild-type cell population, as suggested by the fluctuation test. A double mutant (cadAR cadBR) was selected on media containing higher concentrations of cadmium. The cadBR mutation, which is unlinked to cadAR, determines a resistance intermediate between the CadAR mutant and the wild-type strain. Both cadAR and cadBR mutations are partially dominant. PMID:2389932

  16. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    SciTech Connect

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  17. Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii.

    PubMed

    Taschner, Michael; Lorentzen, Esben

    2016-01-01

    Eukaryotic cilia and flagella are assembled and maintained by intraflagellar transport (IFT), the bidirectional transport of proteins between the ciliary base and tip. IFT is mediated by the multi-subunit IFT complex, which simultaneously binds cargo proteins and the ciliary motors. So far 22 subunits of the IFT complex have been identified, but insights into the biochemical architecture and especially the three-dimensional structure of this machinery are only starting to emerge because of difficulties in obtaining homogeneous material suitable for structural analysis. Here, we describe a protocol for the purification and reconstitution of a complex containing nine Chlamydomonas reinhardtii IFT proteins, commonly known as the IFT-B core complex. In our hands, this protocol routinely yields several milligrams of pure complex suitable for structural analysis by X-ray crystallography and single-particle cryo-electron microscopy. PMID:27514916

  18. Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism.

    PubMed

    Yang, Wenqiang; Wittkopp, Tyler M; Li, Xiaobo; Warakanont, Jaruswan; Dubini, Alexandra; Catalanotti, Claudia; Kim, Rick G; Nowack, Eva C M; Mackinder, Luke C M; Aksoy, Munevver; Page, Mark Dudley; D'Adamo, Sarah; Saroussi, Shai; Heinnickel, Mark; Johnson, Xenie; Richaud, Pierre; Alric, Jean; Boehm, Marko; Jonikas, Martin C; Benning, Christoph; Merchant, Sabeeha S; Posewitz, Matthew C; Grossman, Arthur R

    2015-12-01

    Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions. PMID:26627249

  19. Quantification of phytochelatins in Chlamydomonas reinhardtii using ferrocene-based derivatization.

    PubMed

    Bräutigam, Anja; Bomke, Susanne; Pfeifer, Thorben; Karst, Uwe; Krauss, Gerd-Joachim; Wesenberg, Dirk

    2010-08-01

    A method for the identification and quantification of canonic and isoforms of phytochelatins (PCs) from Chlamydomonas reinhardtii was developed. After disulfide reduction with tris(2-carboxyethyl)phosphine (TCEP) PCs were derivatized with ferrocenecarboxylic acid (2-maleimidoyl)ethylamide (FMEA) in order to avoid oxidation of the free thiol functions during analysis. Liquid chromatography (LC) coupled to electrospray mass spectrometry (ESI-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) was used for rapid and quantitative analysis of the precolumn derivatized PCs. PC(2-4), CysGSH, CysPC(2-4), CysPC(2)desGly, CysPC(2)Glu and CysPC(2)Ala were determined in the algal samples depending on the exposure of the cells to cadmium ions. PMID:21072341

  20. Quantification of phytochelatins in Chlamydomonas reinhardtii using ferrocene-based derivatization.

    PubMed

    Bräutigam, Anja; Bomke, Susanne; Pfeifer, Thorben; Karst, Uwe; Krauss, Gerd-Joachim; Wesenberg, Dirk

    2010-08-01

    A method for the identification and quantification of canonic and isoforms of phytochelatins (PCs) from Chlamydomonas reinhardtii was developed. After disulfide reduction with tris(2-carboxyethyl)phosphine (TCEP) PCs were derivatized with ferrocenecarboxylic acid (2-maleimidoyl)ethylamide (FMEA) in order to avoid oxidation of the free thiol functions during analysis. Liquid chromatography (LC) coupled to electrospray mass spectrometry (ESI-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) was used for rapid and quantitative analysis of the precolumn derivatized PCs. PC(2-4), CysGSH, CysPC(2-4), CysPC(2)desGly, CysPC(2)Glu and CysPC(2)Ala were determined in the algal samples depending on the exposure of the cells to cadmium ions.

  1. Chlamydomonas reinhardtii cells adjust the metabolism to maintain viability in response to atrazine stress.

    PubMed

    Esperanza, Marta; Seoane, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles

    2015-08-01

    Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3 and 24h. Physiological parameters related to cellular energy status, such as cellular activity and mitochondrial and cytoplasmic membrane potentials, monitored by flow cytometry, were altered in microalgal cells exposed to 0.25μM of atrazine. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 12 differentially expressed genes between control cultures and atrazine-exposed cultures at both tested times. Many cellular processes were affected, but the most significant changes were observed in genes implicated in amino acid catabolism and respiratory cellular process. Obtained results suggest that photosynthesis inhibition by atrazine leads cells to get energy through a heterotrophic metabolism to maintain their viability.

  2. Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism

    PubMed Central

    Wittkopp, Tyler M.; Warakanont, Jaruswan; Dubini, Alexandra; Catalanotti, Claudia; Kim, Rick G.; Nowack, Eva C. M.; Mackinder, Luke C. M.; Aksoy, Munevver; Page, Mark Dudley; D’Adamo, Sarah; Saroussi, Shai; Heinnickel, Mark; Johnson, Xenie; Richaud, Pierre; Alric, Jean; Boehm, Marko; Jonikas, Martin C.; Benning, Christoph; Merchant, Sabeeha S.; Posewitz, Matthew C.; Grossman, Arthur R.

    2015-01-01

    Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions. PMID:26627249

  3. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins

    PubMed Central

    Baek, Kwangryul; Kim, Duk Hyoung; Jeong, Jooyeon; Sim, Sang Jun; Melis, Anastasios; Kim, Jin-Soo; Jin, EonSeon; Bae, Sangsu

    2016-01-01

    Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity. PMID:27466170

  4. Structural Insight into the Complex of Ferredoxin and [FeFe] Hydrogenase from Chlamydomonas reinhardtii.

    PubMed

    Rumpel, Sigrun; Siebel, Judith F; Diallo, Mamou; Farès, Christophe; Reijerse, Edward J; Lubitz, Wolfgang

    2015-07-27

    The transfer of photosynthetic electrons by the ferredoxin PetF to the [FeFe] hydrogenase HydA1 in the microalga Chlamydomonas reinhardtii is a key step in hydrogen production. Electron delivery requires a specific interaction between PetF and HydA1. However, because of the transient nature of the electron-transfer complex, a crystal structure remains elusive. Therefore, we performed protein-protein docking based on new experimental data from a solution NMR spectroscopy investigation of native and gallium-substituted PetF. This provides valuable information about residues crucial for complex formation and electron transfer. The derived complex model might help to pinpoint residue substitution targets for improved hydrogen production. PMID:26010059

  5. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins.

    PubMed

    Baek, Kwangryul; Kim, Duk Hyoung; Jeong, Jooyeon; Sim, Sang Jun; Melis, Anastasios; Kim, Jin-Soo; Jin, EonSeon; Bae, Sangsu

    2016-07-28

    Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity.

  6. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins.

    PubMed

    Baek, Kwangryul; Kim, Duk Hyoung; Jeong, Jooyeon; Sim, Sang Jun; Melis, Anastasios; Kim, Jin-Soo; Jin, EonSeon; Bae, Sangsu

    2016-01-01

    Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity. PMID:27466170

  7. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

    PubMed

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-09-01

    Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized β-galactosidase-like gene (Cre02.g119700), which decreased total β-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27060488

  8. The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity.

    PubMed

    Takouridis, Simon J; Tribe, David E; Gras, Sally L; Martin, Gregory J O

    2015-05-01

    The potential for Chlamydomonas reinhardtii to be utilized for biofuel production was strengthened by developing it for growth in elevated salinity via the selective breeding method of genome shuffling. A population was constructed via random mutagenesis and subjected to multiple rounds of sex and growth in increasing salinity. This sexual line was capable of growth in up to 700 mM NaCl, unlike its progenitor, which could only grow in 300 mM NaCl. An asexual control line was capable of growth in 500 mM NaCl. Palmelloid aggregations increased in size and the concentration of final biomass decreased as a function of NaCl concentration, which poses considerations for future strain development. The sexual line maintained sexual efficiencies of up to 50% over the course of selection. This investigation achieved significant strain improvement of C. reinhardtii and demonstrated the clear advantage of its ability to participate in laboratory controlled and reproducible high efficiency sex. PMID:25466995

  9. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

    PubMed

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-09-01

    Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized β-galactosidase-like gene (Cre02.g119700), which decreased total β-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  10. Phytotoxicity Evaluation of Type B Trichothecenes Using a Chlamydomonas reinhardtii Model System

    PubMed Central

    Suzuki, Tadahiro; Iwahashi, Yumiko

    2014-01-01

    Type B trichothecenes, which consist of deoxynivalenol (DON) and nivalenol (NIV) as the major end products, are produced by phytotoxic fungi, such as the Fusarium species, and pollute arable fields across the world. The DON toxicity has been investigated using various types of cell systems or animal bioassays. The evaluation of NIV toxicity, however, has been relatively restricted because of its lower level compared with DON. In this study, the Chlamydomonas reinhardtii testing system, which has been reported to have adequate NIV sensitivity, was reinvestigated under different mycotoxin concentrations and light conditions. The best concentration of DON and NIV, and their derivatives, for test conditions was found to be 25 ppm (2.5 × 10−2 mg/mL). In all light test conditions, DON, NIV, and fusarenon-X (FusX) indicated significant growth inhibition regardless of whether a light source existed, or under differential wavelength conditions. FusX growth was also influenced by changes in photon flux density. These results suggest that C. reinhardtii is an appropriate evaluation system for type B trichothecenes. PMID:24476708

  11. Biogenesis of Thylakoid Membranes in Chlamydomonas reinhardtii y1 (A Kinetic Study of Initial Greening).

    PubMed Central

    White, R. A.; Hoober, J. K.

    1994-01-01

    Initiation of thylakoid membrane assembly was examined in degreened cells of Chlamydomonas reinhardtii y1 cells depleted of thylakoid membranes and photosynthetic activity by growth in the dark for 3 to 4 d. Photoreductive activities of photosystem II (PSII) and photosystem I (PSI) increased with no apparent lag when degreened cells were exposed to light at 38[deg]C. However, fluorescence transients induced by actinic light, which reflect the functional state of PSII, changed only slightly during the first 2 h of greening. When these cells were treated with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or saturating light, fluorescence increased commensurate with the cellular content of chlorophyll. In similar experiments with greening cells of C. reinhardtii CC-2341 (ac-u-g-2.3), a PSI-minus strain, fluorescence increased with chlorophyll without treatment with DCMU. These data suggested that fluorescence of initial PSII centers in greening y1 cells was quenched by activity of PSI. Continuous monitoring of fluorescence in the presence or absence of DCMU showed that assembly of quenched PSII centers occurred within seconds after exposure of y1 cells to light. These results are consistent with initial assembly of PSI and PSII within localized domains, where their proximity allows efficient energy coupling. PMID:12232351

  12. Biochemical and biophysical characterization of the deadenylase CrCaf1 from Chlamydomonas reinhardtii.

    PubMed

    Zhang, Jia-Quan; He, Guang-Jun; Yan, Yong-Bin

    2013-01-01

    The modulation of mRNA turnover has been increasingly recognized as a hotpoint for gene expression regulation at the post-transcriptional level. In eukaryotic cells, most mRNAs are degraded via the deadenylation-dependent pathway, in which the removal of the poly(A) tail is the initial and rate-limiting step. Caf1, a deadenylase specifically degrades poly(A) from the 3'-end, is highly conserved from yeast to mammalians. Caf1s in higher plants have been shown to be involved in plant development and stress response. However, little is known about the biochemical and biophysical properties of Caf1s in plants. In this research, we cloned the crcaf1 gene from Chlamydomonas reinhardtii and studied the properties of the recombinant proteins. The results showed that CrCaf1 was a deadenylase with conserved sequence motifs, structural features, and catalytic properties of the Caf1 family. CrCaf1 degraded poly(A) in a distributive mode with the optimal reacting conditions at pH 7 and 35°C. CrCaf1 had similar activity when coordinated with Mg(2+) and Mn(2+), while the enzyme bound to Ca(2+) or Zn(2+) was almost inactivated. Zn(2+) could induce CrCaf1 aggregation with the disruption of the native structure, while Mg(2+), Mn(2+) and Ca(2+) could stabilize CrCaf1 against thermal denaturation by reducing protein aggregation. Among the various metal ions, Mn(2+) showed the strongest protective effect on CrCaf1 stability, implying that Mn(2+) might play a role in regulating CrCaf1 stability in the C. reinhardtii cells under some stressed conditions. These findings provide a starting point for further investigation of the physiological functions of CrCaf1 in C. reinhardtii.

  13. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii.

    PubMed

    Posewitz, Matthew C; Smolinski, Sharon L; Kanakagiri, Saradadevi; Melis, Anastasios; Seibert, Michael; Ghirardi, Maria L

    2004-08-01

    DNA insertional transformants of Chlamydomonas reinhardtii were screened chemochromically for attenuated H(2) production. One mutant, displaying low H(2) gas photoproduction, has a nonfunctional copy of a gene that shows high homology to the family of isoamylase genes found in several photosynthetic organisms. DNA gel blotting and gene complementation were used to link this isoamylase gene to previously characterized nontagged sta7 mutants. This mutant is therefore denoted sta7-10. In C. reinhardtii, the STA7 isoamylase gene is important for the accumulation of crystalline starch, and the sta7-10 mutant reported here contains <3% of the glucose found in insoluble starch when compared with wild-type control cells. Hydrogen photoproduction rates, induced after several hours of dark, anaerobic treatment, are attenuated in sta7 mutants. RNA gel blot analysis indicates that the mRNA transcripts for both the HydA1 and HydA2 [Fe]-hydrogenase genes are expressed in the sta7-10 mutant at greater than wild-type levels 0.5 h after anaerobic induction. However, after 1.5 h, transcript levels of both HydA1 and HydA2 begin to decline rapidly and reach nearly undetectable levels after 7 h. In wild-type cells, the hydrogenase transcripts accumulate more slowly, reach a plateau after 4 h of anaerobic treatment, and maintain the same level of expression for >7 h under anaerobic incubation. Complementation of mutant cells with genomic DNA corresponding to the STA7 gene restores both the starch accumulation and H(2) production phenotypes. The results indicate that STA7 and starch metabolism play an important role in C. reinhardtii H(2) photoproduction. Moreover, the results indicate that mere anaerobiosis is not sufficient to maintain hydrogenase gene expression without the underlying physiology, an important aspect of which is starch metabolism. PMID:15269330

  14. Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii.

    PubMed Central

    Summer, E J; Schmid, V H; Bruns, B U; Schmidt, G W

    1997-01-01

    To dissect the expression of the psbB gene cluster of the Chlamydomonas reinhardtii chloroplast genome and to assess the role of the photosystem II H-phosphoprotein (PSII-H) in the biogenesis and/or stabilization of PSII, an aadA gene cassette conferring spectinomycin resistance was employed for mutagenesis. Disruption of the gene cluster has no effect on the abundance of transcripts of the upstream psbB/T locus. Likewise, interruption of psbB/T and psbH with a strong transcriptional terminator from the rbcL gene does not influence transcript accumulation. Thus, psbB/T and psbH may be independently transcribed, and the latter gene seems to have its own promoter in C. reinhardtii. In the absence of PSII-H, translation and thylakoid insertion of chloroplast PSII core proteins is unaffected, but PSII proteins do not accumulate. Because the deletion mutant also exhibits PSII deficiency when dark-grown, the effect is unrelated to photoinhibition. Turnover of proteins B and C of PSII and the polypeptides PSII protein A and PSII protein D is faster than in wild-type cells but is much slower than that observed in other PSII-deficient mutants of C. reinhardtii, suggesting a peripheral location of PSII-H in PSII. The role of PSII-H on PSII assembly was examined by sucrose gradient fractionation of pulse-labeled thylakoids; the accumulation of high-molecular-weight forms of PSII is severely impaired in the psbH deletion mutant. Thus, a primary role of PSII-H may be to facilitate PSII assembly/stability through dimerization. PSII-H phosphorylation, which possibly occurs at two sites, may also be germane to its role in regulating PSII structure, stabilization, or activity. PMID:9112780

  15. On the Evolution and Expression of Chlamydomonas reinhardtii Nucleus-Encoded Transfer RNA Genes

    PubMed Central

    Cognat, Valérie; Deragon, Jean-Marc; Vinogradova, Elizaveta; Salinas, Thalia; Remacle, Claire; Maréchal-Drouard, Laurence

    2008-01-01

    In Chlamydomonas reinhardtii, 259 tRNA genes were identified and classified into 49 tRNA isoaccepting families. By constructing phylogenetic trees, we determined the evolutionary history for each tRNA gene family. The majority of the tRNA sequences are more closely related to their plant counterparts than to animals ones. Northern experiments also permitted us to show that at least one member of each tRNA isoacceptor family is transcribed and correctly processed in vivo. A short stretch of T residues known to be a signal for termination of polymerase III transcription was found downstream of most tRNA genes. It allowed us to propose that the vast majority of the tRNA genes are expressed and to confirm that numerous tRNA genes separated by short spacers are indeed cotranscribed. Interestingly, in silico analyses and hybridization experiments show that the cellular tRNA abundance is correlated with the number of tRNA genes and is adjusted to the codon usage to optimize translation efficiency. Finally, we studied the origin of SINEs, short interspersed elements related to tRNAs, whose presence in Chlamydomonas is exceptional. Phylogenetic analysis strongly suggests that tRNAAsp-related SINEs originate from a prokaryotic-type tRNA either horizontally transferred from a bacterium or originally present in mitochondria or chloroplasts. PMID:18493044

  16. A forward genetic screen identifies mutants deficient for mitochondrial complex I assembly in Chlamydomonas reinhardtii.

    PubMed

    Barbieri, M Rosario; Larosa, Véronique; Nouet, Cécile; Subrahmanian, Nitya; Remacle, Claire; Hamel, Patrice P

    2011-06-01

    Mitochondrial complex I is the largest multimeric enzyme of the respiratory chain. The lack of a model system with facile genetics has limited the molecular dissection of complex I assembly. Using Chlamydomonas reinhardtii as an experimental system to screen for complex I defects, we isolated, via forward genetics, amc1-7 nuclear mutants (for assembly of mitochondrial complex I) displaying reduced or no complex I activity. Blue native (BN)-PAGE and immunoblot analyses revealed that amc3 and amc4 accumulate reduced levels of the complex I holoenzyme (950 kDa) while all other amc mutants fail to accumulate a mature complex. In amc1, -2, -5-7, the detection of a 700 kDa subcomplex retaining NADH dehydrogenase activity indicates an arrest in the assembly process. Genetic analyses established that amc5 and amc7 are alleles of the same locus while amc1-4 and amc6 define distinct complementation groups. The locus defined by the amc5 and amc7 alleles corresponds to the NUOB10 gene, encoding PDSW, a subunit of the membrane arm of complex I. This is the first report of a forward genetic screen yielding the isolation of complex I mutants. This work illustrates the potential of using Chlamydomonas as a genetically tractable organism to decipher complex I manufacture.

  17. Overexpression of Ferredoxin, PETF, Enhances Tolerance to Heat Stress in Chlamydomonas reinhardtii

    PubMed Central

    Lin, Yi-Hsien; Pan, Kui-You; Hung, Ching-Hui; Huang, Hsiang-En; Chen, Ching-Lian; Feng, Teng-Yung; Huang, Li-Fen

    2013-01-01

    Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress. PMID:24141188

  18. mRNA abundance changes during flagellar regeneration in Chlamydomonas reinhardtii.

    PubMed Central

    Schloss, J A; Silflow, C D; Rosenbaum, J L

    1984-01-01

    Flagellar amputation in Chlamydomonas reinhardtii induces the accumulation of a specific set of RNAs, many of which encode flagellar proteins. We prepared a cDNA clone bank from RNA isolated from cells undergoing flagellar regeneration. From this bank, we selected clones that contain RNA sequences that display several different patterns of abundance regulation. Based on quantitation of the relative amounts of labeled, cloned cDNAs hybridizing to dots of RNA on nitrocellulose filters, the cloned sequences were divided into five regulatory classes: class I RNAs remain at constant abundance during flagellar regeneration; classes II, III, and IV begin to increase in abundance within a few minutes after deflagellation, reach maximal abundance at successively later times during regeneration, and return to control cell levels within 2 to 3 h; and class V RNA abundance decreases during flagellar regeneration. Alpha- and beta-tubulin mRNAs are included in regulatory class IV. The abundance kinetics of alpha-tubulin mRNAs differ slightly from those of beta-tubulin mRNAs. The availability of these clones makes possible studies on the mechanisms controlling the abundance of a wide variety of different RNA species during flagellar regeneration in Chlamydomonas. Images PMID:6546968

  19. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii.

    PubMed

    Kim, Hanul; Jang, Sunghoon; Kim, Sangwoo; Yamaoka, Yasuyo; Hong, Daewoong; Song, Won-Yong; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2015-01-01

    Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL(-1)) for 1 h, Chlamydomonas cells accumulated at least fourfold the amount of triacylglycerols (TAGs) present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over twofold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.

  20. The contractile vacuole as a key regulator of cellular water flow in Chlamydomonas reinhardtii.

    PubMed

    Komsic-Buchmann, Karin; Wöstehoff, Luisa; Becker, Burkhard

    2014-11-01

    Most freshwater flagellates use contractile vacuoles (CVs) to expel excess water. We have used Chlamydomonas reinhardtii as a green model system to investigate CV function during adaptation to osmotic changes in culture medium. We show that the contractile vacuole in Chlamydomonas is regulated in two different ways. The size of the contractile vacuoles increases during cell growth, with the contraction interval strongly depending on the osmotic strength of the medium. In contrast, there are only small fluctuations in cytosolic osmolarity and plasma membrane permeability. Modeling of the CV membrane permeability indicates that only a small osmotic gradient is necessary for water flux into the CV, which most likely is facilitated by the aquaporin major intrinsic protein 1 (MIP1). We show that MIP1 is localized to the contractile vacuole, and that the expression rate and protein level of MIP1 exhibit only minor fluctuations under different osmotic conditions. In contrast, SEC6, a protein of the exocyst complex that is required for the water expulsion step, and a dynamin-like protein are upregulated under strong hypotonic conditions. The overexpression of a CreMIP1-GFP construct did not change the physiology of the CV. The functional implications of these results are discussed. PMID:25217463

  1. Subunit Interactions and Organization of the Chlamydomonas reinhardtii Intraflagellar Transport Complex A Proteins*

    PubMed Central

    Behal, Robert H.; Miller, Mark S.; Qin, Hongmin; Lucker, Ben F.; Jones, Alexis; Cole, Douglas G.

    2012-01-01

    Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ∼2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components. PMID:22170070

  2. The Contractile Vacuole as a Key Regulator of Cellular Water Flow in Chlamydomonas reinhardtii

    PubMed Central

    Komsic-Buchmann, Karin; Wöstehoff, Luisa

    2014-01-01

    Most freshwater flagellates use contractile vacuoles (CVs) to expel excess water. We have used Chlamydomonas reinhardtii as a green model system to investigate CV function during adaptation to osmotic changes in culture medium. We show that the contractile vacuole in Chlamydomonas is regulated in two different ways. The size of the contractile vacuoles increases during cell growth, with the contraction interval strongly depending on the osmotic strength of the medium. In contrast, there are only small fluctuations in cytosolic osmolarity and plasma membrane permeability. Modeling of the CV membrane permeability indicates that only a small osmotic gradient is necessary for water flux into the CV, which most likely is facilitated by the aquaporin major intrinsic protein 1 (MIP1). We show that MIP1 is localized to the contractile vacuole, and that the expression rate and protein level of MIP1 exhibit only minor fluctuations under different osmotic conditions. In contrast, SEC6, a protein of the exocyst complex that is required for the water expulsion step, and a dynamin-like protein are upregulated under strong hypotonic conditions. The overexpression of a CreMIP1-GFP construct did not change the physiology of the CV. The functional implications of these results are discussed. PMID:25217463

  3. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii

    PubMed Central

    Kim, Hanul; Jang, Sunghoon; Kim, Sangwoo; Yamaoka, Yasuyo; Hong, Daewoong; Song, Won-Yong; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2015-01-01

    Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL-1) for 1 h, Chlamydomonas cells accumulated at least fourfold the amount of triacylglycerols (TAGs) present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over twofold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs. PMID:25759683

  4. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii.

    PubMed

    Kim, Hanul; Jang, Sunghoon; Kim, Sangwoo; Yamaoka, Yasuyo; Hong, Daewoong; Song, Won-Yong; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2015-01-01

    Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL(-1)) for 1 h, Chlamydomonas cells accumulated at least fourfold the amount of triacylglycerols (TAGs) present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over twofold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs. PMID:25759683

  5. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii.

    PubMed

    Lin, Yi-Hsien; Pan, Kui-You; Hung, Ching-Hui; Huang, Hsiang-En; Chen, Ching-Lian; Feng, Teng-Yung; Huang, Li-Fen

    2013-01-01

    Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress. PMID:24141188

  6. Spontaneous mutations in the ammonium transport gene AMT4 of Chlamydomonas reinhardtii.

    PubMed

    Kim, Kwang-Seo; Feild, Eithne; King, Natalie; Yaoi, Takuro; Kustu, Sydney; Inwood, William

    2005-06-01

    Evidence in several microorganisms indicates that Amt proteins are gas channels for NH(3) and CH(3)NH(2), and this has been confirmed structurally. Chlamydomonas reinhardtii has at least four AMT genes, the most reported for a microorganism. Under nitrogen-limiting conditions all AMT genes are transcribed and Chlamydomonas is sensitive to methylammonium toxicity. All 16 spontaneous methylammonium-resistant mutants that we analyzed had defects in accumulation of [(14)C]methylammonium. Genetic crosses indicated that 12 had lesions in a single locus, whereas two each had lesions in other loci. Lesions in different loci were correlated with different degrees of defect in [(14)C]methylammonium uptake. One mutant in the largest class had an insert in the AMT4 gene, and the insert cosegregated with methylammonium resistance in genetic crosses. The other 11 strains in this class also had amt4 lesions, which we characterized at the molecular level. Properties of the amt4 mutants were clearly different from those of rh1 RNAi lines. They indicated that the physiological substrates for Amt and Rh proteins, the only two members of their protein superfamily, are NH(3) and CO(2), respectively. PMID:15802504

  7. Spontaneous Mutations in the Ammonium Transport Gene AMT4 of Chlamydomonas reinhardtii

    PubMed Central

    Kim, Kwang-Seo; Feild, Eithne; King, Natalie; Yaoi, Takuro; Kustu, Sydney; Inwood, William

    2005-01-01

    Evidence in several microorganisms indicates that Amt proteins are gas channels for NH3 and CH3NH2, and this has been confirmed structurally. Chlamydomonas reinhardtii has at least four AMT genes, the most reported for a microorganism. Under nitrogen-limiting conditions all AMT genes are transcribed and Chlamydomonas is sensitive to methylammonium toxicity. All 16 spontaneous methylammonium-resistant mutants that we analyzed had defects in accumulation of [14C]methylammonium. Genetic crosses indicated that 12 had lesions in a single locus, whereas two each had lesions in other loci. Lesions in different loci were correlated with different degrees of defect in [14C]methylammonium uptake. One mutant in the largest class had an insert in the AMT4 gene, and the insert cosegregated with methylammonium resistance in genetic crosses. The other 11 strains in this class also had amt4 lesions, which we characterized at the molecular level. Properties of the amt4 mutants were clearly different from those of rh1 RNAi lines. They indicated that the physiological substrates for Amt and Rh proteins, the only two members of their protein superfamily, are NH3 and CO2, respectively. PMID:15802504

  8. The contractile vacuole as a key regulator of cellular water flow in Chlamydomonas reinhardtii.

    PubMed

    Komsic-Buchmann, Karin; Wöstehoff, Luisa; Becker, Burkhard

    2014-11-01

    Most freshwater flagellates use contractile vacuoles (CVs) to expel excess water. We have used Chlamydomonas reinhardtii as a green model system to investigate CV function during adaptation to osmotic changes in culture medium. We show that the contractile vacuole in Chlamydomonas is regulated in two different ways. The size of the contractile vacuoles increases during cell growth, with the contraction interval strongly depending on the osmotic strength of the medium. In contrast, there are only small fluctuations in cytosolic osmolarity and plasma membrane permeability. Modeling of the CV membrane permeability indicates that only a small osmotic gradient is necessary for water flux into the CV, which most likely is facilitated by the aquaporin major intrinsic protein 1 (MIP1). We show that MIP1 is localized to the contractile vacuole, and that the expression rate and protein level of MIP1 exhibit only minor fluctuations under different osmotic conditions. In contrast, SEC6, a protein of the exocyst complex that is required for the water expulsion step, and a dynamin-like protein are upregulated under strong hypotonic conditions. The overexpression of a CreMIP1-GFP construct did not change the physiology of the CV. The functional implications of these results are discussed.

  9. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  10. Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants.

    PubMed

    Li, Jie; Zheng, Xiaoqian; Liu, Kaichuan; Sun, Shujuan; Li, Xiaochen

    2016-10-01

    The aim of this work was to study the effect of tetracycline, which is on the growth, physiological characteristics, and contaminants removal by Chlamydomonas reinhardtii. The results showed that the biomass and photosynthetic pigment concentration of C. reinhardtii exposed to tetracycline were lower than those of the control, while the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and the malondialdehyde (MDA) content, were higher than those of the control. Additionally, when the tetracycline concentration reached 0.25mg/L, the removal of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) decreased from 80.8 to 55.0%, 100 to 92.5%, and 36.5 to 11.5%, respectively. Thus, tetracycline concentrations of 0-0.25mg/L are expected to have a significant effect on the growth and nutrient removal of C. reinhardtii in recycled water from wastewater treatment plants. PMID:27472492

  11. Signals of LOV1: a computer simulation study on the wildtype LOV1-domain of Chlamydomonas reinhardtii and its mutants.

    PubMed

    Peter, Emanuel; Dick, Bernhard; Baeurle, Stephan A

    2012-04-01

    Phototropins are photoreceptors regulating the blue-light response in plants and bacteria. They consist of two LOV (light oxygen voltage sensitive) domains each containing a non-covalently bound flavin-mononucleotide (FMN) chromophore, which are connected to a serine/threonine-kinase. Upon illumination, the LOV-domains undergo conformational changes, triggering a signal cascade in the organism through kinase activation. Here, we present results from molecular dynamics simulations in which we investigate the signal transduction pathway of the wildtype LOV1-domain of Chlamydomonas reinhardtii and a methyl-mercaptan (MM) adduct of its Cys57Gly-mutant at the molecular level. In particular, we analyzed the effect of covalent-bond formation between the reactive cysteine Cys57 and the FMN-reaction center, as well as the subsequent charge redistribution, on the spatio-dynamical behavior of the LOV1-domain. We compare the calculation results with experimental data and demonstrate that these adduct state characteristics have an important influence on the response of this photosensor. The light-induced changes implicate primarily an alteration of the surface charge distribution through rearrangement of the highly flexible Cα-, Dα- and Eα-helices including the Glu51-Lys91-salt bridge on the hydrophilic side of the protein domain and a β-sheet tightening process via coupling of the Aβ- and Bβ-strands. Our findings confirm the aptitude of the LOV1-domain to function as a dimerization partner, allowing the green alga to adapt its reproduction and growth speed to the environmental conditions.

  12. The Relationship of Triacylglycerol and Starch Accumulation to Carbon and Energy Flows during Nutrient Deprivation in Chlamydomonas reinhardtii.

    PubMed

    Juergens, Matthew T; Disbrow, Bradley; Shachar-Hill, Yair

    2016-08-01

    Because of the potential importance of algae for green biotechnology, considerable effort has been invested in understanding their responses to nitrogen deprivation. The most frequently invoked reasons proposed for the accumulation of high cellular levels of triacylglycerol (TAG) and starch are variants of what may be termed the "overflow hypothesis." According to this, growth inhibition results in the rate of photosynthetic energy and/or carbon input exceeding cellular needs; the excess input is directed into the accumulation of TAG and/or starch to prevent damage. This study was aimed at providing a quantitative dataset and analysis of the main energy and carbon flows before and during nitrogen deprivation in a model system to assess alternative explanations. Cellular growth, biomass, starch, and lipid levels as well as several measures of photosynthetic function were recorded for cells of Chlamydomonas reinhardtii cultured under nine different autotrophic, mixotrophic, and heterotrophic conditions during nutrient-replete growth and for the first 4 d of nitrogen deprivation. The results of a (13)C labeling time course indicated that in mixotrophic culture, starch is predominantly made from CO2 and fatty acid synthesis is largely supplied by exogenous acetate, with considerable turnover of membrane lipids, so that total lipid rather than TAG is the appropriate measure of product accumulation. Heterotrophic cultures accumulated TAG and starch during N deprivation, showing that these are not dependent on photosynthesis. We conclude that the overflow hypothesis is insufficient and suggest that storage may be a more universally important reason for carbon compound accumulation during nutrient deprivation. PMID:27325664

  13. Mutations of Photosystem II D1 Protein That Empower Efficient Phenotypes of Chlamydomonas reinhardtii under Extreme Environment in Space

    PubMed Central

    Lambreva, Maya D.; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K.

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA− state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space. PMID:23691201

  14. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    PubMed

    Giardi, Maria Teresa; Rea, Giuseppina; Lambreva, Maya D; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  15. Synthesis and turnover of ribulose biphosphate carboxylase and of its subunits during the cell cycle of Chlamydomonas reinhardtii.

    PubMed

    Iwanij, V; Chua, N H; Siekevitz, P

    1975-03-01

    The chloroplast enzyme ribulose-1,5-bisphosphate (Ru-1,5-P2) carboxylase (EC 4.1 1.39) is made up ot two nonidentical subunits, one synthesized in the chloroplast and the other outside. Both of these subunits of the assembled enzyme are synthesized in a stepwise manner during the synchronous cell cycle of the green alga Chlamydomonas reinhardtii. The activity of this enzyme increases in the light and this increase is due to de novo protein synthesis as shown by the measurement of the amount of protein and by the pulse incorporation of radioactive arginine in the 18S enzyme peak in linear sucrose density gradients. During the dark phase of the cell cycle, there is little change in the enzymatic activity as well as in the amount of this enzyme. Pulse-labeling studies using radioactive arginine indicated that there is a slow but detectable rate of synthesis of the carboxylase and of its subunits in the dark. Ru-1,5-P2 carboxylase, prelabeled with radioactive arginine throughout the entire light period, shows a similarly slow rate of degradation in the following dark period. This slow turnover of the enzyme in the dark accounts for the steady levels of carboxylase protein and of enzymatic activity during this period. A wide variety of inhibitors of protein synthesis by 70S and 80S ribosomes abolished the incorporation of [3H]arginine into total Ru-1,5-P2 carboxylase during short-term incubation. These results suggest a tight-coordinated control of the biosynthesis of the small and large subunits of the enzyme. This stringent control is further substantiated by the finding that both subunits are synthesized in sychrony with each other, that the ratio of radioactivity of the small to the large subunit remains constant throughout the entire light-dark cycle, and that the rates of synthesis and of degradation of both subunits are similar to that of the assembled enzyme.

  16. Crystal structure and functional characterization of photosystem II-associated carbonic anhydrase CAH3 in Chlamydomonas reinhardtii.

    PubMed

    Benlloch, Reyes; Shevela, Dmitriy; Hainzl, Tobias; Grundström, Christin; Shutova, Tatyana; Messinger, Johannes; Samuelsson, Göran; Sauer-Eriksson, A Elisabeth

    2015-03-01

    In oxygenic photosynthesis, light energy is stored in the form of chemical energy by converting CO2 and water into carbohydrates. The light-driven oxidation of water that provides the electrons and protons for the subsequent CO2 fixation takes place in photosystem II (PSII). Recent studies show that in higher plants, HCO3 (-) increases PSII activity by acting as a mobile acceptor of the protons produced by PSII. In the green alga Chlamydomonas reinhardtii, a luminal carbonic anhydrase, CrCAH3, was suggested to improve proton removal from PSII, possibly by rapid reformation of HCO3 (-) from CO2. In this study, we investigated the interplay between PSII and CrCAH3 by membrane inlet mass spectrometry and x-ray crystallography. Membrane inlet mass spectrometry measurements showed that CrCAH3 was most active at the slightly acidic pH values prevalent in the thylakoid lumen under illumination. Two crystal structures of CrCAH3 in complex with either acetazolamide or phosphate ions were determined at 2.6- and 2.7-Å resolution, respectively. CrCAH3 is a dimer at pH 4.1 that is stabilized by swapping of the N-terminal arms, a feature not previously observed in α-type carbonic anhydrases. The structure contains a disulfide bond, and redox titration of CrCAH3 function with dithiothreitol suggested a possible redox regulation of the enzyme. The stimulating effect of CrCAH3 and CO2/HCO3 (-) on PSII activity was demonstrated by comparing the flash-induced oxygen evolution pattern of wild-type and CrCAH3-less PSII preparations. We showed that CrCAH3 has unique structural features that allow this enzyme to maximize PSII activity at low pH and CO2 concentration. PMID:25617045

  17. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures.

    PubMed

    Kosourov, Sergey; Seibert, Michael; Ghirardi, Maria L

    2003-02-01

    Sustained photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, can be obtained by incubating cells in sulfur-deprived medium [Ghirardi et al. (2000b) Trends Biotechnol. 18: 506; Melis et al. (2000) Plant Physiol. 122: 127]. The current work focuses on (a) the effects of different initial extracellular pHs on the inactivation of photosystem II (PSII) and O(2)-sensitive H(2)-production activity in sulfur-deprived algal cells and (b) the relationships among H(2)-production, photosynthetic, aerobic and anaerobic metabolisms under different pH regimens. The maximum rate and yield of H(2) production occur when the pH at the start of the sulfur deprivation period is 7.7 and decrease when the initial pH is lowered to 6.5 or increased to 8.2. The pH profile of hydrogen photoproduction correlates with that of the residual PSII activity (optimum pH 7.3-7.9), but not with the pH profiles of photosynthetic electron transport through photosystem I or of starch and protein degradation. In vitro hydrogenase activity over this pH range is much higher than the actual in situ rates of H(2) production, indicating that hydrogenase activity per se is not limiting. Starch and protein catabolisms generate formate, acetate and ethanol; contribute some reductant for H(2) photoproduction, as indicated by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone inhibition results; and are the primary sources of reductant for respiratory processes that remove photosynthetically generated O(2). Carbon balances demonstrate that alternative metabolic pathways predominate at different pHs, and these depend on whether residual photosynthetic activity is present or not. PMID:12610217

  18. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.

    PubMed

    Blaby-Haas, Crysten E; Castruita, Madeli; Fitz-Gibbon, Sorel T; Kropat, Janette; Merchant, Sabeeha S

    2016-07-13

    The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage. PMID:27172123

  19. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii.

    PubMed

    Kasahara, Masahiro; Swartz, Trevor E; Olney, Margaret A; Onodera, Akihiko; Mochizuki, Nobuyoshi; Fukuzawa, Hideya; Asamizu, Erika; Tabata, Satoshi; Kanegae, Hiromi; Takano, Makoto; Christie, John M; Nagatani, Akira; Briggs, Winslow R

    2002-06-01

    Phototropins (phot1 and phot2, formerly designated nph1 and npl1) are blue-light receptors that mediate phototropism, blue light-induced chloroplast relocation, and blue light-induced stomatal opening in Arabidopsis. Phototropins contain two light, oxygen, or voltage (LOV) domains at their N termini (LOV1 and LOV2), each a binding site for the chromophore flavin mononucleotide (FMN). Their C termini contain a serine/threonine protein kinase domain. Here, we examine the kinetic properties of the LOV domains of Arabidopsis phot1 and phot2, rice (Oryza sativa) phot1 and phot2, and Chlamydomonas reinhardtii phot. When expressed in Escherichia coli, purified LOV domains from all phototropins examined bind FMN tightly and undergo a self-contained photocycle, characterized by fluorescence and absorption changes induced by blue light (T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada [2001] Proc Natl Acad Sci USA 98: 6969-6974; M. Salomon, J.M. Christie, E. Knieb, U. Lempert, W.R. Briggs [2000] Biochemistry 39: 9401-9410). The photocycle involves the light-induced formation of a cysteinyl adduct to the C(4a) carbon of the FMN chromophore, which subsequently breaks down in darkness. In each case, the relative quantum efficiencies for the photoreaction and the rate constants for dark recovery of LOV1, LOV2, and peptides containing both LOV domains are presented. Moreover, the data obtained from full-length Arabidopsis phot1 and phot2 expressed in insect cells closely resemble those obtained for the tandem LOV-domain fusion proteins expressed in E. coli. For both Arabidopsis and rice phototropins, the LOV domains of phot1 differ from those of phot2 in their reaction kinetic properties and relative quantum efficiencies. Thus, in addition to differing in amino acid sequence, the phototropins can be distinguished on the basis of the photochemical cycles of their LOV domains. The LOV domains of C. reinhardtii phot also undergo light

  20. The effect on growth of Chlamydomonas reinhardtii of flue gas from a power plant based on waste combustion.

    PubMed

    Mortensen, Leiv M; Gislerød, Hans R

    2014-01-01

    Flue gases from a power plant based on waste combustion were tested as a carbon dioxide (CO2) source for growing Chlamydomonas reinhardtii. To achieve recognition as an environmentally friendly hydrogen production method, waste gases should be used to grow this hydrogen-producing microalgae. The algae were grown in undiluted flue gas containing 11.4±0.2% CO2 by volume, in diluted flue gas containing 6.7±0.1% or 2.5±0.0% CO2, and in pure liquid CO2 at a concentration of 2.7±0.2%. The NOx concentration was 45±16 mg m(-3), the SO2 concentration was 36±19 mg m(-3), the HCl concentration 4.1±1.0 mg m(-3) and the O2 concentration 7.9±0.2% in the undiluted flue gas. Undiluted flue gas reduced the dry weight production by around 20-25% when grown at a photon flux density (PFD) of 300 μmol m(-2) s(-1) artificial light and at 24 or 33°C, compared with the other treatments. A less negative effect was found at the highest flue gas concentration when the algae were grown at 75 μmol m(-2) s(-1) PFD. Growing the algae outdoors at a day length of 12.5 h and a temperature of around 24°C, the dry weight production was higher (about 15%) in the 2.6% CO2 flue gas treatment compared with all other treatments. Reducing the light level by 30% through shading did not affect the dry weight production. Calculated on aerial basis the productivity reached approximately 70 g m(-2) day(-1) in the 300 μmol m(-2) s(-1) PFD treatment (corresponding to 25 mol m(-2) day(-1)) and approximately 17 g m(-2) day(-1) in the 75μmol m(-2) s(-1) PFD treatment (corresponding to 6.5 mol m(-2) day(-1)). The outdoor production reached around 14 g m(-2) day(-1). It was concluded that the negative effect of the undiluted flue gas was attributable to the high CO2 concentration and not to the other pollutants.

  1. The effect on growth of Chlamydomonas reinhardtii of flue gas from a power plant based on waste combustion

    PubMed Central

    2014-01-01

    Flue gases from a power plant based on waste combustion were tested as a carbon dioxide (CO2) source for growing Chlamydomonas reinhardtii. To achieve recognition as an environmentally friendly hydrogen production method, waste gases should be used to grow this hydrogen-producing microalgae. The algae were grown in undiluted flue gas containing 11.4±0.2% CO2 by volume, in diluted flue gas containing 6.7±0.1% or 2.5±0.0% CO2, and in pure liquid CO2 at a concentration of 2.7±0.2%. The NOx concentration was 45±16 mg m-3, the SO2 concentration was 36±19 mg m-3, the HCl concentration 4.1±1.0 mg m-3 and the O2 concentration 7.9±0.2% in the undiluted flue gas. Undiluted flue gas reduced the dry weight production by around 20-25% when grown at a photon flux density (PFD) of 300 μmol m-2 s-1 artificial light and at 24 or 33°C, compared with the other treatments. A less negative effect was found at the highest flue gas concentration when the algae were grown at 75 μmol m-2 s-1 PFD. Growing the algae outdoors at a day length of 12.5 h and a temperature of around 24°C, the dry weight production was higher (about 15%) in the 2.6% CO2 flue gas treatment compared with all other treatments. Reducing the light level by 30% through shading did not affect the dry weight production. Calculated on aerial basis the productivity reached approximately 70 g m-2 day-1 in the 300 μmol m-2 s-1 PFD treatment (corresponding to 25 mol m-2 day-1) and approximately 17 g m-2 day-1 in the 75μmol m-2 s-1 PFD treatment (corresponding to 6.5 mol m-2 day-1). The outdoor production reached around 14 g m-2 day-1. It was concluded that the negative effect of the undiluted flue gas was attributable to the high CO2 concentration and not to the other pollutants. PMID:25401062

  2. The effect on growth of Chlamydomonas reinhardtii of flue gas from a power plant based on waste combustion.

    PubMed

    Mortensen, Leiv M; Gislerød, Hans R

    2014-01-01

    Flue gases from a power plant based on waste combustion were tested as a carbon dioxide (CO2) source for growing Chlamydomonas reinhardtii. To achieve recognition as an environmentally friendly hydrogen production method, waste gases should be used to grow this hydrogen-producing microalgae. The algae were grown in undiluted flue gas containing 11.4±0.2% CO2 by volume, in diluted flue gas containing 6.7±0.1% or 2.5±0.0% CO2, and in pure liquid CO2 at a concentration of 2.7±0.2%. The NOx concentration was 45±16 mg m(-3), the SO2 concentration was 36±19 mg m(-3), the HCl concentration 4.1±1.0 mg m(-3) and the O2 concentration 7.9±0.2% in the undiluted flue gas. Undiluted flue gas reduced the dry weight production by around 20-25% when grown at a photon flux density (PFD) of 300 μmol m(-2) s(-1) artificial light and at 24 or 33°C, compared with the other treatments. A less negative effect was found at the highest flue gas concentration when the algae were grown at 75 μmol m(-2) s(-1) PFD. Growing the algae outdoors at a day length of 12.5 h and a temperature of around 24°C, the dry weight production was higher (about 15%) in the 2.6% CO2 flue gas treatment compared with all other treatments. Reducing the light level by 30% through shading did not affect the dry weight production. Calculated on aerial basis the productivity reached approximately 70 g m(-2) day(-1) in the 300 μmol m(-2) s(-1) PFD treatment (corresponding to 25 mol m(-2) day(-1)) and approximately 17 g m(-2) day(-1) in the 75μmol m(-2) s(-1) PFD treatment (corresponding to 6.5 mol m(-2) day(-1)). The outdoor production reached around 14 g m(-2) day(-1). It was concluded that the negative effect of the undiluted flue gas was attributable to the high CO2 concentration and not to the other pollutants. PMID:25401062

  3. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii*

    PubMed Central

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora; Erickson, Erika; Stella, Giulio R.; Fleming, Graham R.; Bassi, Roberto; Niyogi, Krishna K.

    2016-01-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. PMID:26817847

  4. Photosensitizers neutral red (type I) and rose bengal (type II) cause light-dependent toxicity in Chlamydomonas reinhardtii and induce the Gpxh gene via increased singlet oxygen formation.

    PubMed

    Fischer, Beat B; Krieger-Liszkay, Anja; Eggen, Rik L

    2004-12-01

    The connection between the mode of toxic action and the genetic response caused by the type I photosensitizer and photosynthesis inhibitor neutral red (NR) and the type II photosensitizer rose bengal (RB) was investigated in the green alga Chlamydomonas reinhardtii. For both photosensitizers, a light intensity-dependent increase in toxicity and expression of the glutathione peroxidase homologous gene (Gpxh) was found. The toxicity of RB was reduced by the singlet oxygen (1O2) quenchers 1,4-diazabicyclo[2.2.2]octane and L-histidine, and the RB-induced Gpxh expression was stimulated in deuterium oxide-supplemented growth medium. These observations clearly indicate the involvement of 1O2 in both toxicity and the genetic response caused by RB. NR up-regulated the expression of typical oxidative and general stress response genes, probably by a type I mechanism, and also strongly induced the Gpxh expression. The stimulating effect of deuterium oxide in the growth medium suggested the involvement of 1O2 also in the NR-induced response. Indeed, an increased 1O2 formation was detected with EPR-spin trapping in NR-treated spinach thylakoids. However, none of the 102 quenchers could reduce the light-dependent toxicity of NR in C. reinhardtii, indicating that NR has a different mode of toxic action than RB.

  5. Activation of the Carbon Concentrating Mechanism by CO2 Deprivation Coincides with Massive Transcriptional Restructuring in Chlamydomonas reinhardtii[W][OA

    PubMed Central

    Brueggeman, Andrew J.; Gangadharaiah, Dayananda S.; Cserhati, Matyas F.; Casero, David; Weeks, Donald P.; Ladunga, Istvan

    2012-01-01

    A CO2-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) CO2 concentrations. In this study, we used replicated deep mRNA sequencing and regulatory network reconstruction to capture a remarkable scope of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO2 (≤100 ppm). CCM induction 30 to 180 min post-CO2 deprivation coincides with statistically significant changes in the expression of an astonishing 38% (5884) of the 15,501 nonoverlapping C. reinhardtii genes. Of these genes, 1088 genes were induced and 3828 genes were downregulated by a log2 factor of 2. The latter indicate a global reduction in photosynthesis, protein synthesis, and energy-related biochemical pathways. The magnitude of transcriptional rearrangement and its major patterns are robust as analyzed by three different statistical methods. De novo DNA motif discovery revealed new putative binding sites for Myeloid oncogene family transcription factors potentially involved in activating low CO2–induced genes. The (CA)n repeat (9 ≤ n ≤ 25) is present in 29% of upregulated genes but almost absent from promoters of downregulated genes. These discoveries open many avenues for new research. PMID:22634764

  6. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    PubMed

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. PMID:26817847

  7. Regular spliceosomal introns are invasive in Chlamydomonas reinhardtii: 15 introns in the recently relocated mitochondrial cox2 and cox3 genes.

    PubMed

    Watanabe, K I; Ohama, T

    2001-01-01

    In the unicellular green alga, Chlamydomonas reinhardtii, cytochrome oxidase subunit 2 (cox2) and 3 (cox3) genes are missing from the mitochondrial genome. We isolated and sequenced a BAC clone that carries the whole cox3 gene and its corresponding cDNA. Almost the entire cox2 gene and its cDNA were also determined. Comparison of the genomic and the corresponding cDNA sequences revealed that the cox3 gene contains as many as nine spliceosomal introns and that cox2 bears six introns. Putative mitochondria targeting signals were predicted at each N terminal of the cox genes. These spliceosomal introns were typical GT-AG-type introns, which are very common not only in Chlamydomonas nuclear genes but also in diverse eukaryotic taxa. We found no particular distinguishing features in the cox introns. Comparative analysis of these genes with the various mitochondrial genes showed that 8 of the 15 introns were interrupting the conserved mature protein coding segments, while the other 7 introns were located in the N-terminal target peptide regions. Phylogenetic analysis of the evolutionary position of C. reinhardtii in Chlorophyta was carried out and the existence of the cox2 and cox3 genes in the mitochondrial genome was superimposed in the tree. This analysis clearly shows that these cox genes were relocated during the evolution of Chlorophyceae. It is apparent that long before the estimated period of relocation of these mitochondrial genes, the cytosol had lost the splicing ability for group II introns. Therefore, at least eight introns located in the mature protein coding region cannot be the direct descendant of group II introns. Here, we conclude that the presence of these introns is due to the invasion of spliceosomal introns, which occurred during the evolution of Chlorophyceae. This finding provides concrete evidence supporting the "intron-late" model, which rests largely on the mobility of spliceosomal introns. PMID:11675593

  8. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii.

    PubMed

    Iwai, Masako; Hori, Koichi; Sasaki-Sekimoto, Yuko; Shimojima, Mie; Ohta, Hiroyuki

    2015-01-01

    Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation-dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C. reinhardtii cells. As a result, the content of C18:1 fatty acid, a preferred substrate of CrDGTT4, is increased in TAGs. Here we isolated genes encoding SQD2 from strain NIES-2145 of the eustigmatophyte Nannochloropsis and showed that their expression, like that in C. reinhardtii, was up-regulated during P starvation. To enhance oil accumulation under P starvation, we transformed pCrSQD2-CrDGTT4 into Nannochloropsis strain NIES-2145. The transformants had a fatty acid composition that was more similar to that of C. reinhardtii, which resulted in enhanced TAG accumulation and higher 18:1(9) content. The results indicated that the P starvation-inducible promoter of C. reinhardtii was able to drive expression of the CrDGTT4 gene in Nannochloropsis strain NIES-2145 under P starvation. We conclude that the heterologous CrSQD2 promoter is effective in manipulating TAG synthesis in Nannochloropsis during P starvation. PMID:26441858

  9. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii

    PubMed Central

    Iwai, Masako; Hori, Koichi; Sasaki-Sekimoto, Yuko; Shimojima, Mie; Ohta, Hiroyuki

    2015-01-01

    Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation–dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C. reinhardtii cells. As a result, the content of C18:1 fatty acid, a preferred substrate of CrDGTT4, is increased in TAGs. Here we isolated genes encoding SQD2 from strain NIES-2145 of the eustigmatophyte Nannochloropsis and showed that their expression, like that in C. reinhardtii, was up-regulated during P starvation. To enhance oil accumulation under P starvation, we transformed pCrSQD2-CrDGTT4 into Nannochloropsis strain NIES-2145. The transformants had a fatty acid composition that was more similar to that of C. reinhardtii, which resulted in enhanced TAG accumulation and higher 18:1(9) content. The results indicated that the P starvation–inducible promoter of C. reinhardtii was able to drive expression of the CrDGTT4 gene in Nannochloropsis strain NIES-2145 under P starvation. We conclude that the heterologous CrSQD2 promoter is effective in manipulating TAG synthesis in Nannochloropsis during P starvation. PMID:26441858

  10. Characterization of lead induced metal-phytochelatin complexes in Chlamydomonas reinhardtii.

    PubMed

    Scheidegger, Christian; Sigg, Laura; Behra, Renata

    2011-11-01

    Accumulation of Pb and induction of phytochelatin synthesis were observed in Chlamydomonas reinhardtii upon Pb(II) exposure. Our aim was to examine whether Pb(II) is bound by phytochelatins (PCs) in C. reinhardtii and to examine formed complexes for their stoichiometry and composition. Metal-phytochelatin (Me-PC) complexes induced by Pb were isolated by size-exclusion chromatography in 13 collected fractions, which were analyzed for their PC and metal content by high-performance liquid chromatography and inductively coupled plasma mass spectrometry. A recovery of more than 90% of Pb from standard Pb-PC₂ complexes within the total volume of the size-exclusion column indicated the adequacy of the method for Pb-PC(n) complex separation and characterization. Phytochelatins were detected mainly in a molecular weight ranging from 1,000 to 5,300 daltons (Da), indicating the formation of complexes with various stoichiometries. Approximately 72% of total PC₂ eluted in the range from 1,000 to 1,600 Da, and 80% of total PC₃ eluted in the molecular weight range from 1,600 to 2,300 Da. The distribution of Cu, Zn, and Pb showed that more than 70% of these metals were associated with the high-molecular-weight fractions. Copper, zinc, and lead were also observed in PC-containing fractions, suggesting the formation of various Me-PC complexes. The results of the present study indicate that the role of PCs in Pb detoxification is minor, because only 13% of total Pb was associated with PCs. PMID:21898554

  11. Characterization of lead induced metal-phytochelatin complexes in Chlamydomonas reinhardtii.

    PubMed

    Scheidegger, Christian; Sigg, Laura; Behra, Renata

    2011-11-01

    Accumulation of Pb and induction of phytochelatin synthesis were observed in Chlamydomonas reinhardtii upon Pb(II) exposure. Our aim was to examine whether Pb(II) is bound by phytochelatins (PCs) in C. reinhardtii and to examine formed complexes for their stoichiometry and composition. Metal-phytochelatin (Me-PC) complexes induced by Pb were isolated by size-exclusion chromatography in 13 collected fractions, which were analyzed for their PC and metal content by high-performance liquid chromatography and inductively coupled plasma mass spectrometry. A recovery of more than 90% of Pb from standard Pb-PC₂ complexes within the total volume of the size-exclusion column indicated the adequacy of the method for Pb-PC(n) complex separation and characterization. Phytochelatins were detected mainly in a molecular weight ranging from 1,000 to 5,300 daltons (Da), indicating the formation of complexes with various stoichiometries. Approximately 72% of total PC₂ eluted in the range from 1,000 to 1,600 Da, and 80% of total PC₃ eluted in the molecular weight range from 1,600 to 2,300 Da. The distribution of Cu, Zn, and Pb showed that more than 70% of these metals were associated with the high-molecular-weight fractions. Copper, zinc, and lead were also observed in PC-containing fractions, suggesting the formation of various Me-PC complexes. The results of the present study indicate that the role of PCs in Pb detoxification is minor, because only 13% of total Pb was associated with PCs.

  12. FISH and immunofluorescence staining in Chlamydomonas.

    PubMed

    Uniacke, James; Colón-Ramos, Daniel; Zerges, William

    2011-01-01

    Here we describe how to use fluorescence in situ hybridization and immunofluorescence staining to determine the in situ distributions of specific mRNAs and proteins in Chlamydomonas reinhardtii. This unicellular eukaryotic green alga is a major model organism in cell biological research. Chlamydomonas is well suited for these approaches because one can determine the cytological location of fluorescence signals within a characteristic cellular anatomy relative to prominent cytological markers. Moreover, FISH and IF staining offer practical alternatives to techniques involving fluorescent proteins, which are difficult to express and detect in Chlamydomonas. The main goal of this review is to describe these powerful tools and to facilitate their routine use in Chlamydomonas research.

  13. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints.

    PubMed

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen

    2015-08-01

    Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis

  14. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    PubMed

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  15. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.

    PubMed

    Torzillo, Giuseppe; Scoma, Alberto; Faraloni, Cecilia; Giannelli, Luca

    2015-01-01

    Biological hydrogen production is being evaluated for use as a fuel, since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific energy content. The basic advantages of biological hydrogen production over other "green" energy sources are that it does not compete for agricultural land use, and it does not pollute, as water is the only by-product of the combustion. These characteristics make hydrogen a suitable fuel for the future. Among several biotechnological approaches, photobiological hydrogen production carried out by green microalgae has been intensively investigated in recent years. A select group of photosynthetic organisms has evolved the ability to harness light energy to drive hydrogen gas production from water. Of these, the microalga Chlamydomonas reinhardtii is considered one of the most promising eukaryotic H2 producers. In this model microorganism, light energy, H2O and H2 are linked by two excellent catalysts, the photosystem 2 (PSII) and the [FeFe]-hydrogenase, in a pathway usually referred to as direct biophotolysis. This review summarizes the main advances made over the past decade as an outcome of the discovery of the sulfur-deprivation process. Both the scientific and technical barriers that need to be overcome before H2 photoproduction can be scaled up to an industrial level are examined. Actual and theoretical limits of the efficiency of the process are also discussed. Particular emphasis is placed on algal biohydrogen production outdoors, and guidelines for an optimal photobioreactor design are suggested. PMID:24754449

  16. X-Ray structure of a truncated form of cytochrome f from chlamydomonas Reinhardtii

    SciTech Connect

    Chi, Young-In; Huang, Li-Shar; Zhang, Zhaolei; Fernando-Velasquez, Javier G.; Berry, E. A.

    2000-03-01

    A truncated form of cytochrome f from Chlamydomonas Reinhardtii (an important eukaryotic model organism for photosynthetic electron transfer studies) has been crystallized (space group P212121; 3 molecules/ asymmetric unit) and its structure determined to 2.0 Angstrom by molecular replacement using the coordinates of a truncated turnip cytochrome f as a model. The structure displays the same folding and detailed features as turnip cytochrome f including: (a) an unusual heme Fe ligation by alpha-amino group of tyrosine 1, (b) a cluster of lysine residues (proposed docking site of plastocyanin), and (c) the presence of a chain of 7 water molecules bound to conserved residues and extending between the heme pocket and K58 and K66 at the lysine cluster. For this array of waters we propose a structural role. Two cytochrome f molecules are related by a non-crystallographic symmetry operator which is a distorted proper 2-fold rotation. This may represent the dimeric relation of the monomers in situ, however the heme orientation suggested by this model is not consistent with previous epr measurements on oriented membranes.

  17. The Chlamydomonas reinhardtii ODA3 Gene Encodes a Protein of the Outer Dynein Arm Docking Complex

    PubMed Central

    Koutoulis, Anthony; Pazour, Gregory J.; Wilkerson, Curtis G.; Inaba, Kazuo; Sheng, Hong; Takada, Saeko; Witman, George B.

    1997-01-01

    We have used an insertional mutagenesis/ gene tagging technique to generate new Chlamydomonas reinhardtii mutants that are defective in assembly of the outer dynein arm. Among 39 insertional oda mutants characterized, two are alleles of the previously uncloned ODA3 gene, one is an allele of the uncloned ODA10 gene, and one represents a novel ODA gene (termed ODA12). ODA3 is of particular interest because it is essential for assembly of both the outer dynein arm and the outer dynein arm docking complex (ODA-DC) onto flagellar doublet microtubules (Takada, S., and R. Kamiya. 1994. J. Cell Biol. 126:737– 745). Beginning with the inserted DNA as a tag, the ODA3 gene and a full-length cDNA were cloned. The cloned gene rescues the phenotype of oda3 mutants. The cDNA sequence predicts a novel 83.4-kD protein with extensive coiled-coil domains. The ODA-DC contains three polypeptides; direct amino acid sequencing indicates that the largest of these polypeptides corresponds to ODA3. This protein is likely to have an important role in the precise positioning of the outer dynein arms on the flagellar axoneme. PMID:9166407

  18. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    PubMed

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  19. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.

    PubMed

    Torzillo, Giuseppe; Scoma, Alberto; Faraloni, Cecilia; Giannelli, Luca

    2015-01-01

    Biological hydrogen production is being evaluated for use as a fuel, since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific energy content. The basic advantages of biological hydrogen production over other "green" energy sources are that it does not compete for agricultural land use, and it does not pollute, as water is the only by-product of the combustion. These characteristics make hydrogen a suitable fuel for the future. Among several biotechnological approaches, photobiological hydrogen production carried out by green microalgae has been intensively investigated in recent years. A select group of photosynthetic organisms has evolved the ability to harness light energy to drive hydrogen gas production from water. Of these, the microalga Chlamydomonas reinhardtii is considered one of the most promising eukaryotic H2 producers. In this model microorganism, light energy, H2O and H2 are linked by two excellent catalysts, the photosystem 2 (PSII) and the [FeFe]-hydrogenase, in a pathway usually referred to as direct biophotolysis. This review summarizes the main advances made over the past decade as an outcome of the discovery of the sulfur-deprivation process. Both the scientific and technical barriers that need to be overcome before H2 photoproduction can be scaled up to an industrial level are examined. Actual and theoretical limits of the efficiency of the process are also discussed. Particular emphasis is placed on algal biohydrogen production outdoors, and guidelines for an optimal photobioreactor design are suggested.

  20. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    PubMed

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production. PMID:23881782

  1. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.

    PubMed

    Wase, Nishikant; Black, Paul N; Stanley, Bruce A; DiRusso, Concetta C

    2014-03-01

    Nitrogen starvation induces a global stress response in microalgae that results in the accumulation of lipids as a potential source of biofuel. Using GC-MS-based metabolite and iTRAQ-labeled protein profiling, we examined and correlated the metabolic and proteomic response of Chlamydomonas reinhardtii under nitrogen stress. Key amino acids and metabolites involved in nitrogen sparing pathways, methyl group transfer reactions, and energy production were decreased in abundance, whereas certain fatty acids, citric acid, methionine, citramalic acid, triethanolamine, nicotianamine, trehalose, and sorbitol were increased in abundance. Proteins involved in nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, starch, and lipid metabolism were elevated compared with nonstressed cultures. In contrast, the enzymes of the glyoxylate cycle, one carbon metabolism, pentose phosphate pathway, the Calvin cycle, photosynthetic and light harvesting complex, and ribosomes were reduced. A noteworthy observation was that citrate accumulated during nitrogen stress coordinate with alterations in the enzymes that produce or utilize this metabolite, demonstrating the value of comparing protein and metabolite profiles to understand complex patterns of metabolic flow. Thus, the current study provides unique insight into the global metabolic adjustments leading to lipid storage during N starvation for application toward advanced biofuel production technologies.

  2. A Simple and Non-Invasive Method for Nuclear Transformation of Intact-walled Chlamydomonas reinhardtii

    PubMed Central

    Kim, Sora; Lee, Young-Chul; Cho, Dae-Hyun; Lee, Hyun Uk; Huh, Yun Suk; Kim, Geun-Joong; Kim, Hee-Sik

    2014-01-01

    Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH2)3]8Si8Mg6O12(OH)4), for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×102 transformants/µg DNA), second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods. PMID:24988123

  3. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    PubMed

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. PMID:25220860

  4. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  5. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    PubMed

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  6. Phosphoregulation of an Inner Dynein Arm Complex in Chlamydomonas reinhardtii Is Altered in Phototactic Mutant Strains

    PubMed Central

    King, Stephen J.; Dutcher, Susan K.

    1997-01-01

    To gain a further understanding of axonemal dynein regulation, mutant strains of Chlamydomonas reinhardtii that had defects in both phototactic behavior and flagellar motility were identified and characterized. ptm1, ptm2, and ptm3 mutant strains exhibited motility phenotypes that resembled those of known inner dynein arm region mutant strains, but did not have biochemical or genetic phenotypes characteristic of other inner dynein arm mutations. Three other mutant strains had defects in the f class of inner dynein arms. Dynein extracts from the pf9-4 strain were missing the entire f complex. Strains with mutations in pf9/ida1, ida2, or ida3 failed to assemble the f dynein complex and did not exhibit phototactic behavior. Fractionated dynein from mia1-1 and mia2-1 axonemes exhibited a novel f class inner dynein arm biochemical phenotype; the 138-kD f intermediate chain was present in altered phosphorylation forms. In vitro axonemal dynein activity was reduced by the mia1-1 and mia2-1 mutations. The addition of kinase inhibitor restored axonemal dynein activity concomitant with the dephosphorylation of the 138-kD f intermediate chain. Dynein extracts from uni1-1 axonemes, which specifically assemble only one of the two flagella, contained relatively high levels of the altered phosphorylation forms of the 138-kD intermediate chain. We suggest that the f dynein complex may be phosphoregulated asymmetrically between the two flagella to achieve phototactic turning. PMID:9008712

  7. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F. Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R.; Shachar-Hill, Yair; Hicks, Leslie M.; Gang, David R.

    2015-01-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. PMID:26022256

  8. A dual strategy to cope with high light in Chlamydomonas reinhardtii.

    PubMed

    Allorent, Guillaume; Tokutsu, Ryutaro; Roach, Thomas; Peers, Graham; Cardol, Pierre; Girard-Bascou, Jacqueline; Seigneurin-Berny, Daphné; Petroutsos, Dimitris; Kuntz, Marcel; Breyton, Cécile; Franck, Fabrice; Wollman, Francis-André; Niyogi, Krishna K; Krieger-Liszkay, Anja; Minagawa, Jun; Finazzi, Giovanni

    2013-02-01

    Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II. PMID:23424243

  9. Flow Cytometric Methods for Indirect Analysis and Quantification of Gametogenesis in Chlamydomonas reinhardtii (Chlorophyceae)

    PubMed Central

    Tomkins, Joseph L.

    2016-01-01

    Induction of sexual reproduction in the facultatively sexual Chlamydomonas reinhardtii is cued by depletion of nitrogen. We explore the capacity for indirect monitoring of population variation in the gametogenic process using flow cytometry. We describe a high-throughput method capable of identifying fluorescence, ploidy and scatter profiles that track vegetative cells entering and undergoing gametogenesis. We demonstrate for the first time, that very early and late growth phases reduce the capacity to distinguish putative gametes from vegetative cells based on scatter and fluorescence profiles, and that early/mid-logarithmic cultures show the optimal distinction between vegetative cells and gamete scatter profiles. We argue that early/mid logarithmic cultures are valuable in such high throughput comparative approaches when investigating optimisation or quantification of gametogenesis based on scatter and fluorescence profiles. This approach provides new insights into the impact of culture conditions on gametogenesis, while documenting novel scatter and fluorescence profile shifts which typify the process. This method has potential applications to; enabling quick high-throughput monitoring, uses in increasing efficiency in the quantification of gametogenesis, as a method of comparing the switch between vegetative and gametic states across treatments, and as criteria for enrichment of gametic phenotypes in cell sorting assays. PMID:27676075

  10. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii

    PubMed Central

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-ryool

    2016-01-01

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including “safe harboring” techniques shown in other organisms. PMID:27291619

  11. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii.

    PubMed

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-Ryool

    2016-01-01

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including "safe harboring" techniques shown in other organisms. PMID:27291619

  12. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker.

    PubMed

    Barahimipour, Rouhollah; Neupert, Juliane; Bock, Ralph

    2016-03-01

    The unicellular green alga Chlamydomonas reinhardtii has become an invaluable model system in plant biology. There is also considerable interest in developing this microalga into an efficient production platform for biofuels, pharmaceuticals, green chemicals and industrial enzymes. However, the production of foreign proteins in the nucleocytosolic compartment of Chlamydomonas is greatly hampered by the inefficiency of transgene expression from the nuclear genome. We have recently addressed this limitation by isolating mutant algal strains that permit high-level transgene expression and by determining the contributions of GC content and codon usage to gene expression efficiency. Here we have applied these new tools and explored the potential of Chlamydomonas to produce a recombinant biopharmaceutical, the HIV antigen P24. We show that a codon-optimized P24 gene variant introduced into our algal expression strains give rise to recombinant protein accumulation levels of up to 0.25% of the total cellular protein. Moreover, in combination with an expression strain, a resynthesized nptII gene becomes a highly efficient selectable marker gene that facilitates the selection of transgenic algal clones at high frequency. By establishing simple principles of successful transgene expression, our data open up new possibilities for biotechnological research in Chlamydomonas.

  13. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker.

    PubMed

    Barahimipour, Rouhollah; Neupert, Juliane; Bock, Ralph

    2016-03-01

    The unicellular green alga Chlamydomonas reinhardtii has become an invaluable model system in plant biology. There is also considerable interest in developing this microalga into an efficient production platform for biofuels, pharmaceuticals, green chemicals and industrial enzymes. However, the production of foreign proteins in the nucleocytosolic compartment of Chlamydomonas is greatly hampered by the inefficiency of transgene expression from the nuclear genome. We have recently addressed this limitation by isolating mutant algal strains that permit high-level transgene expression and by determining the contributions of GC content and codon usage to gene expression efficiency. Here we have applied these new tools and explored the potential of Chlamydomonas to produce a recombinant biopharmaceutical, the HIV antigen P24. We show that a codon-optimized P24 gene variant introduced into our algal expression strains give rise to recombinant protein accumulation levels of up to 0.25% of the total cellular protein. Moreover, in combination with an expression strain, a resynthesized nptII gene becomes a highly efficient selectable marker gene that facilitates the selection of transgenic algal clones at high frequency. By establishing simple principles of successful transgene expression, our data open up new possibilities for biotechnological research in Chlamydomonas. PMID:26747175

  14. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions.

    PubMed

    Langner, Uwe; Jakob, Torsten; Stehfest, Katja; Wilhelm, Christian

    2009-03-01

    Chlamydomonas is one of the most well-studied photosynthetic organisms that had important biotechnological potential for future bioproductions of biofuels. However, an energy balance from incident photons to the energy stored in the new biomass is still lacking. In this study, we applied a recently developed system to measure the energy balance for steady state growth of Chlamydomonas reinhardtii grown at pH 6.5, and C. acidophila that was grown at pH 6.5 and 2.6. Energy use efficiency was quantified on the basis of light absorption, photosynthetic quantum yield, photosynthetic and respiratory quotient, and electron partitioning into proteins, carbohydrates and lipids. The results showed that lower growth rates of C. acidophila under both pH conditions were not caused by the differences in the photosynthetic quantum yield or in alternative electron cycling, but rather by differences in the efficiency of light absorption and increased dark respiration. Analysis of the macromolecular composition of the cells during the light phase showed that C. acidophila uses biosynthetic electrons preferentially for carbohydrate synthesis but not for synthesis of lipids. This led to a strong diurnal cycle of the C/N ratio and could explain the higher dark respiration of C. acidophila compared with C. reinhardtii. PMID:19054351

  15. Transcriptomic and Physiological Responses of the Green Microalga Chlamydomonas reinhardtii during Short-Term Exposure to Subnanomolar Methylmercury Concentrations.

    PubMed

    Beauvais-Flück, Rebecca; Slaveykova, Vera I; Cosio, Claudia

    2016-07-01

    The effects of short-term exposure to subnanomolar methyl-mercury (MeHg) concentrations, representative of contaminated environments, on the microalga Chlamydomonas reinhardtii were assessed using both physiological end points and gene expression analysis. MeHg bioaccumulated and induced significant increase of the photosynthesis efficiency, while the algal growth, oxidative stress, and chlorophyll fluorescence were unaffected. At the molecular level, MeHg significantly dysregulated the expression of genes involved in motility, energy metabolism, lipid metabolism, metal transport, and antioxidant enzymes. Data suggest that the cells were able to cope with subnanomolar MeHg exposure, but this tolerance resulted in a significant cost to the cell energy and reserve metabolism as well as ample changes in the nutrition and motility of C. reinhardtii. The present results allowed gaining new insights on the effects and uptake mechanisms of MeHg at subnanomolar concentrations in aquatic primary producers. PMID:27254783

  16. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.

    PubMed

    Martín del Campo, Julia S; Patiño, Rodrigo

    2013-12-01

    It is presented in this work a new methodology to harvest fresh water microalgae cultures by extracting the culture medium with superabsorbent polymers (SAPs). The microalgae Chlamydomonas reinhardtii were grown in the Sueoka culture medium, harvested with polyacrylic SAPs and re-suspended in the culture medium tris-acetate-potassium without sulfur (TAP-S) to generate hydrogen (H2 ) under anoxic conditions. The H2 production as an alternative fuel is relevant since this gas has high-energy recovery without involving carbon. Before microalgae harvesting, a number of range diameters (1-7 mm) for SAPs spherical particles were tested, and the initial rate (V0 ) and the maximal capacity (Qmax ) were determined for the Sueoka medium absorption. The SAP particles with the diameter range 2.0-2.5 mm performed the best and these were employed for the rest of the experiments. The Sueoka medium has a high salt content and the effect of the ionic strength was also studied for different medium concentrations (0-400%). The SAPs were reused in consecutive absorption/desorption cycles, maintaining their absorption capacity. Although the Sueoka medium reduces the SAPs absorption capacity to 40% compared with deionized water, the use of SAPs was very significant for the desulfurization process of C. reihardtii. The presence of C. reinhardtii at different concentrations does not affect the absorption capacity of the Sueoka culture medium by the SAPs. In order to reduce the time of the process, an increase of the SAPs concentration was tested, being 20 g of SAP per liter of medium, a condition to harvest the microalgae culture in 4 h. There were no evident cell ruptures during the harvesting process and the cells remained alive. Finally, the harvested biomass was re-suspended in TAP-S medium and kept under anaerobic conditions and illumination to produce H2 that was monitored by a PEM fuel cell. The use of SAPs for microalgae harvesting is a feasible non-invasive procedure to obtain

  17. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.

    PubMed

    Martín del Campo, Julia S; Patiño, Rodrigo

    2013-12-01

    It is presented in this work a new methodology to harvest fresh water microalgae cultures by extracting the culture medium with superabsorbent polymers (SAPs). The microalgae Chlamydomonas reinhardtii were grown in the Sueoka culture medium, harvested with polyacrylic SAPs and re-suspended in the culture medium tris-acetate-potassium without sulfur (TAP-S) to generate hydrogen (H2 ) under anoxic conditions. The H2 production as an alternative fuel is relevant since this gas has high-energy recovery without involving carbon. Before microalgae harvesting, a number of range diameters (1-7 mm) for SAPs spherical particles were tested, and the initial rate (V0 ) and the maximal capacity (Qmax ) were determined for the Sueoka medium absorption. The SAP particles with the diameter range 2.0-2.5 mm performed the best and these were employed for the rest of the experiments. The Sueoka medium has a high salt content and the effect of the ionic strength was also studied for different medium concentrations (0-400%). The SAPs were reused in consecutive absorption/desorption cycles, maintaining their absorption capacity. Although the Sueoka medium reduces the SAPs absorption capacity to 40% compared with deionized water, the use of SAPs was very significant for the desulfurization process of C. reihardtii. The presence of C. reinhardtii at different concentrations does not affect the absorption capacity of the Sueoka culture medium by the SAPs. In order to reduce the time of the process, an increase of the SAPs concentration was tested, being 20 g of SAP per liter of medium, a condition to harvest the microalgae culture in 4 h. There were no evident cell ruptures during the harvesting process and the cells remained alive. Finally, the harvested biomass was re-suspended in TAP-S medium and kept under anaerobic conditions and illumination to produce H2 that was monitored by a PEM fuel cell. The use of SAPs for microalgae harvesting is a feasible non-invasive procedure to obtain

  18. Complementation cloning and sequence analysis of the Chlamydomonas reinhardtii hemL gene encoding glutamate-1-semialdehyde aminotransferase

    SciTech Connect

    Matters, G.L.; Beale, S.I. )

    1993-05-01

    Glutamate-1-semialdehyde amino-transferase (GSAT) catalyzes formation of the tetrapyrrole precursor, [delta]-aminolevulinic acid. GSAT is encoded by the hemL gene. A Chlamydomonas reinhardtii hemL cDNA was selected from a vegetative stage expression library by complementation of Escherichia coli hemL mutant GE 1377. In vitro GSAT activity was ten-fold higher in an extract of the complemented hemL cells than in an extract of uncomplemented mutant cells. The complementing cDNA is 2010 bp long and includes 591 bp of 3' noncoding DNA and an estimated 27 bp of 5' noncoding DNA. The coding region includes the sequence for a putative 30-amino acid chloroplast transit peptide and a 433-amino acid mature protein. The mature protein deduced from the Chlamydomonas cDNA sequence has a molecular weight of 45,880, compared to the value of 43,000 reported for purified Chlamydomonas GSAT (d. Jahn et al., 1991, J. Biol. Chem. 266:161-167). The deduced peptide is 74% identical to Synechococcus GSAT, 70% identical to barley GSAT and 66% identical to tobacco GSAT. The putative pyridoxal binding region has the sequence TTMGKVIGG, which differs somewhat from those reported for other aminotransferases. The deduced putative chloroplast transit peptide has recognizable similarity to barley GSAT transit peptide. Southern analysis of genomic DNA from Chlamydomonas strain CC124, using the cDNA as a probe, indicates that GSAT is probably encoded by a single gene.

  19. Incorporation of polypeptides into thylakoid membranes of Chlamydomonas reinhardtii. Cyclic variations

    PubMed Central

    1976-01-01

    A purified fraction of unstacked thylakoid membranes (TMF1u) has been obtained from homogenates of Chlamydomonas reinhardtii (wild type 137+) by using repeated centrifugates in sucrose density gradients and low salt treatment. The contaminants of the fraction are reduced to a few mitochondria (approximately 3% of the total mitochondrial population), a few osmiophilic granules, and fragments of chloroplast envelopes. By SDS-polyacrylamide gel electrophoresis the polypeptide components of TMF1u were resolved into at least 30 bands. To determine the relative rates of assembly of newly synthesized polypeptides into thylakoid membranes, synchronized algal cells were doubly labeled in vivo with L- [14C] and L-[3H]arginine--used for long- and short-term labeling, respectively. TMF1u's were isolated from the labeled cells at selected time points during the cycle and the distribution of radioactivity was assayed in the gel electrophoretograms of their solubilized polypeptides. Incorporation of newly synthesized polypeptides into the bands of the gels was found to occur continuously but differentially throughout the cycle. Maximal rates of incorporation for the majority of the polypeptides were detected shortly after cell division (6D-7D; equivalent to early G1 phase). The rates of radioactive labeling decreased gradually to a low level at the end of the dark period and then rose slightly at the beginning of the next light period. The findings suggest that, in addition to the light/dark control postulated in the past, assembly of newly synthesized proteins into thylakoid membranes is activated by signals at work in the early G1 phase. PMID:1262393

  20. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii.

    PubMed

    Goold, Hugh Douglas; Cuiné, Stéphan; Légeret, Bertrand; Liang, Yuanxue; Brugière, Sabine; Auroy, Pascaline; Javot, Hélène; Tardif, Marianne; Jones, Brian; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-08-01

    Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity. PMID:27297678

  1. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    PubMed

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure.

  2. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    PubMed

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms.

  3. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo.

    PubMed

    Nagy, Gergely; Ünnep, Renáta; Zsiros, Ottó; Tokutsu, Ryutaro; Takizawa, Kenji; Porcar, Lionel; Moyet, Lucas; Petroutsos, Dimitris; Garab, Győző; Finazzi, Giovanni; Minagawa, Jun

    2014-04-01

    Plants respond to changes in light quality by regulating the absorption capacity of their photosystems. These short-term adaptations use redox-controlled, reversible phosphorylation of the light-harvesting complexes (LHCIIs) to regulate the relative absorption cross-section of the two photosystems (PSs), commonly referred to as state transitions. It is acknowledged that state transitions induce substantial reorganizations of the PSs. However, their consequences on the chloroplast structure are more controversial. Here, we investigate how state transitions affect the chloroplast structure and function using complementary approaches for the living cells of Chlamydomonas reinhardtii. Using small-angle neutron scattering, we found a strong periodicity of the thylakoids in state 1, with characteristic repeat distances of ∼ 200 Å, which was almost completely lost in state 2. As revealed by circular dichroism, changes in the thylakoid periodicity were paralleled by modifications in the long-range order arrangement of the photosynthetic complexes, which was reduced by ∼ 20% in state 2 compared with state 1, but was not abolished. Furthermore, absorption spectroscopy reveals that the enhancement of PSI antenna size during state 1 to state 2 transition (∼ 20%) is not commensurate to the decrease in PSII antenna size (∼ 70%), leading to the possibility that a large part of the phosphorylated LHCIIs do not bind to PSI, but instead form energetically quenched complexes, which were shown to be either associated with PSII supercomplexes or in a free form. Altogether these noninvasive in vivo approaches allow us to present a more likely scenario for state transitions that explains their molecular mechanism and physiological consequences. PMID:24639515

  4. Photoproduction of Hydrogen by Sulfur-Deprived Chlamydomonas reinhardtii Mutants with Impaired Photosystem II Photochemical Activity

    SciTech Connect

    Makarova, V. V.; Kosourov, S.; Krendeleva, T. E.; Semin, B. K.; Kukarskikh, G. P.; Rubin, A. B.; Sayre, R. T.; Ghirardi, M. L.; Seibert, M.

    2007-01-01

    Photoproduction of H2 was examined in a series of sulfur-deprived Chlamydomonas reinhardtii D1-R323 mutants with progressively impaired PSII photochemical activity. In the R323H, R323D, and R323E D1 mutants, replacement of arginine affects photosystem II (PSII) function, as demonstrated by progressive decreases in O2-evolving activity and loss of PSII photochemical activity. Significant changes in PSII activity were found when the arginine residue was replaced by negatively charged amino acid residues (R323D and R323E). However, the R323H (positively charged or neutral, depending on the ambient pH) mutant had minimal changes in PSII activity. The R323H, R323D, and R323E mutants and the pseudo-wild-type (pWt) with restored PSII function were used to study the effects of sulfur deprivation on H2-production activity. All of these mutants exhibited significant changes in the normal parameters associated with the H2-photoproduction process, such as a shorter aerobic phase, lower accumulation of starch, a prolonged anaerobic phase observed before the onset of H2-production, a shorter duration of H2-production, lower H2 yields compared to the pWt control, and slightly higher production of dark fermentation products such as acetate and formate. The more compromised the PSII photochemical activity, the more dramatic was the effect of sulfur deprivation on the H2-production process, which depends both on the presence of residual PSII activity and the amount of stored starch.

  5. Triacylglyceride Production and Autophagous Responses in Chlamydomonas reinhardtii Depend on Resource Allocation and Carbon Source

    PubMed Central

    Davey, Matthew P.; Horst, Irmtraud; Duong, Giang-Huong; Tomsett, Eleanor V.; Litvinenko, Alexander C. P.; Howe, Christopher J.

    2014-01-01

    To improve the economic viability of microalgal biodiesel, it will be essential to optimize the productivity of fuel molecules such as triacylglyceride (TAG) within the microalgal cell. To understand some of the triggers required for the metabolic switch to TAG production, we studied the effect of the carbon supply (acetate or CO2) in Chlamydomonas reinhardtii (wild type and the starchless sta6 mutant) grown under low N availability. As expected, initial rates of TAG production were much higher when acetate was present than under strictly photosynthetic conditions, particularly for the sta6 mutant, which cannot allocate resources to starch. However, in both strains, TAG production plateaued after a few days in mixotrophic cultures, whereas under autotrophic conditions, TAG levels continued to rise. Moreover, the reduced growth of the sta6 mutant meant that the greatest productivity (measured as mg TAG liter−1 day−1) was found in the wild type growing autotrophically. Wild-type cells responded to low N by autophagy, as shown by degradation of polar (membrane) lipids and loss of photosynthetic pigments, and this was less in cells supplied with acetate. In contrast, little or no autophagy was observed in sta6 mutant cells, regardless of the carbon supply. Instead, very high levels of free fatty acids were observed in the sta6 mutant, suggesting considerable alteration in metabolism. These measurements show the importance of carbon supply and strain selection for lipid productivity. Our findings will be of use for industrial cultivation, where it will be preferable to use fast-growing wild-type strains supplied with gaseous CO2 under autotrophic conditions rather than require an exogenous supply of organic carbon. PMID:24413660

  6. Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.

    PubMed

    Nguyen, Anh Vu; Toepel, Joerg; Burgess, Steven; Uhmeyer, Andreas; Blifernez, Olga; Doebbe, Anja; Hankamer, Ben; Nixon, Peter; Wobbe, Lutz; Kruse, Olaf

    2011-01-01

    We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mutant including a higher starch accumulation in the aerobic phase and a lower competition between the H₂ase pathway and alternative electron sinks within the H₂ production phase. Key candidate genes of interest with differential expression pattern include LHCSR3, essential for efficient energy quenching (qE). The reduced LHCSR3 protein expression in mutant stm6glc4 could be closely related to the high-light sensitive phenotype. H₂ measurements carried out with the LHCSR3 knock-out mutant npq4 however clearly demonstrated that a complete loss of this protein has almost no impact on H₂ yields under moderate light conditions. The nuclear gene disrupted in the high H₂ producing mutant stm6glc4 encodes for the mitochondrial transcription termination factor (mTERF) MOC1, whose expression strongly increases during -S-induced H₂ production in WT strains. Studies under phototrophic high-light conditions demonstrated that the presence of functional MOC1 is a prerequisite for proper LHCSR3 expression. Furthermore knock-down of MOC1 in a WT strain was shown to improve the total H₂ yield significantly suggesting that this strategy could be applied to further enhance H₂ production in other strains already displaying a high H₂ production capacity. By combining our array data with previously published metabolomics data we can now explain some of the phenotypic characteristics which lead to an elevated H₂ production in stm6glc4. PMID:22242116

  7. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    PubMed

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. PMID:24026984

  8. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii

    PubMed Central

    Williams, C R; Bees, MA

    2014-01-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. Biotechnol. Bioeng. 2014;111: 320–335. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24026984

  9. Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI2 cannot substitute for CHLI1

    PubMed Central

    Brzezowski, Pawel; Sharifi, Marina N.; Dent, Rachel M.; Morhard, Marius K.; Niyogi, Krishna K.; Grimm, Bernhard

    2016-01-01

    The oligomeric Mg chelatase (MgCh), consisting of the subunits CHLH, CHLI, and CHLD, is located at the central site of chlorophyll synthesis, but is also thought to have an additional function in regulatory feedback control of the tetrapyrrole biosynthesis pathway and in chloroplast retrograde signaling. In Arabidopsis thaliana and Chlamydomonas reinhardtii, two genes have been proposed to encode the CHLI subunit of MgCh. While the role of CHLI1 in A. thaliana MgCh has been substantially elucidated, different reports provide inconsistent results with regard to the function of CHLI2 in Mg chelation and retrograde signaling. In the present report, the possible functions of both isoforms were analyzed in C. reinhardtii. Knockout of the CHLI1 gene resulted in complete loss of MgCh activity, absence of chlorophyll, acute light sensitivity, and, as a consequence, down-regulation of tetrapyrrole biosynthesis and photosynthesis-associated nuclear genes. These observations indicate a phenotypical resemblance of chli1 to the chlh and chld C. reinhardtii mutants previously reported. The key role of CHLI1 for MgCh reaction in comparison with the second isoform was confirmed by the rescue of chli1 with genomic CHLI1. Because CHLI2 in C. reinhardtii shows lower expression than CHLI1, strains overexpressing CHLI2 were produced in the chli1 background. However, no complementation of the chli1 phenotype was observed. Silencing of CHLI2 in the wild-type background did not result in any changes in the accumulation of tetrapyrrole intermediates or of chlorophyll. The results suggest that, unlike in A. thaliana, changes in CHLI2 content observed in the present studies do not affect formation and activity of MgCh in C. reinhardtii. PMID:26809558

  10. Outdoor H₂ production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii.

    PubMed

    Scoma, Alberto; Giannelli, Luca; Faraloni, Cecilia; Torzillo, Giuseppe

    2012-02-20

    In the past decade, H₂ production using the green microalga Chlamydomonas reinhardtii has been extensively studied under laboratory-scale photobioreactors, while information on outdoor cultures is still lacking. In this paper, the results of experiments conducted with sulfur-deprived cultures of C. reinhardtii carried out in a 50-L horizontal tubular photobioreactor are presented. Hydrogen production experiments were carried out under both artificial and direct solar light. In both cases, the H₂ output attained was 18-20% of what obtained in the laboratory. However, no significant changes in the H₂ production were observed when cells grown outdoors were tested under laboratory conditions. Chlorophyll fluorescence measurements showed that outdoor cultures were subjected to strong photo-inhibition, due to the combination of high solar light intensity and sulfur-deprivation. Indeed, H₂ production was only achieved outdoors when cultures were previously acclimated to sunlight, a condition that caused a number of physiological changes, namely: (i) a decrease in the chlorophyll content per unit of dry weight; (ii) an increase in the photosynthesis and respiration rates, and (iii) a higher induction of the xanthophyll cycle pigments as compared to non-acclimated cultures. It was concluded that the reduced H₂ output achieved in the 50-L photobioreactor was due to the different illumination pattern to which the cultures were exposed (one-sided vs. two-sided illumination provided in the laboratory), as well as to the great difference in the mixing times (60 min vs. 15.5s achieved in the lab-scale photobioreactor). To the very best of our knowledge this is the first time that H₂ production with green algae has been achieved by means of solar light. PMID:21771618

  11. The Metabolic Status Drives Acclimation of Iron Deficiency Responses in Chlamydomonas reinhardtii as Revealed by Proteomics Based Hierarchical Clustering and Reverse Genetics*

    PubMed Central

    Höhner, Ricarda; Barth, Johannes; Magneschi, Leonardo; Jaeger, Daniel; Niehues, Anna; Bald, Till; Grossman, Arthur; Fufezan, Christian; Hippler, Michael

    2013-01-01

    Iron is a crucial cofactor in numerous redox-active proteins operating in bioenergetic pathways including respiration and photosynthesis. Cellular iron management is essential to sustain sufficient energy production and minimize oxidative stress. To produce energy for cell growth, the green alga Chlamydomonas reinhardtii possesses the metabolic flexibility to use light and/or carbon sources such as acetate. To investigate the interplay between the iron-deficiency response and growth requirements under distinct trophic conditions, we took a quantitative proteomics approach coupled to innovative hierarchical clustering using different “distance-linkage combinations” and random noise injection. Protein co-expression analyses of the combined data sets revealed insights into cellular responses governing acclimation to iron deprivation and regulation associated with photosynthesis dependent growth. Photoautotrophic growth requirements as well as the iron deficiency induced specific metabolic enzymes and stress related proteins, and yet differences in the set of induced enzymes, proteases, and redox-related polypeptides were evident, implying the establishment of distinct response networks under the different conditions. Moreover, our data clearly support the notion that the iron deficiency response includes a hierarchy for iron allocation within organelles in C. reinhardtii. Importantly, deletion of a bifunctional alcohol and acetaldehyde dehydrogenase (ADH1), which is induced under low iron based on the proteomic data, attenuates the remodeling of the photosynthetic machinery in response to iron deficiency, and at the same time stimulates expression of stress-related proteins such as NDA2, LHCSR3, and PGRL1. This finding provides evidence that the coordinated regulation of bioenergetics pathways and iron deficiency response is sensitive to the cellular and chloroplast metabolic and/or redox status, consistent with systems approach data. PMID:23820728

  12. De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq

    PubMed Central

    2013-01-01

    Background Microalgae can make a significant contribution towards meeting global renewable energy needs in both carbon-based and hydrogen (H2) biofuel. The development of energy-related products from algae could be accelerated with improvements in systems biology tools, and recent advances in sequencing technology provide a platform for enhanced transcriptomic analyses. However, these techniques are still heavily reliant upon available genomic sequence data. Chlamydomonas moewusii is a unicellular green alga capable of evolving molecular H2 under both dark and light anaerobic conditions, and has high hydrogenase activity that can be rapidly induced. However, to date, there is no systematic investigation of transcriptomic profiling during induction of H2 photoproduction in this organism. Results In this work, RNA-Seq was applied to investigate transcriptomic profiles during the dark anaerobic induction of H2 photoproduction. 156 million reads generated from 7 samples were then used for de novo assembly after data trimming. BlastX results against NCBI database and Blast2GO results were used to interpret the functions of the assembled 34,136 contigs, which were then used as the reference contigs for RNA-Seq analysis. Our results indicated that more contigs were differentially expressed during the period of early and higher H2 photoproduction, and fewer contigs were differentially expressed when H2-photoproduction rates decreased. In addition, C. moewusii and C. reinhardtii share core functional pathways, and transcripts for H2 photoproduction and anaerobic metabolite production were identified in both organisms. C. moewusii also possesses similar metabolic flexibility as C. reinhardtii, and the difference between C. moewusii and C. reinhardtii on hydrogenase expression and anaerobic fermentative pathways involved in redox balancing may explain their different profiles of hydrogenase activity and secreted anaerobic metabolites. Conclusions Herein, we have described a

  13. A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis.

    PubMed

    Pittman, Jon K; Edmond, Clare; Sunderland, Paul A; Bray, Clifford M

    2009-01-01

    The CrCAX1 gene encoding a Ca2+/H+ and Na+/H+ exchanger was cloned and characterized from the unicellular green alga Chlamydomonas reinhardtii to begin to understand the mechanisms of cation homeostasis in this model organism. CrCAX1 was more closely related to fungal cation exchanger (CAX) genes than those from higher plants but has structural characteristics similar to plant Ca2+/H+ exchangers including a long N-terminal tail. When CrCAX1-GFP was expressed in Saccharomyces cerevisiae, it localized at the vacuole. CrCAX1 could suppress the Ca2+-hypersensitive phenotype of a yeast mutant and mediated proton gradient-dependent Ca2+/H+ exchange activity in vacuolar membrane vesicles. Ca2+ transport activity was increased following N-terminal truncation of CrCAX1, suggesting the existence of an N-terminal auto-regulatory mechanism. CrCAX1 could also provide tolerance to Na+ stress when expressed in yeast or Arabidopsis thaliana because of Na+/H+ exchange activity. This Na+/H+ exchange activity was not regulated by the N terminus of the CrCAX1 protein. A subtle tolerance by CrCAX1 in yeast to Co2+ stress was also observed. CrCAX1 was transcriptionally regulated in Chlamydomonas cells grown in elevated Ca2+ or Na+. This study has thus uncovered a novel eukaryotic proton-coupled transporter, CrCAX1, that can transport both monovalent and divalent cations and that appears to play a role in cellular cation homeostasis by the transport of Ca2+ and Na+ into the vacuole.

  14. Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation.

    PubMed

    Hernández-Torres, Araceli; Zapata-Morales, Ana Laura; Ochoa Alfaro, Ana Erika; Soria-Guerra, Ruth Elena

    2016-04-01

    Chlamydomonas reinhardtii is able to accumulate large amounts of triacylglycerides, the major feedstock for biodiesel production, when grown under stress conditions. In order to characterize gene transcripts induced under nitrogen, iron, and sulfur deprivation in C. reinhardtii; 583 expressed sequence tags (ESTs) were generated through a cDNA library. These sequences were subjected to contig assembly resulting in 30 contigs and 76 singletons. The comparison of the ESTs obtained with public databases allowed to assign putative functions to 66.7 % of the sequences. An important group of the identified genes are related to the lipid metabolic process. A phylogenetic analysis of these sequences identified five isoforms of diacylglycerol O-acyltransferase type 2 (DGAT-2). These genes were selected to measure their relative expression under these stress conditions by means of qRT-PCR. According to the results, the accumulation of DGTT1 mRNA increases considerably under nitrogen and iron inanition when compared to the other isoforms, which indicated that each isoform participates at different levels under each stress condition. These results can help to identify potential genes to be overexpressed by genetic engineering in C. reinhardtii.

  15. Isolation and characterization of a mutant of Chlamydomonas reinhardtii deficient in the CO sub 2 concentrating mechanism

    SciTech Connect

    Moroney, J.V.; Manual, L.J. ); Husic, H.D. ); Tolbert, N.E. ); Kitayama, M.; Togasaki, R.K. )

    1989-03-01

    A Chlamydomonas reinhardtii mutant has been isolated that cannot grow photoautotrophically on low CO{sub 2} concentrations but can grow on elevated CO{sub 2}. In a test cross, the high CO{sub 2}-requirement for growth showed a 2:2 segregation. This mutant, designated CIA-5, had a phenotype similar to previously identified mutants that were defective in some aspect of CO{sub 2} accumulation. Unlike previously isolated mutants, CIA-5 did not have detectable levels of the periplasmic carbonic anhydrase, an inducible protein that participates in the acquisition of CO{sub 2} by C. reinhardtii. CIA-5 also did not accumulate inorganic carbon to levels higher than could be accounted for by diffusion. This mutant strain did not synthesize any of the four polypeptides preferentially made by wild type C. reinhardtii when switched from an environment containing elevated CO{sub 2} levels to an environment low in CO{sub 2}. It is concluded that this mutant fails to induce the CO{sub 2} concentrating system and is incapable of adapting to low CO{sub 2} conditions.

  16. Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii.

    PubMed

    Fedorov, Roman; Schlichting, Ilme; Hartmann, Elisabeth; Domratcheva, Tatjana; Fuhrmann, Markus; Hegemann, Peter

    2003-04-01

    Phot proteins (phototropins and homologs) are blue-light photoreceptors that control mechanical processes like phototropism, chloroplast relocation, or guard-cell opening in plants. Phot receptors consist of two flavin mononucleotide (FMN)-binding light, oxygen, or voltage (LOV) domains and a C-terminal serine/threonine kinase domain. We determined crystal structures of the LOV1 domain of Phot1 from the green alga Chlamydomonas reinhardtii in the dark and illuminated state to 1.9 A and 2.8 A resolution, respectively. The structure resembles that of LOV2 from Adiantum (Crosson, S. and K. Moffat. 2001. PROC: Natl. Acad. Sci. USA. 98:2995-3000). In the resting dark state of LOV1, the reactive Cys-57 is present in two conformations. Blue-light absorption causes formation of a proposed active signaling state that is characterized by a covalent bond between the flavin C4a and the thiol of Cys-57. There are differences around the FMN chromophore but no large overall conformational changes. Quantum chemical calculations based on the crystal structures revealed the electronic distribution in the active site during the photocycle. The results suggest trajectories for electrons, protons, and the active site cysteine and offer an interpretation of the reaction mechanism. PMID:12668455

  17. Characterization of Chlamydomonas reinhardtii Zygote-Specific cDNAs That Encode Novel Proteins Containing Ankyrin Repeats and WW Domains1

    PubMed Central

    Kuriyama, Hideo; Takano, Hiroyoshi; Suzuki, Lena; Uchida, Hidenobu; Kawano, Shigeyuki; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi

    1999-01-01

    Genes that are expressed only in the young zygote are considered to be of great importance in the development of an isogamous green alga, Chlamydomonas reinhardtii. Clones representing the Zys3 gene were isolated from a cDNA library prepared using zygotes at 10 min after fertilization. Sequencing of Zys3 cDNA clones resulted in the isolation of two related molecular species. One of them encoded a protein that contained two kinds of protein-to-protein interaction motifs known as ankyrin repeats and WW domains. The other clone lacked the ankyrin repeats but was otherwise identical. These mRNA species began to accumulate simultaneously in cells beginning 10 min after fertilization, and reached maximum levels at about 4 h, after which time levels decreased markedly. Genomic DNA gel-blot analysis indicated that Zys3 was a single-copy gene. The Zys3 proteins exhibited parallel expression to the Zys3 mRNAs at first, appearing 2 h after mating, and reached maximum levels at more than 6 h, but persisted to at least 1 d. Immunocytochemical analysis revealed their localization in the endoplasmic reticulum, which suggests a role in the morphological changes of the endoplasmic reticulum or in the synthesis and transport of proteins to the Golgi apparatus or related vesicles. PMID:10069826