Science.gov

Sample records for algae chlorella sp

  1. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  2. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp.

    PubMed

    Wang, Changfu; Yu, Xiaoqing; Lv, Hong; Yang, Jun

    2013-04-01

    The potential of microalgae as a source of renewable energy based on wastewater has received increasing interest worldwide in recent decades. A freshwater microalga Chlorella sp. was investigated for its ability to remove both nitrogen and phosphorus from influent and effluent wastewaters which were diluted in four different proportions (namely, 100%, 75%, 50% and 25%). Chlorella sp. grew fastest under 50% influent and effluent wastewaters culture conditions, and showed an maximum cell density (4.25 x 10(9) ind 1(-1) for influent wastewater and 3.54 x 109 ind l(-1) for effluent wastewater), indicating the levels of nitrogen and phosphorus greatly influenced algal growth. High removal efficiency for total nitrogen (17.04-58.85%) and total phosphorus (62.43-97.08%) was achieved. Further, more than 83% NH4-N in 75%, 50%, 25% influent wastewater, 88% NOx-N in effluent wastewater and 90% PO4-P in all treatments were eliminated after 24 days of incubation. Chlorella sp. grew well when PO4-P concentration was very low, indicating that this might be not the limiting factor to algal growth. Our results suggest the potential importance of integrating nutrient removal from wastewater by microalgae cultivation as biofuel production feedstock.

  3. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp.

    PubMed

    Wang, Changfu; Yu, Xiaoqing; Lv, Hong; Yang, Jun

    2013-04-01

    The potential of microalgae as a source of renewable energy based on wastewater has received increasing interest worldwide in recent decades. A freshwater microalga Chlorella sp. was investigated for its ability to remove both nitrogen and phosphorus from influent and effluent wastewaters which were diluted in four different proportions (namely, 100%, 75%, 50% and 25%). Chlorella sp. grew fastest under 50% influent and effluent wastewaters culture conditions, and showed an maximum cell density (4.25 x 10(9) ind 1(-1) for influent wastewater and 3.54 x 109 ind l(-1) for effluent wastewater), indicating the levels of nitrogen and phosphorus greatly influenced algal growth. High removal efficiency for total nitrogen (17.04-58.85%) and total phosphorus (62.43-97.08%) was achieved. Further, more than 83% NH4-N in 75%, 50%, 25% influent wastewater, 88% NOx-N in effluent wastewater and 90% PO4-P in all treatments were eliminated after 24 days of incubation. Chlorella sp. grew well when PO4-P concentration was very low, indicating that this might be not the limiting factor to algal growth. Our results suggest the potential importance of integrating nutrient removal from wastewater by microalgae cultivation as biofuel production feedstock. PMID:24620613

  4. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    PubMed Central

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  5. The effect of water hardness on the toxicity of uranium to a tropical freshwater alga Chlorella sp.

    PubMed

    Charles, Amanda L; Markich, Scott J; Stauber, Jennifer L; De Filippis, Lou F

    2002-10-01

    Uranium (U) derived from mining activities is of potential ecotoxicological concern to freshwater biota in tropical northern Australia. Few data are available on the effects of water hardness (Ca and/or Mg), which is elevated in U mine wastewaters, on the toxicity and bioavailability of U to freshwater biota, particularly algae. This study determined the effect of water hardness (8, 40, 100 and 400 mg CaCO(3) x l(-1), added as calcium (Ca) and magnesium (Mg) sulphate) on the toxicity (72 h growth rate inhibition) of U to the unicellular green alga, Chlorella sp., in synthetic freshwater, at constant pH (7.0) and alkalinity (8 mg CaCO(3) x l(-1)), similar in chemical composition to sandy coastal streams in tropical northern Australia. A 50-fold increase in water hardness resulted in a 5-fold decrease (PChlorella sp. (i.e. the 72 h EC(50) increased from 56 to 270 micro g U l(-1)). Possible explanation for the ameliorative effect of water hardness includes: (i) competition between U and Ca and/or Mg for binding sites on the cell surface; and (ii) a change in U speciation, and hence, bioavailability. Results showed that extracellular (cell-surface) and intracellular U concentrations significantly (P<0.05) decreased (2-5-fold) as water hardness increased from 8 to 400 mg CaCO(3)x l(-1). Calculation of U speciation using the geochemical model HARPHRQ showed that there were no significant (P>0.05) differences in the predicted speciation (% distribution) of U amongst the four water hardness levels. The reduction in U toxicity with increasing water hardness was most likely due to competition between U and Ca and/or Mg for binding sites on the algal cell surface. The minimum detectable effect concentrations of U were approximately 3 and 24 times higher (at 8 and 400 mg CaCO(3)x l(-1) hardness, respectively) than the national interim U guideline value (0.5 micro g x l(-1)) for protecting aquatic ecosystems. Overall, the results reinforce the

  6. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    PubMed

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  7. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    PubMed

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-01

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  8. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    PubMed

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-01

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production. PMID:25105531

  9. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp.

    PubMed

    Lee, Choon-Geun; Kang, Do-Hyung; Lee, Dong-Bog; Lee, Hyeon-Yong

    2013-11-01

    The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for

  10. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2.

    PubMed

    Chen, Weixian; Zhang, Shanshan; Rong, Junfeng; Li, Xiang; Chen, Hui; He, Chenliu; Wang, Qiang

    2016-02-01

    Nitrogen oxides (NOx) are the components of fossil flue gas that result in the most serious environmental concerns. We previously showed that the biological removal of NOx by microalgae appears superior to traditional treatments. This study optimizes the strategy for the microalgal-based DeNOx of flue gas by fed-batch mixotrophic cultivation. By using actual flue gas fixed salts (FGFS) as the nitrogen supply, the mixotrophical cultivation of the green alga Chlorella sp. C2 with high NOx absorption efficiency was optimized in a stepwise manner in a 5 L bioreactor and resulted in a maximum biomass productivity of 9.87 g L(-1) d(-1). The optimized strategy was further scaled up to 50 L, and a biomass productivity of 7.93 g L(-1) d(-1) was achieved, with an overall DeNOx efficiency of 96%, along with an average nitrogen CR of 0.45 g L(-1) d(-1) and lipid productivity of 1.83 g L(-1) d(-1). With an optimized mixotrophical cultivation, this study further proved the feasibility of using Chlorella for the combination of efficient biological DeNOx of flue gas and microalgae-based products production. Thus, this study shows a promising industrial strategy for flue gas biotreatment in plants with limited land area.

  11. Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica

    USGS Publications Warehouse

    Morgan-Kiss, R. M.; Ivanov, A.G.; Modla, S.; Czymmek, K.; Huner, N.P.A.; Priscu, J.C.; Lisle, J.T.; Hanson, T.E.

    2008-01-01

    Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the 'photopsychrophiles') in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10??C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes. ?? 2008 Springer.

  12. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.

    PubMed

    da Silva Vaz, Bruna; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.

  13. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.

    PubMed

    da Silva Vaz, Bruna; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source. PMID:26453033

  14. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  15. Gas exchange of algae. IV. Reliability of Chlorella pyrenoidosa.

    PubMed

    Ammann, E C; Fraser-Smith, A

    1968-05-01

    A single culture of Chlorella pyrenoidosa (700 ml) was grown continuously under uniform environmental conditions for a period of 11 months. During this time, the culture remained uncontaminated and its oxygen production, carbon dioxide consumption, and photosynthetic quotient (PQ = CO(2)/O(2)) were monitored on a 24-hr basis. The gas exchange characteristics of the alga were found to be extremely reliable; the average oxygen production was 1.21 +/- 0.03 ml per min, the carbon dioxide consumption was 1.09 +/- 0.03 ml per min, and the PQ was 0.90 +/- 0.01 when changes in both lamp intensity and instrument accuracy were taken into consideration. Such long-term dependability in the production of oxygen, consumption of carbon dioxide, and maintenance of a uniform PQ warrants the use of C. pyrenoidosa in a regenerative life support system for space travel.

  16. Aluminum bioavailability to the green alga Chlorella pyrenoidosa in acidified synthetic soft water

    SciTech Connect

    Parent, L.; Campbell, P.G.C. )

    1994-04-01

    A unicellular green alga, Chlorella pyrenoidosa, was exposed to inorganic Al under controlled experimental conditions to determine whether the biological response elicited by the dissolved metal could be predicted from the free-metal ion concentration, [Al[sup 3+

  17. Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae).

    PubMed

    Luo, W; Pröschold, T; Bock, C; Krienitz, L

    2010-05-01

    Using a combined set of sequences of SSU and ITS regions of nuclear-encoded ribosomal DNA, the concept of the experimental algal genus Chlorella was evaluated. Conventionally in the genus Chlorella, only coccoid, solitary algae with spherical morphology that do not possess any mucilaginous envelope were included. All Chlorella species reproduce asexually by autospores. However, phylogenetic analyses showed that within the clade of 'true'Chlorella species (Chlorella vulgaris, C. lobophora, and C. sorokiniana), taxa with a mucilaginous envelope and colonial lifeform have also evolved. These algae, formerly designated as Dictyosphaerium, are considered as members of the genus Chlorella. In close relationship to Chlorella, five different genera were supported by the phylogenetic analyses: Micractinium (spherical cells, colonial, with bristles), Didymogenes (ellipsoidal cells, two-celled coenobia, with or without two spines per cell), Actinastrum (ellipsoidal cells within star-shaped coenobia), Meyerella (spherical cells, solitary, without pyrenoids), and Hegewaldia (spherical cells, colonial, with or without bristles, oogamous propagation). Based on the secondary structures of SSU and ITS rDNA sequences, molecular signatures are provided for each genus of the Chlorella clade.

  18. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain

    NASA Astrophysics Data System (ADS)

    Liang, Fang; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2014-11-01

    SO2 is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO2 from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m2·s), NaHCO3 concentration of 6 g/L, initial cell density (OD540) of 0.8 and pH of 9-10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO2- 3 to SO2- 4, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO2, assuming there is adequate control of the pH.

  19. Coagulation-flocculation of marine Chlorella sp. for biodiesel production.

    PubMed

    Sanyano, Naruetsawan; Chetpattananondh, Pakamas; Chongkhong, Sininart

    2013-11-01

    Harvesting of marine Chlorella sp. by autoflocculation and flocculation by addition of coagulant with pH adjustment was investigated in this study. Autoflocculation provided low efficiency. Response surface methodology was employed to optimize the coagulant dosage and pH for flocculation. Aluminium sulfate and ferric chloride were investigated coagulants. The empirical models from RSM are in a good agreement with the experimental results. The optimum flocculation was achieved at ferric chloride dosage 143 mg/L, pH 8.1 and settling time 40 min. Biomass concentration also presented the significant effect on harvesting efficiency. Lipid extracted from marine Chlorella sp. cultivated in urea fertilizer medium with hexane as a solvent is suitable to produce biodiesel according to it contains high proportion of saturated fatty acids. The crude lipid should be purified to remove some impurities before making biodiesel. As the free fatty acid content was higher than 1% a two-step biodiesel production is recommended.

  20. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment.

    PubMed

    Wang, Meng; Kuo-Dahab, Wenye Camilla; Dolan, Sona; Park, Chul

    2014-02-01

    Two species of green algae, Chlorella sp. and Micractinium sp., were cultivated in primary effluent wastewater and high-strength wastewater (a mixture of anaerobic digestion centrate and primary effluent) to study nutrient removal and EPS (extracellular polymeric substances) expression during their growth. The high N concentration and P-limited condition in the mixed wastewater (total N=197 mg/L; N/P mass ratio=56) led to about 3 times greater specific N removal rate than the primary effluent set, indicating that algal cells growing in N-rich wastewater had N over-uptake. Both Chlorella and Micractinium grown in the high-strength wastewater also produced larger amounts of protein EPS, possibly accounting for higher N uptake in those cultivation sets. These results suggest that different types of wastewater could cause different nutrient removal kinetics and EPS expression by algae, which may subsequently influence harvesting and anaerobic digestion of their biomass.

  1. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment.

    PubMed

    Wang, Meng; Kuo-Dahab, Wenye Camilla; Dolan, Sona; Park, Chul

    2014-02-01

    Two species of green algae, Chlorella sp. and Micractinium sp., were cultivated in primary effluent wastewater and high-strength wastewater (a mixture of anaerobic digestion centrate and primary effluent) to study nutrient removal and EPS (extracellular polymeric substances) expression during their growth. The high N concentration and P-limited condition in the mixed wastewater (total N=197 mg/L; N/P mass ratio=56) led to about 3 times greater specific N removal rate than the primary effluent set, indicating that algal cells growing in N-rich wastewater had N over-uptake. Both Chlorella and Micractinium grown in the high-strength wastewater also produced larger amounts of protein EPS, possibly accounting for higher N uptake in those cultivation sets. These results suggest that different types of wastewater could cause different nutrient removal kinetics and EPS expression by algae, which may subsequently influence harvesting and anaerobic digestion of their biomass. PMID:24384320

  2. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply

    PubMed Central

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L−1 d−1 urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L−1 d−1 urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  3. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply.

    PubMed

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L(-1) d(-1) urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L(-1) d(-1) urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  4. Viruses of symbiotic Chlorella-like algae isolated from Paramecium bursaria and Hydra viridis

    PubMed Central

    Van Etten, James L.; Meints, Russel H.; Kuczmarski, Daniel; Burbank, Dwight E.; Lee, Kit

    1982-01-01

    We previously reported that isolation of symbiotic Chlorella-like algae from the Florida strain of Hydra viridis induced replication of a virus (designated HVCV-1) in the algae. We now report that isolation of symbiotic Chlorella-like algae from four other sources of green hydra and one source of the protozoan Paramecium bursaria also induced virus synthesis. Algae from one of these hydra contained a virus identical to HVCV-1 (based on its rate of sedimentation, buoyant density, reaction to HVCV-1 antiserum, and DNA restriction fragments) whereas algae from the other three hydra contained another similar, but distinct, virus (designated HVCV-2). The virus from the paramecium algae (designated PBCV-1) was distinct from both HVCV-1 and HVCV-2. The symbiotic algae in the hydra could also be distinguished ultrastructurally. Chloroplasts of both algae that produced HVCV-1 lacked a pyrenoid whereas chloroplasts of the other three symbiotic algae contained pyrenoids. Since all symbiotic eukaryotic algae we have examined have had virus, a potential viral role in symbiosis is suggested. Images PMID:16593198

  5. Lipid Profile Remodeling in Response to Nitrogen Deprivation in the Microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae)

    PubMed Central

    Olmstead, Ian L. D.; Bergamin, Amanda; Shears, Melanie J.; Dias, Daniel A.; Kentish, Sandra E.; Scales, Peter J.; Botté, Cyrille Y.; Callahan, Damien L.

    2014-01-01

    Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs), the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation) was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids) were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research. PMID:25171084

  6. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation. PMID:26438364

  7. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.

  8. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis.

    PubMed

    Song, Wei; Rashid, Naim; Choi, Wookjin; Lee, Kisay

    2011-09-01

    Hydrogen production was studied using immobilized green alga Chlorella sp. through a two-stage cyclic process where immobilized cells were first incubated in oxygenic photosynthesis followed by anaerobic incubation for H2 production in the absence of sulfur. Chlorella sp. used in this study was capable of generating H2 under immobilized state in agar. The externally added glucose enhanced H2 production rates and total produced volume while shortened the lag time required for cell adaptation prior to H2 evolution. The rate of hydrogen evolution was increased as temperature increased, and the maximum evolution rate under 30 mM glucose was 183 mL/h/L and 238 mL/h/L at 37 °C and 40 °C, respectively. In order to continue repeated cycles of H2 production, at least two days of photosynthesis stage should be allowed for cells to recover H2 production potential and cell viability before returning to H2 production stage again.

  9. An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella.

    PubMed

    Summerer, Monika; Sonntag, Bettina; Sommaruga, Ruben

    2007-08-01

    The ciliate Paramecium bursaria living in mutualistic relationship with the unicellular green alga Chlorella is known to be easily infected by various potential symbionts/parasites such as bacteria, yeasts and other algae. Permanent symbiosis, however, seems to be restricted to Chlorella taxa. To test the specificity of this association, we designed infection experiments with two aposymbiotic P. bursaria strains and Chlorella symbionts isolated from four Paramecium strains, seven other ciliate hosts and two Hydra strains, as well as three free-living Chlorella species. Paramecium bursaria established stable symbioses with all tested Chlorella symbionts of ciliates, but never with symbiotic Chlorella of Hydra viridissima or with free-living Chlorella. Furthermore, we tested the infection specificity of P. bursaria with a 1:1:1 mixture of three compatible Chlorella strains, including the native symbiont, and then identified the strain of the newly established symbiosis by sequencing the internal transcribed spacer region 1 of the 18S rRNA gene. The results indicated that P. bursaria established symbiosis with its native symbiont. We conclude that despite clear preferences for their native Chlorella, the host-symbiont relationship in P. bursaria is flexible.

  10. Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa

    NASA Astrophysics Data System (ADS)

    Shen, Songdong

    2008-11-01

    In the present study, genetic polymorphism and diversity in unicellular clones of Chlorella vulgaris Beijerinck and Chlorella pyrenoidosa Chick were studied with Inter Simple Sequence Repeats PCR (ISSR PCR). Samples including four clones of C. vulgaris and three clones of C. pyrenoidosa were purified by single-clone-choice method. For four C. vulgaris unicellular clones, the total number of the bands scored for 18 primers was 298; and the number of the polymorphic bands was 118, of which 39.6% were polymorphic. The size of PCR products ranged from 200 to 2 500 bp. The total number of bands scored for 18 primers, the number of polymorphic bands and the percentage of three C. pyrenoidosa unicellular clones was 194.83 and 30.8%, respectively. POPGENE analysis show that the average Nei genetic diversity (h*) and Shannon index of diversity (I*) in the four C. vulgaris unicellular clones was 0.2181 and 0.3208, respectively, which is slightly higher than those of the three C. pyrenoidosa unicellular clones (0.190 3 and 0.274 8), which agreed with the percentage of polymorphic bands in the mixed samples of the two species. The results suggest that ISSR is a useful method to Chlorella for intraspecies genetic analysis.

  11. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. PMID:27486951

  12. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification.

  13. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  14. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal.

    PubMed

    Hu, Bing; Min, Min; Zhou, Wenguang; Du, Zhenyi; Mohr, Michael; Chen, Paul; Zhu, Jun; Cheng, Yanling; Liu, Yuhuan; Ruan, Roger

    2012-12-01

    The objectives were to assess the feasibility of using fermented liquid swine manure (LSM) as nutrient supplement for cultivation of Chlorella sp. UMN271, a locally isolated facultative heterotrophic strain, and to evaluate the nutrient removal efficiencies by alga compared with those from the conventionally decomposed LSM-algae system. The results showed that addition of 0.1% (v/v) acetic, propionic and butyric acids, respectively, could promote algal growth, enhance nutrient removal efficiencies and improve total lipids productivities during a 7-day batch cultivation. Similar results were observed when the acidogenic fermentation was applied to the sterilized and raw digested LSM rich in volatile fatty acids (VFAs). High algal growth rate (0.90 d(-1)) and fatty acid content (10.93% of the dry weight) were observed for the raw VFA-enriched manure sample. Finally, the fatty acid profile analyses showed that Chlorella sp. grown on acidogenically digested manure could be used as a feedstock for high-quality biodiesel production. PMID:23073091

  15. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. )

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  16. The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome.

    PubMed

    Tartar, Aurélien; Boucias, Drion G

    2004-04-01

    A fragment of the Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) plastid genome has been sequenced. The genome architecture was compared to that of both a non-photosynthetic relative (Prototheca wickerhamii) and a photosynthetic relative (Chlorella vulgaris). Comparative genomic analysis indicated that Helicosporidium and Prototheca are closely related genera. The analyses also revealed that the Helicosporidium sp. plastid genome has been rearranged. In particular, two ribosomal protein-encoding genes (rpl19 and rps23) appeared to have been transposed, or lost from the Helicosporidium sp. plastid genome. RT-PCR reactions demonstrated that the retained plastid genes were transcribed, suggesting that, despite rearrangement(s), the Helicosporidium sp. plastid genome has remained functional. The modified plastid genome architecture is a novel apomorphy that indicates that the Helicosporidia are highly derived green algae, more so than Prototheca spp. As such, they represent a promising model to study organellar genome reorganizations in parasitic protists.

  17. Multicellular group formation in response to predators in the alga Chlorella vulgaris.

    PubMed

    Fisher, R M; Bell, T; West, S A

    2016-03-01

    A key step in the evolution of multicellular organisms is the formation of cooperative multicellular groups. It has been suggested that predation pressure may promote multicellular group formation in some algae and bacteria, with cells forming groups to lower their chance of being eaten. We use the green alga Chlorella vulgaris and the protist Tetrahymena thermophila to test whether predation pressure can initiate the formation of colonies. We found that: (1) either predators or just predator exoproducts promote colony formation; (2) higher predator densities cause more colonies to form; and (3) colony formation in this system is facultative, with populations returning to being unicellular when the predation pressure is removed. These results provide empirical support for the hypothesis that predation pressure promotes multicellular group formation. The speed of the reversion of populations to unicellularity suggests that this response is due to phenotypic plasticity and not evolutionary change. PMID:26663204

  18. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity.

    PubMed

    Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan

    2016-11-01

    The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity.

  19. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity.

    PubMed

    Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan

    2016-11-01

    The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity. PMID:27345461

  20. Preliminary study of the green algae chlorella (Chlorella vulgaris) for control on the root-knot nematode (Meloidogyne arenaria) in tomato plants and ectoparasite Xiphinema indexin grape seedlings.

    PubMed

    Choleva, B; Bileva, T; Tzvetkov, Y; Barakov, P

    2005-01-01

    The alternative ecological methods require investigation of many organo-biological means for plant protection against dangerous root parasites such as root-knot nematode Meloidogyne arenaria and some ectoparasites (Xiphinema index). The Bulgarian organic product - dry extract of green alga Chlorella vulgaris ("The Golden Apple"-Plamen Barakov) is the latest product, which in comparative aspect gives the best results. Series of laboratory and pot experiments are carried out with tomato (cv. Bele and cv. Ideal) and grape seedlings (cv. Cabernet Sauvignon). Different dosages of Chlorella from 0.5 g to 2 g per plant/pot are investigated. The first results show that even low dosages had double effect - on the one hand they suppress the parasite development and on the other hand they strongly stimulate plant growing. The very important conclusion is that Chlorella vulgaris ignores the negative influence of M. arenaria and X. index. These results give us opportunity for future model and field investigations of Chlorella vulgaris with the aim of its practical application.

  1. Technique for harvesting unicellular algae using colloidal gas aphrons. [Chlorella vulgaris

    SciTech Connect

    Honeycutt, S.S.; Wallis, D.A.; Sebba, F.

    1983-01-01

    A novel technique using colloidal gas aphron (CGA) dispersions has been investigated for harvesting Chlorella vulgaris, a unicellular green algae, from dilute suspension. CGA are very small gas bubbles, on the order of 25 ..mu..m in diameter, that are each encapsulated in an aqueous shell of surfactant solution. The process is based on the technology of CGA flotation, which involves the formation of algae-bubble complexes and their subsequent flotation to the surface. At neutral pH, the efficiency of algae removal was maximized when a cationic surfactant (lauryl pyridinium chloride) was used for CGA generation. At pH 10, both the cationic and anionic (sodium dodecyl benzene sulfonate) CGA dispersions yielded comparable removals. Addition of small quantities of alum (to 10/sup -4/M) improved removals using the cationic CGA, and at pH 10 this combination yielded the maximum removals that were achieved: 52.1% removal after a single application of CGA dispersion (1 to 1, dispersion to sample volume ratio), and 89.2% removal after an additional application. 12 references, 1 figure, 2 tables.

  2. Uptake of Inorganic Carbon by Isolated Chloroplasts of the Unicellular Green Alga Chlorella ellipsoidea1

    PubMed Central

    Rotatore, Caterina; Colman, Brian

    1990-01-01

    Chloroplasts, isolated from protoplasts of the green alga, Chlorella ellipsoidea, were estimated to be 99% intact by the ferricyanide-reduction assay, and gave CO2 and PGA-dependent rates of O2 evolution of 64.5 to 150 micromoles per milligram of chlorophyll per hour, that is 30 to 70% of the photosynthetic activity of the parent cells. Intact chloroplasts showed no carbonic anhydrase activity, but it was detected in preparations of ruptured organelles. Rates of photosynthesis, measured in a closed system at pH 7.5, were twice the calculated rate of CO2 supply from the uncatalyzed dehydration of HCO3− indicating a direct uptake of bicarbonate by the intact chloroplasts. Mass spectrometric measurements of CO2 depletion from the medium on the illumination of chloroplasts indicate the lack of an active CO2 transport across the chloroplast envelope. PMID:16667662

  3. Osmoregulation in the Extremely Euryhaline Marine Micro-Alga Chlorella autotrophica1

    PubMed Central

    Ahmad, Iftikhar; Hellebust, Johan A.

    1984-01-01

    Chlorella autotrophica (Clone 580) grows over the external salinity range of 1 to 400% artificial sea water (ASW), can photosynthesize over the range from 1 to 600% ASW, and survives the complete evaporation of seawater. The alga grown at high salinities shows an increase in cell volume and a small decrease in cell water content. Measurements of ion content were made by neutron activation analysis on cells washed in isoosmotic sorbitol solutions which contained a few millimolar of major ions to prevent ion leakage. Cells grown at various ASW concentrations contain large quantities of sodium, potassium, and chloride ions. Measurements of cations associated with cell wall and intracellular macromolecules were made to determine intracellular concentration of free ions. The proline content of cells increases in response to increases in external salinity. Cells in 300% ASW contain 1500 to 1600 millimolar proline. PMID:16663495

  4. Prediction of ecotoxicological behavior of chemicals: relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella

    SciTech Connect

    Geyer, H.; Politzki, G.; Freitag, D.

    1984-01-01

    The bioaccumulation potential of organic chemicals by the green alga Chlorella fusca was determined. A quantitative relationship was found to exist between the lipophilicity (n-octanol/water partition coefficient) of the chemicals and the bioaccumulation factor.

  5. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  6. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B

    PubMed Central

    2014-01-01

    Background Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. Results The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. Conclusions The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast

  7. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time

  8. Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation.

    PubMed

    Liu, Shuyu; Zhao, Yueping; Liu, Li; Ao, Xiyong; Ma, Liyan; Wu, Minghong; Ma, Fang

    2015-04-01

    Microalgae with high biomass and high lipid content are the ideal feedstock for biodiesel production. To obtain such microalgae, ultraviolet (UV) irradiation was applied to Chlorella sp. to induce mutagenesis. The growth characteristics, total nitrogen (TN), and biochemical compositions of the control and UV mutation strains were analyzed. Compared to the control strain, the biomass for the UV mutation strain was 7.6 % higher and it presented a higher growth rate. The lipid content of the UV mutation strain showed different levels of increase and reached the maximum value of 28.1 % on day 15. Furthermore, the lipid productivity of the UV mutation strain showed a desired increase. The nitrogen consumption and Acetyl-CoA carboxylase (ACC) activity contributed to the lipid production by UV. All these results indicate that UV mutagenesis is an efficient method to improve probability for using Chlorella sp. as the potential raw material for biodiesel production.

  9. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    PubMed

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed.

  10. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris.

    PubMed

    Ferrándiz-Mas, V; Bond, T; Zhang, Z; Melchiorri, J; Cheeseman, C R

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740°C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700°C, with chlorophyll-a concentrations reaching up to 11.1±0.4μg/cm(2) of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. PMID:27135568

  11. Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators.

    PubMed

    Taştan, Burcu Ertit; Duygu, Ergin; Dönmez, Gönül

    2012-01-01

    It has been well documented that excess concentrations of boron (B) causes toxic effects on many of the environmental systems. Although Chlorella sp. has been studied to remove pollutants from water, its capacity to remove B has not been investigated yet. Boron removal levels of newly isolated Chlorella sp. were investigated in BG 11 media with stimulators as triacontanol (TRIA) and/or sodium bicarbonate (NaHCO(3)) and without them, to test if they could increase the removal efficiency by increasing biomass. The assays were performed to determine the effect of different medial compositions, B concentrations, pH and biomass concentrations onto removal efficiency. Boron removal was investigated at 5-10 mg/L range at pH 8 in different medial compositions and maximum removal yield was found as 32.95% at 5.45 mg/L B in media with TRIA and NaHCO(3). The effect of different pH values on the maximum removal yield was investigated at pH 5-9, and the optimum pH was found again 8. The interactive effect of biomass concentration and B removal yield was also investigated at 0.386-1.061 g wet weight/L biomass. The highest removal yield was found as 38.03% at the highest biomass range. This study highlights the importance of using new isolate Chlorella sp. as a new biomaterial for B removal process of waters containing B.

  12. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.

    PubMed

    Lee, Yu-Ru; Chen, Jen-Jeng

    2016-01-01

    The bioprospecting of potentially mixotrophic microalgae in a constructed wetland was conducted. A locally isolated microalga, Chlorella sp., was grown to determine the effect of temperature, aeration rate, and cultivation time on simultaneous biomass production and nutrient removal from piggery wastewater using central composite design (CCD). The most important variable for the biomass productivity of Chlorella sp. was aeration rate, while that for lipid content and nutrient removal efficiency was cultivation time. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies were higher than that of chemical oxygen demand (COD) from piggery wastewater. The CCD results indicate that the highest biomass productivity (79.2 mg L(-1) d(-1)) and simultaneous nutrient removal efficiency (TN 80.9%, TP 99.2%, COD 74.5%) were obtained with a cultivation temperature of 25 °C, a cultivation time of 5 days, and an air aeration rate of 1.6 L L(-1) min(-1). Palmitic acid (C16:0) and linoleic acid (C18:2) were both abundant in Chlorella sp. cells under mixotrophic cultivation with piggery wastewater.

  13. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.

    PubMed

    Lee, Yu-Ru; Chen, Jen-Jeng

    2016-01-01

    The bioprospecting of potentially mixotrophic microalgae in a constructed wetland was conducted. A locally isolated microalga, Chlorella sp., was grown to determine the effect of temperature, aeration rate, and cultivation time on simultaneous biomass production and nutrient removal from piggery wastewater using central composite design (CCD). The most important variable for the biomass productivity of Chlorella sp. was aeration rate, while that for lipid content and nutrient removal efficiency was cultivation time. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies were higher than that of chemical oxygen demand (COD) from piggery wastewater. The CCD results indicate that the highest biomass productivity (79.2 mg L(-1) d(-1)) and simultaneous nutrient removal efficiency (TN 80.9%, TP 99.2%, COD 74.5%) were obtained with a cultivation temperature of 25 °C, a cultivation time of 5 days, and an air aeration rate of 1.6 L L(-1) min(-1). Palmitic acid (C16:0) and linoleic acid (C18:2) were both abundant in Chlorella sp. cells under mixotrophic cultivation with piggery wastewater. PMID:27054723

  14. Relationship between the Unicellular Red Alga Porphyridium sp. and Its Predator, the Dinoflagellate Gymnodinium sp.

    PubMed

    Ucko, M; Cohen, E; Gordin, H; Arad, S M

    1989-11-01

    Contamination of algae cultivated outdoors by various microorganisms, such as bacteria, fungi, algae, and protozoa, can affect growth and product quality, sometimes causing fast collapse of the cultures. The main contaminant of Porphyridium cultures grown outdoors in Israel is a Gymnodinium sp., a dinoflagellate that feeds on the alga. Comparison of the effects of various environmental conditions, i.e., pH, salinity, and temperature, on Gymnodinium and Porphyridium species revealed that the Gymnodinium sp. has sharp optimum curves, whereas the Porphyridium sp. has a wider range of optimum conditions and is also more resistant to extreme environmental variables. The mode of preying on the alga was observed, and the specificity of the Gymnodinium sp. for the Porphyridium sp. was shown. In addition, Gymnodinium extract was shown to contain enzymatic degrading activity specific to the Porphyridium sp. cell wall polysaccharide.

  15. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor.

    PubMed

    Xu, Meng; Bernards, Matthew; Hu, Zhiqiang

    2014-02-01

    An algae-based membrane bioreactor (A-MBR) was evaluated for high-density algae cultivation and phosphorus (P) removal. The A-MBR was seeded with Chlorella emersonii and operated at a hydraulic retention time of 1day with minimal biomass wastage for about 150days. The algae concentration increased from initially 385mg/L (or 315mg biomass COD/L) to a final of 4840mg/L (or 1664mg COD/L), yielding an average solids (algae biomass+minerals) production rate of 32.5gm(-3)d(-1) or 6.2gm(-2)d(-1). The A-MBR was able to remove 66±9% of the total P from the water while the algal biomass had an average of 7.5±0.2% extracellular P and 0.4% of intracellular P. The results suggest that algae-induced phosphate precipitation by algae is key to P removal and high-density algae cultivation produces P-rich algal biomass with excellent settling properties. PMID:24374248

  16. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor.

    PubMed

    Xu, Meng; Bernards, Matthew; Hu, Zhiqiang

    2014-02-01

    An algae-based membrane bioreactor (A-MBR) was evaluated for high-density algae cultivation and phosphorus (P) removal. The A-MBR was seeded with Chlorella emersonii and operated at a hydraulic retention time of 1day with minimal biomass wastage for about 150days. The algae concentration increased from initially 385mg/L (or 315mg biomass COD/L) to a final of 4840mg/L (or 1664mg COD/L), yielding an average solids (algae biomass+minerals) production rate of 32.5gm(-3)d(-1) or 6.2gm(-2)d(-1). The A-MBR was able to remove 66±9% of the total P from the water while the algal biomass had an average of 7.5±0.2% extracellular P and 0.4% of intracellular P. The results suggest that algae-induced phosphate precipitation by algae is key to P removal and high-density algae cultivation produces P-rich algal biomass with excellent settling properties.

  17. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris.

    PubMed

    Cheng, Jinfeng; Qiu, Hongchen; Chang, Zhaoyang; Jiang, Zaimin; Yin, Wenke

    2016-01-01

    The objective of the present work was to evaluate the effect of exogenously applied cadmium on the physiological response of green algae Chlorella vulgaris. The study investigated the long-term effect (18 days) of cadmium on the levels of algae biomass, assimilation pigment composition, soluble protein, oxidative status (production of hydrogen peroxide and superoxide anion), antioxidant enzymes (such as superoxide dismutase, peroxidase, catalase and glutathione reductase enzyme) in C. vulgaris. The results showed that growth, the amount of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids gradually decreased with increasing cadmium over 18 days exposure. Cadmium at concentration of 7 mg L(-1) inhibited algal growth expressed as the number of cells. Our research found that C. vulgaris has a high tolerance to cadmium. Contents of chlorophylls (Chl a and Chl b) and carotenoids (Car) of C. vulgaris was significantly decline with rising concentration of cadmium (p < 0.05). The decrease of 54.04 and 93.37 % in Chl a, 60.65 and 74.32 % in Chl b, 50.00 and 71.88 % in total carotenoids was noticed following the treatment with 3 and 7 mg L(-1) cadmium doses compared with control treatment, respectively. Cadmium treatments caused a significant change in the physiological competence (calculated as chlorophyll a/b) which increased with increasing Cd(II) doses up to 1 mg L(-1) but decreased at 3 mg L(-1). While accumulation of soluble protein was enhanced by presence of cadmium, the treatment with cadmium at 3 and 7 mg L(-1) increased the concentration of soluble proteins by 88, 95.8 % in C. vulgaris, respectively. Moreover, low doses of cadmium stimulated enzymatic (superoxide dismutase, catalase and glutathione reductase) in C. vulgaris, The content of peroxidase increased with the increasing cadmium concentration, and had slightly decreased at the concentration of 7 mg L(-1), but was still higher than control group, which showed that cadmium

  18. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris.

    PubMed

    Cheng, Jinfeng; Qiu, Hongchen; Chang, Zhaoyang; Jiang, Zaimin; Yin, Wenke

    2016-01-01

    The objective of the present work was to evaluate the effect of exogenously applied cadmium on the physiological response of green algae Chlorella vulgaris. The study investigated the long-term effect (18 days) of cadmium on the levels of algae biomass, assimilation pigment composition, soluble protein, oxidative status (production of hydrogen peroxide and superoxide anion), antioxidant enzymes (such as superoxide dismutase, peroxidase, catalase and glutathione reductase enzyme) in C. vulgaris. The results showed that growth, the amount of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids gradually decreased with increasing cadmium over 18 days exposure. Cadmium at concentration of 7 mg L(-1) inhibited algal growth expressed as the number of cells. Our research found that C. vulgaris has a high tolerance to cadmium. Contents of chlorophylls (Chl a and Chl b) and carotenoids (Car) of C. vulgaris was significantly decline with rising concentration of cadmium (p < 0.05). The decrease of 54.04 and 93.37 % in Chl a, 60.65 and 74.32 % in Chl b, 50.00 and 71.88 % in total carotenoids was noticed following the treatment with 3 and 7 mg L(-1) cadmium doses compared with control treatment, respectively. Cadmium treatments caused a significant change in the physiological competence (calculated as chlorophyll a/b) which increased with increasing Cd(II) doses up to 1 mg L(-1) but decreased at 3 mg L(-1). While accumulation of soluble protein was enhanced by presence of cadmium, the treatment with cadmium at 3 and 7 mg L(-1) increased the concentration of soluble proteins by 88, 95.8 % in C. vulgaris, respectively. Moreover, low doses of cadmium stimulated enzymatic (superoxide dismutase, catalase and glutathione reductase) in C. vulgaris, The content of peroxidase increased with the increasing cadmium concentration, and had slightly decreased at the concentration of 7 mg L(-1), but was still higher than control group, which showed that cadmium

  19. [Study on the Visualization of the Biomass of Chlorella sp., Isochrysis galbana, and Spirulina sp. Based on Hyperspectral Imaging Technique].

    PubMed

    Jiang, Lu-lu; Wet, Xuan; Zhao, Yan-ru; Shao, Yong-ni; Qiu, Zheng-jun; He, Yong

    2016-03-01

    Effective cultivation of the microalgae is the key issue for microalgal bio-energy utilization. In nutrient rich culture conditions, the microalge have a fast growth rate, but they are more susceptible to environmental pollution and influence. So to monitor the the growth process of microalgae is significant during cultivating. Hyperspectral imaging has the advantages of both spectra and image analysis. The spectra contain abundant material quality signal and the image contains abundant spatial information of the material about the chemical distribution. It can achieve the rapid information acquisition and access a large amount of data. In this paper, the authors collected the hyperspectral images of forty-five samples of Chlorella sp., Isochrysis galbana, and Spirulina sp., respectively. The average spectra of the region of interest (ROI) were extracted. After applying successive projection algorithm (SPA), the authors established the multiple linear regression (MLR) model with the spectra and corresponding biomass of 30 samples, 15 samples were used as the prediction set. For Chlorella sp., Isochrysis galbana, and Spirulina sp., the correlation coefficient of prediction (r(pre)) are 0.950, 0.969 and 0.961, the root mean square error of prediction (RMSEP) for 0.010 2, 0.010 7 and 0.007 1, respectively. Finally, the authors used the MLR model to predict biomass for each pixel in the images of prediction set; images displayed in different colors for visualization based on pseudo-color images with the help of a Matlab program. The results show that using hyperspectral imaging technique to predict the biomass of Chlorella sp. and Spirulina sp. were better, but for the Isochrysis galbana visualization needs to be further improved. This research set the basis for rapidly detecting the growth of microalgae and using the microalgae as the bio-energy.

  20. [Study on the Visualization of the Biomass of Chlorella sp., Isochrysis galbana, and Spirulina sp. Based on Hyperspectral Imaging Technique].

    PubMed

    Jiang, Lu-lu; Wet, Xuan; Zhao, Yan-ru; Shao, Yong-ni; Qiu, Zheng-jun; He, Yong

    2016-03-01

    Effective cultivation of the microalgae is the key issue for microalgal bio-energy utilization. In nutrient rich culture conditions, the microalge have a fast growth rate, but they are more susceptible to environmental pollution and influence. So to monitor the the growth process of microalgae is significant during cultivating. Hyperspectral imaging has the advantages of both spectra and image analysis. The spectra contain abundant material quality signal and the image contains abundant spatial information of the material about the chemical distribution. It can achieve the rapid information acquisition and access a large amount of data. In this paper, the authors collected the hyperspectral images of forty-five samples of Chlorella sp., Isochrysis galbana, and Spirulina sp., respectively. The average spectra of the region of interest (ROI) were extracted. After applying successive projection algorithm (SPA), the authors established the multiple linear regression (MLR) model with the spectra and corresponding biomass of 30 samples, 15 samples were used as the prediction set. For Chlorella sp., Isochrysis galbana, and Spirulina sp., the correlation coefficient of prediction (r(pre)) are 0.950, 0.969 and 0.961, the root mean square error of prediction (RMSEP) for 0.010 2, 0.010 7 and 0.007 1, respectively. Finally, the authors used the MLR model to predict biomass for each pixel in the images of prediction set; images displayed in different colors for visualization based on pseudo-color images with the help of a Matlab program. The results show that using hyperspectral imaging technique to predict the biomass of Chlorella sp. and Spirulina sp. were better, but for the Isochrysis galbana visualization needs to be further improved. This research set the basis for rapidly detecting the growth of microalgae and using the microalgae as the bio-energy. PMID:27400526

  1. Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties.

    PubMed

    Yin, Li-Jung; Jiang, Shann-Tzong; Pon, Shen-Hwei; Lin, Hsin-Hung

    2010-01-01

    Both 10% and 20% (w/w) Chlorella suspensions were hydrolyzed by 150 to 350 U/mL of cellulases from a 3-d cultivation of Cellulomonas sp. YJ5. Higher chlorophyll, reducing sugars and soluble proteins, and lower residual insoluble solid were observed on both samples after 30-min hydrolysis by various concentrations of cellulases at 50 °C. Decrease in insoluble solid, increases in soluble proteins, peptides and chlorophyll contents, and microscopic observation indicated obvious lysis of cell walls occurred during 60- to 180-min hydrolysis. Significant increases in soluble proteins, peptides, Fe(2+) chelating ability, trolox equivalent antioxidation capacity (TEAC), and reducing power was obtained after 3-h hydrolysis by 150 U/mL of cellulase. These data suggested that cellulolysis technology has high application potential in Chlorella industry.

  2. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.

    PubMed

    Geiger, Elisabeth; Hornek-Gausterer, Romana; Saçan, Melek Türker

    2016-07-01

    Organisms in the aquatic environment are exposed to a variety of substances of numerous chemical classes. The unintentional co-occurrence of pharmaceuticals and other contaminants of emerging concern may pose risk to non-target organisms. In this study, individual and binary mixture toxicity experiments of selected pharmaceuticals (ibuprofen and ciprofloxacin) and chlorophenols (2.4-dichlorophenol (2,4-DCP) and 3-chlorophenol (3-CP)) have been performed with freshwater algae Chlorella vulgaris. All experiments have been carried out according to the 96-h algal growth inhibition test OECD No. 201. Binary mixture tests were conducted using proportions of the respective IC50s in terms of toxic unit (TU). The mixture concentration-response curve was compared to predicted effects based on both the concentration addition (CA) and the independent action (IA) model. Additionally, the Combination Index (CI)-isobologram equation method was used to assess toxicological interactions of the binary mixtures. All substances individually tested had a significant effect on C. vulgaris population density and revealed IC50 values <100mgL(-1) after exposure period of 96-h. The toxic ranking of these four compounds to C. vulgaris was 2,4-DCP>ciprofloxacin>3-CP>ibuprofen. Generally, it can be concluded from this study that toxic mixture effects of all tested chemicals to C. vulgaris are higher than the individual effect of each mixture component. It could be demonstrated that IC50 values of the tested mixtures predominately lead to additive effects. The CA model is appropriate to estimate mixture toxicity, while the IA model tends to underestimate the joint effect. The CI-isobologram equation method predicted the mixtures accurately and elicited synergism at low effect levels for the majority of tested combinations. PMID:27045919

  3. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  4. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting.

    PubMed

    Nasir, Nurfarahana Mohd; Bakar, Nur Syuhada Abu; Lananan, Fathurrahman; Abdul Hamid, Siti Hajar; Lam, Su Shiung; Jusoh, Ahmad

    2015-08-01

    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.

  5. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects.

    PubMed

    García-Casal, Maria N; Ramírez, José; Leets, Irene; Pereira, Ana C; Quiroga, Maria F

    2009-01-01

    Marine algae are easily produced and are good sources of Fe. If this Fe is bioavailable, algae consumption could help to combat Fe deficiency and anaemia worldwide. The objective of the present study was to evaluate Fe bioavailability, polyphenol content and antioxidant capacity from three species of marine algae distributed worldwide. A total of eighty-three subjects received maize- or wheat-based meals containing marine algae (Ulva sp., Sargassum sp. and Porphyra sp.) in different proportions (2.5, 5.0 and 7.5 g) added to the water to prepare the dough. All meals administered contained radioactive Fe. Absorption was evaluated calculating radioactive Fe incorporation in subjects' blood. The three species of marine algae were analysed for polyphenol content and reducing power. Algae significantly increased Fe absorption in maize- or wheat-based meals, especially Sargassum sp., due to its high Fe content. Increases in absorption were dose-dependent and higher in wheat- than in maize-based meals. Total polyphenol content was 10.84, 18.43 and 80.39 gallic acid equivalents/g for Ulva sp., Porphyra sp. and Sargassum sp., respectively. The antioxidant capacity was also significantly higher in Sargassum sp. compared with the other two species analysed. Ulva sp., Sargassum sp. and Porphyra sp. are good sources of bioavailable Fe. Sargassum sp. resulted in the highest Fe intake due to its high Fe content, and a bread containing 7.5 g Sargassum sp. covers daily Fe needs. The high polyphenol content found in Sargassum sp. could be partly responsible for the antioxidant power reported here, and apparently did not affect Fe absorption.

  6. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    PubMed Central

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  7. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography.

    PubMed

    Hodač, Ladislav; Hallmann, Christine; Spitzer, Karolin; Elster, Josef; Faßhauer, Fabian; Brinkmann, Nicole; Lepka, Daniela; Diwan, Vaibhav; Friedl, Thomas

    2016-08-01

    Chlorella and Stichococcus are morphologically simple airborne microalgae, omnipresent in terrestrial and aquatic habitats. The minute cell size and resistance against environmental stress facilitate their long-distance dispersal. However, the actual distribution of Chlorella- and Stichococcus-like species has so far been inferred only from ambiguous morphology-based evidence. Here we contribute a phylogenetic analysis of an expanded SSU and ITS2 rDNA sequence dataset representing Chlorella- and Stichococcus-like species from terrestrial habitats of polar, temperate and tropical regions. We aim to uncover biogeographical patterns at low taxonomic levels. We found that psychrotolerant strains of Chlorella and Stichococcus are closely related with strains originating from the temperate zone. Species closely related to Chlorella vulgaris and Muriella terrestris, and recovered from extreme terrestrial environments of polar regions and hot deserts, are particularly widespread. Stichococcus strains from the temperate zone, with their closest relatives in the tropics, differ from strains with the closest relatives being from the polar regions. Our data suggest that terrestrial Chlorella and Stichococcus might be capable of intercontinental dispersal; however, their actual distributions exhibit biogeographical patterns. PMID:27279416

  8. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography.

    PubMed

    Hodač, Ladislav; Hallmann, Christine; Spitzer, Karolin; Elster, Josef; Faßhauer, Fabian; Brinkmann, Nicole; Lepka, Daniela; Diwan, Vaibhav; Friedl, Thomas

    2016-08-01

    Chlorella and Stichococcus are morphologically simple airborne microalgae, omnipresent in terrestrial and aquatic habitats. The minute cell size and resistance against environmental stress facilitate their long-distance dispersal. However, the actual distribution of Chlorella- and Stichococcus-like species has so far been inferred only from ambiguous morphology-based evidence. Here we contribute a phylogenetic analysis of an expanded SSU and ITS2 rDNA sequence dataset representing Chlorella- and Stichococcus-like species from terrestrial habitats of polar, temperate and tropical regions. We aim to uncover biogeographical patterns at low taxonomic levels. We found that psychrotolerant strains of Chlorella and Stichococcus are closely related with strains originating from the temperate zone. Species closely related to Chlorella vulgaris and Muriella terrestris, and recovered from extreme terrestrial environments of polar regions and hot deserts, are particularly widespread. Stichococcus strains from the temperate zone, with their closest relatives in the tropics, differ from strains with the closest relatives being from the polar regions. Our data suggest that terrestrial Chlorella and Stichococcus might be capable of intercontinental dispersal; however, their actual distributions exhibit biogeographical patterns.

  9. Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology.

    PubMed

    Guo, Ruixin; Xie, Weishu; Chen, Jianqiu

    2015-04-01

    The present work evaluated the combined effects of cefradine and ceftazidime on the green alga Chlorella pyrenoidosa using response surface methodologies (RSM). After a 48 h-exposure, the population growth rate (PGR), the chlorophyll-a content and the SOD content of the alga increased with increased concentrations of two antibiotics. However, the three responses did not continue to demonstrate significant increases once antibiotic concentrations exceed a moderate level. Three two order polynomial regression equations were obtained to describe well the relationship between the responses of the alga and the two antibiotics' concentration (R(2) = 0.9997, 0.9292 and 0.9039, respectively). Three 3 D-surface graphs and their contour plots showed directly the changing trends of the alga under the combined effects of two antibiotics. This study for the first time employed the RSM in ecotoxicology, which indicated that the RSM should be placed under a feasible and a potential application prospect in toxicity assessment.

  10. Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology.

    PubMed

    Guo, Ruixin; Xie, Weishu; Chen, Jianqiu

    2015-04-01

    The present work evaluated the combined effects of cefradine and ceftazidime on the green alga Chlorella pyrenoidosa using response surface methodologies (RSM). After a 48 h-exposure, the population growth rate (PGR), the chlorophyll-a content and the SOD content of the alga increased with increased concentrations of two antibiotics. However, the three responses did not continue to demonstrate significant increases once antibiotic concentrations exceed a moderate level. Three two order polynomial regression equations were obtained to describe well the relationship between the responses of the alga and the two antibiotics' concentration (R(2) = 0.9997, 0.9292 and 0.9039, respectively). Three 3 D-surface graphs and their contour plots showed directly the changing trends of the alga under the combined effects of two antibiotics. This study for the first time employed the RSM in ecotoxicology, which indicated that the RSM should be placed under a feasible and a potential application prospect in toxicity assessment. PMID:25684417

  11. Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp.

    PubMed

    Krishnamurti, Gummuluru S R; Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    Biotests conducted with plants are presently used to estimate metal bioavailability in contaminated soils. But when plants are grown in soils, especially the plants with fine roots, root collection is easily biased and tedious. Indeed, at harvest, small amounts of soil can adhere to roots, resulting in overestimation of root metal content, and the finest roots are often discarded from the analysis because of their difficult and almost impossible recovery. This report presents a novel method for assessing the bioavailability of heavy metals in soils using microalgae. Two species of green unicellular microalgae were isolated from two highly contaminated soils and identified by phylogenetic and molecular evolutionary analyses as Chlorella sp. RBM and Chlorella sp. RHM. These two cultures were used to determine the metal uptake from metal-contaminated soils of South Australia as a novel, cost-effective, simple and rapid method for assessing the bioavailability of heavy metals in soils. The suggested method is an attempt to achieve a realistic estimate of bioavailability which overcomes the inherent drawback of root metal contamination in the bioavailability indices so far reported.

  12. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake.

    PubMed

    Upadhyay, A K; Singh, N K; Singh, R; Rai, U N

    2016-02-01

    The present study was conducted to assess the responses of rice (Oryza sativa L. var. Triguna) by inoculating alga; Chlorella vulgaris and Nannochlropsis sp. supplemented with As(III) (50µM) under hydroponics condition. Results showed that reduced growth variables and protein content in rice plant caused by As toxicity were restored in the algae inoculated plants after 7d of treatment. The rice plant inoculated with Nannochloropsis sp. exhibited a better response in terms of increased root, shoot length and biomass than C. vulgaris under As(III) treatment. A significant reduction in cellular toxicity (thiobarbituric acid reactive substances) and antioxidant enzyme (SOD, APX and GR) activities were observed in algae inoculated rice plant under As(III) treatment in comparison to uninoculated rice. In addition, rice treated with As(III), accumulated 35.05mgkg(-1)dw arsenic in the root and 29.96mgkg(-1)dw in the shoot. However, lower accumulation was observed in As(III) treated rice inoculated with C. vulgaris (24.09mg kg(-1)dw) and Nannochloropsis sp. (20.66mgkg(-1)dw) in the roots, while in shoot, it was 20.10mgkg(-1)dw and 11.67mgkg(-1)dw, respectively. Results demonstrated that application of these algal inoculum ameliorates toxicity and improved tolerance in rice through reduced As uptake and modulating antioxidant enzymes. Thus, application of algae could provide a low-cost and eco-friendly mitigation approach to reduce accumulation of arsenic in edible part of rice as well as higher yield in the As contaminated agricultural field.

  13. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake.

    PubMed

    Upadhyay, A K; Singh, N K; Singh, R; Rai, U N

    2016-02-01

    The present study was conducted to assess the responses of rice (Oryza sativa L. var. Triguna) by inoculating alga; Chlorella vulgaris and Nannochlropsis sp. supplemented with As(III) (50µM) under hydroponics condition. Results showed that reduced growth variables and protein content in rice plant caused by As toxicity were restored in the algae inoculated plants after 7d of treatment. The rice plant inoculated with Nannochloropsis sp. exhibited a better response in terms of increased root, shoot length and biomass than C. vulgaris under As(III) treatment. A significant reduction in cellular toxicity (thiobarbituric acid reactive substances) and antioxidant enzyme (SOD, APX and GR) activities were observed in algae inoculated rice plant under As(III) treatment in comparison to uninoculated rice. In addition, rice treated with As(III), accumulated 35.05mgkg(-1)dw arsenic in the root and 29.96mgkg(-1)dw in the shoot. However, lower accumulation was observed in As(III) treated rice inoculated with C. vulgaris (24.09mg kg(-1)dw) and Nannochloropsis sp. (20.66mgkg(-1)dw) in the roots, while in shoot, it was 20.10mgkg(-1)dw and 11.67mgkg(-1)dw, respectively. Results demonstrated that application of these algal inoculum ameliorates toxicity and improved tolerance in rice through reduced As uptake and modulating antioxidant enzymes. Thus, application of algae could provide a low-cost and eco-friendly mitigation approach to reduce accumulation of arsenic in edible part of rice as well as higher yield in the As contaminated agricultural field. PMID:26473328

  14. Effects of Simulated Microgravity on Growth and Metabolism of the Green Alga, Chlorella Pyrenoiosa

    NASA Astrophysics Data System (ADS)

    Kelly, W. A.; Kelly, S. E.; Valluri, J. V.

    2008-06-01

    The Long-duration future habitation of space will require a controlled ecological life support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate food. The environmental conditions available in the Hydrodynamic Focusing Bioreactor (HFB) provide a novel environment due to the reduction of stress from gravity that influences the growth and protein production of Chlorella pyrenoidosa. Chlorella grown in the HFB conditions exhibited a 3 fold increase in protein production and a 3.5 fold increase in chlorophyll content while averaging a doubling time of 1.47 days.

  15. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  16. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Bajguz, Andrzej; Piotrowska-Niczyporuk, Alicja

    2014-07-01

    Interaction between brassinosteroids (BRs) (brassinolide, BL; 24-epibrassinolide, 24-epiBL; 28-homobrassinolide, 28-homoBL; castasterone, CS; 24-epicastasterone, 24-epiCS; 28-homocastasterone, 28-homoCS) and adenine- (trans-zeatin, tZ; kinetin, Kin) as well as phenylurea-type (1,3-diphenylurea, DPU) cytokinins (CKs) in the regulation of cell number, phytohormone level and the content of chlorophyll, monosaccharide and protein in unicellular green alga Chlorella vulgaris (Trebouxiophyceae) were examined. Chlorella vulgaris exhibited sensitivity to CKs in the following order of their stimulating properties: 10 nM tZ > 100 nM Kin >1 μM DPU. Exogenously applied BRs possessed the highest biological activity in algal cells at concentration of 10 nM. Among the BRs, BL was characterized by the highest activity, while 28-homoCS - by the lowest. The considerable increase in the level of all endogenous BRs by 27-46% was observed in C. vulgaris culture treated with exogenous 10 nM tZ. It can be speculated that CKs may stimulate BR activity in C. vulgaris by inducing the accumulation of endogenous BRs. CKs interacted synergistically with BRs increasing the number of cells and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for BL applied in combination with tZ, whereas the lowest in the culture treated with both 28-homoCS and DPU. However, regardless of the applied mixture of BRs with CKs, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone in unicellular green alga C. vulgaris.

  17. Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3

    PubMed Central

    He, Chen-Liu; Wang, Qiang

    2013-01-01

    Microalgal lipid is one of the most promising feedstocks for biodiesel production. Chlorella appears to be a particularly good option, and nitrogen (N) starvation is an efficient environmental pressure used to increase lipid accumulation in Chlorella cells. The effects of N starvation of an oil-producing wild microalga, Chlorella sorokiniana C3, on lipid accumulation were investigated using thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM) and flow cytometry (FCM). The results showed that N starvation resulted in lipid accumulation in C. sorokiniana C3 cells, oil droplet (OD) formation and significant lipid accumulation in cells were detected after 2 d and 8 d of N starvation, respectively. During OD formation, reduced photosynthetic rate, respiration rate and photochemistry efficiency accompanied by increased damage to PSII were observed, demonstrated by chlorophyll (Chl) fluorescence, 77K fluorescence and oxygen evolution tests. In the mean time the rate of cyclic electron transportation increased correspondingly to produce more ATP for triacylglycerols (TAGs) synthesis. And 0.5 d was found to be the turning point for the early stress response and acclimation of cells to N starvation. Increased level of membrane peroxidation was also observed during OD formation, and superoxide dismutase (SOD), peroxide dismutase (POD) and catalase (CAT) enzyme activity assays suggested impaired reactive oxygen species (ROS) scavenging ability. Significant neutral lipid accumulation was also observed by artificial oxidative stress induced by H2O2 treatment. These results suggested coupled neutral lipid accumulation and oxidative stress during N starvation in C. sorokiniana C3. PMID:23874918

  18. A new inducible expression system in a transformed green alga, Chlorella vulgaris.

    PubMed

    Niu, Y F; Zhang, M H; Xie, W H; Li, J N; Gao, Y F; Yang, W D; Liu, J S; Li, H Y

    2011-01-01

    Genetic transformation is useful for basic research and applied biotechnology. However, genetic transformation of microalgae is usually quite difficult due to the technical limitations of existing methods. We cloned the promoter and terminator of the nitrate reductase gene from the microalga Phaeodactylum tricornutum and used them for optimization of a transformation system of the microalga Chlorella vulgaris. This species has been used for food production and is a promising candidate as a bioreactor for large-scale production of value-added proteins. A construct was made containing the CAT (chloramphenicol acetyltransferase) reporter gene driven by the nitrate reductase promoter. This construct was transferred into the C. vulgaris genome by electroporation. Expression of CAT in transgenic Chlorella conferred resistance to the antibiotic chloramphenicol and enabled growth in selective media. Overall efficiency for the transformation was estimated to be approximately 0.03%, which is relatively high compared with other available Chlorella transformation systems. Expression of CAT was induced in the presence of nitrate and inhibited in the presence of ammonium as a sole nitrogen source. This study presented an inducible recombinant gene expression system, also providing more gene regulation elements with potential for biotechnological applications.

  19. Sustainable Hydrogen Photoproduction by Phosphorus-Deprived Marine Green Microalgae Chlorella sp.

    PubMed Central

    Batyrova, Khorcheska; Gavrisheva, Anastasia; Ivanova, Elena; Liu, Jianguo; Tsygankov, Anatoly

    2015-01-01

    Previously it has been shown that green microalga Chlamydomonas reinhardtii is capable of prolonged H2 photoproduction when deprived of sulfur. In addition to sulfur deprivation (-S), sustained H2 photoproduction in C. reinhardtii cultures can be achieved under phosphorus-deprived (-P) conditions. Similar to sulfur deprivation, phosphorus deprivation limits O2 evolving activity in algal cells and causes other metabolic changes that are favorable for H2 photoproduction. Although significant advances in H2 photoproduction have recently been realized in fresh water microalgae, relatively few studies have focused on H2 production in marine green microalgae. In the present study phosphorus deprivation was applied for hydrogen production in marine green microalgae Chlorella sp., where sulfur deprivation is impossible due to a high concentration of sulfates in the sea water. Since resources of fresh water on earth are limited, the possibility of hydrogen production in seawater is more attractive. In order to achieve H2 photoproduction in P-deprived marine green microalgae Chlorella sp., the dilution approach was applied. Cultures diluted to about 0.5–1.8 mg Chl·L−1 in the beginning of P-deprivation were able to establish anaerobiosis, after the initial growth period, where cells utilize intracellular phosphorus, with subsequent transition to H2 photoproduction stage. It appears that marine microalgae during P-deprivation passed the same stages of adaptation as fresh water microalgae. The presence of inorganic carbon was essential for starch accumulation and subsequent hydrogen production by microalgae. The H2 accumulation was up to 40 mL H2 gas per 1iter of the culture, which is comparable to that obtained in P-deprived C. reinhardtii culture. PMID:25629229

  20. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp.

    PubMed

    Batyrova, Khorcheska; Gavrisheva, Anastasia; Ivanova, Elena; Liu, Jianguo; Tsygankov, Anatoly

    2015-01-01

    Previously it has been shown that green microalga Chlamydomonas reinhardtii is capable of prolonged H2 photoproduction when deprived of sulfur. In addition to sulfur deprivation (-S), sustained H2 photoproduction in C. reinhardtii cultures can be achieved under phosphorus-deprived (-P) conditions. Similar to sulfur deprivation, phosphorus deprivation limits O2 evolving activity in algal cells and causes other metabolic changes that are favorable for H2 photoproduction. Although significant advances in H2 photoproduction have recently been realized in fresh water microalgae, relatively few studies have focused on H2 production in marine green microalgae. In the present study phosphorus deprivation was applied for hydrogen production in marine green microalgae Chlorella sp., where sulfur deprivation is impossible due to a high concentration of sulfates in the sea water. Since resources of fresh water on earth are limited, the possibility of hydrogen production in seawater is more attractive. In order to achieve H2 photoproduction in P-deprived marine green microalgae Chlorella sp., the dilution approach was applied. Cultures diluted to about 0.5-1.8 mg Chl·L-1 in the beginning of P-deprivation were able to establish anaerobiosis, after the initial growth period, where cells utilize intracellular phosphorus, with subsequent transition to H2 photoproduction stage. It appears that marine microalgae during P-deprivation passed the same stages of adaptation as fresh water microalgae. The presence of inorganic carbon was essential for starch accumulation and subsequent hydrogen production by microalgae. The H2 accumulation was up to 40 mL H2 gas per 1iter of the culture, which is comparable to that obtained in P-deprived C. reinhardtii culture. PMID:25629229

  1. Green algae (Chlorella pyrenoidosa) adsorbs Bacillus thurigiensis (Bt) toxin, Cry1Ca insecticidal protein, without an effect on growth.

    PubMed

    Wang, Jiamei; Chen, Xiuping; Li, Yunhe; Su, Changqing; Ding, Jiatong; Peng, Yufa

    2014-08-01

    The effect of purified Cry1Ca insecticidal protein on the growth of Chlorella pyrenoidosa was studied in a three-generation toxicity test. The C. pyrenoidosa medium with a density of 5.4 × 10(5) cells/mL was subcultured for three generations with added Cry1Ca at 0, 10, 100, and 1000 µg/L, and cell numbers were determined daily. To explore the distribution of Cry1Ca in C. pyrenoidosa and the culture medium, Cry1Ca was added at 1000 µg/L to algae with a high density of 4.8 × 10(6) cells/mL, and Cry1Ca content was determined daily in C. pyrenoidosa and the culture medium by enzyme-linked immunosorbent assays. Our results showed that the growth curves of C. pyrenoidosa exposed to 10, 100, and 1000 µg/L of Cry1Ca almost overlapped with that of the blank control, and there were no statistically significant differences among the four treatments from day 0 to day 7, regardless of generation. Moreover, the Cry1Ca content in the culture medium and in C. pyrenoidosa sharply decreased under exposure of 1000 µg/L Cry1Ca with high initial C. pyrenoidosa cell density. The above results demonstrate that Cry1Ca in water can be rapidly adsorbed and degraded by C. pyrenoidosa, but it has no suppressive or stimulative effect on algae growth.

  2. The combined and second exposure effect of copper (II) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa.

    PubMed

    Lu, Lei; Wu, Yixiao; Ding, Huijun; Zhang, Weihao

    2015-07-01

    In the experiment, Chlorella pyrenoidosa and Microcystis aeruginosa were chosen to test the individual, combined and second exposure effect of Cu(2+) and chlortetracycline (CTC). The 96 h EC50s of each test were calculated, with the ranges of 0.972-15.6 μmol/L (Cu(2+)), 29.5-102.5 μmol/L (CTC), 14.4-78.9 μmol/L (mixture). The combined toxicities were evaluated with toxicity units (TU) method. The toxicity of complex of Cu(2+) and chlortetracycline was analyzed using concentration addition (CA) model. In the initial test, the combined effect of the two substances was partly additive to C. pyrenoidosa and antagonistic to M. aeruginosa, while in the second exposure test, the combined effect was synergistic to both algae. The biochemical indicators measured in the experiment included chlorophyll fluorescence (Fv/Fm), MDA content, SOD activity and content of soluble proteins. When under combined stress, the biochemical features of both algae were significantly different between the initial test and the second exposure test.

  3. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong; Zou, Yuqin; Liu, Huijun

    2016-09-01

    The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II). PMID:27255311

  4. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong; Zou, Yuqin; Liu, Huijun

    2016-09-01

    The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).

  5. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    PubMed

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-01

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. PMID:26835894

  6. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35).

    PubMed

    Rahman, M Azizur; Hogan, Ben; Duncan, Elliott; Doyle, Christopher; Krassoi, Rick; Rahman, Mohammad Mahmudur; Naidu, Ravi; Lim, Richard P; Maher, William; Hassler, Christel

    2014-08-01

    In the environment, arsenic (As) exists in a number of chemical species, and arsenite (As(III)) and arsenate (As(V)) dominate in freshwater systems. Toxicity of As species to aquatic organisms is complicated by their interaction with chemicals in water such as phosphate that can influence the bioavailability and uptake of As(V). In the present study, the toxicities of As(III), As(V) and dimethylarsinic acid (DMA) to three freshwater organisms representing three phylogenetic groups: a phytoplankton (Chlorella sp. strain CE-35), a floating macrophyte (Lemna disperma) and a cladoceran grazer (Ceriodaphnia cf. dubia), were determined using acute and growth inhibition bioassays (EC₅₀) at a range of total phosphate (TP) concentrations in OECD medium. The EC₅₀ values of As(III), As(V) and DMA were 27 ± 10, 1.15 ± 0.04 and 19 ± 3 mg L(-1) for Chlorella sp. CE-35; 0.57 ± 0.16, 2.3 ± 0.2 and 56 ± 15 mg L(-1) for L. disperma, and 1.58 ± 0.05, 1.72 ± 0.01 and 5.9 ± 0.1 mg L(-1) for C. cf. dubia, respectively. The results showed that As(III) was more toxic than As(V) to L. disperma; however, As(V) was more toxic than As(III) to Chlorella sp. CE-35. The toxicities of As(III) and As(V) to C. cf. dubia were statistically similar (p>0.05). DMA was less toxic than iAs species to L. disperma and C. cf. dubia, but more toxic than As(III) to Chlorella sp. CE-35. The toxicity of As(V) to Chlorella sp. CE-35 and L. disperma decreased with increasing TP concentrations in the growth medium. Phosphate concentrations did not influence the toxicity of As(III) to either organism. Chlorella sp. CE-35 showed the ability to reduce As(V) to As(III), indicating a substantial influence of phytoplankton on As biogeochemistry in freshwater aquatic systems.

  7. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata.

    PubMed

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-07-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae.

  8. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment. PMID:27344399

  9. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.

  10. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  11. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production.

  12. N/sub 2/O evolution by green algae. [Chlorella; Scenedesmus; Coelastrum; Chlorococcum

    SciTech Connect

    Weathers, P.J.

    1984-12-01

    Nitrous oxide (N/sub 2/O) is an intermediate in denitrification and a by-product of both nitrification and dissimilatory nitrogen oxide reduction. The extent of the global source and pool of N/sub 2/O is uncertain and especially controversial in aquatic systems. Recognition of new, widespread biological sources of N/sub 2/O affects current theories of the global N/sub 2/O balance. Evidence is presented here that axenic cultures of Chlorella, Scenedesmus, Coelastrum, and Chlorococcum spp. evolve N/sub 2/O when grown on NO/sub 2//sup -/, showing that the Chlorophyceae are a source of N/sub 2/O in aquatic systems. 18 references, 2 tables.

  13. The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris.

    PubMed

    Pinheiro, Carlos; Azevedo, Joana; Campos, Alexandre; Vasconcelos, Vítor; Loureiro, Susana

    2016-05-01

    Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative cyanobacterial cyanotoxins. They have been simultaneously detected in aquatic systems, but their combined ecotoxicological effects to aquatic organisms, especially microalgae, is unknown. In this study, we examined the effects of these cyanotoxins individually and as a binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the MIXTOX tool, the reference model concentration addition (CA) was selected to evaluate the combined effects of MC-LR and CYN on the growth of the freshwater green algae due to its conservative prediction of mixture effect for putative similar or dissimilar acting chemicals. Deviations from the CA model such as synergism/antagonism, dose-ratio and dose-level dependency were also assessed. In single exposures, our results demonstrated that MC-LR and CYN had different impacts on the growth rates of C. vulgaris at the highest tested concentrations, being CYN the most toxic. In the mixture exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual model CA as the best descriptive model. MC-LR individually was not toxic even at high concentrations (37 mg L(-1)); however, the presence of MC-LR at much lower concentrations (0.4-16.7 mg L(-1)) increased the CYN toxicity. From these results, the combined exposure of MC-LR and CYN should be considered for risk assessment of mixtures as the toxicity may be underestimated when looking only at the single cyanotoxins and not their combination. This study also represents an important step to understand the interactions among MC-LR and CYN detected previously in aquatic systems. PMID:26910533

  14. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris. PMID:25672875

  15. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  16. Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2009-02-01

    Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole to protect from lysosomal fusion. To understand the timing of differentiation of the perialgal vacuole from the host digestive vacuole, algae-free P. bursaria cells were fed symbiotic C. vulgaris cells for 1.5min, washed, chased and fixed at various times after mixing. Acid phosphatase activity in the vacuoles enclosing the algae was detected by Gomori's staining. This activity appeared in 3-min-old vacuoles, and all algae-containing vacuoles demonstrated activity at 30min. Algal escape from these digestive vacuoles began at 30min by budding of the digestive vacuole membrane into the cytoplasm. In the budded membrane, each alga was surrounded by a Gomori's thin positive staining layer. The vacuoles containing a single algal cell moved quickly to and attached just beneath the host cell surface. Such vacuoles were Gomori's staining negative, indicating that the perialgal vacuole membrane differentiates soon after the algal escape from the host digestive vacuole. This is the first report demonstrating the timing of differentiation of the perialgal vacuole membrane during infection of P. bursaria with symbiotic Chlorella.

  17. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.

    PubMed

    Li, Dengjin; Wang, Liang; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2015-06-01

    CO2 capture by microalgae is a promising method to reduce greenhouse gas emissions. It is critical to construct a highly efficient way to obtain a microalgal strain tolerant to high CO2 concentrations with high CO2 fixation capability. In this study, two evolved Chlorella sp. strains, AE10 and AE20 were obtained after 31 cycles of adaptive laboratory evolution (ALE) under 10% and 20% CO2, respectively. Both of them grew rapidly in 30% CO2 and the maximal biomass concentration of AE10 was 3.68±0.08g/L, which was 1.22 and 2.94 times to those of AE20 and original strain, respectively. The chlorophyll contents of AE10 and AE20 were significantly higher than those of the original one under 1-30% CO2. The influences of ALE process on biochemical compositions of Chlorella cells were also investigated. This study proved that ALE was an effective approach to improve high CO2 tolerance of Chlorella sp.

  18. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts.

    PubMed

    Choi, Cheol Soon; Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system.

  19. Kinetic Model of Photoautotrophic Growth of Chlorella sp. Microalga, Isolated from the Setúbal Lagoon.

    PubMed

    Heinrich, Josué Miguel; Irazoqui, Horacio Antonio

    2015-01-01

    In this work, a kinetic expression relating light availability in the culture medium with the rate of microalgal growth is obtained. This expression, which is valid for low illumination conditions, was derived from the reactions that take part in the light-dependent stage of photosynthesis. The kinetic expression obtained is a function of the biomass concentration in the culture, as well as of the local volumetric rate of absorption of photons, and only includes two adjustable parameters. To determine the value of these parameters and to test the validity of the hypotheses made, autotrophic cultures of the Chlorella sp. strain were carried out in a modified BBM medium at three CO2 concentrations in the gas stream, namely 0.034%, 0.34% and 3.4%. Moreover, the local volumetric rate of photon absorption was predicted based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. The proposed intrinsic expression of the biomass growth rate, together with the Monte Carlo radiation field simulator, are key to scale up photobioreactors when operating under low irradiation conditions, independently of the configuration of the reactor and of its light source.

  20. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    PubMed

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control. PMID:27543952

  1. Polishing of POME by Chlorella sp. in suspended and immobilized system

    NASA Astrophysics Data System (ADS)

    Lahin, F. A.; Sarbatly, R.; Suali, E.

    2016-06-01

    The effect of using suspended and immobilized growth of Chlorella sp. to treat POME was studied. Cotton and nylon ropes were used as the immobilization material in a rotating microalgae biofilm reactor. The result showed that POME treated in suspended growth system was able to remove 81.9% and 55.5% of the total nitrogen (TN) and total phosphorus (TP) respectively. Whereas the immobilized system showed lower removal of 77.22% and 53.02% for TN and TP. Lower performance of immobilized microalgae is due to the limited light penetration and supply of CO2 inside the immobilization materials. The rotating microalgae biofilm reactor was able to reduce the biochemical oxygen demand (BOD) to 90 mg/L and chemical oxygen demand (COD) to 720 mg/L. Higher BOD and COD reading were obtained in suspended growth due to the presence of small number of microalgae cell in the samples. This study shows that suspended growth system is able to remove higher percentages of nitrogen and phosphorus. However, an efficient separation method such as membrane filtration is required to harvest the cultivated microalgae cell to avoid organic matter release into water bodies.

  2. Production of Biodiesel from Chlorella sp. Enriched with Oyster Shell Extracts

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system. PMID:24696841

  3. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    PubMed

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control.

  4. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high.

  5. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. PMID:27253478

  6. Toxicity of Superparamagnetic Iron Oxide Nanoparticles on Green Alga Chlorella vulgaris

    PubMed Central

    Barhoumi, Lotfi

    2013-01-01

    Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated on Chlorella vulgaris cells exposed during 72 hours to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) to a range of concentrations from 12.5 to 400 μg mL−1. Under these treatments, toxicity impact was indicated by the deterioration of photochemical activities of photosynthesis, the induction of oxidative stress, and the inhibition of cell division rate. In comparison to SPION-2 and -3, exposure to SPION-1 caused the highest toxic effects on cellular division due to a stronger production of reactive oxygen species and deterioration of photochemical activity of Photosystem II. This study showed the potential source of toxicity for three SPION suspensions, having different chemical compositions, estimated by the change of different biomarkers. In this toxicological investigation, algal model C. vulgaris demonstrated to be a valuable bioindicator of SPION toxicity. PMID:24369015

  7. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. PMID:24935023

  8. The influence of dissolved and surface-bound humic acid on the toxicity of TiO₂ nanoparticles to Chlorella sp.

    PubMed

    Lin, Daohui; Ji, Jing; Long, Zhifeng; Yang, Kun; Wu, Fengchang

    2012-09-15

    NOM is likely to coat TiO₂ nanoparticles (nano-TiO₂) discharged into the aquatic environment and influence the nanotoxicity to aquatic organisms, which however has not been well investigated. This study explored the influence of nanoparticle surface-bound humic acid (HA, as a model NOM) as well as dissolved HA on the toxicity of nano-TiO₂ to Chlorella sp., with a specific focus on adhesion of the nanoparticles to the algae. Results showed that nano-TiO₂ and the dissolved HA could inhibit the algal growth with an IC₅₀ of 4.9 and 8.4 mg L⁻¹, respectively, while both dissolved and nanoparticle surface-bound HA could significantly alleviate the algal toxicity of nano-TiO₂. IC₅₀ of nano-TiO₂ increased to 18 mg L⁻¹ in the presence of 5 mg L⁻¹ of the dissolved HA and to 48 mg L⁻¹ as the result of surface-saturation by HA. Co-precipitation experiment and transmission electron microscopy observation revealed that both dissolved and nanoparticle surface-bound HA prevented the adhesion of nano-TiO₂ to the algal cells due to the increased electrosteric repulsion. The generation of intracellular reactive oxygen species (ROS) was significantly limited by the dissolved and nanoparticle surface-bound HA. The prevention of adhesion and inhibition of ROS generation could account for the HA-mitigated nanotoxicity.

  9. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29.

    PubMed

    Goncalves, Elton C; Johnson, Jodie V; Rathinasabapathi, Bala

    2013-11-01

    Algal lipids are ideal biofuel sources. Our objective was to determine the contributors to triacylglycerol (TAG) accumulation and lipid body formation in Chlorella UTEX29 under nitrogen (N) deprivation. A fivefold increase in intracellular lipids following N starvation for 24 h confirmed the oleaginous characteristics of UTEX29. Ultrastructural studies revealed increased number of lipid bodies and decreased starch granules in N-starved cells compared to N-replete cells. Lipid bodies were observed as early as 3 h after N removal and plastids collapsed after 48 h of stress. Moreover, the identification of intracellular pyrenoids and differences in the expected nutritional requirements for Chlorella protothecoides (as UTEX29 is currently classified) led us to conduct a phylogenetic study using 18S and actin cDNA sequences. This indicated UTEX29 to be more phylogenetically related to Chlorella vulgaris. To investigate the fate of different lipids after N starvation, radiolabeling using ¹⁴C-acetate was used. A significant decrease in ¹⁴C-galactolipids and phospholipids matched the increase in ¹⁴C-TAG starting at 3 h of N starvation, consistent with acyl groups from structural lipids as sources for TAG under N starvation. These results have important implications for the identification of key steps controlling oil accumulation in N-starved biofuel algae and demonstrate membrane recycling during lipid body formation.

  10. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.

    PubMed

    Min, Min; Wang, Liang; Li, Yecong; Mohr, Michael J; Hu, Bing; Zhou, Wenguang; Chen, Paul; Ruan, Roger

    2011-09-01

    This study is concerned with a novel mass microalgae production system which, for the first time, uses "centrate", a concentrated wastewater stream, to produce microalgal biomass for energy production. Centrate contains a high level of nutrients that support algal growth. The objective of this study was to investigate the growth characteristics of a locally isolated microalgae strain Chlorella sp. in centrate and its ability to remove nutrients from centrate. A pilot-scale photobioreactor (PBR) was constructed at a local wastewater treatment plant. The system was tested under different harvesting rates and exogenous CO(2) levels with the local strain of Chlorella sp. Under low light conditions (25 μmol·m(-2)s(-1)) the system can produce 34.6 and 17.7 g·m(-2)day(-1) biomass in terms of total suspended solids and volatile suspended solids, respectively. At a one fourth harvesting rate, reduction of chemical oxygen demand, total Kjeldahl nitrogen, and soluble total phosphorus were 70%, 61%, and 61%, respectively. The addition of CO(2) to the system did not exhibit a positive effect on biomass productivity or nutrient removal in centrate which is an organic carbon rich medium. The unique PBR system is highly scalable and provides a great opportunity for biomass production coupled with wastewater treatment. PMID:21494756

  11. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.

    PubMed

    Cheng, Jun; Huang, Yun; Feng, Jia; Sun, Jing; Zhou, Junhu; Cen, Kefa

    2013-05-01

    To improve biomass productivity and CO2 fixation of microalgae under 15% (v/v) CO2 of flue gas, Chlorella species were mutated by nuclear irradiation and domesticated with high concentrations of CO2. The biomass yield of Chlorella pyrenoidosa mutated using 500 Gy of (60)Co γ irradiation increased by 53.1% (to 1.12 g L(-1)) under air bubbling. The mutants were domesticated with gradually increased high concentrations of CO2 [from 0.038% (v/v) to 15% (v/v)], which increased the biomass yield to 2.41 g L(-1). When light transmission and culture mixing in photo-bioreactors were enhanced at 15% (v/v) CO2, the peak growth rate of the domesticated mutant (named Chlorella PY-ZU1) was increased to 0.68 g L(-1) d(-1). When the ratio of gas flow rate (L min(-1)) to 1L of microalgae culture was 0.011, the peak CO2 fixation rate and the efficiency of Chlorella PY-ZU1 were 1.54 g L(-1) d(-1) and 32.7%, respectively. PMID:23567722

  12. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.

    PubMed

    Cheng, Jun; Huang, Yun; Feng, Jia; Sun, Jing; Zhou, Junhu; Cen, Kefa

    2013-05-01

    To improve biomass productivity and CO2 fixation of microalgae under 15% (v/v) CO2 of flue gas, Chlorella species were mutated by nuclear irradiation and domesticated with high concentrations of CO2. The biomass yield of Chlorella pyrenoidosa mutated using 500 Gy of (60)Co γ irradiation increased by 53.1% (to 1.12 g L(-1)) under air bubbling. The mutants were domesticated with gradually increased high concentrations of CO2 [from 0.038% (v/v) to 15% (v/v)], which increased the biomass yield to 2.41 g L(-1). When light transmission and culture mixing in photo-bioreactors were enhanced at 15% (v/v) CO2, the peak growth rate of the domesticated mutant (named Chlorella PY-ZU1) was increased to 0.68 g L(-1) d(-1). When the ratio of gas flow rate (L min(-1)) to 1L of microalgae culture was 0.011, the peak CO2 fixation rate and the efficiency of Chlorella PY-ZU1 were 1.54 g L(-1) d(-1) and 32.7%, respectively.

  13. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  14. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins. PMID:25569820

  15. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.

    PubMed

    Liu, Junzhuo; Vyverman, Wim

    2015-03-01

    The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio. PMID:25544498

  16. Highly efficient extraction and lipase-catalyzed transesterification of triglycerides from Chlorella sp. KR-1 for production of biodiesel.

    PubMed

    Lee, Ok Kyung; Kim, Young Hyun; Na, Jeong-Geol; Oh, You-Kwan; Lee, Eun Yeol

    2013-11-01

    We developed a method for the highly efficient lipid extraction and lipase-catalyzed transesterification of triglyceride from Chlorella sp. KR-1 using dimethyl carbonate (DMC). Almost all of the total lipids, approximately 38.9% (w/w) of microalgae dry weight, were extracted from the dried microalgae biomass using a DMC and methanol mixture (7:3 (v/v)). The extracted triglycerides were transesterified into fatty acid methyl esters (FAMEs) using Novozyme 435 as the biocatalyst in DMC. Herein, DMC was used as the reaction medium and acyl acceptor. The reaction conditions were optimized and the FAMEs yield was 293.82 mg FAMEs/g biomass in 6 h of reaction time at 60 °C in the presence of 0.2% (v/v) water. Novozyme 435 was reused more than ten times while maintaining relative FAMEs conversion that was greater than 90% of the initial FAMEs conversion. PMID:23999257

  17. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    PubMed

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced.

  18. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  19. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production

    PubMed Central

    Pradeep, Vishnupriya; Van Ginkel, Steven W.; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer—B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction. PMID:26404247

  20. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production.

    PubMed

    Pradeep, Vishnupriya; Van Ginkel, Steven W; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-08-31

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer-B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction.

  1. Chlorella: 125 years of the green survivalist.

    PubMed

    Krienitz, Lothar; Huss, Volker A R; Bock, Christina

    2015-02-01

    Chlorella, the archetype of unicellular green algae, is a high-performance primary producer in aquatic and terrestrial ecosystems. Under the simple spherical morphology of Chlorella, many other 'green balls' unfolded as independent phylogenetic lineages as a result of convergent evolution. By contrast, green algae with strikingly different phenotypes were unmasked as close relatives of Chlorella by modern molecular techniques. Here, we point to the increasing impact of these diverse protists on ecology, evolution, and biotechnology in the light of integrative taxonomy.

  2. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass.

  3. Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake.

    PubMed

    Zhang, Qiao; Wang, Ting; Hong, Yu

    2014-01-01

    Using microalgae for synchronous biodiesel production and wastewater treatment is a promising technology. The growth, lipid accumulation and nutrient uptake characteristics of an oleaginous microalga Chlorella sp. HQ were evaluated at different initial pH from 5.0 to 11.0. The pH values changed towards neutrality and ended in the range 6.0-9.0 without artificial control. The alkalinity change before 8 days was in accordance with pH changing. The alkalinity increase after 8 days might be due to the nitrate consumption, CO2 absorption and the algal release at stationary phases. The algal maximal cell density and population growth rate increased with initial pH values while the specific growth rate kept high without significant difference. After 30 days, the maximal algal lipid yield reaching 167.5 mg · L(-1) occurred at initial pH of 7.0 and the triacylglycerols content was significantly enhanced to 63.0% at initial pH of 5.0 but with a peak of 54.4 mg · L(-1) at initial pH of 9.0. Furthermore, nutrients were taken up by the alga obviously at all initial pH values. The total nitrogen (TN) and total phosphorus (TP) uptake efficiencies in neutral/alkalic circumstances were larger than that in acid circumstance. The TN and TP were removed by 87.77% and 92.05%, respectively, at initial pH of 7.0. PMID:25116503

  4. Cycloheximide induces synchronous swelling of perialgal vacuoles enclosing symbiotic Chlorella vulgaris and digestion of the algae in the ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2008-07-01

    Cycloheximide is known to inhibit preferentially protein synthesis of symbiotic Chlorella of the ciliate Paramecium bursaria, but to hardly host protein synthesis. Treatment of algae-bearing Paramecium cells with cycloheximide induces synchronous swelling of all perialgal vacuoles that are localized immediately beneath the host's cell membrane. In this study, the space between the symbiotic algal cell wall and the perialgal vacuole membrane widened to about 25 times its normal width 24 h after treatment with cycloheximide. Then, the vacuoles detached from beneath the host's cell membrane, were condensed and stained with Gomori's solution, and the algae in the vacuoles were digested. Although this phenomenon is induced only under a fluorescent light condition, and not under a constant dark condition, this phenomenon was not induced in paramecia treated with cycloheximide in the light in the presence of the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that algal proteins synthesized in the presence of algal photosynthesis serve some important function to prevent expansion of the perialgal vacuole and to maintain the ability of the perialgal vacuole membrane to protect itself from host lysosomal fusion.

  5. Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ.

    PubMed

    Zhan, Jingjing; Hong, Yu; Hu, Hongying

    2016-07-28

    Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/ 25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production. PMID:27090186

  6. Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production.

    PubMed

    Lu, Weidong; Wang, Zhongming; Yuan, Zhenhong

    2015-09-01

    In this work, neutral lipids (NLs) extraction capacity and selectivity of six solvents were firstly compared. In addition, an eco-friendly solvent combination of ethyl acetate and ethanol (EA/E) was proposed and tested for lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds and effect of extraction variables on lipid yield were intensively studied. Results indicated that lipid extraction yield was increased with solvent to biomass ratio but did not vary significantly when the value exceeded 20:1. Lipid yield was found to be strongly dependent on extraction temperature and time. Finally, fatty acid profiles of lipid were determined and results indicated that the major components were octadecanoic acid, palmitic acid, linoleic acid and linolenic acid, demonstrating that the lipid extracted from the Chlorella sp. cultivated in outdoor raceway ponds by EA/E was suitable feedstock for biodiesel production.

  7. A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity.

    PubMed

    Treves, Haim; Raanan, Hagai; Finkel, Omri M; Berkowicz, Simon M; Keren, Nir; Shotland, Yoram; Kaplan, Aaron

    2013-12-01

    We recently isolated a small green alga from a biological sand crust (BSC) in the NW Negev, Israel. Based on its 18S rRNA and rbcL genes, it is a close relative of Chlorella sorokiniana and of certain strains of C. vulgaris and C. variabilis, but differs substantially in many aspects from C. sorokiniana. Because the classification of Chlorellales is still not resolved, we designated this species as C. ohadii (Trebouxiophyceae) in honor of Professor Itzhak Ohad. Under controlled laboratory conditions, C. ohadii showed marked structural and photosynthetic performance changes, depending on the carbon source used during growth, as well as remarkable resistance to photoinhibition. CO2 -dependent O2 evolution was not affected even when exposed to a light intensity of 3500 μmole photons m(-2)  s(-1) , over 1.5 times the maximal intensity reached at the BSC surface, whereas the variable fluorescence declined sharply. We briefly discuss the use of fluorescence to assess photosynthetic rate and the implications of this finding for the assessment of global BSCs activity.

  8. Toxicity of chlorinated benzenes to marine algae

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Jun; Wang, Xiu-Lin; Yu, Wei-Jun; Zhang, Li-Jun; Sun, Han-Zhang

    1997-12-01

    Growth of Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB), 1, 2, 3, 4-tetrachlorobenzene (1, 2, 3, 4-TeCB) and pentachlorobenzene (PeCB) was tested. Tests of 72 h- EC 50 values showed that the toxicity ranged in the order: MCB<1,2-DCB<1,2,3,4-TeCBalgae was almost in the order: Pyramidomonas sp. < Platymonas subcordiformis < Nannochloropsis oculata < Chlorella marine < Phaeodactylum tricomutum. Study of the QSAR (Quantitative Structure-Activity Relationship) between K OW and toxicity of CBs to marine algae showed good relationships between -log EC 50 and log K OW.

  9. Benefits of Preventive Administration of Chlorella sp. on Visceral Pain and Cystitis Induced by a Single Administration of Cyclophosphamide in Female Wistar Rat.

    PubMed

    Hidalgo-Lucas, Sophie; Rozan, Pascale; Guérin-Deremaux, Laetitia; Baert, Blandine; Violle, Nicolas; Saniez-Degrave, Marie-Hélène; Bisson, Jean-François

    2016-05-01

    Chlorella sp. is a green microalgae containing nutrients, vitamins, minerals, and chlorophyll. In some communities, Chlorella sp. is a traditional medicinal plant used for the management of inflammation-related diseases. In a rat model, ROQUETTE Chlorella sp. (RCs) benefits were investigated on visceral pain and associated inflammatory parameters related to cystitis both induced by cyclophosphamide (CYP). RCs was orally administered every day from day 1-16 (250 and 500 mg/kg body weight). Six hours after an intraperitoneal injection of 200 mg/kg body weight of CYP, body temperature, general behavior, food intake, and body weight were recorded. Twenty-four hours after CYP injection, rats were tested in two behavioral tests, an open field and the aversive light stimulus avoidance conditioning test, to evaluate the influence of pain on general activity and learning ability of rats. After euthanasia, bladders were weighed, their thickness was scored, and the urinary hemoglobin was measured. RCs orally administered at the two dosages significantly reduced visceral pain and associated inflammatory parameters related to cystitis both induced by CYP injection, and improved rat behavior. To conclude, RCs demonstrated beneficial effects against visceral pain and cystitis. PMID:27152976

  10. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Bajguz, Andrzej; Piotrowska-Niczyporuk, Alicja

    2013-10-01

    The relationships between brassinosteroids (BRs) (brassinolide, BL; 24-epiBL; 28-homoBL; castasterone, CS; 24-epiCS; 28-homoCS) and auxins (indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-propionic acid, IPA) in the regulation of cell number, phytohormone level and metabolism in green alga Chlorella vulgaris were investigated. Exogenously applied auxins had the highest biological activity in algal cells at 50 μM. Among the auxins, IAA was characterized by the highest activity, while IBA - by the lowest. BRs at 0.01 μM were characterized by the highest biological activity in relation to auxin-treated and untreated cultures of C. vulgaris. The application of 50 μM IAA stimulated the level of all detected endogenous BRs in C. vulgaris cells. The stimulatory effect of BRs in green algae was arranged in the following order: BL > 24-epiBL > 28-homoBL > CS > 24-epiCS > 28-homoCS. Auxins cooperated synergistically with BRs stimulating algal cell proliferation and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for the mixture of BL with IAA, whereas the lowest in the culture treated with both 28-homoCS and IBA. However, regardless of the applied mixture of BRs with auxins, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone. Obtained results confirm that both groups of plant hormones cooperate synergistically in the control of growth and metabolism of unicellular green alga C. vulgaris.

  11. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  12. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    PubMed

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  13. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum).

    PubMed

    Levy, Jacqueline L; Stauber, Jennifer L; Adams, Merrin S; Maher, William A; Kirby, Jason K; Jolley, Dianne F

    2005-10-01

    The toxicity of As(V) and As(III) to two axenic tropical freshwater microalgae, Chlorella sp. and Monoraphidium arcuatum, was determined using 72-h growth rate-inhibition bioassays. Both organisms were tolerant to As(III) (72-h concentration to cause 50% inhibition of growth rate [IC50], of 25 and 15 mg As[III]/L, respectively). Chlorella sp. also was tolerant to As(V) with no effect on growth rate over 72 h at concentrations up to 0.8 mg/L (72-h IC50 of 25 mg As[V]/L). Monoraphidium arcuatum was more sensitive to As(V) (72-h IC50 of 0.25 mg As[V]/L). An increase in phosphate in the growth medium (0.15-1.5 mg PO4(3-)/L) decreased toxicity, i.e., the 72-h IC50 value for M. arcuatum increased from 0.25 mg As(V)/L to 4.5 mg As(V)/L, while extracellular As and intracellular As decreased, indicating competition between arsenate and phosphate for cellular uptake. Both microalgae reduced As(V) to As(III) in the cell, with further biological transformation to methylated species (monomethyl arsonic acid and dimethyl arsinic acid) and phosphate arsenoriboside. Less than 0.01% of added As(V) was incorporated into algal cells, suggesting that bioaccumulation and subsequent methylation was not the primary mode of detoxification. When exposed to As(V), both species reduced As(V) to As(III); however, only M. arcuatum excreted As(III) into solution. Intracellular arsenic reduction may be coupled to thiol oxidation in both species. Arsenic toxicity most likely was due to arsenite accumulation in the cell, when the ability to excrete and/or methylate arsenite was overwhelmed at high arsenic concentrations. Arsenite may bind to intracellular thiols, such as glutathione, potentially disrupting the ratio of reduced to oxidized glutathione and, consequently, inhibiting cell division. PMID:16268166

  14. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  15. Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2013-10-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.

  16. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2012-10-01

    Sorption of copper ions by the alga Spirogyra sp. was investigated to determine the influence of experimental conditions and the methods of sample preparation on the process. The experiments were carried out both under the static and the dynamic conditions. Kinetics and equilibrium parameters of the sorption were evaluated. In addition, the influence was studied of the algae preparation methods on the conductivity of demineralized water in which the algae samples were immersed. The static experiments showed that the sorption of Cu(2+) ions reached equilibrium in about 30 min, with approximately 90% of the ions adsorbed in the initial 15 min. The sorption capacity determined from the Langmuir isotherms appeared highly uncertain (SD=±0.027 mg/g dry mass or ±11%, for the live algae). Under static conditions, the slopes of the Langmuir isotherms depended on the ratio of the alga mass to the volume of solution. The conductometric measurements were proven to be a simple and fast way to evaluate the quality of algae used for the experiments.

  17. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-07-01

    We exposed the microalgal strain, Chlorella sp. MM3, to unused or used engine oil, or their water accommodated fractions (WAFs) to determine growth inhibition and response of antioxidant enzymes. Oil type and oil concentration greatly affected the microalgal growth. Used oil at 0.04 % (0.4 g L(-1)) resulted in 50 % inhibition in algal growth, measured in terms of chlorophyll-a, while the corresponding concentration of unused oil was nontoxic. Similarly, used oil WAF showed significant toxicity to the algal growth at 10 % level, whereas WAF from unused oil was nontoxic even at 100 % concentration. Peroxidase enzyme in the microalga significantly increased with used oil at concentrations above 0.04 g L(-1) whereas the induction of superoxide dismutase and catalase was apparent only at 0.06 g L(-1). Activities of the antioxidant enzymes increased significantly when the microalga was exposed to 75 and 100 % WAF obtained from used oil. The used oil toxicity on microalga could be due to the presence of toxic soluble mono- and polyaromatic compounds, heavy metals, and other compounds attained by the oil during its use in the motor engines.

  18. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    PubMed

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced. PMID:26218538

  19. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.

    PubMed

    Ghosh, Supratim; Roy, Shantonu; Das, Debabrata

    2015-04-01

    Algal biomass is gaining importance for biofuel production as it is rich in lipids. It becomes more significant when biomass is produced by capturing atmospheric greenhouse gas, CO2. In the present study, the effect of different physicochemical parameters were studied on the biomass and lipid productivity in Chlorella sp. MJ 11/11. The different parameters viz. initial pH, nitrate concentration, and phosphate concentration were optimized using single-parameter studies. The interactions between the parameters were determined statistically using the Box-Behnken design of optimization. The optimal values were decided by analyzing them with response surface methodology. The optimum levels of the parameters (pH 6.5, nitrate concentration 0.375 g L(-1), and phosphate concentration 0.375 mL L(-1)) yielded a maximum biomass concentration of 1.26 g L(-1) at a constant light intensity of 100 μmol m(-2) s(-1) and temperature of 30 °C. The effect of CO2 concentration on the biomass production was also investigated and was found to be a maximum of 4 g L(-1) at 5 % air-CO2 mixture (v/v). Maximum lipid content of 24.6 % (w/w) was observed at 2 % air-CO2 mixture (v/v). Fatty acid analyses of the obtained algal biomass suggested that they could be a suitable feedstock for biodiesel production. PMID:25690351

  20. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed

    Kilian, Oliver; Benemann, Christina S E; Niyogi, Krishna K; Vick, Bertrand

    2011-12-27

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology. PMID:22123974

  1. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed Central

    Kilian, Oliver; Benemann, Christina S. E.; Niyogi, Krishna K.; Vick, Bertrand

    2011-01-01

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology. PMID:22123974

  2. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Pick, Uri

    2015-01-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers—plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)—are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae. PMID:26357883

  3. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata.

    PubMed

    Avidan, Omri; Pick, Uri

    2015-12-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers-plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)-are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae.

  4. Evaluation of the Marine Algae Gracilaria salicornia and Sargassum sp. For the Biosorption of Cr (VI) from Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Shams Khorramabadi, Gh.; Darvishi Cheshmeh Soltani, R.

    In this study, the adsorption properties of two different marine algae (Gracilaria salicornia (red algae) and Sargassum sp. (brown algae) were investigated. Equilibrium isotherms were studied to evaluate the relative ability of the two algae to sequester Cr (VI) from aqueous solutions. The maximum biosorption capacity obtained was 45.959 mg g-1 for G. salicornia and 33.258 mg g-1 for Sargassum sp. at a solution pH of 4 and 50 mg L-1 initial chromium concentration. A significant fraction of the total Cr (VI) uptake was achieved within 60 min. Biosorbed chromium ions concentrations increased with increasing concentrations of biosorbents and increasing pH. The biosorption of Cr (VI) on G. salicornia and Sargassum sp. could best be described by the Langmuir model (R2>0.997 for Sargassum sp. and R2>0.999 for G. salicornia).

  5. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand

    PubMed Central

    Nelson, Wendy A.

    2013-01-01

    Abstract A commonly found red alga of the upper intertidal zone of New Zealand rocky coasts is described for the first time as Pyropia plicata sp. nov. This species has been incorrectly known as Porphyra columbina Mont. (now Pyropia columbina (Mont.) W.A.Nelson) for many years. Pyropia plicata is widespread and common, and it is readily distinguished from other species of bladed Bangiales in New Zealand by its distinctive morphology, with pleated blades attached by a central rhizoidal holdfast. PMID:23794933

  6. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  7. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture.

    PubMed

    Santos, C A; Caldeira, M L; Lopes da Silva, T; Novais, J M; Reis, A

    2013-06-01

    In order to produce single-cell oil for biodiesel, a yeast and a microalga were, for the first time, grown in two separate reactors connected by their gas-phases, taking advantage of their complementary nutritional metabolisms, i.e., respiration and photosynthesis. The yeast Rhodosporidium toruloides was used for lipid production, originating a carbon dioxide-enriched outlet gas stream which in turn was used to stimulate the autotrophic growth of Chlorella protothecoides in a vertical-alveolar-panel (VAP) photobioreactor. The microalgal biomass productivity was 0.015 gL(-1)h(-1), and its lipid productivity attained 2.2 mgL(-1)h(-1) when aerated with the outlet gas stream from the yeast fermenter. These values represent an increase of 94% and 87%, respectively, as compared to a control culture aerated with air. The CO2 bio-fixed by the microalgal biomass reached an estimated value of 29 mgL(-1)h(-1) in the VAP receiving the gas stream from the fermenter, a value 1.9 times higher than that measured in the control VAP.

  8. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    PubMed

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal.

  9. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    PubMed

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. PMID:27010349

  10. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-01

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  11. Effect of the Carbon Concentration, Blend Concentration, and Renewal Rate in the Growth Kinetic of Chlorella sp.

    PubMed Central

    Henrard, Adriano Arruda; da Rosa, Gabriel Martins; Moraes, Luiza; de Morais, Michele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    The microalgae cultivation can be used as alternative sources of food, in agriculture, residual water treatment, and biofuels production. Semicontinuous cultivation is little studied but is more cost-effective than the discontinuous (batch) cultivation. In the semicontinuous cultivation, the microalga is maintained in better concentration of nutrients and the photoinhibition by excessive cell is reduced. Thus, biomass productivity and biocompounds of interest, such as lipid productivity, may be higher than in batch cultivation. The objective of this study was to examine the influence of blend concentration, medium renewal rate, and concentration of sodium bicarbonate on the growth of Chlorella sp. during semicontinuous cultivation. The cultivation was carried out in Raceway type bioreactors of 6 L, for 40 d at 30°C, 41.6 µmol m−2 s−1, and a 12 h light/dark photoperiod. Maximum specific growth rate (0.149 d−1) and generating biomass (2.89 g L−1) were obtained when the blend concentration was 0.80 g L−1, the medium renewal rate was 40%, and NaHCO3 was 1.60 g L−1. The average productivity (0.091 g L−1 d−1) was achieved with 0.8 g L−1 of blend concentration and NaHCO3 concentration of 1.6 g L−1, independent of the medium renewal rate. PMID:25580453

  12. Biodiversity of algae and protozoa in a natural waste stabilization pond: a field study.

    PubMed

    Tharavathi, N C; Hosetti, B B

    2003-04-01

    A field study was carried out on the biodiversity of protozoa and algae from a natural waste stabilization pond during November, 1996 to April, 1997. The raw waste and pond samples were analysed for physico-chemical and biological parameters. High dissolved oxygen (DO) coinciding with phytoplankton peak was recorded. The algae--Chlorella vulgaris, Scenedesmus acuminatus, Oscillatoria brevis and Nostoc piscinale and Protozoa--Paramecium caudatum, Acanthamoeba sp., Bodo saltans and Oikomonas termo were obvious as dominant species, whereas algae Ochromonas pyriformis and Synura uvella and protozoa, Didinium masutum and Stentor coerulus were noted as rare species. Totally 71 species of algae and 13 species of protozoa were identified. PMID:12974463

  13. Biodiversity of algae and protozoa in a natural waste stabilization pond: a field study.

    PubMed

    Tharavathi, N C; Hosetti, B B

    2003-04-01

    A field study was carried out on the biodiversity of protozoa and algae from a natural waste stabilization pond during November, 1996 to April, 1997. The raw waste and pond samples were analysed for physico-chemical and biological parameters. High dissolved oxygen (DO) coinciding with phytoplankton peak was recorded. The algae--Chlorella vulgaris, Scenedesmus acuminatus, Oscillatoria brevis and Nostoc piscinale and Protozoa--Paramecium caudatum, Acanthamoeba sp., Bodo saltans and Oikomonas termo were obvious as dominant species, whereas algae Ochromonas pyriformis and Synura uvella and protozoa, Didinium masutum and Stentor coerulus were noted as rare species. Totally 71 species of algae and 13 species of protozoa were identified.

  14. Structural features of the plastid ribosomal RNA operons of two red algae: Antithamnion sp. and Cyanidium caldarium.

    PubMed

    Maid, U; Zetsche, K

    1991-04-01

    The nucleotide sequences of the plastid 16S rDNA of the multicellular red alga Antithamnion sp. and the 16S rDNA/23S rDNA intergenic spacers of the plastid DNAs of the unicellular red alga Cyanidium caldarium and of Antithamnion sp. were determined. Sequence comparisons support the idea of a polyphyletic origin of the red algal and the higher-plant chloroplasts. Both spacer regions include the unsplit tRNA(Ile)(GAU) and tRNA(Ala)(UGC) genes and so the plastids of both algae form a homogeneous group with those of chromophytic algae and Cyanophora paradoxa characterized by 'small-sized' rDNA spacers in contrast to green algae and higher plants. Nevertheless, remarkable sequence differences within the rRNA and the tRNA genes give the plastids of Cyanidium caldarium a rather isolated position. PMID:1868197

  15. Induction of CO2 and Bicarbonate Transport in the Green Alga Chlorella ellipsoidea (II. Evidence for Induction in Response to External CO2 Concentration).

    PubMed Central

    Matsuda, Y.; Colman, B.

    1995-01-01

    The critical species and concentrations of dissolved inorganic carbon (DIC) required for the induction of DIC transport during adaptation to low CO2 were determined for the green alga Chlorella ellipsoidea. The concentration of dissolved CO2 needed for the induction of both CO2 and HCO3- transport was independent of pH during adaptation, whereas the total DIC concentration required increased at alkaline pH. At pH 7.5, the minimum equilibrium DIC concentration at which high CO2 characteristics were maintained, i.e. transport was repressed, was 2100 [mu]M, whereas the maximum equilibrium DIC concentration below which DIC transport was fully induced (DICIND) was 500 [mu]M. Intracellular DIC concentration during adaptation to DICIND decreased temporarily after 2 h to 60% of the maximum level but recovered after 3 h of adaptation. After 3 h of adaptation to DICIND, cells exhibited maximum O2 evolution rate at DICIND. When cells partially adapted to DICIND were returned to high CO2, there was an immediate halt to the induction of transport and a gradual decrease in transport capacity over 23 h. The capacity for the induction of transport was unaffected by the absence of light. These results indicate that changes in the internal DIC pool during adaptation to low CO2 do not trigger the induction of DIC transport and that the induction is not light dependent. Induction of DIC transport in C. ellipsoidea appears to occur in response to the continuous exposure of cells to a critical CO2 concentration in the external medium. PMID:12228471

  16. Air-Drying of Cells, the Novel Conditions for Stimulated Synthesis of Triacylglycerol in a Green Alga, Chlorella kessleri

    PubMed Central

    Minoda, Ayumi; Tsuzuki, Mikio; Sato, Norihiro

    2013-01-01

    Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w), relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w), relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the algal species. PMID

  17. Some Nutritional Characteristics of a Naturally Occurring Alga (Microcystis sp.) in a Guatemalan Lake

    PubMed Central

    de la Fuente, Gabriel; Flores, Antonio; Molina, Mario R.; Almengor, Leticia; Bressani, Ricardo

    1977-01-01

    The nutritional characteristics of an alga (Microcystis sp.) that occurs naturally in a Guatemalan lake were determined. The sun-dried material proved to have a high protein content (55.6%) and to be a possible good source of calcium and phosphorus (1, 169.1 and 633.4 mg/100 mg, respectively). Amino acid analysis showed that total sulfur amino acids were the most deficient ones, giving a protein score of 42 to the material. The in vitro protein digestibility of the material was 69.5%. Biological trials demonstrated that when the material was offered as the only protein source, very low consumption and a high mortality rate were obtained whether or not the diet was supplemented with 0.4% dl-methionine. However, when the material supplied 25% of the total protein of a corn-algae diet, the protein quality of the cereal was significantly improved (P < 0.05). PMID:16345191

  18. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-01

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. PMID:25004359

  19. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures.

    PubMed

    Lu, Weidong; Wang, Zhongming; Wang, Xuewei; Yuan, Zhenhong

    2015-09-01

    The biomass productivity and nutrient removal capacity of simultaneous Chlorella sp. cultivation for biodiesel production and nutrient removal in raw dairy wastewater (RDW) in indoor bench-scale and outdoor pilot-scale photobioreactors were compared. Results from the current work show that maximum biomass productivity in indoor bench-scale cultures can reach 260 mg L(-1) day(-1), compared to that of 110 mg L(-1) day(-1) in outdoor pilot-scale cultures. Maximum chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP) removal rate obtained in indoor conditions was 88.38, 38.34, and 2.03 mg L(-1) day(-1), respectively, this compared to 41.31, 6.58, and 2.74 mg L(-1) day(-1), respectively, for outdoor conditions. Finally, dominant fatty acids determined to be C16/C18 in outdoor pilot-scale cultures indicated great potential for scale up of Chlorella sp. cultivation in RDW for high quality biodiesel production coupling with RDW treatment.

  20. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures.

    PubMed

    Lu, Weidong; Wang, Zhongming; Wang, Xuewei; Yuan, Zhenhong

    2015-09-01

    The biomass productivity and nutrient removal capacity of simultaneous Chlorella sp. cultivation for biodiesel production and nutrient removal in raw dairy wastewater (RDW) in indoor bench-scale and outdoor pilot-scale photobioreactors were compared. Results from the current work show that maximum biomass productivity in indoor bench-scale cultures can reach 260 mg L(-1) day(-1), compared to that of 110 mg L(-1) day(-1) in outdoor pilot-scale cultures. Maximum chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP) removal rate obtained in indoor conditions was 88.38, 38.34, and 2.03 mg L(-1) day(-1), respectively, this compared to 41.31, 6.58, and 2.74 mg L(-1) day(-1), respectively, for outdoor conditions. Finally, dominant fatty acids determined to be C16/C18 in outdoor pilot-scale cultures indicated great potential for scale up of Chlorella sp. cultivation in RDW for high quality biodiesel production coupling with RDW treatment. PMID:26056780

  1. Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host Alga bryopsis sp.

    PubMed

    Becerro, M A; Goetz, G; Paul, V J; Scheuer, P J

    2001-11-01

    Sacoglossans are a group of opisthobranch mollusks that have been the source of numerous secondary metabolites; however, there are few examples where a defensive ecological role for these compounds has been demonstrated experimentally. We investigated the deterrent properties of the sacoglossan Elysia rufescens and its food alga Bryopsis sp. against natural fish predators. Bryopsis sp. produces kahalalide F, a major depsipeptide that is accumulated by the sacoglossan and that shows in vitro cytotoxicity against several cancer cell lines. Our data show that both Bryopsis sp. and Elysia rufescens are chemically protected against fish predators, as indicated by the deterrent properties of their extracts at naturally occurring concentrations. Following bioassay-guided fractionation, we observed that the antipredatory compounds of Bryopsis sp. were present in the butanol and chloroform fractions, both containing the depsipeptide kahalalide F. Antipredatory compounds of Elysia rufescens were exclusively present in the dichloromethane fraction. Further bioassay-guided fractionation led to the isolation of kahalalide F as the only compound responsible for the deterrent properties of the sacoglossan. Our data show that kahalalide F protects both Brvopsis sp. and Elysia rufescens from fish predation. This is the first report of a diet-derived depsipeptide used as a chemical defense in a sacoglossan.

  2. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434

    PubMed Central

    Chen, Zhengbo; Hao, Jiejie; Wang, Liping; Wang, Yi; Kong, Fandong; Zhu, Weiming

    2016-01-01

    Wailupemycins H (1) and I (2) with a new skeleton coupled two 6-(2-phenylnaphthalene-1-yl)pyrane-2-one nuclei to a –CH2– linkage were identified from the culture of Streptomyces sp. OUCMDZ-3434 associated with the marine algae, Enteromorpha prolifera. Compounds 1 and 2 are two new α-glucosidase inhibitors with the Ki/IC50 values of 16.8/19.7 and 6.0/8.3 μM, respectively. In addition, the absolute configurations of wailupemycins D (3) and E (4) are also resolved in this paper for the first time. PMID:26822662

  3. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp.

    PubMed

    Iswarya, V; Bhuvaneshwari, M; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri; Chandrasekaran, Prathna Thanjavur; Bhalerao, Gopalkrishna M; Chakravarty, Sujoy; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2015-04-01

    In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem.

  4. Purification and some properties of a trehalase from a green alga, Lobosphaera sp.

    PubMed

    Nakano, H; Moriwaki, M; Washino, T; Kino, T; Yoshizumi, H; Kitahata, S

    1994-08-01

    An unicellular green alga identified as Lobosphaera sp. by morphological observations was selected as a source of trehalase. The alga grew well heterotrophically and produced intracellular trehalase using Polypepton, yeast extract, and glycerol as nutrients. The enzyme was highly purified by ammonium sulfate fractionation, column chromatography on DEAE-Toyopearl, Sepharose CL-4B, and SP-Toyopearl. The molecular mass was estimated to be 400 kDa by gel filtration. SDS-PAGE indicated that the enzyme consisted of two subunits with a molecular mass range of 180-220 kDa and it contained carbohydrates. The enzyme was most active at pH 5.5 and at 65 degrees C and stable between pH 4-9 and below 65 degrees C. Fe3+ inactivated the enzyme. Sucrose was a competitive inhibitor with a Ki of 7.5 mM. The enzyme specifically hydrolyzed trehalase with a Km of 0.6 mM.

  5. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae

    PubMed Central

    Ji, Shi-Qi; Wang, Bing; Lu, Ming

    2015-01-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2T. Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing d-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD+, and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. PMID:26590273

  6. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions.

    PubMed

    Baxter, Leilan; Brain, Richard; Rodriguez-Gil, Jose Luis; Hosmer, Alan; Solomon, Keith; Hanson, Mark

    2014-08-01

    In a rare example of autotroph-vertebrate endosymbiosis, eggs of the yellow-spotted salamander (Ambystoma maculatum) are colonized by a green alga (Oophila sp.) that significantly enhances salamander development. Previous studies have demonstrated the potential for impacts to the salamander embryo when growth of the algae is impaired by exposure to herbicides. To further investigate this relationship, the authors characterized the response of the symbiotic algae (Oophila sp.) alone to the photosystem II (PSII) inhibitor atrazine under controlled laboratory conditions. After extraction of the alga from A. maculatum eggs and optimization of culturing conditions, 4 toxicity assays (96 h each) were conducted. Recovery of the algal population was also assessed after a further 96 h in untreated media. Average median effective concentration (EC50) values of 123 µg L(-1) (PSII yield), 169 µg L(-1) (optical density), and 299 µg L(-1) (growth rate) were obtained after the 96-h exposure. Full recovery of exposed algal populations after 96 h in untreated media was observed for all endpoints, except for optical density at the greatest concentration tested (300 µg L(-1) ). Our results show that, under laboratory conditions, Oophila sp. is generally less sensitive to atrazine than standard test species. Although conditions of growth in standard toxicity tests are not identical to those in the natural environment, these results provide an understanding of the tolerance of this alga to PSII inhibitors as compared with other species.

  7. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions.

    PubMed

    Baxter, Leilan; Brain, Richard; Rodriguez-Gil, Jose Luis; Hosmer, Alan; Solomon, Keith; Hanson, Mark

    2014-08-01

    In a rare example of autotroph-vertebrate endosymbiosis, eggs of the yellow-spotted salamander (Ambystoma maculatum) are colonized by a green alga (Oophila sp.) that significantly enhances salamander development. Previous studies have demonstrated the potential for impacts to the salamander embryo when growth of the algae is impaired by exposure to herbicides. To further investigate this relationship, the authors characterized the response of the symbiotic algae (Oophila sp.) alone to the photosystem II (PSII) inhibitor atrazine under controlled laboratory conditions. After extraction of the alga from A. maculatum eggs and optimization of culturing conditions, 4 toxicity assays (96 h each) were conducted. Recovery of the algal population was also assessed after a further 96 h in untreated media. Average median effective concentration (EC50) values of 123 µg L(-1) (PSII yield), 169 µg L(-1) (optical density), and 299 µg L(-1) (growth rate) were obtained after the 96-h exposure. Full recovery of exposed algal populations after 96 h in untreated media was observed for all endpoints, except for optical density at the greatest concentration tested (300 µg L(-1) ). Our results show that, under laboratory conditions, Oophila sp. is generally less sensitive to atrazine than standard test species. Although conditions of growth in standard toxicity tests are not identical to those in the natural environment, these results provide an understanding of the tolerance of this alga to PSII inhibitors as compared with other species. PMID:24782078

  8. Building a better mousetrap I: using Design of Experiments with unconfounded ions to discover superior media for growth and lipid production by Chlorella sp. EN1234.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    An unconfounded Scheffe Mix approach was used to probe important ions and their interactions in supporting biomass and lipid production by Chlorella sp. EN1234. Six major cations and anions; NH4(+), NO3(-), Na(+), K(+) PO4(-) and Cl(-) were examined. Piepel plots and RSM analysis showed that in a number of cases, the major media anions PO4(-) and Cl(-) negatively influence final cell densities, and that maximal cell density is obtained with nitrate over ammonium, with an optimal effect when mixed with equal molar potassium. As well, although it is commonly assumed that lipid content increases in nitrogen deficient media, here little correlation between nitrogen content and total lipid content was found with mixtures that supported high lipid productivity. Thus these mixtures define the composition space within which further R&D might produce the best trade-off between total biomass production and high cellular lipid content.

  9. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

    PubMed

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Park, Ji-Yeon; Lee, Jin-Suk; Lee, Young-Chul; Oh, You-Kwan

    2014-11-01

    Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers.

  10. Building a better mousetrap I: using Design of Experiments with unconfounded ions to discover superior media for growth and lipid production by Chlorella sp. EN1234.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    An unconfounded Scheffe Mix approach was used to probe important ions and their interactions in supporting biomass and lipid production by Chlorella sp. EN1234. Six major cations and anions; NH4(+), NO3(-), Na(+), K(+) PO4(-) and Cl(-) were examined. Piepel plots and RSM analysis showed that in a number of cases, the major media anions PO4(-) and Cl(-) negatively influence final cell densities, and that maximal cell density is obtained with nitrate over ammonium, with an optimal effect when mixed with equal molar potassium. As well, although it is commonly assumed that lipid content increases in nitrogen deficient media, here little correlation between nitrogen content and total lipid content was found with mixtures that supported high lipid productivity. Thus these mixtures define the composition space within which further R&D might produce the best trade-off between total biomass production and high cellular lipid content. PMID:25465787

  11. Purification and photobiochemical profile of photosystem 1 from a high-salt tolerant, oleaginous Chlorella (Trebouxiophycaea, Chlorophyta).

    PubMed

    McConnell, Michael D; Lowry, David; Rowan, Troy N; van Dijk, Karin; Redding, Kevin E

    2015-06-01

    The eukaryotic green alga Chlamydomonas reinhardtii has been studied extensively within the biofuel industry as a model organism, as researchers look towards algae to provide chemical feedstocks (i.e., lipids) for the production of liquid transportation fuels. C. reinhardtii, however, is unsuitable for high-level production of such precursors due to its relatively poor lipid accumulation and fresh-water demand. In this study we offer insight into the primary light harvesting and electron transfer reactions that occur during phototropic growth in a high-salt tolerant strain of Chlorella (a novel strain introduced here as NE1401), a single-celled eukaryotic algae also in the phylum Chlorophyta. Under nutrient starvation many eukaryotic algae increase dramatically the amount of lipids stored in lipid bodies within their cell interiors. Microscopy and lipid analyses indicate that Chlorella sp. NE1401 may become a superior candidate for algal biofuels production. We have purified highly active Photosystem 1 (PS1) complexes to study in vitro, so that we may understand further the photobiochemisty of this promising biofuel producer and how its characteristics compare and contrast with that of the better understood C. reinhardtii. Our findings suggest that the PS1 complex from Chlorella sp. NE1401 demonstrates similar characteristics to that of C. reinhardtii with respect to light-harvesting and electron transfer reactions. We also illustrate that the relative extent of the light state transition performed by Chlorella sp. NE1401 is smaller compared to C. reinhardtii, although they are triggered by the same dynamic light stresses.

  12. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes

    SciTech Connect

    Suen, Yu.; Hubbard, J.S.; Holzer, G.; Tornabene, T.G.

    1987-06-01

    The green alga Nannochloropsis sp. QII was cultivated in media with sufficient and growth-limiting levels of nitrogen (nitrate). Nitrogen deficiency promoted lipid synthesis yielding cells with lipids comprising 55% of the biomass. The major lipids were triacylglycerols (79%), polar lipids (9%) and hydrocarbons (2.5%). The polar lipids consisted of a broad range of phospholipids, glycolipids and sulfolipids. Other lipids identified were pigments, free fatty acids, saponifiable and unsaponifiable sterol derivatives, various glycerides, a family of alkyl-1, 4-dioxane derivatives and a series of alkyl- and hydroxy-alkyl-dimethyl-acetals. Experiments in which /sup 14/CO/sub 2/ was provided at different times in the growth cycle demonstrated that enhanced lipid biosynthesis at low nitrogen levels resulted principally from de novo CO/sub 2/ fixation.

  13. Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae.

    PubMed

    Ivanova, Elena P; Alexeeva, Yulia V; Flavier, Sébastien; Wright, Jonathan P; Zhukova, Natalia V; Gorshkova, Natalia M; Mikhailov, Valery V; Nicolau, Dan V; Christen, Richard

    2004-05-01

    Four light-yellow-pigmented, Gram-negative, short-rod-shaped, non-motile isolates were obtained from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The isolates studied were chemo-organotrophic, alkalitolerant and mesophilic. Polar lipids were analysed and phosphatidylethanolamine was the only phospholipid identified. The predominant cellular fatty acids were 15 : 0, i15 : 0, ai15 : 0, i15 : 1 and 15 : 1(n-6). The DNA G+C contents of the four strains were 34.0-34.4 mol%. The level of DNA relatedness of the four isolates was conspecific (88-98 %), indicating that they belong to the same species. The 16S rDNA sequence of strain KMM 3553(T) was determined. Phylogenetic analysis revealed that KMM 3553(T) formed a distinct phyletic line in the phylum Bacteroidetes, class Flavobacteria in the family Flavobacteriaceae and that, phylogenetically, this strain could be placed almost equidistant from the genera Gelidibacter and Psychroserpens (16S rRNA gene sequence similarities of 94 %). On the basis of significant differences in phenotypic and chemotaxonomic characteristics, it is suggested that the isolates represent a novel species in a new genus; the name Formosa algae gen. nov., sp. nov. is proposed. The type strain is KMM 3553(T) (=CIP 107684(T)).

  14. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C.

    PubMed

    Kim, Eun Jae; Jung, Woongsic; Lim, Suyoun; Kim, Sanghee; Han, Se Jong; Choi, Han-Gu

    2016-01-01

    Biodiesel produced from microalgae is a promising source of alternative energy. In winter, however, outdoor mass cultivation for biodiesel production is hampered by poor growth. Here, we report that Arctic Chlamydomonas sp. KNM0029C exhibits optimal growth at 4 °C and reaches densities up to 1.4 × 10(7) cells mL(-1). Lipid body formation in the alga was visualized through BODIPY 505/515 staining and fluorescence microscopy. The fatty acid methyl ester (FAME) production level of KNM0029C was 178.6 mg L(-1) culture and 2.3-fold higher than that of C. reinhardtii CC-125 at 4 °C. Analysis of the FAME content showed a predominance of polyunsaturated fatty acids such as C16:3, C18:2, C18:3, and C20:2. C18:3 fatty acids comprised the largest fraction (20.7%), and the content of polyunsaturated fatty acids (39.6%) was higher than that of saturated fatty acids (6.8%) at 4 °C. These results indicate that Chlamydomonas sp. KNM0029C, as a psychrophilic microalga, might represent a favorable source for biodiesel production in cold environments.

  15. Platinum Anniversary: Virus and Lichen Alga Together More than 70 Years

    PubMed Central

    Petrzik, Karel; Vondrák, Jan; Kvíderová, Jana; Lukavský, Jaromír

    2015-01-01

    Trebouxia aggregata (Archibald) Gärtner (phylum Chlorophyta, family Trebouxiaceae), a lichen symbiotic alga, has been identified as host of the well-known herbaceous plant virus Cauliflower mosaic virus (CaMV, family Caulimoviridae). The alga had been isolated from Xanthoria parietina more than 70 years ago and has been maintained in a collection since that time. The CaMV detected in this collection entry has now been completely sequenced. The virus from T. aggregata is mechanically transmissible to a herbaceous host and induces disease symptoms there. Its genome differs by 173 nt from the closest European CaMV-D/H isolate from cauliflower. No site under positive selection was found on the CaMV genome from T. aggregata. We therefore assume that the virus’s presence in this alga was not sufficiently long to fix any specific changes in its genome. Apart from this symbiotic alga, CaMV capsid protein sequences were amplified from many other non-symbiotic algae species maintained in a collection (e.g., Oonephris obesa, Elliptochloris sp., Microthamnion kuetzingianum, Chlorella vulgaris, Pseudococcomyxa sp.). CaMV-free Chlorella vulgaris was treated with CaMV to establish virus infection. The virus was still detected there after five passages. The virus infection is morphologically symptomless on Chlorella algae and the photosynthesis activity is slightly decreased in comparison to CaMV-free alga culture. This is the first proof as to the natural presence of CaMV in algae and the first demonstration of algae being artificially infected with this virus. PMID:25789995

  16. Biomass production and removal of ammonium and phosphate by Chlorella sp. in sludge liquor at natural light and different levels of temperature control.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2016-01-01

    Microalgae cultivation for biomass production and nutrient removal implies the use of natural light and minimal control of the temperature for obtaining a low cost production. The aim of this study was to quantify the effect of temperature control at natural light on biomass productivity and removal of NH4-N and PO4-P of a mesophilic strain of Chlorella. Chlorella sp. was grown in reject water of anaerobically digested municipal sludge, sludge liquor, inside a greenhouse compartment (Ås, Norway, 59°N) using batch cultures (300 mL). Five experiments were conducted from May to September, and effects of different levels of temperature control and diurnal variations were investigated. The highest biomass productivities (0.45 g L(-1) day(-1)) in the linear growth phase were obtained at daily light integrals ≥12 mol day(-1) m(-2). Results showed that the average temperature was of more importance than the night or day temperature range. At average temperatures <22 °C for cultures with no temperature control, the productivity decreased by 23 and 39 % compared to cultures with full temperature control (24-25 °C). In one experiment, the productivity was reduced at no temperature control due to prolonged high daytime temperatures (>32 °C) and were followed by a lower NH4-N removal rate. Otherwise, temperature had little effect on NH4-N removal. The level of temperature control did not affect removal of PO4-P. Cellular starch content varied from ~15-38 % in the evening and was generally lower at no temperature control. In the morning the starch content was reduced to ~4-12 % with no difference between the different levels of temperature control. (~4-12 %). PMID:27350913

  17. Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp.

    PubMed

    Bonin, Patricia; Groisillier, Agnès; Raimbault, Alice; Guibert, Anaïs; Boyen, Catherine; Tonon, Thierry

    2015-09-01

    The sugar alcohol mannitol is important in the food, pharmaceutical, medical and chemical industries. It is one of the most commonly occurring polyols in nature, with the exception of Archaea and animals. It has a range of physiological roles, including as carbon storage, compatible solute, and osmolyte. Mannitol is present in large amounts in brown algae, where its synthesis involved two steps: a mannitol-1-phosphate dehydrogenase (M1PDH) catalyzes a reversible reaction between fructose-6-phosphate (F6P) and mannitol-1-phosphate (M1P) (EC 1.1.1.17), and a mannitol-1-phosphatase hydrolyzes M1P to mannitol (EC 3.1.3.22). Analysis of the model brown alga Ectocarpus sp. genome provided three candidate genes for M1PDH activities. We report here the sequence analysis of Ectocarpus M1PDHs (EsM1PDHs), and the biochemical characterization of the recombinant catalytic domain of EsM1PDH1 (EsM1PDH1cat). Ectocarpus M1PDHs are representatives of a new type of modular M1PDHs among the polyol-specific long-chain dehydrogenases/reductases (PSLDRs). The N-terminal domain of EsM1PDH1 was not necessary for enzymatic activity. Determination of kinetic parameters indicated that EsM1PDH1cat displayed higher catalytic efficiency for F6P reduction compared to M1P oxidation. Both activities were influenced by NaCl concentration and inhibited by the thioreactive compound pHMB. These observations were completed by measurement of endogenous M1PDH activity and of EsM1PDH gene expression during one diurnal cycle. No significant changes in enzyme activity were monitored between day and night, although transcription of two out of three genes was altered, suggesting different levels of regulation for this key metabolic pathway in brown algal physiology. PMID:26232554

  18. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations.

  19. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols.

    PubMed

    Mansfeldt, Cresten B; Richter, Lubna V; Ahner, Beth A; Cochlan, William P; Richardson, Ruth E

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. "SAG-211-18" including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes-a galactoglycerolipid lipase and a diacylglyceride acyltransferase-were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.

  20. Use of De Novo transcriptome libraries to characterize a novel oleaginous marine Chlorella species during the accumulation of triacylglycerols

    DOE PAGES

    Mansfeldt, Cresten B.; Richter, Lubna V.; Ahner, Beth A.; Cochlan, William P.; Richardson, Ruth E.; Chen, Shilin

    2016-02-03

    Here, marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt.We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark.We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioningmore » from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.« less

  1. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols

    PubMed Central

    Ahner, Beth A.; Cochlan, William P.; Richardson, Ruth E.

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems. PMID:26840425

  2. Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga.

    PubMed

    Ivanova, Elena P; Christen, Richard; Alexeeva, Yulia V; Zhukova, Natalia V; Gorshkova, Natalia M; Lysenko, Anatoly M; Mikhailov, Valery V; Nicolau, Dan V

    2004-11-01

    Two whitish yellow, Gram-positive, non-motile, aerobic bacteria were isolated from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The bacteria studied were chemo-organotrophic, mesophilic and grew well on nutrient media containing up to 15 % (w/v) NaCl. The DNA G+C content was 61 mol%. The two isolates exhibited a conspecific DNA-DNA relatedness value of 98 %, indicating that they belong to the same species. A comparative analysis of 16S rRNA gene sequences revealed that strain KMM 3637(T) formed a distinct phyletic lineage in the genus Brevibacterium (family Brevibacteriaceae, class Actinobacteria) and showed the highest sequence similarity (about 97 %) to Brevibacterium casei. DNA-DNA hybridization experiments demonstrated 45 % binding with the DNA of B. casei DSM 20657(T). Physiological and chemotaxonomic characteristics (meso-diaminopimelic acid in the peptidoglycan, major cellular fatty acids 15 : 0ai and 17 : 0ai) of the bacteria studied were consistent with the genomic and phylogenetic data. On the basis of the results of this study, a novel species, Brevibacterium celere sp. nov., is proposed. The type strain is KMM 3637(T) (=DSM 15453(T)=ATCC BAA-809(T)).

  3. Antioxidant, cytotoxic, antitumor, and protective DNA damage metabolites from the red sea brown alga Sargassum sp

    PubMed Central

    Ayyad, Seif-Eldin N.; Ezmirly, Saleh T.; Basaif, Salim A.; Alarif, Walied M.; Badria, Adel F.; Badria, Farid A.

    2011-01-01

    Background: Macroalgae can be viewed as a potential antioxidant and anti-inflammatory sources owing to their capability of producing compounds for its protection from environmental factors such as heat, pollution, stress, oxygen concentration, and UV radiations. Objective: To isolate major compounds which are mainly responsible for the pharmacological activity of brown alga under investigation, Sargassum sp. Materials and Methods: Algal material was air dried, extracted with a mixture of organic solvents, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques, and two pure materials were tested for protection of DNA from damage, antioxidant, antitumor, and cytotoxicity. Results: Four pure compounds were obtained, of which fucosterol (1) and fucoxanthin (4) were tested; it was found that fucoxanthin has strong antioxidant and cytotoxicity against breast cancer (MCF-7) with IC50 = 11.5 μg/ml. Conclusion: The naturally highly conjugated safe compound fucoxanthin could be used as antioxidant and as an antitumor compound. PMID:22022163

  4. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  5. Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    PubMed Central

    SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN

    2007-01-01

    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters.

  6. Optimization of flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluation of its composition in different cultivation modes.

    PubMed

    Mandik, Yohanis Irenius; Cheirsilp, Benjamas; Boonsawang, Piyarat; Prasertsan, Poonsuk

    2015-04-01

    This study aimed to optimize flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluate its composition in different cultivation modes. Among three flocculants including Al(3+), Mg(2+) and Ca(2+) tested, Al(3+) was most effective for harvesting microalgal biomass. Four important parameters for flocculation were optimized through response surface methodology. The maximum flocculation efficiency in photoautotrophic culture was achieved at pH 10, flocculation time of 15 min, Al(3+) concentration of 2.22 mM and microalgal cells of 0.47 g/L. The flocculation in mixotrophic culture required lower amount of Al(3+) (0.74 mM) than that in photoautotrophic and heterotrophic cultures (2.22 mM). The biomass harvested from mixotrophic culture contained lipid at the highest content of 42.08 ± 0.58% followed by photoautotrophic (32.08 ± 3.88%) and heterotrophic (30.42 ± 1.13%) cultures. The lipid-extracted microalgal biomass residues (LMBRs) contained protein as high as 38-44% and several minerals showing their potential use as animal feed and their carbohydrate content were 16-29%.

  7. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava.

    PubMed

    Kim, Ji-Young; Park, So-Hyun; Seo, Ga-Young; Kim, Young-Ju; Oh, Duck-Chul

    2015-09-01

    A novel bacterial strain, designated EC29(T), was isolated from the brown alga Ecklonia cava collected on Jeju Island, Republic of Korea. Cells of strain EC29(T) were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10-30 °C (optimum, 20-25 °C), at pH 6.0-9.5 (optimum, pH 7.5) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus Winogradskyella. Strain EC29(T) exhibited the highest 16S rRNA gene sequence similarities, of 96.5-97.8%, to the type strains of Winogradskyella pulchriflava EM106(T), Winogradskyella echinorum KMM 6211(T) and Winogradskyella ulvae KMM 6390(T). Strain EC29(T) exhibited < 27% DNA-DNA relatedness with Winogradskyella pulchriflava EM106(T) and Winogradskyella echinorum KMM 6211(T). The predominant fatty acids of strain EC29(T) were iso-C15 : 0, iso-C15 : 1 G, C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella eckloniae sp. nov. is proposed. The type strain is EC29(T) ( = KCTC 32172(T) = JCM 18703(T)). PMID:25979633

  8. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava.

    PubMed

    Park, So-Hyun; Kim, Ji-Young; Kim, Young-Ju; Heo, Moon-Soo

    2015-11-01

    A bacterial strain, designated EC11(T) was isolated from brown alga Ecklonia cava collected from Jeju Island, Korea. EC11(T) was identified as a Gram-negative, rod-shaped and yellow-pigmented bacterial strain. The strain EC11(T) grew over a temperature range of 10 °C to 30 °C (optimally at 25 °C), and a pH range of 6.0-10.5 (optimally at pH 7.5). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EC11(T) belongs to the genus Flavobacterium. Strain EC11(T) shared close similarity with Flavobacterium jumunjinense HME7102(T) (96.4%), Flavobacterium dongtanense LW30(T) (95.8%), Flavobacterium haoranii LQY-7(T) (95.3%), and Flavobacterium urocaniciphilum (95.1%). The major fatty acids (> 5%) were iso-C17:0 3-OH (22.4%), iso-C15:0 3-OH (19.0%), C15:0 (12.4%), summed feature 3 (comprising C16:1 ω7c/ C16:1 ω6c; 9.78%), iso-C15:1 G (9.6%), and iso-C16:0 3-OH (9.0%). The DNA G+C content was 28.1 mol% and the strain contained MK-6 as the predominant menaquinone. The major polar lipids were phosphatidylethanolamine, two unknown aminolipids and three unknown polar lipids. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain EC11T represents a novel species of the Flavobacterium genus, for which the name Flavobacterium jejuensis sp. nov. is proposed. The type strain of F. jejuensis is EC11(T) (=KCTC 42149(T) = JCM 30735(T)). PMID:26502959

  9. Ornithinimicrobium algicola sp. nov., a marine actinobacterium isolated from the green alga of the genus Ulva.

    PubMed

    Ramaprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2015-12-01

    A Gram-staining-positive, non-spore-forming actinobacterium, strain JC311T, isolated from marine green alga of the genus Ulva was studied to examine its taxonomic position. On the basis of the 16S rRNA gene sequence similarity studies, strain JC311T was shown represent a member of the genus Ornithinimicrobium and to be closely related to Ornithinimicrobium pekingense LW6T (98.6 %), Ornithinimicrobium kibberense K22-20T (98.3 %) and Ornithinimicrobium humiphilum HKI 0124T (98.1 %). However, strain JC311T showed less than 22 % DNA reassociation value (based on DNA-DNA hybridization) with O. pekingense JCM14001T, O. kibberense JCM12763T and O. humiphilum KCTC19901T. The predominant menaquinone of strain JC311T was MK-8(H4). The peptidoglycan contained l-ornithine as the diagnostic diamino acid. The polar lipid profile consisted of the lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycophospholipid, aminophospholipid, phospholipid and two unidentified lipids. The major fatty acids iso-C16 : 0, iso-C15 : 0, iso-C17 : 1ω9c and iso-C17 : 0 were consistent with the fatty acid patterns reported for members of the genus Ornithinimicrobium. The distinct genomic, morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of JC311T as a representative of a novel species of the genus Ornithinimicrobium, for which we propose the name Ornithinimicrobium algicola sp. nov., with the type strain JC311T ( = KCTC 39559 T =  LMG 28808T).

  10. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T). PMID:26962005

  11. Bioconcentration of tetrachlorobenzene in marine algae

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Lin; Ma, Yan-Jun; Cheng, Gang; Yu, Wei-Jun; Zhang, Li-Jun

    1997-09-01

    Bioconcentration of tetrachlorobenzene (TeCB) in Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis, and Phaeodactylum tricornutum; and toxicity of TeCB to the marine algae were tested. Values of bioconcentration potential parameters, including uptake rate constant k 1, elimination rate constant k 2 and bioconcentration factor BCF, were obtained not only from the time course of TeCB uptake by the marine algae by using a bioconcentration model, but also from the acute toxicity test data for percent inhibition PI(%)˜exposure concentration of TeCB-time by using a combined bioconcentration and probability model. The results showed good relationship between k 1(TOXIC) and k 1(UPTAKE) and k 2(TOXIC), k 2(UPTAKE), and BCF D(IOXIC) and BCF D(UPTAKE). Especially, the values of BCF D(TOXIC) were well consistent with those of BCF D(UPTAKE).

  12. Tetraflagellochloris mauritanica gen. et sp. nov. (Chlorophyceae), a New Flagellated Alga from the Mauritanian Desert: Morphology, Ultrastructure, and Phylogenetic Framing.

    PubMed

    Barsanti, Laura; Frassanito, Anna Maria; Passarelli, Vincenzo; Evangelista, Valtere; Etebari, Maryam; Paccagnini, Eugenio; Lupetti, Pietro; Lenzi, Paola; Verni, Franco; Gualtieri, Paolo

    2013-02-01

    Morphological, ultrastructural, and molecular-sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non-coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion. Lipid vacuoles are present in the cytoplasm. Microspectroscopy indicated the presence of chlorophylls a and b, with lutein as the major carotenoid in the chloroplast, while the eyespot spectrum has a shape typical of green-algal eyespots. The cell has four flagella, two of them long and two considerably shorter. Sequence data from the 18S rRNA gene and ITS2 were obtained and compared with published sequences for green algae. Results from morphological and ultrastructural examinations and sequence analysis support the placement of this alga in the Chlorophyceae, as Tetraflagellochloris mauritanica L. Barsanti et A. Barsanti, gen. et sp. nov. PMID:27008399

  13. Tetraflagellochloris mauritanica gen. et sp. nov. (Chlorophyceae), a New Flagellated Alga from the Mauritanian Desert: Morphology, Ultrastructure, and Phylogenetic Framing.

    PubMed

    Barsanti, Laura; Frassanito, Anna Maria; Passarelli, Vincenzo; Evangelista, Valtere; Etebari, Maryam; Paccagnini, Eugenio; Lupetti, Pietro; Lenzi, Paola; Verni, Franco; Gualtieri, Paolo

    2013-02-01

    Morphological, ultrastructural, and molecular-sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non-coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion. Lipid vacuoles are present in the cytoplasm. Microspectroscopy indicated the presence of chlorophylls a and b, with lutein as the major carotenoid in the chloroplast, while the eyespot spectrum has a shape typical of green-algal eyespots. The cell has four flagella, two of them long and two considerably shorter. Sequence data from the 18S rRNA gene and ITS2 were obtained and compared with published sequences for green algae. Results from morphological and ultrastructural examinations and sequence analysis support the placement of this alga in the Chlorophyceae, as Tetraflagellochloris mauritanica L. Barsanti et A. Barsanti, gen. et sp. nov.

  14. MANOMETRIC MEASUREMENTS OF PHOTOSYNTHESIS IN THE MARINE ALGA GIGARTINA

    PubMed Central

    Emerson, Robert; Green, Lowell

    1934-01-01

    A manometric method for measuring photosynthesis in marine algae is described. Photosynthesis in the red alga Gigartina harveyana is shown to be similar in all important respects to photosynthesis in Chlorella and other Chlorophyceae. PMID:19872816

  15. Substitution of stable isotopes in Chlorella

    NASA Technical Reports Server (NTRS)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  16. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation. PMID:26808868

  17. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation.

  18. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  19. Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment

    SciTech Connect

    Maeda, S.; Nakashima, S.; Takeshita, T.; Higashi, S.

    1985-01-01

    Green algae, Chlorella vulgaris Beijerinck var. vulgaris, isolated from an arsenic-polluted environment, was examined for the effects of arsenic levels, arsenic valence, temperature illumination intensity, phosphate levels, metabolism inhibitors, heat treatment on the growth, and arsenic bioaccumulation. The following conclusions were reached from the experimental results: (a) The growth of the cell increased with an increase of arsenic(V) levels of the medium up to 1000 ppm, and the cell survived even at 10,000 ppm; (b) The arsenic bioaccumulation increased with an increase of the arsenic level. The maximum accumulation of arsenic was about 50,000 ..mu..g As/g dry cell; (c) The growth decreased with an increase of the arsenic(III) level and the cell was cytolyzed at levels higher than 40 ppm; (d) No arsenic(V) was bioaccumulated by a cell which had been pretreated with dinitrophenol (respiratory inhibitor) or with heat. Little effect of NaN/sub 3/ (photosynthesis inhibitor) on the bioaccumulation was observed. 8 references, 2 figures, 6 tables.

  20. Chlorella viruses isolated in China

    SciTech Connect

    Zhang, Y.; Burbank, D.E.; Van Etten, J.L. )

    1988-09-01

    Plaque-forming viruses of the unicellular, eukaryotic, exsymbiotic, Chlorella-like green algae strain NC64A, which are common in the United States, were also present in fresh water collected in the People's Republic of China. Seven of the Chinese viruses were examined in detail and compared with the Chlorella viruses previously isolated in the United States. Like the American viruses, the Chinese viruses were large polyhedra and sensitive to chloroform. They contained numerous structural proteins and large double-stranded DNA genomes of at least 300 kilobase pairs. Each of the DNAs from the Chinese viruses contained 5-methyldeoxycytosine, which varied from 12.6 to 46.7% of the deoxycytosine, and N{sup 6}-methyldeoxyadenosine, which varied from 2.2 to 28.3% of the deoxyadenosine. Four of the Chinese virus DNAs hybridized extensively with {sup 32}P-labeled DNA from the American virus PBCV-1, and three hybridized poorly.

  1. Chlorella viruses isolated in China.

    PubMed Central

    Zhang, Y P; Burbank, D E; Van Etten, J L

    1988-01-01

    Plaque-forming viruses of the unicellular, eucaryotic, exsymbiotic, Chlorella-like green algae strain NC64A, which are common in the United States, were also present in fresh water collected in the People's Republic of China. Seven of the Chinese viruses were examined in detail and compared with the Chlorella viruses previously isolated in the United States. Like the American viruses, the Chinese viruses were large polyhedra and sensitive to chloroform. They contained numerous structural proteins and large double-stranded DNA genomes of at least 300 kilobase pairs. Each of the DNAs from the Chinese viruses contained 5-methyldeoxycytosine, which varied from 12.6 to 46.7% of the deoxycytosine, and N6-methyldeoxyadenosine, which varied from 2.2 to 28.3% of the deoxyadenosine. Four of the Chinese virus DNAs hybridized extensively with DNA from the American virus PBCV-1, and three hybridized poorly. Images PMID:2847652

  2. Uptake and bioaccumulation of three PCBs by Chlorella fusca

    SciTech Connect

    Wang, K.; Rott, B.; Korte, F.

    1982-01-01

    This paper reports the bioaccumulation of three PCBs (2,4'-dichlorobiphenyl, 2,4,6,2'-tetrachlorobiphenyl and 2,4,6,2',4'-pentachlorobiphenyl) by the green alga Chlorella fusca under various conditions. A probable pattern of the bioconcentration mechanism is suggested. No metabolites were extracted from algae or water 6 days after incubation with PCBs.

  3. Subterminal oxidation of n-alkanes in achlorophyllous alga Prototheca sp.

    PubMed

    Sakuradani, Eiji; Natsume, Yusuke; Takimura, Yasushi; Ogawa, Jun; Shimizu, Sakayu

    2013-10-01

    Some Prototheca sp. are known to be involved in n-hexadecane degradation. Two derivatives derived from n-hexadecane in such Prototheca sp. were identified as 5-hexadecanone and 5-hexadecanol. n-Hexadecane was assumed to be converted to 5-hexadecanol and then to 5-hexadecanone through a unique subterminal oxidation pathway in such Prototheca sp. PMID:23651808

  4. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. PMID:20435526

  5. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P).

    PubMed

    Li, Yuqin; Han, Fangxin; Xu, Hua; Mu, Jinxiu; Chen, Di; Feng, Bo; Zeng, Hongyan

    2014-12-01

    This study aimed to evaluate the potential lipid accumulation of an oleaginous Chlorella protothecoides by combination cultivation mode of nitrogen (N) and phosphorus (P). Under co-deficiency of N and P, the largest lipid content (55.8%) was accomplished in C. protothecoides, which was higher than either sole P-deficiency (32.77%) or N-deficiency (52.5%), or co-repletion of N and P (control) (22.17%). However, the highest lipid productivity (224.14mg/L/day) with combination mode of N-deficiency and P-repletion represented 1.19-3.70-fold more than that of control, P-deficiency/limitation, and co-deficiency of N and P, respectively. This indicating N-deficiency plus P-repletion was a promising lipid trigger to motivate lipid accumulation in C. protothecoides cells. Further, difference gel electrophoresis (DIGE)-based proteomics was employed to reveal the molecular pathways associated with lipid biosynthesis. These results provide the foundation to develop engineering strategies targeting lipid productivity for industrial production of microalgae-based biodiesel.

  6. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    PubMed

    Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten

    2016-09-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  7. Interactive effects of UV-B and Cu on photosynthesis, uptake and metabolism of nutrients in a green alga Chlorella vulgaris under simulated ozone column.

    PubMed

    Rai, Pramoda Kumar; Rai, Lal Chand

    1997-10-01

    This study demonstrated a general reduction in photosynthesis (carbon fixation, O(2)-evolution and photochemical electron transport chain), the uptake of NH(4)(+), NO(3)(-), urea and PO(4)(3+), and activities of nitrate reductase, urease, acid phosphatase and ATPase following UV-B and copper exposure of Chlorella vulgaris in the absence or presence of 1 and 2 ppm concentrations of a 4-inch-thick ozone layer. Though the effect of stressors used in combination was very detrimental to the above processes, selected concentrations of ozone not only counteracted the UV-B-induced inhibition of the above processes, but also stimulated O(2)-evolution and the photochemical electron transport chain. Kinetics of nutrient uptake and enzyme activities demonstrated that UV-B causes structural change(s) in the enzymes/carriers responsible for the uptake of NH(4)(+), NO(3)(-), urea and PO(4)(3+) as well as their assimilatory enzymes. Except for nitrate reductase, copper was found to compete for the binding sites of all the above enzymes. Synergistic inhibition of photosynthetic activity, nutrient (except NH(4)(+)) uptake, and enzyme activities by UV-B+Cu seems to be due to increased Cu uptake as a consequence of altered membrane permeability brought about by the peroxidation of membrane lipids in UV-B-exposed cells.

  8. Screening of Natural Waters for Viruses Which Infect Chlorella Cells

    PubMed Central

    Yamada, Takashi; Higashiyama, Takanobu; Fukuda, Takao

    1991-01-01

    By using a plaque assay with the unicellular green alga Chlorella sp. strain NC64A as a host, viruses were screened from natural pond waters collected in Kyoto and Higashi-Hiroshima, Japan. From some samples tested, two kinds of plaques, large (φ = 6 to 10 mm) and small (φ = 2 to 3 mm), were detected with various frequencies. The frequency of plaques in each of the water sources was seasonal; generally, it reached a peak value (8,000 PFU/ml) in May and gradually decreased to the limit of detection (<1) in November before increasing again in early spring. Electron microscopy revealed that the purified and negatively stained viruses were very large (125 to 200 nm) icosahedral particles. The genome isolated from these particles was always a linear double-stranded DNA of 340 to 370 kbp. Electrophoresis patterns of the DNA fragments produced by digestion with restriction enzymes differed considerably from plaque to plaque, even for plaques from the same water source. However, Southern hybridization showed strong homology among all of the virus DNAs tested, indicating relatedness of those viruses. A possible use of the Chlorella virus assay system to monitor the natural population of algal cells and water quality is discussed. Images PMID:16348596

  9. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    PubMed

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  10. Preliminary development and evaluation of an algae-based air regeneration system

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.

    2000-01-01

    The potential of air regeneration system based on the growth of microalgae on the surface of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786), Stichococcus sp., and Gloeocapsa sp. Under standard test conditions (photosynthetic photon flux approximately 66 micromoles m-2 s-1, initial CO2 concentration approximately 450 micromoles mol-1), mature tubes remove up to 0.2 micromoles of CO2 per tube per minute. The rate of removal increases with photon flux up to at least 225 micromoles m-2 s-1 (PPF); peak rates of 0.35 micromoles of CO2 per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to between 120 and 210 micromoles of CO2 removed per square meter of projected area per minute.

  11. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project. PMID:25188453

  12. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass.

    PubMed

    Subramaniyam, Vidhyasri; Subashchandrabose, Suresh Ramraj; Ganeshkumar, Vimalkumar; Thavamani, Palanisami; Chen, Zuliang; Naidu, Ravi; Megharaj, Mallavarapu

    2016-07-01

    This study investigated an integrated and sustainable approach for iron nanoparticles synthesis using Chlorella sp. MM3 biomass produced from the remediation of brewery wastewater. The algal growth characteristics, biomass production, nutrient removal, and nanoparticle synthesis including its characterisation were studied to prove the above approach. The growth curve of Chlorella depicted lag and exponential phase characteristics during the first 4days in a brewery wastewater collected from a single batch of brewing process (single water sample) indicating the growth of algae in brewery wastewater. The pollutants such as total nitrogen, total phosphorus and total organic carbon in single water sample were completely utilised by Chlorella for its growth. The X-ray photoelectron spectroscopy spectra showed peaks at 706.56eV, 727.02eV, 289.84eV and 535.73eV which corresponded to the zero-valent iron, iron oxides, carbon and oxygen respectively, confirming the formation of iron nanoparticle capped with algal biomolecules. Scanning electron microscopy and particle size analysis confirmed the presence of spherical shaped iron nanoparticles of size ranging from 5 to 50nm. To our knowledge, this is the first report on nanoparticle synthesis using the biomass generated from phycoremediation of brewery wastewater.

  13. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass.

    PubMed

    Subramaniyam, Vidhyasri; Subashchandrabose, Suresh Ramraj; Ganeshkumar, Vimalkumar; Thavamani, Palanisami; Chen, Zuliang; Naidu, Ravi; Megharaj, Mallavarapu

    2016-07-01

    This study investigated an integrated and sustainable approach for iron nanoparticles synthesis using Chlorella sp. MM3 biomass produced from the remediation of brewery wastewater. The algal growth characteristics, biomass production, nutrient removal, and nanoparticle synthesis including its characterisation were studied to prove the above approach. The growth curve of Chlorella depicted lag and exponential phase characteristics during the first 4days in a brewery wastewater collected from a single batch of brewing process (single water sample) indicating the growth of algae in brewery wastewater. The pollutants such as total nitrogen, total phosphorus and total organic carbon in single water sample were completely utilised by Chlorella for its growth. The X-ray photoelectron spectroscopy spectra showed peaks at 706.56eV, 727.02eV, 289.84eV and 535.73eV which corresponded to the zero-valent iron, iron oxides, carbon and oxygen respectively, confirming the formation of iron nanoparticle capped with algal biomolecules. Scanning electron microscopy and particle size analysis confirmed the presence of spherical shaped iron nanoparticles of size ranging from 5 to 50nm. To our knowledge, this is the first report on nanoparticle synthesis using the biomass generated from phycoremediation of brewery wastewater. PMID:27060245

  14. Paleopleurocapsa wopfnerii gen. et sp. nov.: A Late Precambrian alga and its modern counterpart

    PubMed Central

    Knoll, Andrew H.; Barghoorn, Elso S.; Golubić, Stjepko

    1975-01-01

    Silicified dolomite of the approximately one billion year old Skillogalee Dolomite of the Adelaide Geosyncline, South Australia, contains organically preserved microfossils of a structurally complex, crustose pleurocapsalean cyanophyte, herein described as Paleopleurocapsa wopfnerii. Although actual cell contents have been degraded, lamellar sheath material faithfully preserves the morphology of the alga. Comparison with specimens of the modern genus Pleurocapsa Thuret demonstrates affinities at the family level and quite possibly even generic identity. Images PMID:16592257

  15. Formosa haliotis sp. nov., a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea.

    PubMed

    Tanaka, Reiji; Cleenwerck, Ilse; Mizutani, Yukino; Iehata, Shunpei; Shibata, Toshiyuki; Miyake, Hideo; Mori, Tetsushi; Tamaru, Yutaka; Ueda, Mitsuyoshi; Bossier, Peter; Vandamme, Peter

    2015-12-01

    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T). PMID:26354496

  16. Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Cai, Guanjing; Chen, Zhangran; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2015-06-01

    An aquatic actinomycete capable of eliminating the brown tide causing marine alga Phaeocystis globosa was isolated from the surface sea water and the isolate named JS01 was characterized as Streptomyces on the basis of its 16S rRNA gene sequence. The supernatant of JS01 could lyse algal cells, implying that JS01 produced a latent alga-lytic compound. Considering this algicidal activity and the response of the algal cells, Chlorophyll a fluorescence decreased significantly in P. globosa in response to the JS01 supernatant when analyzed with flow cytometry. The algal cells experienced cell shrinkage and plasmolysis before disintegration after 72 h of treatment. The released algicide(s) were heat-tolerant, except above 121 °C, and fluctuation in pH variations; even so, algicidal activity was also over 60 %. The maximum toxicity of JS01 was on the seventh day of culture, and the relative luminosity was 0.49 at that time when detected by luminous bacteria Vibrio fischeri. These results indicated that the Streptomyces sp. JS01 could function as a potential controller of Phaeocystis globosa blooms. PMID:25638354

  17. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga.

    PubMed

    Nedashkovskaya, Olga I; Balabanova, Larissa A; Zhukova, Natalia V; Kim, So-Jeong; Bakunina, Irina Y; Rhee, Sung-Keun

    2014-10-01

    A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130(T), that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618(T) and Flavobacterium ponti CCUG 58402(T), and 95.3-92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130(T) were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130(T) (=KCTC 32467(T) = KMM 6686(T)).

  18. Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Cai, Guanjing; Chen, Zhangran; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2015-06-01

    An aquatic actinomycete capable of eliminating the brown tide causing marine alga Phaeocystis globosa was isolated from the surface sea water and the isolate named JS01 was characterized as Streptomyces on the basis of its 16S rRNA gene sequence. The supernatant of JS01 could lyse algal cells, implying that JS01 produced a latent alga-lytic compound. Considering this algicidal activity and the response of the algal cells, Chlorophyll a fluorescence decreased significantly in P. globosa in response to the JS01 supernatant when analyzed with flow cytometry. The algal cells experienced cell shrinkage and plasmolysis before disintegration after 72 h of treatment. The released algicide(s) were heat-tolerant, except above 121 °C, and fluctuation in pH variations; even so, algicidal activity was also over 60 %. The maximum toxicity of JS01 was on the seventh day of culture, and the relative luminosity was 0.49 at that time when detected by luminous bacteria Vibrio fischeri. These results indicated that the Streptomyces sp. JS01 could function as a potential controller of Phaeocystis globosa blooms.

  19. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2012-10-01

    The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection.

  20. Effect of aniline on Chlorella vulgaris

    SciTech Connect

    Amman, H.M.; Terry, b.

    1985-08-01

    A direct correlation between concentration of waste effluent, including aniline, released by a dye company into a waterway in Eastern North Carolina, and the rise and fall of populations of Chlorella, was demonstrated previously. The present study establishes threshold concentrations of aniline which affect growth of these algae, but also shows that physiologic parameters within the organism, such as the rate of photosynthesis, were decreased as sub-threshold concentrations of toxicant.

  1. A novel brominated cuparene-derived sesquiterpene ether from the red alga Laurencia sp.

    PubMed

    Su, Shan; Sun, Wen-Shuang; Wang, Bin; Cheng, Wei; Liang, Hong; Zhao, Yu-Ying; Zhang, Qing-Ying; Wu, Jun

    2010-10-01

    A novel brominated cuparene-derived sesquiterpene ether, 8,10-dibromo-3,7-epoxy-laur-13-ol (1), was isolated from Laurencia sp. collected in South China Sea. Besides this, two known sesquiterpenes, (9β)-aristol-1(10)-en-9-ol (2) and aristolone (3), were also yielded, and aristolone (3) was obtained from Laurencia for the first time. Their structures were elucidated by spectroscopic methods.

  2. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.

    PubMed

    Dao, Ly H T; Beardall, John

    2016-03-01

    In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae.

  3. Preparation and Evaluation of the Chelating Nanocomposite Fabricated with Marine Algae Schizochytrium sp. Protein Hydrolysate and Calcium.

    PubMed

    Lin, Jiaping; Cai, Xixi; Tang, Mengru; Wang, Shaoyun

    2015-11-11

    Marine algae have been becoming a popular research topic because of their biological implication. The algae peptide-based metal-chelating complex was investigated in this study. Schizochytrium sp. protein hydrolysate (SPH) possessing high Ca-binding capacity was prepared through stepwise enzymatic hydrolysis to a degree of hydrolysis of 22.46%. The nanocomposites of SPH chelated with calcium ions were fabricated in aqueous solution at pH 6 and 30 °C for 20 min, with the ratio of SPH to calcium 3:1 (w/w). The size distribution showed that the nanocomposite had compact structure with a radius of 68.16 ± 0.50 nm. SPH was rich in acidic amino acids, accounting for 33.55%, which are liable to bind with calcium ions. The molecular mass distribution demonstrated that the molecular mass of SPH was principally concentrated at 180-2000 Da. UV scanning spectroscopy and Fourier transform infrared spectroscopy suggested that the primary sites of calcium-binding corresponded to the carboxyl groups, carbonyl groups, and amino groups of SPH. The results of fluorescent spectroscopy, size distribution, atomic force microscope, and (1)H nuclear magnetic resonance spectroscopy suggested that calcium ions chelated with SPH would cause intramolecular and intermolecular folding and aggregating. The SPH-calcium chelate exerted remarkable stability and absorbability under either acidic or basic conditions, which was in favor of calcium absorption in the gastrointestinal tracts of humans. The investigation suggests that SPH-calcium chelate has the potential prospect to be utilized as a nutraceutical supplement to improve bone health in the human body. PMID:26499390

  4. Preparation and Evaluation of the Chelating Nanocomposite Fabricated with Marine Algae Schizochytrium sp. Protein Hydrolysate and Calcium.

    PubMed

    Lin, Jiaping; Cai, Xixi; Tang, Mengru; Wang, Shaoyun

    2015-11-11

    Marine algae have been becoming a popular research topic because of their biological implication. The algae peptide-based metal-chelating complex was investigated in this study. Schizochytrium sp. protein hydrolysate (SPH) possessing high Ca-binding capacity was prepared through stepwise enzymatic hydrolysis to a degree of hydrolysis of 22.46%. The nanocomposites of SPH chelated with calcium ions were fabricated in aqueous solution at pH 6 and 30 °C for 20 min, with the ratio of SPH to calcium 3:1 (w/w). The size distribution showed that the nanocomposite had compact structure with a radius of 68.16 ± 0.50 nm. SPH was rich in acidic amino acids, accounting for 33.55%, which are liable to bind with calcium ions. The molecular mass distribution demonstrated that the molecular mass of SPH was principally concentrated at 180-2000 Da. UV scanning spectroscopy and Fourier transform infrared spectroscopy suggested that the primary sites of calcium-binding corresponded to the carboxyl groups, carbonyl groups, and amino groups of SPH. The results of fluorescent spectroscopy, size distribution, atomic force microscope, and (1)H nuclear magnetic resonance spectroscopy suggested that calcium ions chelated with SPH would cause intramolecular and intermolecular folding and aggregating. The SPH-calcium chelate exerted remarkable stability and absorbability under either acidic or basic conditions, which was in favor of calcium absorption in the gastrointestinal tracts of humans. The investigation suggests that SPH-calcium chelate has the potential prospect to be utilized as a nutraceutical supplement to improve bone health in the human body.

  5. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881

    PubMed Central

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction. PMID:26849226

  6. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  7. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp.

    PubMed

    Park, Jongmin; Jin, Hai-Feng; Lim, Byung-Ran; Park, Ki-Young; Lee, Kisay

    2010-11-01

    The green alga Scenedesmus was investigated for its ability to remove nitrogen from anaerobic digestion effluent possessing high ammonium content and alkalinity in addition to its growth characteristics. Nitrate and ammonium were indistinguishable as a nitrogen source when the ammonium concentration was at normal cultivation levels. Ammonium up to 100ppm NH(4)-N did not inhibit cell growth, but did decrease final cell density by up to 70% at a concentration of 200-500ppm NH(4)-N. Inorganic carbon of alkalinity in the form of bicarbonate was consumed rapidly, in turn causing the attenuation of cell growth. Therefore, maintaining a certain level of inorganic carbon is necessary in order to prolong ammonia removal. A moderate degree of aeration was beneficial to ammonia removal, not only due to the stripping of ammonium to ammonia gas but also due to the stripping of oxygen, which is an inhibitor of regular photosynthesis. Magnesium is easily consumed compared to other metallic components and therefore requires periodic supplementation. Maintaining appropriate levels of alkalinity, Mg, aeration along with optimal an initial NH(4)(+)/cell ratio were all necessary for long-term semi-continuous ammonium removal and cell growth. PMID:20663665

  8. Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions.

    PubMed

    Foflonker, Fatima; Price, Dana C; Qiu, Huan; Palenik, Brian; Wang, Shuyi; Bhattacharya, Debashish

    2015-02-01

    An expected outcome of climate change is intensification of the global water cycle, which magnifies surface water fluxes, and consequently alters salinity patterns. It is therefore important to understand the adaptations and limits of microalgae to survive changing salinities. To this end, we sequenced the 13.5 Mbp genome of the halotolerant green alga Picochlorum SENEW3 (SE3) that was isolated from a brackish water pond subject to large seasonal salinity fluctuations. Picochlorum SE3 encodes 7367 genes, making it one of the smallest and most gene dense eukaryotic genomes known. Comparison with the pico-prasinophyte Ostreococcus tauri, a species with a limited range of salt tolerance, reveals the enrichment of transporters putatively involved in the salt stress response in Picochlorum SE3. Analysis of cultures and the protein complement highlight the metabolic flexibility of Picochlorum SE3 that encodes genes involved in urea metabolism, acetate assimilation and fermentation, acetoin production and glucose uptake, many of which form functional gene clusters. Twenty-four cases of horizontal gene transfer from bacterial sources were found in Picochlorum SE3 with these genes involved in stress adaptation including osmolyte production and growth promotion. Our results identify Picochlorum SE3 as a model for understanding microalgal adaptation to stressful, fluctuating environments.

  9. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)).

  10. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp.

    PubMed

    Choi, Wookjin; Kim, Garam; Lee, Kisay

    2012-09-01

    The influence of monoethanolamine (MEA) as a CO(2) absorbent on photoautotrophic culture of CO(2)-fixing microalgae was investigated. When 300 ppm MEA (4.92 mM) was added to blank culture medium, the dissolved inorganic carbon and the molar absorption ratio increased to 51.0mg/L and 0.34 mol CO2 = mol MEA, respectively, which was an almost 6-fold increase in CO(2) solubility. When free MEA up to 300 mg/L was added to a green alga Scenedesmus sp. culture that was supplied 5% (v/v) CO(2) at 0.1 vvm, both cell growth rate and final cell density were enhanced compared to when no MEA was added. The cell growth rate reached 288.6 mg/L/d, which was equivalent to 539.6 mg-CO(2)/L/d as a CO(2)-fixation rate and enhancement of about 63.0% compared to not adding MEA. Chlorophyll-a content and nitrate consumption rate increased correspondingly. MEA doses higher than 400mg/L inhibited cell growth, probably due to toxicity of the carbamate intermediate.

  11. Utilization of papaya waste and oil production by Chlorella protothecoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae derived oils have outstanding potential for use in biodiesel production. Chlorella protothecoides has been shown to accumulate lipid up to 60% of its cellular dry weight with glucose supplementation under heterotrophic growth conditions. To reduce production costs, alternative carbon feedstock...

  12. Secondary symbiosis between Paramecium and Chlorella cells.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2010-01-01

    Each symbiotic Chlorella species of Paramecium bursaria is enclosed in a perialgal vacuole (PV) membrane derived from the host digestive vacuole (DV) membrane. Algae-free paramecia and symbiotic algae are capable of growing independently and paramecia can be reinfected experimentally by mixing them. This phenomenon provides an excellent model for studying cell-to-cell interaction and the evolution of eukaryotic cells through secondary endosymbiosis between different protists. However, the detailed algal infection process remains unclear. Using pulse labeling of the algae-free paramecia with the isolated symbiotic algae and chase method, we found four necessary cytological events for establishing endosymbiosis. (1) At about 3 min after mixing, some algae show resistance to the host lysosomal enzymes in the DVs, even if the digested ones are present. (2) At about 30 min after mixing, the alga starts to escape from the DVs as the result of the budding of the DV membrane into the cytoplasm. (3) Within 15 min after the escape, the DV membrane enclosing a single green alga differentiates to the PV membrane, which provides protection from lysosomal fusion. (4) The alga localizes at the primary lysosome-less host cell surface by affinity of the PV to unknown structures of the host. At about 24 h after mixing, the alga multiplies by cell division and establishes endosymbiosis. Infection experiments with infection-capable and infection-incapable algae indicate that the infectivity of algae is based on their ability to localize beneath the host surface after escaping from the DVs. This algal infection process differs from known infection processes of other symbiotic or parasitic organisms to their hosts.

  13. The anti-allergic activity of polyphenol extracted from five marine algae

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui

    2015-08-01

    Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.

  14. Vitmin A, nutrition, and health values of algea: spirulina, chlorella, and dunaliella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spirulina, chlorella, and dunalliella are unicellular algae that are commercially produced worldwide. These algae are concentrated sources of carotenoids (especially provitamin A carotenoids) and other nutrients, such as vitamin B12. Their health benefits as a complementary dietary source for macro ...

  15. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  16. [From algae to "functional foods"].

    PubMed

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development. PMID:26378764

  17. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel.

  18. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel. PMID:27521939

  19. Toxic potential of iron oxide, CdS/Ag₂S composite, CdS and Ag₂S NPs on a fresh water alga Mougeotia sp.

    PubMed

    Jagadeesh, E; Khan, Behlol; Chandran, Preethy; Khan, S Sudheer

    2015-01-01

    Nanoparticles (NPs) are being used in many industries ranging from medical, textile, automobile, consumer products, etc. This may increase the probability of their (NPs) release into the environment and fresh water ecosystems. The present study focuses on testing the potential effect of iron oxide, nanocomposite of cadmium sulfide and silver sulfide, cadmium sulfide and silver sulfide nanoparticles (NPs) on a fresh water alga Mougeotia sp. as the model organism. The alga was treated with different concentrations of NPs (0.1-25 mg/L). The NPs exposure caused lipid peroxidation and ROS production, and suppressed the antioxidant defense system such as catalase, glutathione reductase, and superoxide dismutase. Adsorption of NPs on algal surface and membrane damage were confirmed through microscopic evaluation and increase in protein content in extracellular medium. The present investigation pointed out the ecological implications of NPs. The study warrants the need for regulatory agencies to monitor and regulate the use of NPs. PMID:25465759

  20. Toxic potential of iron oxide, CdS/Ag₂S composite, CdS and Ag₂S NPs on a fresh water alga Mougeotia sp.

    PubMed

    Jagadeesh, E; Khan, Behlol; Chandran, Preethy; Khan, S Sudheer

    2015-01-01

    Nanoparticles (NPs) are being used in many industries ranging from medical, textile, automobile, consumer products, etc. This may increase the probability of their (NPs) release into the environment and fresh water ecosystems. The present study focuses on testing the potential effect of iron oxide, nanocomposite of cadmium sulfide and silver sulfide, cadmium sulfide and silver sulfide nanoparticles (NPs) on a fresh water alga Mougeotia sp. as the model organism. The alga was treated with different concentrations of NPs (0.1-25 mg/L). The NPs exposure caused lipid peroxidation and ROS production, and suppressed the antioxidant defense system such as catalase, glutathione reductase, and superoxide dismutase. Adsorption of NPs on algal surface and membrane damage were confirmed through microscopic evaluation and increase in protein content in extracellular medium. The present investigation pointed out the ecological implications of NPs. The study warrants the need for regulatory agencies to monitor and regulate the use of NPs.

  1. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  2. Alterations in seawater pH and CO 2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Semesi, I. Sware; Kangwe, Juma; Björk, Mats

    2009-09-01

    Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO 2 concentration to ˜26 μmol kg -1 (by bubbling with air containing 0.9 mbar CO 2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO 2.

  3. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. PMID:24583221

  4. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process.

  5. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  6. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation.

    PubMed

    Agbakpe, Michael; Ge, Shijian; Zhang, Wen; Zhang, Xuezhi; Kobylarz, Patricia

    2014-08-01

    There is a pressing need to develop efficient and sustainable separation technologies to harvest algae for biofuel production. In this work, two bacterial species (Escherichia coli and Rhodococus sp.) were used as biocoagulants to harvest Chlorella zofingiensis and Scenedesmus dimorphus. The influences of UV irradiation and polyethylenimine (PEI)-coating on the algal harvesting efficiency were investigated. Results showed that the UV irradiation could slightly enhance bacteria-algae biocoagulation and algal harvesting efficiency. In contrast, the PEI-coated E. coli cells noticeably increased the harvesting efficiencies from 23% to 83% for S. dimorphus when compared to uncoated E. coli cells. Based on the soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, an energy barrier existed between uncoated E. coli cells and algal cells, whereas the PEI coating on E. coli cells eliminated the energy barrier, thereby the biocoagulation was significantly improved. Overall, this work presented groundwork toward the potential use of bacterial biomass for algal harvesting from water.

  7. Responses of marine unicellular algae to brominated organic compounds in six growth media

    SciTech Connect

    Walsh, G.E.; Yoder, M.J.; McLaughlin, L.L.; Lores, E.M.

    1987-12-01

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp. were exposed to the industrial brominated compounds tetrabromobisphenol A, decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromoethylbenzene (PBEB), and the herbicide bromoxynil (BROM), in six algal growth media. High concentrations of DBBO (1 mg liter-1), PBMB (1 mg liter-1), and PBEB (0.5 mg liter-1) reduced growth by less than 50%. EC50s of the other compounds varied with growth medium, with high EC50/low EC50 ratios between 1.3 and 9.9. Lowest EC50s, 9.3 to 12.0 micrograms liter-1, were obtained with S. costatum and HBCD. It is concluded that responses to toxicants in different media are the results of interactions among algae, growth medium, toxicant, and solvent carrier.

  8. Shewanella gelidii sp. nov., isolated from the red algae Gelidium amansii, and emended description of Shewanella waksmanii.

    PubMed

    Wang, Yan; Chen, Hongli; Liu, Zhenhua; Ming, Hong; Zhou, Chenyan; Zhu, Xinshu; Zhang, Peng; Jing, Changqin; Feng, Huigen

    2016-08-01

    A novel Gram-stain-negative, straight or slightly curved rod-shaped, non-spore-forming, facultatively anaerobic bacterium with a single polar flagellum, designated RZB5-4T, was isolated from a sample of the red algae Gelidium amansii collected from the coastal region of Rizhao, PR China (119.625° E 35.517° N). The organism grew optimally between 24 and 28 °C, at pH 7.0 and in the presence of 2-3 % (w/v) NaCl. The strain required seawater or artificial seawater for growth, and NaCl alone did not support growth. Strain RZB5-4T contained C16 : 1ω7c and/or C16 : 1ω6c, C16 : 0 and iso-C15 : 0 as the dominant fatty acids. The respiratory quinones detected in strain RZB5-4T were ubiquinone 7, ubiquinone 8, menaquinone 7 and methylmenaquinone 7. The polar lipids of strain RZB5-4T comprised phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, one unidentified glycolipid, one unidentified phospholipid and one unknown lipid. The DNA G+C content of strain RZB5-4T was 47 mol %. Phylogenetic analysis based on 16S rRNA and gyrase B (gyrB) gene sequences showed that strain RZB5-4T belonged to the genus Shewanella, clustering with Shewanella waksmanii ATCC BAA-643T. Strain RZB5-4T exhibited the highest 16S rRNA gene sequence similarity value (96.6 %) and the highest gyrB gene sequence similarity value (80.7 %), respectively, to S. waksmanii ATCC BAA-643T. On the basis of polyphasic analyses, strain RZB5-4T represents a novel species of the genus Shewanella, for which the name Shewanella gelidii sp. nov. is proposed. The type strain is RZB5-4T (=JCM 30804T=KCTC 42663T=MCCC 1K00697T). PMID:27064664

  9. Algimonas ampicilliniresistens sp. nov., isolated from the red alga Porphyra yezoensis, and emended description of the genus Algimonas.

    PubMed

    Fukui, Youhei; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-12-01

    Three strains (14A-2-7(T), 14A-3-1 and 14A-3) of Gram-stain-negative, prosthecate, motile bacteria were isolated from an algal medium supplemented with 10 mg ampicillin l(-1) (w/v), in which the red alga Porphyra yezoensis had been cultured. Based on the 16S rRNA gene sequence analysis, the three isolates formed a cluster with the genus Algimonas of the family Hyphomonadaceae. The sequences of the three isolates had high similarity with those of Algimonas porphyrae 0C-2-2(T) (97.6 % similarity) and Litorimonas taeanensis G5(T) (95.6 % similarity). The DNA G+C contents of the three isolates ranged from 54.3 to 55.0 mol%, which were more similar to that of A. porphyrae 0C-2-2(T) (58.5 mol%) than to that of L. taeanensis G5(T) (47.1 mol%). The DNA-DNA relatedness showed that the three isolates were representatives of the same species (88.1-94.0 % relatedness) and that strain 14A-2-7(T) was a representative of a different species from A. porphyrae 0C-2-2(T) and L. taeanensis G5(T) (1.2-8.6 % relatedness). The phenotypic characteristics of strain 14A-2-7(T) differed by 20 results and 30 results from A. porphyrae 0C-2-2(T) and L. taeanensis G5(T), respectively. The three isolates contained ubiquinone-10 as the predominant quinone and C18 : 1ω7c as the major fatty acid. Based on the polyphasic taxonomic analysis, the three isolates represent a novel species of the genus Algimonas, for which the name Algimonas ampicilliniresistens sp. nov. is proposed. The type strain is 14A-2-7(T) ( = LMG 26421(T) = NBRC 108219(T)). An emended description of the genus Algimonas is also proposed.

  10. Analysis of ΔpH and the xanthophyll cycle in NPQ of the Antarctic sea ice alga Chlamydomonas sp. ICE-L.

    PubMed

    Mou, Shanli; Zhang, Xiaowen; Ye, Naihao; Miao, Jinlai; Cao, Shaona; Xu, Dong; Fan, Xiao; An, Meiling

    2013-05-01

    Non-photochemical fluorescence quenching (NPQ) is mainly associated with the transthylakoid proton gradient (ΔpH) and xanthophyll cycle. However, the exact mechanism of NPQ is different in different oxygenic photosynthetic organisms. In this study, several inhibitors were used to study NPQ kinetics in the sea ice alga Chlamydomonas sp. ICE-L and to determine the functions of ΔpH and the xanthophyll cycle in the NPQ process. NH4Cl and nigericin, uncouplers of ΔpH, inhibited NPQ completely and zeaxanthin (Z) was not detected in 1 mM NH4Cl-treated samples. Moreover, Z and NPQ were increased in the samples containing N,N'-dicyclohexyl-carbodiimide (DCCD) under low light conditions. We conclude that ΔpH plays a major role in NPQ, and activation of the xanthophyll cycle is related to ΔpH. In dithiothreitol (DTT)-treated samples, no Z was observed and NPQ decreased. NPQ was completely inhibited when NH4Cl was added suggesting that part of the NPQ process is related to the xanthophyll cycle and the remainder depends on ΔpH. Moreover, lutein and β-carotene were also essential for NPQ. These results indicate that NPQ in the sea ice alga Chlamydomonas sp. ICE-L is mainly dependent on ΔpH which affects the protonation of PSII proteins and de-epoxidation of the xanthophyll cycle, and the transthylakoid proton gradient alone can induce NPQ.

  11. New Insights into the Unique Structure of the F0F1-ATP Synthase from the Chlamydomonad Algae Polytomella sp. and Chlamydomonas reinhardtii1

    PubMed Central

    van Lis, Robert; Mendoza-Hernández, Guillermo; Groth, Georg; Atteia, Ariane

    2007-01-01

    In this study, we investigate the structure of the mitochondrial F0F1-ATP synthase of the colorless alga Polytomella sp. with respect to the enzyme of its green close relative Chlamydomonas reinhardtii. It is demonstrated that several unique features of the ATP synthase in C. reinhardtii are also present in Polytomella sp. The α- and β-subunits of the ATP synthase from both algae are highly unusual in that they exhibit extensions at their N- and C-terminal ends, respectively. Several subunits of the Polytomella ATP synthase in the range of 9 to 66 kD have homologs in the green alga but do not have known equivalents as yet in mitochondrial ATP synthases of mammals, plants, or fungi. The largest of these so-called ASA (ATP Synthase-Associated) subunits, ASA1, is shown to be an extrinsic protein. Short heat treatment of isolated Polytomella mitochondria unexpectedly dissociated the otherwise highly stable ATP synthase dimer of 1,600 kD into subcomplexes of 800 and 400 kD, assigned as the ATP synthase monomer and F1-ATPase, respectively. Whereas no ASA subunits were found in the F1-ATPase, all but two were present in the monomer. ASA6 (12 kD) and ASA9 (9 kD), predicted to be membrane bound, were not detected in the monomer and are thus proposed to be involved in the formation or stabilization of the enzyme. A hypothetical configuration of the Chlamydomonad dimeric ATP synthase portraying its unique features is provided to spur further research on this topic. PMID:17468226

  12. Physiological changes of a green alga (Micractinium sp.) involved in an early-stage of association with Tetrahymena thermophila during 5-year microcosm culture.

    PubMed

    Germond, Arno; Kunihiro, Tadao; Inouhe, Masahiro; Nakajima, Toshiyuki

    2013-12-01

    Endosymbioses between phototrophic algae and heterotrophic organisms are an important symbiotic association in that this association connects photo- and heterotrophic metabolism, and therefore, affects energy/matter pathways and cycling in the ecosystem. However, little is known about the early processes of evolution of an endosymbiotic association between previously non-associated organisms. In previous studies, we analyzed an early process of the evolution of an endosymbiotic association between an alga and a ciliate by using a long-term culture of an experimental model ecosystem (CET microcosm) composed of a green alga (Micractinium sp.), a bacterium (Escherichia coli), and a ciliate (Tetrahymena thermophila). The results revealed that an algal type, isolated from 5-year cultures of the microcosm, prolonged the longevity of the ancestral and derived clones of T. thermophila in the absence of bacteria, suggesting that a cooperative algal phenotype that benefited the ciliate had evolved in the microcosm. Here, we investigated the physiological changes of the derived Micractinium clones that benefited Tetrahymena, focusing on the release of carbohydrates by and abundance of photopigments in the ancestral and 2 derived algal clones (SC10-2 and SC9-1) isolated from inside Tetrahymena cells. Analyses using HPLC revealed that the algal isolates released glycerol and sucrose at higher concentrations per cell and also contained higher levels of photopigments per cell at pH 7.2, in comparison with the ancestral strain. These phenotypic characters were considered responsible for the increased longevity of Tetrahymena cells, and thus supported the cooperator alga hypothesis.

  13. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark.

    PubMed

    Lüttge, U; Büdel, B

    2010-05-01

    The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple-brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and 'Chlorella' trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, F(v)/F(m), recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (F(v)/F(m) = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30-40 days of desiccation (F(v)/F(m) = ca. 20-55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.

  14. Effect of phosphorus fluctuation caused by river water dilution in eutrophic lake on competition between blue-green alga Microcystis aeruginosa and diatom Cyclotella sp.

    PubMed

    Amano, Yoshimasa; Sakai, Yusuke; Sekiya, Takumi; Takeya, Kimitaka; Taki, Kazuo; Machida, Motoi

    2010-01-01

    Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North-chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp. PMID:21235152

  15. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp.

    PubMed

    Cha, Thye-San; Chen, Chin-Fong; Yee, Willy; Aziz, Ahmad; Loh, Saw-Hong

    2011-03-01

    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.

  16. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  17. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  18. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions.

  19. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions. PMID:24027904

  20. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse.

  1. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse. PMID:23982061

  2. Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal by-product meals from the Hawaiian biofuels industry were evaluated as protein ingredients in diets for juveniles of Nile tilapia (Oreochromis niloticus). Four experimental diets were formulated to contain 40% protein and were made with fish meal, soybean meal, whole diatom (Nanofrustulum sp.)...

  3. CILIATE-SYMBIONT SPECIFICITY OF FRESHWATER ENDOSYMBIOTIC CHLORELLA (TREBOUXIOPHYCEAE, CHLOROPHYTA)(1).

    PubMed

    Summerer, Monika; Sonntag, Bettina; Sommaruga, Ruben

    2008-02-01

    The nature of Chlorella symbioses in invertebrates and protists has attracted much interest, but the uncertain taxonomy of the algal partner has constrained a deeper ecological understanding of this symbiosis. We sequenced parts of the nuclear 18S rDNA, the internal transcribed spacer (ITS)-1 region, and the chloroplast 16S rDNA of several Chlorella isolated from pelagic ciliate species of different lakes, Paramecium bursaria symbionts, and free-living Chlorella to elucidate phylogenetic relationships of Chlorella-like algae and to assess their host specificity. Sequence analyses resulted in well-resolved phylogenetic trees providing strong statistical support for a homogenous 'zoochlorellae' group of different ciliate species from one lake, but clearly different Chlorella in one of those ciliate species occurring in another lake. The two Chlorella strains isolated from the same ciliate species, but from lakes having a 10-fold difference in underwater UV transparency, also presented a distinct physiological trait, such as the ability to synthesize UV-absorbing substances known as mycosporine-like amino acids (MAAs). Algal symbionts of all P. bursaria strains of different origin resolved in one clade apart from the other ciliate symbionts but split into two distinct lineages, suggesting the existence of a biogeographic pattern. Overall, our results suggest a high degree of species specificity but also hint at the importance of physiological adaptation in symbiotic Chlorella.

  4. Toxicity of reactive red 141 and basic red 14 to algae and waterfleas.

    PubMed

    Vinitnantharat, S; Chartthe, W; Pinisakul, A

    2008-01-01

    Textile wastewater normally has a visible color although it has low concentration. This may affect the aquatic ecosystem. Two dyestuffs, Reactive Red 141 (RR141) and Basic Red14 (BR14) were used as compound models. RR 141 is an anionic dye which has a big molecule whereas BR 14 is a cationic dye and has a small molecule. The target organisms for toxicity test were green algae (Chlorella sp.) and waterfleas (Moina macrocopa). The effect of humic acid on the toxicity of dyestuffs to test organisms was also investigated. From the observation of cell counts, Chlorophyll a and dry weight of algae in the dye solutions for 4 days, it was found that all parameters increased as times increased. This revealed that algae could utilize dyestuffs as a carbon source. However, BR14 gave higher absorbance than RR141 at the wavelength of 430 nm which competed to the Chlorophyll a for algal photosynthesis. This resulted in the 96-h EC50 of BR14 and RR141 to Chlorella sp. were 10.88 and 95.55 mg/L, respectively. As for dye toxicity to waterfleas, the 48-h LC50 of BR14 and RR141 to waterfleas were 4.91 and 18.26 mg/L, respectively. The high toxicity of BR14 to waterfleas related to the small molecule of dye could pass into the cell and was absorbed by organelles of waterfleas. Toxicity of BR14 in humic acid solution to Chlorella sp. showed less toxic than RR141 in humic acid solution. This dues to the negative charge of humic acid could bound with a positive charge of BR14, resulted in low amount of BR14 remaining in the bulk solution. The toxicity of BR14 and RR141 in humic acid solution to waterfleas was increased as humic acid increased. Hence, the proper treatment of textile wastewater to yield low concentration of dyes in the effluent before discharging to the natural water is needed. PMID:18845856

  5. Toxicity of reactive red 141 and basic red 14 to algae and waterfleas.

    PubMed

    Vinitnantharat, S; Chartthe, W; Pinisakul, A

    2008-01-01

    Textile wastewater normally has a visible color although it has low concentration. This may affect the aquatic ecosystem. Two dyestuffs, Reactive Red 141 (RR141) and Basic Red14 (BR14) were used as compound models. RR 141 is an anionic dye which has a big molecule whereas BR 14 is a cationic dye and has a small molecule. The target organisms for toxicity test were green algae (Chlorella sp.) and waterfleas (Moina macrocopa). The effect of humic acid on the toxicity of dyestuffs to test organisms was also investigated. From the observation of cell counts, Chlorophyll a and dry weight of algae in the dye solutions for 4 days, it was found that all parameters increased as times increased. This revealed that algae could utilize dyestuffs as a carbon source. However, BR14 gave higher absorbance than RR141 at the wavelength of 430 nm which competed to the Chlorophyll a for algal photosynthesis. This resulted in the 96-h EC50 of BR14 and RR141 to Chlorella sp. were 10.88 and 95.55 mg/L, respectively. As for dye toxicity to waterfleas, the 48-h LC50 of BR14 and RR141 to waterfleas were 4.91 and 18.26 mg/L, respectively. The high toxicity of BR14 to waterfleas related to the small molecule of dye could pass into the cell and was absorbed by organelles of waterfleas. Toxicity of BR14 in humic acid solution to Chlorella sp. showed less toxic than RR141 in humic acid solution. This dues to the negative charge of humic acid could bound with a positive charge of BR14, resulted in low amount of BR14 remaining in the bulk solution. The toxicity of BR14 and RR141 in humic acid solution to waterfleas was increased as humic acid increased. Hence, the proper treatment of textile wastewater to yield low concentration of dyes in the effluent before discharging to the natural water is needed.

  6. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

    PubMed

    Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng

    2014-07-15

    Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes. PMID:24922067

  7. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

    PubMed

    Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng

    2014-07-15

    Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes.

  8. A study of lipid secretion from the lichen symbionts, ascomycetous fungus Myelochroa leucotyliza and green alga Trebouxia sp.

    PubMed

    Arakawa-Kobayashi, Satoko; Kanaseki, Toku

    2004-06-01

    Lichens are symbionts of fungi and algae. Although wild fungi secrete lipids to form crystals, those grown in culture either alone or with algae do not secrete enough lipids to be crystallized. To investigate the mode of lipid secretion, we stimulated fungi cultured alone to form crystals. (1) The fungi had serpentine invaginations on the P-faces. These were formed as a consequence of secretory granule exocytosis. (2) Fungi cultured alone in normally used medium had on their P-faces intramembrane particle-cleared parts that also showed a serpentine configuration. (3) After the medium was fortified by further addition of glucose, the fungi cultured alone produced multiple lipid bodies and secretory granules, though no crystals were formed. (4) After the addition of filtered algal culture medium into the fungal culture medium that had been fortified, the fungi grown under this condition showed extracellular crystals. As fungi also showed extensive exocytotic activity, protein secretion seemed essential prior to lipid secretion. The place with no intramembrane particles was postulated to be the site through which lipids penetrate to the outside. (5) As we had identified crystals as atranorin, we made atranorin-containing liposome. The liposome released atranorin to the aqueous phase by the addition of albumin or albumin-like proteins. PMID:15099581

  9. First case of Chlorella wound infection in a human in Australia

    PubMed Central

    Hart, J; Mooney, L; Arthur, I; Inglis, T J J; Murray, R

    2014-01-01

    A 30-year-old man developed an infected knee wound 2 days after jumping his bicycle into a freshwater dam. He required repeated debridement and tissue grew bright green colonies typical of the alga Chlorella plus Aeromonas hydrophila. This, and one previously reported case, responded to surgical debridement and careful wound management. PMID:25356359

  10. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured

    PubMed Central

    de Koning, Audrey P; Keeling, Patrick J

    2006-01-01

    Background Loss of photosynthesis has occurred independently in several plant and algal lineages, and represents a major metabolic shift with potential consequences for the content and structure of plastid genomes. To investigate such changes, we sequenced the complete plastid genome of the parasitic, non-photosynthetic green alga, Helicosporidium. Results The Helicosporidium plastid genome is among the smallest known (37.5 kb), and like other plastids from non-photosynthetic organisms it lacks all genes for proteins that function in photosynthesis. Its reduced size results from more than just loss of genes, however; it has little non-coding DNA, with only one intron and tiny intergenic spaces, and no inverted repeat (no duplicated genes at all). It encodes precisely the minimal complement of tRNAs needed to translate the universal genetic code, and has eliminated all redundant isoacceptors. The Helicosporidium plastid genome is also highly structured, with each half of the circular genome containing nearly all genes on one strand. Helicosporidium is known to be related to trebouxiophyte green algae, but the genome is structured and compacted in a manner more reminiscent of the non-photosynthetic plastids of apicomplexan parasites. Conclusion Helicosporidium contributes significantly to our understanding of the evolution of plastid DNA because it illustrates the highly ordered reduction that occurred following the loss of a major metabolic function. The convergence of plastid genome structure in Helicosporidium and the Apicomplexa raises the interesting possibility that there are common forces that shape plastid genomes, subsequent to the loss of photosynthesis in an organism. PMID:16630350

  11. [Research status and prospect on hot water extract of Chlorella: the high value-added bioactive substance from Chlorella].

    PubMed

    Zhuang, Xiuyuan; Huang, Yingming; Zhang, Daojing; Tao, Liming; Li, Yuanguang

    2015-01-01

    Chlorella is nutritious and has been used as a functional food much earlier than the other microalgae. C. pyrenoidosa, the potential microalgae which is currently cultured and developed for the new strategic industry of biofuels production and biological CO2 fixation, is a new resource food announced by the Ministry of Health of the People's Republic of China late 2012. Accumulation of high value-added substances in C. pyrenoidosa during the cultivation for lipid makes it possible to reduce the costs for C. pyrenoidosa-based biofuels production. Among these potential substances, hot water extract of Chlorella (CE), commercially known as "Chlorella growth factor", is the unique one that makes Chlorella more precious than the other algae, and the market price of CE is high. It is believed that CE is effective in growth promotion and immunoregulation. However, there is no systematic analysis on the research status of CE and its bioactivity. The present report summarized recent research progress of CE and its bioactivity. Generally, besides the main effect on immunoregulation and tumor inhibition, CE was efficient in improving metabolic syndrome, scavenging for free radicals, protecting against ultraviolet damage, chelating heavy metals, and protecting liver and bowel. Several major challenges in CE research as well as its prospects were also analysed in the present report.

  12. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  13. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.

    PubMed

    Kim, Ga Vin; Choi, Woonyong; Kang, Dohyung; Lee, Shinyoung; Lee, Hyeonyong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70 °C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  14. Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp.

    PubMed

    Colina-Tenorio, Lilia; Miranda-Astudillo, Héctor; Cano-Estrada, Araceli; Vázquez-Acevedo, Miriam; Cardol, Pierre; Remacle, Claire; González-Halphen, Diego

    2016-04-01

    Mitochondrial F1FO-ATP synthase of chlorophycean algae is dimeric. It contains eight orthodox subunits (alpha, beta, gamma, delta, epsilon, OSCP, a and c) and nine atypical subunits (Asa1 to 9). These subunits build the peripheral stalk of the enzyme and stabilize its dimeric structure. The location of the 66.1kDa subunit Asa1 has been debated. On one hand, it was found in a transient subcomplex that contained membrane-bound subunits Asa1/Asa3/Asa5/Asa8/a (Atp6)/c (Atp9). On the other hand, Asa1 was proposed to form the bulky structure of the peripheral stalk that contacts the OSCP subunit in the F1 sector. Here, we overexpressed and purified the recombinant proteins Asa1 and OSCP and explored their interactions in vitro, using immunochemical techniques and affinity chromatography. Asa1 and OSCP interact strongly, and the carboxy-terminal half of OSCP seems to be instrumental for this association. In addition, the algal ATP synthase was partially dissociated at relatively high detergent concentrations, and an Asa1/Asa3/Asa5/Asa8/a/c10 subcomplex was identified. Furthermore, Far-Western analysis suggests an Asa1-Asa8 interaction. Based on these results, a model is proposed in which Asa1 spans the whole peripheral arm of the enzyme, from a region close to the matrix-exposed side of the mitochondrial inner membrane to the F1 region where OSCP is located. 3D models show elongated, helix-rich structures for chlorophycean Asa1 subunits. Asa1 subunit probably plays a scaffolding role in the peripheral stalk analogous to the one of subunit b in orthodox mitochondrial enzymes. PMID:26657474

  15. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf.

    PubMed

    Hume, B C C; D'Angelo, C; Smith, E G; Stevens, J R; Burt, J; Wiedenmann, J

    2015-02-27

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf.

  16. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf.

    PubMed

    Hume, B C C; D'Angelo, C; Smith, E G; Stevens, J R; Burt, J; Wiedenmann, J

    2015-01-01

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf. PMID:25720577

  17. Nereida ignava gen. nov., sp. nov., a novel aerobic marine alpha-proteobacterium that is closely related to uncultured Prionitis (alga) gall symbionts.

    PubMed

    Pujalte, M J; Macián, M C; Arahal, D R; Ludwig, W; Schleifer, K H; Garay, E

    2005-03-01

    A Gram-negative, slightly halophilic, non-pigmented, strictly aerobic, chemo-organotrophic bacterium was isolated from Mediterranean sea water off the Spanish coast near Valencia. This strain was poorly reactive, being unable to grow in most carbon sources analysed in minimal medium. However, good growth was observed when more complex media and longer incubation times were used. Phylogenetic analysis based on an almost complete 16S rRNA gene sequence placed strain 2SM4(T) within the Roseobacter group, in the vicinity of uncultured bacteria described as gall symbionts of several species of the red alga Prionitis. Sequence similarity values between strain 2SM4(T) and the closest neighbouring species were below 95.0 %. The cellular fatty acid composition of the Mediterranean strain confirmed its position within the 'Alphaproteobacteria', sharing 18 : 1omega7c as the major cellular fatty acid. The phylogenetic distance from any taxon with a validly published name and also a number of distinguishing features support the designation of strain 2SM4(T) as representing a novel genus and species, for which the name Nereida ignava gen. nov., sp. nov. is proposed. The type strain is 2SM4(T) (=CECT 5292(T)=DSM 16309(T)=CIP 108404(T)=CCUG 49433(T)).

  18. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  19. Description of Lecythium terrestris sp. nov. (Chlamydophryidae, Cercozoa), a Soil Dwelling Protist Feeding on Fungi and Algae.

    PubMed

    Dumack, Kenneth; Müller, Marina E H; Bonkowski, Michael

    2016-04-01

    Testate amoebae have been frequently studied by protistologists, but still little information is available on some groups like the Chlamydophryidae. These amoebae are difficult to culture and therefore quantitative information on their morphology, phylogeny and ecology is scarce. We isolated and cultured a small testate amoeba from an agricultural field at Müncheberg near Berlin, Germany. Morphological analyses revealed it to be a new species of the genus Lecythium. We describe Lecythium terrestris sp. nov. and present its morphology, mycophagous and algivorous feeding habits and its ability to form cell aggregates by fusion. Using small-subunit ribosomal RNA gene phylogeny, we could confirm the phylogenetic position of the genus Lecythium among the Cercozoa where it groups closely to Pseudodifflugiidae (Tectofilosida). PMID:26874465

  20. Description of Lecythium terrestris sp. nov. (Chlamydophryidae, Cercozoa), a Soil Dwelling Protist Feeding on Fungi and Algae.

    PubMed

    Dumack, Kenneth; Müller, Marina E H; Bonkowski, Michael

    2016-04-01

    Testate amoebae have been frequently studied by protistologists, but still little information is available on some groups like the Chlamydophryidae. These amoebae are difficult to culture and therefore quantitative information on their morphology, phylogeny and ecology is scarce. We isolated and cultured a small testate amoeba from an agricultural field at Müncheberg near Berlin, Germany. Morphological analyses revealed it to be a new species of the genus Lecythium. We describe Lecythium terrestris sp. nov. and present its morphology, mycophagous and algivorous feeding habits and its ability to form cell aggregates by fusion. Using small-subunit ribosomal RNA gene phylogeny, we could confirm the phylogenetic position of the genus Lecythium among the Cercozoa where it groups closely to Pseudodifflugiidae (Tectofilosida).

  1. Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice.

    PubMed

    Nakashima, Yuya; Ohsawa, Ikuroh; Konishi, Fumiko; Hasegawa, Takashi; Kumamoto, Shoichiro; Suzuki, Yoshihiko; Ohta, Shigeo

    2009-10-30

    Oxidative stress is one of the major causes of age-dependent memory loss and cognitive decline. Cytotoxic aldehydes are derived from lipid peroxides and their accumulation may be responsible for age-dependent neurodegeneration, including Alzheimer's disease. Since aldehyde dehydrogenases detoxify such aldehydes, we constructed transgenic mice with mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity deficiency (DAL101 mice) as an age-dependent dementia model. This model animal is age-dependently progressed by persistent oxidative stress, and thus enables us to investigate foods that prevent dementia. Since Chlorella, a kind of alga, exhibits various anti-oxidative effects, we investigated whether Chlorella has the potential to prevent age-dependent cognitive impairment. We fed Chlorella to DAL101 mice and investigated its effects on oxidative stress and the progression of cognitive decline using the Morris water-maze and object recognition tests. The diet with Chlorella tended to reduce oxidative stress and significantly prevented the decline of cognitive ability, as shown by both methods. Moreover, consumption of Chlorella decreased the number of activated astrocytes in the DAL101 brain. These findings suggest that the prolonged consumption of Chlorella has the potential to prevent the progression of cognitive impairment.

  2. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies.

    PubMed

    Yashchenko, Varvara V; Gavrilova, Olga V; Rautian, Maria S; Jakobsen, Kjetill S

    2012-05-01

    Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed.

  3. Experiments on the accumulation of lindane (gamma-BHC) by the primary producers Chlorella spec. and Chlorella pyrenoidosa.

    PubMed

    Hansen, P D

    1979-01-01

    Experiments were performed on the accumulation of the pesticide lindane (gamma-isomer of BHC) by two algae with different surfaces. An analytical procedure was developed for the gas chromatographic determinnation of lindane. At room temperature, lindane had a water solubility of 7.8 mg/L in distilled water and 6.7 mg/L in tap water. Under the experimental conditions of 10 to 100 microgram/L, 2.3% of the dissolved lindane was lost through adsorption on the glass walls of the equipment and 0.2% through evaporation. The recovery rate of lindane was 98% for the water samples and more than 90% for Chlorella spec. The tolerance in the gas chromatographic measurements amounted to 1.2%. Investigations on the effect of lindane on the growth of Chlorella spec. revealed irreparable damage to the algae cells through loss of chlorophyll, coagulation, and complete sedimentation at concentrations greater than 300 microgram/L. The experiments on sublethal accumulation showed the development of a state of equilibrium between the amount of lindane per cell and in the surrounding water with lindane concentrations of 10 to 100 microgram/L. The lindane was adsorptively attached to the algal cells within a few hr, and after three days lindane stabilized in the cells. The gelatinous surface of the algae increases the accumulation of lindane. PMID:93882

  4. An improved colony PCR procedure for genetic screening of Chlorella and related microalgae.

    PubMed

    Wan, Minxi; Rosenberg, Julian N; Faruq, Junaid; Betenbaugh, Michael J; Xia, Jinlan

    2011-08-01

    A colony PCR technique was applied for both genomic and chloroplast DNA in the green microalgae Chlorella. Of five different lysis buffers, Chelex-100 was superior for DNA extraction, PCR and DNA storage. It also was insensitive to variations in cell density. The conditions established for an improved PCR formulation are applicable for screening of genetically-engineered transformants as well as bioprospecting of natural microalgal isolates. Besides multiple Chlorella species, we also demonstrate the efficacy of Chelex-100 for colony PCR with a number of other microalgal strains, including Chlamydomonas reinhardtii, Dunaliella salina, Nannochloropsis sp., Coccomyxa sp., and Thalassiosira pseudonana.

  5. Effects of nickel and pH on the growth of Chlorella vulgaris

    SciTech Connect

    Lustigman, B.; Lee, L.H.; Khalil, A.

    1995-07-01

    Chlorella is a spherical, unicellular, eukaryotic green algae. It is an obligate photoautotrophy containing chlorophylls a and b. It is a frequent symbiont of many other organisms such as paramecium, hydra and sponges and is important in fresh and marine environments, as well as in the soil. For these reasons, it has been suggested that Chlorella be used for metabolic studies as an indicator of environmental pollution. Ability of microorganisms to grow in environments containing high levels of toxic metals is frequently due to the organisms` capacity for adsorption of these ions and the role that they may play as essential cofactors in metalloenzymes as is the case for nickel. The purpose of this study was to determine the effect of nickel on the growth of Chlorella vulgaris. 19 refs., 4 figs., 1 tab.

  6. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  7. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters.

    PubMed

    He, P J; Mao, B; Lü, F; Shao, L M; Lee, D J; Chang, J S

    2013-10-01

    Impacts of Chlorella vulgaris with or without co-existing bacteria on the removal of nitrogen, phosphorus and organic matter from wastewaters were studied by comparing the wastewater treatment effects between an algae-bacteria consortium and a stand-alone algae system. In the algae-bacteria system, C.vulgaris played a dominant role in the removal of nitrogen and phosphorus, while bacteria removed most of the organic matter from the wastewater. When treating unsterilized wastewater, bacteria were found to inhibit the growth of algae at >231 mg/L dissolved organic carbon (DOC). Using the algae-bacteria consortium resulted in the removal of 97% NH4(+), 98% phosphorus and 26% DOC at a total nitrogen (TN) level of 29-174 mg/L. The reaction rate constant (k) values in sterilized and unsterilized wastewaters were 2.17 and 1.92 mg NH4(+)-N/(mg algal cell ·d), respectively.

  8. Comparative analysis of astaxanthin and its esters in the mutant E1 of Haematococcus pluvialis and other green algae by HPLC with a C30 column.

    PubMed

    Peng, Juan; Xiang, WenZhou; Tang, QuanMing; Sun, Ni; Chen, Feng; Yuan, JianPing

    2008-12-01

    A gradient reversed-phase high-performance liquid chromatography (HPLC) method using a C30 column was developed for the simultaneous determination of astaxanthin, astaxanthin monoesters and astaxanthin diesters in the green algae Chlorococcum sp., Chlorella zofingiensis, Haematococcus pluvialis and the mutant E1, which was obtained from the mutagenesis of H. pluvialis by exposure to UV-irradiation and ethyl methanesulphonate (EMS) with subsequent screening using nicotine. The results showed that the contents of total astaxanthins including free astaxanthin and astaxanthin esters ranged from 1.4 to 30.9 mg/g dry biomass in these green algae. The lower total astaxanthin levels (< 2 mg/g dry biomass) were detected in the green algae Chlorococcum sp. and C. zofingiensis. The higher total astaxanthin levels (>16 mg/g dry biomass) were found in the green alga H. pluvialis and its mutant E1. It is notable that the mutant E1 is found to have considerably higher amounts of total astaxanthin (30.9 mg/g) as compared to the wild strain of H. pluvialis (16.1 mg/g). This indicates that UV-irradiation and EMS compound mutagenesis with subsequent screening using nicotine is an effective method for breeding of a high-producing astaxanthin strain of H. pluvialis. In addition, the green alga C. zofingiensis had a remarkably higher percentage of astaxanthin diesters (76.3% of total astaxanthins) and a remarkably lower percentage of astaxanthin monoesters (18.0% of total astaxanthins) in comparison with H. pluvialis (35.5% for diesters and 60.9% for monoesters), the mutant E1 (49.1% and 48.1%) and Chlorococcum sp. (18.0% and 58.6%).

  9. Viruses of eukaryotic green algae. Progress report, August 1, 1982-July 1, 1984

    SciTech Connect

    Van Etten, J.L.

    1984-01-01

    The virus, PBCV-1, which infects the eukaryotic, green alga, Chlorella-NC64A has been characterized and we have begun to look at detailed events associated with its growth cycle. In addition, we have recently discovered other dsDNA viruses from natural sources which replicate in Chlorella NC64A. These viruses can be distinguished from PBCV-1 and from each other by plaque morphology, DNA restriction patterns, and by their resistance to certain restriction endonucleases.

  10. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  11. Chlorella intake attenuates reduced salivary SIgA secretion in kendo training camp participants

    PubMed Central

    2012-01-01

    Background The green alga Chlorella contains high levels of proteins, vitamins, and minerals. We previously reported that a chlorella-derived multicomponent supplement increased the secretion rate of salivary secretory immunoglobulin A (SIgA) in humans. Here, we investigated whether intake of this chlorella-derived supplement attenuated the reduced salivary SIgA secretion rate during a kendo training camp. Methods Ten female kendo athletes participated in inter-university 6-day spring and 4-day summer camps. They were randomized into two groups; one took placebo tablets during the spring camp and chlorella tablets during the summer camp, while the other took chlorella tablets during the spring camp and placebo tablets during the summer camp. Subjects took these tablets starting 4 weeks before the camp until post-camp saliva sampling. Salivary SIgA concentrations were measured by ELISA. Results All subjects participated in nearly all training programs, and body-mass changes and subjective physical well-being scores during the camps were comparable between the groups. However, salivary SIgA secretion rate changes were different between these groups. Salivary SIgA secretion rates decreased during the camp in the placebo group (before vs. second, middle, and final day of camp, and after the camp: 146 ± 89 vs. 87 ± 56, 70 ± 45, 94 ± 58, and 116 ± 71 μg/min), whereas no such decreases were observed in the chlorella group (121 ± 53 vs. 113 ± 68, 98 ± 69,115 ± 80, and 128 ± 59 μg/min). Conclusion Our results suggest that a use of a chlorella-derived dietary supplement attenuates reduced salivary SIgA secretion during a training camp for a competitive sport. PMID:23227811

  12. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  13. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    PubMed

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur. PMID:27283686

  14. Growth kinetics and yield study on Chlorella pyrenoidosa in chemically defined media

    SciTech Connect

    Joung, J.J.; Akin, C.

    1983-01-01

    A Chlorella culture free from heterotrophic bacteria was obtained by eliminating the bacteria with successive use of antibiotics and agar plants. The purified Chlorella was cultured in chemically defined media. Under a photon flux (16.7 mw/cmS) similar to insolation, both heterotrophic and mixotrophic cultures were luxurious but the growth rates of autotrophic cultures were reduced substantially. The Chlorella culture grew most rapidly at 30 C in the absence of heterotrophic bacteria, and the highest specific growth rates were 1.43 x 10 h and 0.46 x 10 h for mixotrophic and autotrophic cultures, respectively. The highest photosynthetic efficiency over its growth period was 2.9% for autotrophic cultures. Elimination of heterotrophic bacteria from Chlorella cultures improved the algal growth rate as well as biomass yield significantly. A parasite of 0.1- m size was identified. The motile microorganism played an important role in the growth of the Chlorella and appeared to be common to green algae. 16 references, 2 tables.

  15. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    PubMed

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  16. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  17. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities

    PubMed Central

    Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an

  18. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities.

    PubMed

    Bell, Tisza A S; Prithiviraj, Bharath; Wahlen, Brad D; Fields, Matthew W; Peyton, Brent M

    2015-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal "crop." In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open

  19. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE PAGES

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  20. Large-scale production and plaque titration of European Chlorella viruses.

    PubMed

    Bornemann, C; Follmann, H

    1997-09-01

    Viruses of the exsymbiotic green freshwater algae Chlorella, family Phycodnaviridae, appear to be distributed worldwide but those found in North American algae have been characterized in detail. The distinct European Chlorella viruses were studied and it was necessary to adapt both large scale purification and the plaque titration assay to the host organisms' different physiology and to our specific laboratory needs. In the virus purification scheme, a precipitation step with polyethylene glycol was introduced which allows high yield recovery of infective particles from large volumes by rapid low-speed centrifugation. In the plaque assay, a standardized algal culture was introduced. The influence of other factors, e.g. circadian rhythm, on plaque growth is also described.

  1. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  2. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  3. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  4. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  5. Combined toxicity of pesticide mixtures on green algae and photobacteria.

    PubMed

    Liu, Shu-Shen; Wang, Cheng-Lin; Zhang, Jin; Zhu, Xiang-Wei; Li, Wei-Ying

    2013-09-01

    Different organisms have diverse responses to the same chemicals or mixtures. In this paper, we selected the green algae Chlorella pyrenoidosa (C. pyrenoidosa) and photobacteria Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) as target organisms and determined the toxicities of six pesticides, including three herbicides (simetryn, bromacil and hexazinone), two fungicides (dodine and metalaxyl) and one insecticide (propoxur), and their mixtures by using the microplate toxicity analysis. The toxicities of three herbicides to C. pyrenoidosa are much higher than those to V. qinghaiensis, and the toxicities of metalaxyl and propoxur to V. qinghaiensis are higher than those to C. pyrenoidosa, while the toxicity of dodine to C. pyrenoidosa is similar to those to V. qinghaiensis. Using the concentration addition as an additive reference model, the binary pesticide mixtures exhibited different toxicity interactions, i.e., displayed antagonism to C. pyrenoidosa but synergism to V. qinghaiensis. However, the toxicities of the multi-component mixtures of more than two components are additive and can be predicted by the concentration addition model.

  6. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa.

    PubMed

    Zhang, Wenjun; Cheng, Cheng; Chen, Li; Di, Shanshan; Liu, Chunxiao; Diao, Jinling; Zhou, Zhiqiang

    2016-09-01

    Enantioselectivity in ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to Chlorella pyrenoidosa was studied. The 96h-EC50 values of rac- and the four enantiomers were 9.005, 6.616, 8.311, 4.290 and 9.410 mg/L, respectively. At the concentrations of 8 mg/L and 14 mg/L, the contents of pigments exposed in rac-, enantiomer-2 and 4 were higher than that exposed in enantiomer-1 and 3. The superoxide dismutase (SOD) and catalase (CAT) activity of algae exposed to enantiomer-1 and 3 was higher than that exposed to the rac-, enantiomer-2 and 4 at three levels. In addition, the malondialdehyde (MDA) concentrations in algae disposed with enantiomer-1 and 3 were increased remarkably at three levels. For the digestion experiment, the half-lives of four enantiomers in algae suspension were 28.06, 19.10, 21.13, 15.17 days, respectively. During the uptake experiment, the order of the concentrations of cyproconazole in algae cells was enantiomer-4, 2, 3 and 1. Based on these data, we concluded that ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to C. pyrenoidosa were enantioselective, and such enantiomeric differences must be taken into consideration when assessing the risk of cyproconazole to environment. PMID:27268794

  7. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system.

    PubMed

    Chi, Zhanyou; Elloy, Farah; Xie, Yuxiao; Hu, Yucai; Chen, Shulin

    2014-01-01

    Using microalgae to capture CO2 from flue gas is an ideal way to reduce CO2 emission, but this is challenged by the high cost of carbon capture and transportation. To address this problem, a bicarbonate-based integrated carbon capture and algae production system (BICCAPS) has been proposed, in which bicarbonate is used for algae culture, and the regenerated carbonate from this process can be used to capture more CO2. High-concentration bicarbonate is obligate for the BICCAPS. Thus, different strains of microalgae and cyanobacteria were tested in this study for their capability to grow in high-concentration NaHCO3. The highest NaHCO3 concentrations they are tolerant to were determined as 0.30 M for Synechocystis sp. PCC6803, 0.60 M for Cyanothece sp., 0.10 M for Chlorella sorokiniana, 0.60 M for Dunaliella salina, and 0.30 M for Dunaliella viridis and Dunaliella primolecta. In further study, biomass production from culture of D. primolecta in an Erlenmeyer flask with either 0.30 M NaHCO3 or 2 % CO2 bubbling was compared, and no significant difference was detected. This indicates BICCAPS can reach the same biomass productivity as regular CO2 bubbling culture, and it is promising for future application.

  8. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system.

    PubMed

    Chi, Zhanyou; Elloy, Farah; Xie, Yuxiao; Hu, Yucai; Chen, Shulin

    2014-01-01

    Using microalgae to capture CO2 from flue gas is an ideal way to reduce CO2 emission, but this is challenged by the high cost of carbon capture and transportation. To address this problem, a bicarbonate-based integrated carbon capture and algae production system (BICCAPS) has been proposed, in which bicarbonate is used for algae culture, and the regenerated carbonate from this process can be used to capture more CO2. High-concentration bicarbonate is obligate for the BICCAPS. Thus, different strains of microalgae and cyanobacteria were tested in this study for their capability to grow in high-concentration NaHCO3. The highest NaHCO3 concentrations they are tolerant to were determined as 0.30 M for Synechocystis sp. PCC6803, 0.60 M for Cyanothece sp., 0.10 M for Chlorella sorokiniana, 0.60 M for Dunaliella salina, and 0.30 M for Dunaliella viridis and Dunaliella primolecta. In further study, biomass production from culture of D. primolecta in an Erlenmeyer flask with either 0.30 M NaHCO3 or 2 % CO2 bubbling was compared, and no significant difference was detected. This indicates BICCAPS can reach the same biomass productivity as regular CO2 bubbling culture, and it is promising for future application. PMID:24092450

  9. Exploitation or cooperation? Evolution of a host (ciliate)-benefiting alga in a long-term experimental microcosm culture.

    PubMed

    Nakajima, Toshiyuki; Matsubara, Toshiyuki; Ohta, Yuko; Miyake, Daisuke

    2013-09-01

    Controversy persists as to whether the acquisition of beneficial metabolic functions via endosymbiosis can occur suddenly on an evolutionary time scale. In this study, an early stage of endosymbiotic associations, which evolved from previously unassociated auto (photo)- and heterotrophic unicellular organisms was analyzed using an experimental ecosystem model, called CET microcosm. This ecosystem model was composed of a green alga (Micractinium sp.; formerly described as Chlorella vulgaris), a bacterium (Escherichia coli), and a ciliate (Tetrahymena thermophila). Our previous study using a CET microcosm that was cultured 3-5 years revealed that fitness of the ciliate increased by harboring algal cells within its own cells. This fact suggested three possibilities: (i) the ciliate evolved the ability to exploit intracellular algal cells ("exploiter ciliate hypothesis"), (ii) the alga evolved the ability to benefit the host ciliate by providing photosynthates ("cooperator alga hypothesis"), and (iii) a combination of (i) and (ii). To test these hypotheses, two-by-two co-cultures were conducted between the ancestral or derived ciliate and the ancestral or derived alga. The experimental results demonstrated that a cooperative alga evolved in the microcosm, although the possibility remains that an exploitative genotype of the ciliate might also exist in the population as a polymorphism. Remarkably, an algal isolate prolonged the longevity of not only the isolated ciliate, but also the ancestral ciliate. This result suggests that once a cooperative algal genotype evolves in a local population, it can then be transmitted to other individuals of the prospective host species and spread rapidly beyond the local range due to its positive effect on the host fitness. Such transmission suggests the possibility of a sudden acquisition of beneficial autotrophic function by the pre-associated host.

  10. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  11. Changes in salivary flow rate following Chlorella-derived multicomponent supplementation.

    PubMed

    Otsuki, Takeshi; Shimizu, Kazuhiro; Zempo-Miyaki, Asako; Maeda, Seiji

    2016-07-01

    Decreases in saliva secretion compromise food mastication and swallowing, reduce mucosal immune function, and increase the risk for oral diseases like dental caries. Chlorella is a green alga that contains a variety of nutrients including amino acids, vitamins, and minerals. In our previous study, Chlorella-derived multicomponent supplementation did not affect salivary flow rates in healthy young individuals, but Chlorella-derived supplementation attenuated a decrease in saliva secretion that was observed during a kendo training camp. Hence, we hypothesized that Chlorella-derived supplementation increases saliva secretion in individuals with lower rates of saliva flow. Sixty-four subjects took Chlorella-derived tablets for four weeks. Before and after supplementation, saliva samples were collected by chewing cotton. In the complete study group, there was no difference in saliva production before and after supplementation (1.91 ± 0.11 ml/min before vs 2.01 ± 0.12 ml/min after). Analysis of subgroups based on saliva production before supplementation found an increase in saliva secretion in the lower saliva flow group (1.18 ± 0.06 vs 1.38 ± 0.08 ml/min), but no change in the higher saliva flow group (2.63 ± 0.11 vs 2.64 ± 0.15 ml/min). These results suggest that Chlorella-derived multicomponent supplementation increases saliva production in individuals with lower levels of saliva secretion. PMID:27499578

  12. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  13. Stress response of Chlorella pyrenoidosa to nitro-aromatic compounds.

    PubMed

    Xu, Chang; Wang, Ruihua; Zhang, Y F; Cheng, P; Choi, Martin M F; Poon, Karen

    2015-03-01

    Handling of two nitro-aromatic compounds, 4-nitroaniline (4NA) and 4-nitrophenol (4NP), simultaneously by Chlorella pyrenoidosa was investigated. Algae would secrete or degrade nitro-aromatic compounds depending on different environmental conditions, in which the mode of handling was determined by the relative formation and degradation rate of the compound. Repeated intermittent trigger with externally added 4NA would induce the continuous secretion of 4NA by algae. Simultaneous exposure of both 4NA and 4NP to algae at normal condition would induce the algae to secrete both compounds. An increase in 4NA exposure concentration would elevate both 4NA and 4NP secretion, and that would be inhibited by the stress conditions of starving or lack of oxygen. Increased 4NA degradation per production rate induced by starving or lack of oxygen might explain the subsequent decrease in 4NA secretion in the presence of 4NP in algae. For 4NP in the presence of 4NA, secretion at normal condition was completely stopped and turned to degradation mode in stress conditions. The decreased formation and increased degradation of 4NP during starving for replenishing energy would explain the net degradation of 4NP in starving condition. The condition of lack of oxygen would inhibit the 4NP formation from 4NA via oxidative deamination, while the degradation of 4NP might not be significantly affected because alternative pathway of degradation via nitro-reduction was available. It may lead to the degradation rate exceeding the formation and explain the net degradation of 4NP in the condition of lack of oxygen.

  14. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  15. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  16. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  17. Investigating the feasibility of growing algae for fuel in Southern nevada

    NASA Astrophysics Data System (ADS)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  18. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers

    PubMed Central

    Schuurmans, R. Milou; van Alphen, Pascal; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Hellingwerf, Klaas J.

    2015-01-01

    The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively. PMID:26394153

  19. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers.

    PubMed

    Schuurmans, R Milou; van Alphen, Pascal; Schuurmans, J Merijn; Matthijs, Hans C P; Hellingwerf, Klaas J

    2015-01-01

    The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively. PMID:26394153

  20. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae. PMID:26841229

  1. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae.

  2. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W

    PubMed Central

    Blanc, Guillaume; Duncan, Garry; Agarkova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Van Etten, James L.

    2010-01-01

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes. PMID:20852019

  3. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    SciTech Connect

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangailinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Etten, James L. Van

    2010-05-06

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

  4. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex.

    PubMed

    Blanc, Guillaume; Duncan, Garry; Agarkova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D; Grigoriev, Igor V; Claverie, Jean-Michel; Van Etten, James L

    2010-09-01

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes. PMID:20852019

  5. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.

    PubMed

    Nancucheo, Ivan; Barrie Johnson, D

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12-14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph "Acidocella aromatica." The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed.

  6. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    PubMed Central

    Ňancucheo, Ivan; Barrie Johnson, D.

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10–50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12–14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph “Acidocella aromatica.” The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed. PMID:22973267

  7. The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate.

    PubMed

    Hou, Qingjie; Nie, Changliang; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yang, Zhigang

    2016-10-01

    Five strains algae (Golenkinia sp. SDEC-16, Chlorella vulgaris, Selenastrum capricornutum, Scenedesmus SDEC-8 and Scenedesmus SDEC-13) were screened as an effective way to promote recover electricity from MFC for kitchen waste anaerobically digested effluent (KWADE) treatment. The highest OCV, power density, biomass concentration and total lipid content were obtained with Golenkinia sp. SDEC-16 as the co-inoculum, which were 170mV, 6255mWm(-3), 325mgL(-1) and 38%, respectively. Characteristics of the organics in KWADE were analyzed, and the result showed that the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions during the operation. Maximum COD and TN removal efficiency were 43.59% and 37.39% when inoculated with Golenkinia sp. SDEC-16, which were roughly 3.22 and 3.04 times higher than that of S. capricornutum. This study demonstrated that Golenkinia sp. SDEC-16 was a promising species for bioelectricity generation, lipid production and KWADE treatment.

  8. The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate.

    PubMed

    Hou, Qingjie; Nie, Changliang; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yang, Zhigang

    2016-10-01

    Five strains algae (Golenkinia sp. SDEC-16, Chlorella vulgaris, Selenastrum capricornutum, Scenedesmus SDEC-8 and Scenedesmus SDEC-13) were screened as an effective way to promote recover electricity from MFC for kitchen waste anaerobically digested effluent (KWADE) treatment. The highest OCV, power density, biomass concentration and total lipid content were obtained with Golenkinia sp. SDEC-16 as the co-inoculum, which were 170mV, 6255mWm(-3), 325mgL(-1) and 38%, respectively. Characteristics of the organics in KWADE were analyzed, and the result showed that the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions during the operation. Maximum COD and TN removal efficiency were 43.59% and 37.39% when inoculated with Golenkinia sp. SDEC-16, which were roughly 3.22 and 3.04 times higher than that of S. capricornutum. This study demonstrated that Golenkinia sp. SDEC-16 was a promising species for bioelectricity generation, lipid production and KWADE treatment. PMID:27441827

  9. Treating sewage using coimmobilized system of Chlorella pyrenoidosa and activated sludge.

    PubMed

    Xiong, Z H; Ma, H J; Huang, G L; Pan, H; Sun, C Z

    2007-01-01

    Chlorella pyrenoidosa was coimmobilized with activated sludge to produce algae-bacteria beads for sewage treatment. Hydrolysis/acidogenesis pretreatment could improve the symbiotic microenvironment of coimmobilized Chlorella pyrenoidosa and activated sludge, and as a result, promote the removal of nutrients (COD(cr), inorganic nitrogen and inorganic phosphorus) in the sewage. A photo-bioreactor combining hydrolysis/acidogenesis pretreatment and coimmobilized technique was designed to treat sewage continuously. The results show that, the removal efficiencies of COD(cr), NH4(+)-N and TP reached steady state after 4-days of experiment. The removal efficiencies of COD(cr), NH4(+)-N and TP were 59.6%, 59.0% and 60.3% respectively.

  10. Comparative toxicity and structure-activity in Chlorella and Tetrahymena: Monosubstituted phenols

    SciTech Connect

    Jaworska, J.S.; Schultz, T.W. )

    1991-07-01

    The relative toxicity of selected monosubstituted phenols has been assessed by Kramer and Truemper in the Chlorella vulgaris assay. The authors examined population growth inhibition of this simple green algae under short-term static conditions for 33 derivatives. However, efforts to develop a strong predictive quantitative structure-activity relationship (QSAR) met with limited success because they modeled across modes of toxic action or segregated derivatives such as positional isomers (i.e., ortho-, meta-, para-). In an effort to further their understanding of the relationships of ecotoxic effects of phenols, the authors have evaluated the same derivatives reported by Kramer and Truemper in the Tetrahymena pyriformis population growth assay, compared the responses in both systems and developed QSARs for the Chlorella vulgaris data based on mechanisms of action.

  11. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    PubMed

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin. PMID:25703935

  12. [Studies on chemical compounds of Chlorella sorokiniana].

    PubMed

    Zhang, Ling; Liu, Ping-huai; Wu, Jiao-na; Yang, Guo-fu; Suo, Yang-yang; Luo, Ning; Chen, Chen

    2015-04-01

    Chemical constituents of Chlorella sorokiniana were isolated and purified by repeated column chromatographies, over silicagel and Sephadex LH-20. Their structures were identified on the basis of physicochemical properties and spectroscopic data analysis. Five compounds were obtained from the petroleum ether extract of Chlorella sorokiniana, and their structures were identified as (22E, 24R)-5alpha, 3beta-epidioxiergosta-6, 22-dien-3beta-ol(1),(24S)-ergosta-7-en-3beta-ol(2), loliolide(3), stigmasta-7,22-dien-3beta,5alpha,6alpha-triol(4), and 3beta-hydroxy-5alpha,6alpha-epoxy-7-megastigmen-9-one(5). The main liposoluble fractions from Chlorella sorokiniana maiuly contain fatty acids, alkyl acids and olefine acids. Components 1-5 were isolated from the genus Chlorella for the first time.

  13. Glutamic Acid Decarboxylation in Chlorella12

    PubMed Central

    Lane, T. R.; Stiller, Mary

    1970-01-01

    The decarboxylation of endogenous free glutamic acid by Chlorella pyrenoidosa, Marburg strain, was induced by a variety of metabolic poisons, by anaerobic conditions, and by freezing and thawing the cells. The rate of decarboxylation was proportional to the concentration of inhibitor present. Possible mechanisms which relate the effects of the various conditions on glutamate decarboxylation and oxygen consumption by Chlorella are discussed. Images PMID:5429350

  14. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (p<0.1) and a positive association between chlorella-induced changes in global hypermethylation and urinary 1-OHP (p<0.01). Therefore, our study suggests chlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms.

  15. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading.

    PubMed

    Shriwastav, Amritanshu; Gupta, Sanjay Kumar; Ansari, Faiz Ahmad; Rawat, Ismail; Bux, Faizal

    2014-12-01

    Chlorella sorokiniana can sustain growth in conditions hostile to other species, and possesses good nutrient removal and lipid accumulation potentials. However, the effects of variable nutrient levels (N and P) in wastewaters on growth, productivity, and nutrient uptake by C. sorokiniana have not been studied in detail. This study demonstrates the ability of this alga to sustain uniform growth and productivity, while regulating the relative nutrient uptake in accordance to their availability in the bulk medium. These results highlight the potential of C. sorokiniana as a suitable candidate for fulfilling the coupled objectives of nutrient removal and biomass production for bio-fuel with wastewaters having great variability in nutrient levels.

  16. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  17. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications. PMID:25537445

  18. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    PubMed Central

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  19. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    PubMed

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  20. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    PubMed

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  1. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    PubMed

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain.

  2. [Optimization of Chlorella pyrenoidosa-15 photoheterotrophic culture and its use in wastewater treatment].

    PubMed

    Wang, Xiu-jin; Li, Zhao-sheng; Xing, Guan-lan; Li, Zhuo-ning; Yuan, Hong-li; Yang, Jin-shui

    2012-08-01

    To improve the biomass and lipid productivity of the microalgae Chlorella pyrenoidosa-15, the carbon and nitrogen sources were screened to culture it heterotrophically. The best carbon and nitrogen sources were glucose and soy peptone, respectively. The carbon and nitrogen concentrations were optimized with the help of response surface design. The maximum biomass productivity was predicted to be 0.62 g x (L x d)(-1) with glucose and soy peptone concentrations of 17.53 g x L(-1) and 8.67 g x L(-1), respectively. The results of response surface design were validated with biomass productivity of 0.63 g x (L x d)(-1) and lipid content of 19.25%. The lipid productivity reached 121.3 mg x (L x d)(-1). In the research of Chlorella pyrenoidosa-15 cultured in non-autoclaved Beijing urban wastewater, the maximum algae biomass dry weight of 1.00 g x L(-1) was achieved with a lipid content of 24.12%. Results also showed that the treatment using Chlorella pyrenoidosa-15 effectively reduced the COD values and total nitrogen content in the wastewater, with a COD degradation rate of 80.9%, and a 69% decrease in total nitrogen content. PMID:23213898

  3. Initial Events Associated with Virus PBCV-1 Infection of Chlorella NC64A

    PubMed Central

    Thiel, Gerhard; Moroni, Anna; Dunigan, David; Van Etten, James L.

    2010-01-01

    Chlorella viruses (or chloroviruses) are very large, plaque-forming viruses. The viruses are multilayered structures containing a large double-stranded DNA genome, a lipid bilayered membrane, and an outer icosahedral capsid shell. The viruses replicate in certain isolates of the coccal green alga, Chlorella. Sequence analysis of the 330-kbp genome of Paramecium bursaria Chlorella virus 1 (PBCV-1), the prototype of the virus family Phycodnaviridae, reveals <365 protein-encoding genes and 11 tRNA genes. Products of about 40% of these genes resemble proteins of known function, including many that are unexpected for a virus. Among these is a virus-encoded protein, called Kcv, which forms a functional K+ channel. This chapter focuses on the initial steps in virus infection and provides a plausible role for the function of the viral K+ channel in lowering the turgor pressure of the host. This step appears to be a prerequisite for delivery of the viral genome into the host. PMID:21152366

  4. Effects of Pb(Ⅱ) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription.

    PubMed

    Xiong, Bang; Zhang, Wei; Chen, Lin; Lin, Kuang-Fei; Guo, Mei-Jin; Wang, Wei-Liang; Cui, Xin-Hong; Bi, Hua-Song; Wang, Bin

    2014-11-01

    Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms.

  5. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth).

  6. Size-dependent toxicity of silica nano-particles to Chlorella kessleri.

    PubMed

    Fujiwara, Kitao; Suematsu, Hitoshi; Kiyomiya, Emiko; Aoki, Motohide; Sato, Mamiko; Moritoki, Nobuko

    2008-08-01

    SiO(2) nano-particles were found to exhibit size-dependent toxicity toward the alga, Chlorella kessleri. Small SiO(2) nano-particles exhibit stronger toxicity: 50% inhibitory concentrations (IC(50)) value for 5 nm = 0.8 +/- 0.6%, 26 nm = 7.1 +/- 2.8%, and 78 nm = 9.1 +/- 4.7%. Enlargement of the cell body was observed by flow cytometry, which is due to the presence of structures that obstructed cell division. Optical and transmission microscopes were used to observe coagulated cells with incomplete division. Although the physiological effect of SiO(2) nano-particles was not clear, SiO(2) nano-particles are toxic, at least for algae in aquatic media. Under the transmission electron microscope, several amorphous structures appeared in the cells that were exposed to 5-nm silica nano-particles. PMID:18584432

  7. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production. PMID:25847795

  8. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  9. Potential use of duckweed based anaerobic digester effluent as a feed source for heterotrophic growth of micro-algae

    NASA Astrophysics Data System (ADS)

    Ahmadi, L.; Dupont, R.

    2013-12-01

    Finding an alternative source of energy for the growing world's demand is a challenging task being considered by many scientists. Various types of renewable energy alternatives are being investigated by researchers around the world. The abundance of duckweed (i.e., Lemna and Wolfia sp.) in wetlands and wastewater lagoons, their rapid growth, and their capacity for nutrient, metal and other contaminant removal from wastewater suggests their potential as an inexpensive source of biomass for biofuel production. Another source of biomass for biofuel and energy production is micro-algae. The large-scale growth of micro-algae can potentially be achieved in a smaller footprint and at a higher rate and lower cost via heterotrophic growth compared to autotrophic growth for specific species that can grow under both conditions. Here we describe two types of research. First, two lab-scale, 5 L anaerobic digesters containing municipal raw wastewater that were set up, maintained and monitored over the course of 6 months using duckweed as the feed source. The pH, salinity, amount of gas production and gas composition were measured on a daily basis. The results from these measurements show that duckweed can be used as a good source of biofuel production in the form of methane gas. The second set of reactors consisted of two 1 L batch fed reactors containing algae (Chlorella vulgaris) grown in the lab environment heterotrophically. The pH and DO were monitored on a daily basis in order to investigate their effect on algae growth. Lipid analysis of the harvested algal biomass was done to investigate the efficiency of harvestable biofuel products. A nutrient solution containing glucose as an energy source was used as the initial feed solution, and the potential substitution of the glucose solution with the organic carbon residue from the duckweed digester effluent was investigated. Methane production, carbon stabilization, and gas composition results from the duckweed fed anaerobic

  10. [Growth inhibition and mechanism of cetyltrimethyl ammonium chloride on Chlorella vulgaris].

    PubMed

    Xu, Yin; Ge, Fei; Tao, Neng-Guo; Zhu, Run-Liang; Wang, Na

    2009-06-15

    Growth inhibition of cetyltrimethyl ammonium chloride (CTAC), a cationic surfactants, on Chlorella vulgaris was investigated at batch culture in laboratory. Furthermore, the corresponding mechanisms were studied by the determination of absorption capacity, Zeta potential, activity of acid phosphatase and ultrastructure of algae. Results show that the growth inhibition by CATC is enhanced with its concentration increasing from 0.1 mg/L to 1 mg/L, and 96 h-EC50 of CTAC is 0.18 mg/L. In the presence of 0.3 mg/L CTAC in 8 d, the inhibition efficiency of biomass reaches 70.7%. Meanwhile, the absorption of nitrogen and iron is inhibited 83.9% and 86.2% respectively with Zeta potential of algae cell increasing from -12.5 mV to -6.7 mV. Furthermore, the relative activity of acid phosphatase declines to 23.1% at the same time. Plasmolysis, distortion of pyrenoid and swelling of lysosome is observed in the cell. Above phenomena indicates that CTAC increases the Zeta potential of algae cell and thus inhibites the absorption of nitrogen and iron. In addition, CTAC may affect the metabolism of phosphorus and change the ultrastructure of algae cell. PMID:19662866

  11. Effect of Chlorella sorokiniana on the biological denitrification of drinking water.

    PubMed

    Petrovič, Aleksandra; Simonič, Marjana

    2015-04-01

    The influence of Chlorella sorokiniana on drinking water's biological denitrification was studied at two different initial nitrate concentrations, 50 and 100 mg/L, respectively. Sucrose and grape juice were used as carbon sources. The experiments showed that the denitrification process in the presence of algae was, even at low concentrations, i.e. 50 mg/L of nitrate, slower than without them, but yet still more than 95% of nitrate was removed in 24 h. It was also discovered that, with the addition of ammonium and urea, the urea interfered much more with the denitrification process, as less than 50% of the initial nitrate was removed. However, algae did not contribute to the nitrate and ammonium removals, as the final concentrations of both in the presence of algae were higher by approx 5%. At 100 mg/L of initial nitrate, the denitrification kinetics in the presence of algae was apparently slower regarding those experiments at lower levels of nitrate and only 65-70% of nitrate was removed over 24 h. Using grape juice instead of sucrose improved the nitrate removal slightly.

  12. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    PubMed Central

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  13. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa.

    PubMed

    Wang, Shujuan; Wang, Xian; Poon, Karen; Wang, Yini; Li, Shangfu; Liu, Hongxia; Lin, Shuhai; Cai, Zongwei

    2013-09-01

    Triclosan that is widely used as antimicrobial agent has been detected as contaminant in various aquatic environments. In this work, removal and biodegradation of triclosan in water by using a ubiquitous green alga, Chlorella pyrenoidosa was investigated. When C. pyrenoidosa was exposed to a series concentration of triclosan from 100 to 800ngmL(-1), more than 50% of triclosan was eliminated by algal uptake from the culture medium during the first 1h exposure and reached equilibrium after the 6h treatment. In the biodegradation experiments, a removal percentage of 77.2% was obtained after C. pyrenoidosa was cultivated with 800ngmL(-1) triclosan for 96h. A major metabolite from the reductive dechlorination of triclosan was identified by using liquid chromatography coupled with electrospray ionization-mass spectrometry. The ultrastructural morphology of algal cells grown in the presence of triclosan was observed by using transmission electron microscopy and the growth of algal cells was detected. It was found that the trilcosan treatment resulted in the disruption of the chloroplast and the release of organic material into aquatic environment, which indicated that triclosan may affect membrane metabolism.

  14. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2013-09-01

    Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium.

  15. Viruses of eukaryotic green algae. Final technical report, June 1, 1989--February 1, 1992

    SciTech Connect

    Van Etten, J.L.

    1992-12-31

    We have isolated and partially characterized many large, polyhedral, DNA containing, plaque forming viruses which infect certain unicellular, eukaryotic, chlorella-like green algae. These viruses have several unique features, including the fact that they code for DNA site-specific endonucleases and DNA methyltransferases. The primary objectives of this study were to identify, clone, and characterize some of the virus-encoded DNA methyltransferases and DNA restriction endonucleases in order to understand their biological function.

  16. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    SciTech Connect

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  17. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. PMID:27598569

  18. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  19. Biomonitoring of Lake Garda: Identification of ciliate species and symbiotic algae responsible for the "black-spot" bloom during the summer of 2004.

    PubMed

    Pucciarelli, Sandra; Buonanno, Federico; Pellegrini, Giovanna; Pozzi, Sabrina; Ballarini, Patrizia; Miceli, Cristina

    2008-06-01

    At the end of July 2004, a "black-spot" appeared in the western portion of Lake Garda, an oligomictic lake classified as meso-oligotrophic. A few days later, this phenomenon spread throughout the lake. A first analysis by optical microscopy revealed that the origin of the black spot was a ciliated protozoan. Ciliates represent a small percentage of the total zooplanktonic community of Lake Garda and have never produced bloom episodes. Using morphological and molecular analysis, we characterized the protozoan responsible for the bloom as Stentor amethystinus and its symbiotic algae as a Chlorella sp. Continuous monitoring of the northeast of Lake Garda showed that the apex of the S. amethystinus bloom took place during the first 20 days of August, and the highest density of S. amethystinus occurred in the euphotic zone. During this period, high chlorophyll a values were obtained in water samples collected from the euphotic zone due to the presence of the endosymbiont Chlorella. After early September, the black spot completely disappeared, and the causative organism was detected at low concentration only in the southern basin of the lake. The results obtained on the progress of the black spot phenomenon led us to hypothesize that: (i) S. amethystinus was recently introduced in Lake Garda by anthropogenic activities or it was already a member of the zooplanktonic community but at a very low concentration; (ii) S. amethystinus blooms may have been driven by an unusual high availability of total phosphorous in the euphotic zone and (iii) Lake Garda is not the preferred habitat for S. amethystinus.

  20. Biomonitoring of Lake Garda: Identification of ciliate species and symbiotic algae responsible for the "black-spot" bloom during the summer of 2004.

    PubMed

    Pucciarelli, Sandra; Buonanno, Federico; Pellegrini, Giovanna; Pozzi, Sabrina; Ballarini, Patrizia; Miceli, Cristina

    2008-06-01

    At the end of July 2004, a "black-spot" appeared in the western portion of Lake Garda, an oligomictic lake classified as meso-oligotrophic. A few days later, this phenomenon spread throughout the lake. A first analysis by optical microscopy revealed that the origin of the black spot was a ciliated protozoan. Ciliates represent a small percentage of the total zooplanktonic community of Lake Garda and have never produced bloom episodes. Using morphological and molecular analysis, we characterized the protozoan responsible for the bloom as Stentor amethystinus and its symbiotic algae as a Chlorella sp. Continuous monitoring of the northeast of Lake Garda showed that the apex of the S. amethystinus bloom took place during the first 20 days of August, and the highest density of S. amethystinus occurred in the euphotic zone. During this period, high chlorophyll a values were obtained in water samples collected from the euphotic zone due to the presence of the endosymbiont Chlorella. After early September, the black spot completely disappeared, and the causative organism was detected at low concentration only in the southern basin of the lake. The results obtained on the progress of the black spot phenomenon led us to hypothesize that: (i) S. amethystinus was recently introduced in Lake Garda by anthropogenic activities or it was already a member of the zooplanktonic community but at a very low concentration; (ii) S. amethystinus blooms may have been driven by an unusual high availability of total phosphorous in the euphotic zone and (iii) Lake Garda is not the preferred habitat for S. amethystinus. PMID:18371947

  1. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-01-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor.

  2. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-01-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor. PMID:26737928

  3. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2012-07-01

    Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding.

  4. Magnetic separation of algae

    DOEpatents

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  5. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2014-12-01

    Endosymbiosis between symbiotic Chlorella and alga-free Paramecium bursaria cells can be induced by mixing them. To establish the endosymbiosis, algae must acquire temporary resistance to the host lysosomal enzymes in the digestive vacuoles (DVs). When symbiotic algae isolated from the alga-bearing paramecia are kept under a constant dark conditions for 24 h before mixing with the alga-free paramecia, almost all algae are digested in the host DVs. To examine the cause of algal acquisition to the host lysosomal enzymes, the isolated algae were kept under a constant light conditions with or without a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea for 24 h, and were mixed with alga-free paramecia. Unexpectedly, most of the algae were not digested in the DVs irrespective of the presence of the inhibitor. Addition of 1 mM maltose, a main photosynthetic product of the symbiotic algae or of a supernatant of the isolated algae kept for 24 h under a constant light conditions, did not rescue the algal digestion in the DVs. These observations reveal that unknown factors induced by light are a prerequisite for algal resistance to the host lysosomal enzymes.

  6. Microplate Technique for Determining Accumulation of Metals by Algae

    PubMed Central

    Hassett, James M.; Jennett, J. Charles; Smith, James E.

    1981-01-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. Results (expressed as concentration factors) were in reasonably good agreement with literature values. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than did blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution. PMID:16345764

  7. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors.

    PubMed

    Li, Yecong; Zhou, Wenguang; Hu, Bing; Min, Min; Chen, Paul; Ruan, Roger R

    2011-12-01

    The objectives of this study are to find the robust strains for the centrate cultivation system and to evaluate the effect of environmental factors including light intensity, light-dark cycle, and exogenous CO2 concentration on biomass accumulation, wastewater nutrient removal and biodiesel production. The results showed that all 14 algae strains from the genus of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were able to grow on centrate. The highest net biomass accumulation (2.01 g/L) was observed with Chlorella kessleri followed by Chlorella protothecoides (1.31 g/L), and both of them were proved to be capable of mixotrophic growth when cultivated on centrate. Environmental factors had significant effect on algal biomass accumulation, wastewater nutrients removal and biodiesel production. Higher light intensity and exogenous CO2 concentration with longer lighting period promote biomass accumulation, biodiesel production, as well as the removal of chemical oxygen demand and nitrogen, while, lower exogenous CO2 concentration promotes phosphorus removal.

  8. Suppression Subtractive Hybridization Reveals Transcript Profiling of Chlorella under Heterotrophy to Photoautotrophy Transition

    PubMed Central

    Huang, Jianke; Wang, Weiliang; Yin, Weibo; Hu, Zanmin; Li, Yuanguang

    2012-01-01

    Background Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. Methodology/Principal Findings In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. Conclusions/Significance The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds

  9. Isolation and cultivation of endosymbiotic algae from green hydra and phylogenetic analysis of 18S rDNA sequences.

    PubMed

    Kovacević, Goran; Franjević, Damjan; Jelencić, Biserka; Kalafatić, Mirjana

    2010-01-01

    Symbiotic associations are of wide significance in evolution and biodiversity. The green hydra is a typical example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors the individuals of a unicellular green algae. Endosymbiotic algae from green hydra have been successfully isolated and permanently maintained in a stable clean lab culture for the first time. We reconstructed the phylogeny of isolated endosymbiotic algae using the 18S rRNA gene to clarify its current status and to validate the traditional inclusion of these endosymbiotic algae within the Chlorella genus. Molecular analyses established that different genera and species of unicellular green algae could be present as symbionts in green hydra, depending on the natural habitat of a particular strain of green hydra.

  10. High iron content and bioavailability in humans from four species of marine algae.

    PubMed

    García-Casal, Maria N; Pereira, Ana C; Leets, Irene; Ramírez, José; Quiroga, Maria F

    2007-12-01

    Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.

  11. Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction.

    PubMed

    Qian, Haifeng; Daniel Sheng, G; Liu, Weiping; Lu, Yingcong; Liu, Zhenghai; Fu, Zhengwei

    2008-01-01

    Atrazine, a highly toxic herbicide, is frequently detected in surface water because of its heavy application. Algae are among the aquatic organisms most susceptible to atrazine pollution in water. In the present study, the aquatic alga Chlorella vulgaris Beijerinck was chosen to assess the acute toxicity of atrazine (48-96 h) in terms of gene transcription and physiological changes. A real-time polymerase chain reaction (PCR) assay was used to quantify transcript levels of three photosystem genes in C. vulgaris. The diel patterns for regulation of the psaB (photosystem I reaction center protein subunit B), psbC (an integral membrane protein component of photosystem II), and rbcL (large subunit of ribulose-1,5-bisphosphate carboxylase oxygenase) gene transcripts were successfully quantified. Results showed that atrazine reduced the transcript abundances of three target genes and that the abundances decreased with increasing atrazine concentration. The determined smallest transcript levels of psaB, psbC, and rbcL, which occurred at the highest atrazine concentration tested (400 mug/L), were only 34.6, 34.6, and 8.1%, respectively, of the control sample value. Exposure to atrazine increased the level of malondialdehyde by 1.74-fold (the highest value) in C. vulgaris, suggesting potential oxidative damage to the alga. The activities of antioxidation enzymes (e.g., superoxide dismutase, peroxidase, and catalase) also increased markedly in the presence of atrazine, with maximum increases of 1.82-, 1.59-, and 2.31-fold, respectively. These elevated activities may help to alleviate the oxidative damage. Our results demonstrate that atrazine is highly toxic to this alga and that real-time PCR is an efficient technique for assessing the toxicity of xenobiotic compounds in algae.

  12. Modelling and Optimization of Nannochloropsis and Chlorella Growth for Various Locations and Seasons

    NASA Astrophysics Data System (ADS)

    Gharagozloo, P. E.

    2014-12-01

    Efficient production of algal biofuels could reduce dependence on foreign oil providing domestic renewable energy. Algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural-resource requirements compared to terrestrial energy crops. Important factors controlling algal-lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae-growth kinetics for various bioreactor sizes and geometries without multiple, expensive measurement systems. In this work, we parameterize our physics-based computational algae growth model for the marine Nannochloropsis oceanica and freshwater Chlorella species. We then compare modelling results with experiments conducted in identical raceway ponds at six geographical locations in the United States (Hawaii, California, Arizona, Ohio, Georgia, and Florida) and three seasons through the Algae Testbed Public Private Partnership - Unified Field Studies. Results show that the computational model effectively predicts algae growth in systems across varying environments and identifies the causes for reductions in algal productivities. The model is then used to identify improvements to the cultivation system to produce higher biomass yields. This model could be used to study the effects of scale-up including the effects of predation, depth-decay of light (light extinction), and optimized nutrient and CO2 delivery. As more multifactorial data are accumulated for a variety of algal strains, the model could be used to select appropriate algal species for various geographic and climatic locations and seasons. Applying the model facilitates optimization of pond designs based on location and season.

  13. Interest of dynamic tests in acute ecotoxicity assessment in algae

    SciTech Connect

    Jouany, J.M.; Ferard, J.F.; Vasseur, P.; Gea, J.; Truhaut, R.; Rast, C.

    1983-04-01

    Sorption of toxics by algae may be important and occurs very early. Thus, a decrease of the experimental toxic concentrations in the medium results in understating toxicity when tests are conducted under static conditions. In this work, two different methods of exposure of algae (Chlorella vulgaris) are studied, the static test and the pseudodynamic test. Acute effects (biological and analytical effects) of inorganic compounds (Cu/sup 2 +/, Cd/sup 2 +/, Pb/sup 2 +/, Cr/sup 6 +/) have been evaluated for 96 hr of exposure; in each case, IC50 is much lower in the dynamic condition than in the static one. The percentage of reduction varies from 55 to 75% after 96 hr. Accumulation of metal by chlorellae is greater when testing by the pseudodynamic way, with Cu/sup 2 +/ and Pb/sup 2 +/. But in the case of Cd/sup 2 +/ and Cr/sup 6 +/, the concentration factors are similar in the two kinds of exposure. These results point out the advantage of the pseudodynamic test, of which the methodology is very easy, for a more realistic assessment of acute ecotoxicity in these organisms.

  14. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  15. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  16. The Bioconcentration and Degradation of Nonylphenol and Nonylphenol Polyethoxylates by Chlorella vulgaris

    PubMed Central

    Sun, Hong-Wen; Hu, Hong-Wei; Wang, Lei; Yang, Ying; Huang, Guo-Lan

    2014-01-01

    Nonylphenol polyethoxylates (NPnEOs), a major class of nonionic surfactants, can easily enter into aquatic environments through various pathways due to their wide applications, which leads to the extensive existence of their relative stable metabolites, namely nonylphenol (NP) and mono- to tri-ethoxylates. This study investigated the bioconcentration and degradation of NP and NPnEO oligomers (n = 1–12) by a green algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP from water phase efficiently, and bioconcentration and degradation accounted for approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor) of 2.42 × 103. Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution profiles of the series homologues of the NPnEOs in algae and water phase were quite different from the initial homologue profile. The 48 h BCF of the NPnEO homologues increased with the length of the EO chain. Degradation extent of total NPnEOs by C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% remained in the algal cells. The algae removed the NPnEOs mainly through degradation. Due to rapid degradation, concentrations of the long chain NPnEO homologous in both water (n ≥ 2) and the algal phase (n ≥ 5) was quite low at the end of a 48 h experiment. PMID:24445260

  17. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    PubMed

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations.

  18. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh.

  19. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh. PMID:26440910

  20. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    PubMed

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH.

  1. Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides.

    PubMed

    He, Xi; Dai, Junbiao; Wu, Qingyu

    2016-01-01

    Chlorella protothecoides has been put forth as a promising candidate for commercial biodiesel production. However, the cost of biodiesel remains much higher than diesel from fossil fuel sources, partially due to the high costs of oil extraction from algae. Here, we identified the presence of a sporopollenin layer outside the polysaccharide cell wall; this was evaluated using transmission electron microscopy, 2-aminoethanol treatment, acetolysis, and Fourier Transform Infrared Spectroscopy. We also performed bioinformatics analysis of the genes of the C. protothecoides genome that are likely involved in sporopollenin synthesis, secretion, and translocation, and evaluated the expression of these genes via real-time PCR. We also found that that removal of this sporopollenin layer greatly improved the efficiency of oil extraction. PMID:27446068

  2. Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides

    PubMed Central

    He, Xi; Dai, Junbiao; Wu, Qingyu

    2016-01-01

    Chlorella protothecoides has been put forth as a promising candidate for commercial biodiesel production. However, the cost of biodiesel remains much higher than diesel from fossil fuel sources, partially due to the high costs of oil extraction from algae. Here, we identified the presence of a sporopollenin layer outside the polysaccharide cell wall; this was evaluated using transmission electron microscopy, 2-aminoethanol treatment, acetolysis, and Fourier Transform Infrared Spectroscopy. We also performed bioinformatics analysis of the genes of the C. protothecoides genome that are likely involved in sporopollenin synthesis, secretion, and translocation, and evaluated the expression of these genes via real-time PCR. We also found that that removal of this sporopollenin layer greatly improved the efficiency of oil extraction. PMID:27446068

  3. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure.

    PubMed

    Kobayashi, Naoko; Noel, Eric A; Barnes, Austin; Watson, Andrea; Rosenberg, Julian N; Erickson, Galen; Oyler, George A

    2013-12-01

    Chlorella sorokiniana CS-01, UTEX 1230 and UTEX 2714 were maintained in 10% anaerobic digester effluent (ADE) from cattle manure digestion and compared with algal cultivation in Bold's Basal Medium (BBM). Biomass of CS-01 and UTEX 1230 in ADE produced similar or greater than 280mg/L after 21days in BBM, however, UTEX 2714 growth in ADE was suppressed by more than 50% demonstrating a significant species bias to synthetic compared to organic waste-based media. The highest accumulation of protein and starch was exhibited in UTEX 1230 in ADE yielding 34% and 23% ash free dry weight (AFDW), respectively, though fatty acid methyl ester total lipid measured less than 12% AFDW. Results suggest that biomass from UTEX 1230 in ADE may serve as a candidate alga and growth system combination sustainable for animal feed production considering high yields of protein, starch and low lipid accumulation. PMID:24185420

  4. Mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite

    SciTech Connect

    Rabinowitch, H.D.; Rosen, G.M.; Fridovich, I.

    1989-01-01

    The spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been used to demonstrate the light-dependent production of O/sub 2/- by Chlorella sorokiniana. In the presence of SO/sub 3/= a light-dependent production of the sulfur trioxy anion radical (SO/sub 3/-.) could also be seen. A complex prepared by reacting desferrioxamine with MnO/sub 2/, which catalyzes the dismutation of O/sub 2/-, protected the alga against the toxicity of sulfite. The data suggest that SO/sub 2/ toxicity is at least partially due to the effects of sulfoxy-free radicals generated by the oxidation of SO3= by O/sub 2/-.

  5. Gases generated from simulated thermal degradation of autotrophic and heterotrophic chlorella

    SciTech Connect

    Qingyu Wu )

    1992-01-01

    The content of crude lipid in the cells of heterotrophic Chlorella protothecoides is 4.4 times as high as in the autotrophic algal cells. The gases thermally degraded from autotrophic cells at 200-300[degrees]C contain mainly CO[sub 2], while the heterotrophic algal cells produce hydrocarbon gas at a much higher rate than autotraophic algal cells. With the rise in temperature, both kinds of cells display a rapid drop in the acid/alkane ratio of the gas components and the ratio of ethane to ethylene increases regularly. Their ratio of normal and isomeric alkanes are all above 1. The study reveals that the actual potential of microplanktonic algae in producing oil and natural gas should be much greater than what people have recognized before.

  6. The Chlorella killed by pulsed electrical discharge in liquid with two different reactors

    NASA Astrophysics Data System (ADS)

    Gao, Z. Y.; Sun, B.; Yan, Z. Y.; Zhu, X. M.; Liu, H.; Song, Y. J.; Sato, M.

    2013-03-01

    The application of pulsed high-voltage discharge in liquid has attracted wide attention as an effective water treatment. In this paper, two different liquid high-voltage discharge systems were constructed with plate-hole-plate and needle-plate electrode structures, and the inactivation behaviors of Chlorella were studied in the two reactors. The results show that the killing rates of algae in both reactors all increased significantly with increasing discharge voltage and the killing rates were intensely related to discharge power, instantaneous power and single pulse input energy. Furthermore, the inactivation effect in needle-plate reactor was superior to that in plate-hole-plate reactor under the same experimental conditions.

  7. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  8. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.

    PubMed

    González-Garcinuño, Álvaro; Tabernero, Antonio; Sánchez-Álvarez, José Ma; Martin del Valle, Eva M; Galán, Miguel A

    2014-12-01

    Discovering microalgae strains containing a high lipid yield and adequate fatty acid composition is becoming a crucial fact in algae-oil factories. In this study, two unknown strains, named Scenedesmus abundans and Chlorella ellipsoidea, have been tested for their response to different nitrogen sources, in order to determine its influence in the production of lipids. For S. abundans, autotrophic culture with ammonium nitrate offers the maximum lipid yield, obtaining up to 3.55 mg L(-1) d(-1). For C. ellipsoidea, heterotrophic culture with ammonium nitrate has been shown to be the best condition, reaching a lipid production of 9.27 mg L(-1) d(-1). Moreover, fatty acid composition obtained from these cultures meets international biodiesel standards with an important amount of C18:1, achieving 70% of total fatty acids and thus representing a potential use of these two strains at an industrial scale. PMID:25310870

  9. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides.

    PubMed

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2015-02-01

    Integrated and genome-based flux balance analysis, metabolomics, and (13)C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary (13)C metabolic flux analysis as a complementing strategy to flux balance analysis. The result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Taken together, the metabolic network modeling assisted by experimental metabolomics and (13)C

  10. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides

    DOE PAGES

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2014-12-15

    We report that integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass andmore » corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. We found that the result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Lastly, taken together, the metabolic network modeling assisted

  11. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa

    PubMed Central

    2013-01-01

    Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Results Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. Conclusions We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer. PMID:24355316

  12. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    SciTech Connect

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe/sup 3 +/-DFOB) and ferric-rhodotorulate (Fe/sup 3 +/-RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe/sup 3 +/-EDTA and Fe/sup 3 +/-EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 ..mu..M CCCP or 1 mM vanadate. Cyanide (100 ..mu..M KCN) or 25 ..mu..M antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron (/sup 55/Fe) was taken up while labeled ligands ((/sup 14/C) citrate or RA) were not accumulated. Cation competition from Ni/sup 2 +/ and Co/sup 2 +/ observed using Fe/sup 3 +/-DFOB and Fe/sup 3 +/-RA while iron uptake from Fe/sup 3 +/-citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe/sup 3 +/-DFOB indicated that a receptor may be involved in this mechanism.

  13. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp.

    PubMed

    Praveenkumar, Ramasamy; Kim, Bohwa; Lee, Jiye; Vijayan, Durairaj; Lee, Kyubock; Nam, Bora; Jeon, Sang Goo; Kim, Dong-Myung; Oh, You-Kwan

    2016-11-01

    Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG. PMID:27634024

  14. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    PubMed

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.

  15. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    PubMed

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis. PMID:25805020

  16. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.

    PubMed

    Roy, Rajdeep; Parashar, Abhinav; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2016-07-01

    P25 TiO2 nanoparticles majorly used in cosmetic products have well known detrimental effects towards the aquatic environment. In a freshwater ecosystem, Chlorella and Scenedesmus are among the most commonly found algal species frequently used to study the effects of metal oxide nanoparticles. A comparative study has been conducted herein to investigate differences in the toxic effects caused by these nanoparticles towards the two algae species. The three different concentrations of P25 TiO2 NPs (0.01, 0.1 & 1μg/mL, i.e., 0.12, 1.25 and 12.52μM) were selected to correlate surface water concentrations of the nanoparticles, and filtered and sterilized fresh water medium was used throughout this study. There was significant increase (p<0.001) in hydrodynamic diameter of nanoparticles with respect to both, time (0, 24, 48 and 72h) as well as concentration under all the exposure conditions. Although, significant dose-dependent morphological (surface area & biovolume) interspecies variations were not observed, it was evident at the highest concentration of exposure within individuals. At 1μg/mL exposure concentration, a significant difference in toxicity was noted between Chlorella and Scenedesmus under only visible light (p<0.001) and UVA (p<0.01) irradiation conditions. The viability data were well supported by the results obtained for oxidative stress induced by NPs on the cells. At the highest exposure concentration, superoxide dismutase and reduced glutathione activities were assessed for both the algae under all the irradiation conditions. Increased catalase activity and LPO release complemented the cytotoxic effects observed. Significant interspecies variations were noted for these parameters under UVA and visible light exposed cells of Chlorella and Scenedesmus species, which could easily be correlated with the uptake of the NPs. PMID:27137676

  17. Is annual metabolic cycling in the unicellular microalgae Chlorella and textit{Isochrysis} coupled to the annual earth gravity cycle?

    NASA Astrophysics Data System (ADS)

    Knutsen, G.; Amundsen, M.; Pettersen, R.

    Uptake rates of 14C-labelled guanine by autospores of the unicellular green alga Chlorella fusca Shihira et Krauss were measured at different times over 21 months. The autospores were derived from synchronous cultures produced from stock cultures that had not been exposed to natural light the last six years before the experiments, nor during the 21 month long experimental period. The experiments were performed in Bergen, Norway (60°,23' N; 5°,20' E). Uptake rates showed distinct annual variations over the year, with lowest values during the winter and highest during the summer. The August : December : February ratios for the rates were 1.0, 0.70 and 0.43, respectively. Half saturating guanine concentration for the uptake was the same over the year, namely 0.24 μM. Growth rates of the unicellular marine flagellate Isochrysis sp. were measured in March, August and December, and the rates were distinctly different, with August : December : March ratios of 1.0, 0.41 and 0.64. The number of cells reached in the stationary phases of Isochrysis cultures showed similar time-of-the-year dependency with ratios of 1.0, 0.44 and 0.58 for August : December : March, respectively. These cells had not experienced day light for the two last years before the experiments. Our results show the existence of annual rhythms in two microalgae that had not been exposed to natural light for a long time. A persistent endogenous clock that was set when the cells lived under natural light conditions long ago may be one explanation for their behaviour; another one is a coupling to the sinusoidal and minute variation over the year of earth gravity. Hence the cells display maximal activity when gravity is at its lowest value during the summer in the Northern hemisphere, and lowest activity when the gravity is at is highest in the winter. To our knowledge our results are the first experimental work that points to the possibility that cells may be influenced by the annual cycle of earth gravity.

  18. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae).

    PubMed

    Luo, Wei; Pflugmacher, Stephan; Pröschold, Thomas; Walz, Norbert; Krienitz, Lothar

    2006-08-01

    The most recent revision of the genus Chlorella, based on biochemical and SSU rDNA analyses, suggested a reduction to a set of four "true" spherical Chlorella species, while a growing number of morphologically different species such as Micractinium (formerly Micractiniaceae) were found to cluster within the clade of "true"Chlorella. In this study, the generic concept in Chlorellaceae to Chlorella and Micractinium was evaluated by means of combined SSU and ITS-2 rDNA sequence analyses and biotests to induce development of bristles on the cell wall. Molecular phylogenetic analyses of Chlorella and Micractinium strains confirmed their separation into two different genera. In addition, non-homoplasious synapomorphies (NHS) and compensatory base changes (CBC) in the secondary structures of SSU and ITS-2 rDNA sequences were found for both genera using this approach. The Micractinium clade can be differentiated into three different genotypes. Using culture medium of the rotifer Brachionus calyciflorus, phenotypic plasticity in Chlorella and Micractinium was studied. Non-bristled Micractinium cells developed bristles during incubation with Brachionus culture medium, whereas Chlorella did not produce bristles. Grazing experiments with Brachionus showed the rotifer preferred to feed on non-bristled cells. The dominance of colonies versus solitary cells in the Micractinium culture was not correlated with the "Brachionus factor". These results suggest that morphological characteristics like formation of bristles represent phenotypic adaptations to the conditions in the ecosystem.

  19. Landfill leachate--a water and nutrient resource for algae-based biofuels.

    PubMed

    Edmundson, Scott J; Wilkie, Ann C

    2013-01-01

    There is a pressing need for sustainable renewable fuels that do not negatively impact food and water resources. Algae have great potential for the production of renewable biofuels but require significant water and fertilizer resources for large-scale production. Municipal solid waste (MSW) landfill leachate (LL) was evaluated as a cultivation medium to reduce both water and elemental fertilizer demands of algae cultivation. Daily growth rate and cell yield of two isolated species of algae (Scenedesmus cf. rubescens and Chlorella cf. ellipsoidea) were cultivated in MSW LL and compared with Bold's Basal Medium (BBM). Results suggest that LL can be used as a nutrient resource and medium for the cultivation of algae biomass. S. cf. rubescens grew well in 100% LL, when pH was regulated, with a mean growth rate and cell yield 91.2% and 92.8% of those observed in BBM, respectively. S. cf. rubescens was more adaptable than C. cf. ellipsoidea to the LL tested. The LL used in this study supported a maximum volumetric productivity of 0.55 g/L/day of S. cf. rubescens biomass. The leachate had sufficient nitrogen to supply 17.8 g/L of algae biomass, but was limited by total phosphorus. Cultivation of algae on LL offsets both water and fertilizer consumption, reducing the environmental footprint and increasing the potential sustainability of algae-based biofuels.

  20. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels.

    PubMed

    Simmons, Denina B D; Emery, R J Neil

    2011-02-01

    Phytochelatins (PCs) are short metal detoxification peptides made from the sulfur-rich molecule glutathione. The production of PCs by algae caused by Se exposure has never been studied, although many algae accumulate Se, forming Se-rich proteins and peptides, and higher plants have demonstrated PC production when treated with Se; therefore, a goal of the current study was to examine whether Se induces PC production in algae. Furthermore, selenate is thought to compete with sulfate in the S assimilation pathway, and sulfate therefore may have a protective effect against the toxic effects of high doses of Se in algae. Hence, the interaction of selenate and sulfate was investigated with respect to the induction of PCs. Chlorella vulgaris was cultured in media with either low (31.2 µM) or high (312 µM) concentrations of sulfate. These cultures were exposed to selenate in doses of 7, 35, and 70 nM for 48 h. In a separate treatment, Cd (890 nM) was added as a positive PC-inducing control, and one no-metal negative control was used. Total Se and Se speciation were determined, and glutathione, phytochelatin-2, and phytochelatin-3 were quantified in each of cell digests, cell medium, and cell lysates. We found that PCs and their precursor glutathione were induced by selenate as well as by a Cd control. The high concentration of sulfate was able to counter selenate-induced production of PCs and glutathione. These data support two possible mechanisms: a negative feedback system in the S assimilation pathway that affects PC production when sulfate is abundant, and competition for uptake at the ion transport level between selenate and sulfate.

  1. One alga to rule them all: unrelated mixotrophic testate amoebae (amoebozoa, rhizaria and stramenopiles) share the same symbiont (trebouxiophyceae).

    PubMed

    Gomaa, Fatma; Kosakyan, Anush; Heger, Thierry J; Corsaro, Daniele; Mitchell, Edward A D; Lara, Enrique

    2014-03-01

    Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This "one alga fits all mixotrophic testate amoeba" pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.

  2. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium.

    PubMed

    Chen, Biao; Li, Feng; Liu, Na; Ge, Fei; Xiao, Huaixian; Yang, Yixuan

    2015-08-01

    The interactions between the soluble extracellular polymeric substances (S-EPS), bound EPS (B-EPS) of algae and heavy metal, would affect the removal of ammonium (NH4(+)-N) and orthophosphate (PO4(3-)-P) from wastewater by algae-based techniques. This study investigated the role of Cd(2+)-mediated EPS from Chlorella vulgaris on NH4(+)-N and PO4(3-)-P removal. The results showed that the removal efficiencies of NH4(+)-N and PO4(3-)-P still separately remained 62.6% and 64.9% under 1.0mg/L Cd(2+), compared to those without Cd(2+), mainly attributing to enhanced S-EPS and B-EPS contents of the algae. The increased of PS (polysaccharides) and PN (proteins, e.g., tryptophan-like and tyrosine-like components) led to accelerated interactions of Cd(2+) with PS and PN in EPS fractions, especially for B-EPS, due to a higher detected distribution of Cd(2+) (e.g., about 55.4% in B-EPS). Thus, algae-based techniques are stable treatment methods for wastewater in which NH4(+)-N and PO4(3-)-P coexist with heavy metals. PMID:25965255

  3. Structural Organization of DNA in Chlorella Viruses

    PubMed Central

    Wulfmeyer, Timo; Polzer, Christian; Hiepler, Gregor; Hamacher, Kay; Shoeman, Robert; Dunigan, David D.; Van Etten, James L.; Lolicato, Marco; Moroni, Anna; Thiel, Gerhard; Meckel, Tobias

    2012-01-01

    Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm−3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes. PMID:22359540

  4. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  5. Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host's trichocysts beneath the host cell cortex.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2011-04-01

    Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole membrane derived from the host digestive vacuole membrane. Alga-free paramecia and symbiotic algae can grow independently. Mixing them experimentally can cause reinfection. Earlier, we reported that the symbiotic algae appear to push the host trichocysts aside to become fixed beneath the host cell cortex during the algal reinfection process. Indirect immunofluorescence microscopy with a monoclonal antibody against the trichocysts demonstrates that the trichocysts change their locality to form algal attachment sites and decrease their density beneath the host cell cortex through algal reinfection. Transmission electron microscopy to detect acid phosphatase activity showed that some trichocysts near the host cell cortex are digested by the host lysosomal fusion during algal reinfection. Removal of algae from the host cell using cycloheximide recovers the trichocyst's arrangement and number near the host cell cortex. These results indicate that symbiotic algae compete for their attachment sites with preexisting trichocysts and that the algae have the ability to ensure algal attachment sites beneath the host cell cortex.

  6. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae

  7. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater.

    PubMed

    Pathak, Vinayak V; Kothari, Richa; Chopra, A K; Singh, D P

    2015-11-01

    Potential of Chlorella pyrenoidosa was experimentally investigated for phycoremediation and dye removal from textile wastewater (TWW) in batch cultures. Growth of alga was observed at various concentration of textile wastewater (25%, 50%, 75% and 100%) and was found in a range of 8.1-14 μg ml(-1) day(-1). Growth study revealed that alga potentially grows up to 75% concentrated textile wastewater and reduces phosphate, nitrate and BOD by 87%, 82% and 63% respectively. Methylene blue dye (MB) removal was also observed by using dry and wet algal biomass harvested after phycoremediation. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo first and second order) were applied on adsorption process. Dry algal biomass (DAB) was found more efficient biosorbent with large surface area and showed high binding affinity for MB dye in compare to wet algal biomass (WAB). The RL value for both biosorbent showed feasible adsorption process as the obtained value was between 0 and 1. Pseudo second order kinetic model with high degree of correlation coefficient and low sum of error squares (SSE %) value was found more suitable for representation of adsorption process in case of both biosorbents, however pseudo first order also showed high degree of correlation for both biosorbents. PMID:26349408

  8. Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa

    SciTech Connect

    Sijm, D.T.H.M.; Broersen, K.W.; Roode, D.F. de; Mayer, P.

    1998-09-01

    Algal density-dependent bioconcentration factors and rate constants were determined for a series of hydrophobic compounds in Chlorella pyrenoidosa. The apparent uptake rate constants of the hydrophobic compounds in algae varied between 200 and 710,000 L/kg/d, slightly increased with hydrophobicity within an experiment, were relatively constant for each algal density, and fitted fairly within existing allometric relationships. The bioavailability of the hydrophobic test compounds was significantly reduced by sorption by algal exudates. The sorption coefficients of the hydrophobic compounds to the algal exudates were between 80 and 1,200 L/kg, and were for most algal densities in the same order of magnitude as the apparent bioconcentration factors to the algae, that is, between 80 and 60,200 L/kg. In typical field situations, however, no significant reduction in bioavailability due to exudates is expected. The apparent elimination rate constants of the hydrophobic compounds were high and fairly constant for each algal density and varied between 2 and 190/d. Because the apparent elimination rate constants were higher than the growth rate constant, and were independent of hydrophobicity, the authors speculated that other factors dominate excretion, such as exudate excretion-enhanced elimination. Bioconcentration factors increased less than proportional with hydrophobicity, i.e., the octanol-water partition coefficient [K{sub ow}]. The role of algal composition in bioconcentration is evaluated. Bioconcentrations (kinetics) of hydrophobic compounds that are determined at high algal densities should be applied with caution to field situations.

  9. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater.

    PubMed

    Pathak, Vinayak V; Kothari, Richa; Chopra, A K; Singh, D P

    2015-11-01

    Potential of Chlorella pyrenoidosa was experimentally investigated for phycoremediation and dye removal from textile wastewater (TWW) in batch cultures. Growth of alga was observed at various concentration of textile wastewater (25%, 50%, 75% and 100%) and was found in a range of 8.1-14 μg ml(-1) day(-1). Growth study revealed that alga potentially grows up to 75% concentrated textile wastewater and reduces phosphate, nitrate and BOD by 87%, 82% and 63% respectively. Methylene blue dye (MB) removal was also observed by using dry and wet algal biomass harvested after phycoremediation. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo first and second order) were applied on adsorption process. Dry algal biomass (DAB) was found more efficient biosorbent with large surface area and showed high binding affinity for MB dye in compare to wet algal biomass (WAB). The RL value for both biosorbent showed feasible adsorption process as the obtained value was between 0 and 1. Pseudo second order kinetic model with high degree of correlation coefficient and low sum of error squares (SSE %) value was found more suitable for representation of adsorption process in case of both biosorbents, however pseudo first order also showed high degree of correlation for both biosorbents.

  10. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris.

    PubMed

    Schwab, Fabienne; Bucheli, Thomas D; Camenzuli, Louise; Magrez, Arnaud; Knauer, Katja; Sigg, Laura; Nowack, Bernd

    2013-07-01

    Carbon nanotubes (CNT) are more and more likely to be present in the environment, where they will associate with organic micropollutants due to strong sorption. The toxic effects of these CNT-micropollutant mixtures on aquatic organisms are poorly characterized. Here, we systematically quantified the effects of the herbicide diuron on the photosynthetic activity of the green alga Chlorella vulgaris in presence of different multiwalled CNT (industrial, purified, pristine, and oxidized) or soot. The presence of carbonaceous nanoparticles reduced the adverse effect of diuron maximally by <78% (industrial CNT) and <34% (soot) at 10.0 mg CNT/L, 5.0 mg soot/L, and diuron concentrations in the range 0.73-2990 μg/L. However, taking into account the measured dissolved instead of the nominal diuron concentration, the toxic effect of diuron was equal to or stronger in the presence of CNT by a factor of up to 5. Sorbed diuron consequently remained partially bioavailable. The most pronounced increase in toxicity occurred after a 24 h exposure of algae and CNT. All results point to locally elevated exposure concentration (LEEC) in the proximity of algal cells associated with CNT as the cause for the increase in diuron toxicity. PMID:23244294

  11. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  12. Natural Abundance 14C Content of Dibutyl Phthalate (DBP) from Three Marine Algae

    PubMed Central

    Namikoshi, Michio; Fujiwara, Takeshi; Nishikawa, Teruaki; Ukai, Kazuyo

    2006-01-01

    Analysis of the natural abundance 14C content of dibutyl phthalate (DBP) from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl) phthalate (DEHP) obtained from the same algae was about 50–80% of the standard sample and the 14C content of the petrochemical (industrial) products of DBP and DEHP were below the detection limit.

  13. Subunit structure of the phycobiliproteins of blue-green algae.

    PubMed

    Glazer, A N; Cohen-Bazire, G

    1971-07-01

    The phycobiliproteins of the blue-green algae Synechococcus sp. and Aphanocapsu sp. were characterized with respect to homogeneity, isoelectric point, and subunit composition. Each of the biliproteins consisted of two different noncovalently associated subunits, with molecular weights of about 20,000 and 16,000 for phycocyanin, 17,500 and 15,500 for allophycocyanin, and 22,000 and 20,000 for phycoerythrin. Covalently bound chromophore was associated with each subunit.

  14. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. PMID:26961939

  15. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    PubMed

    Park, Sichoon; Van Ginkel, Steven W; Pradeep, Priya; Igou, Thomas; Yi, Christine; Snell, Terry; Chen, Yongsheng

    2016-01-01

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC(50) for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC(50) for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes.

  16. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae.

  17. Blue-green algae

    MedlinePlus

    “Blue-green algae” describes a large and diverse group of simple, plant-like organisms found in salt water and some large fresh water lakes. Blue-green algae products are used for many conditions, but so ...

  18. Sludge-grown algae for culturing aquatic organisms: Part II. Sludge-grown algae as feeds for aquatic organisms

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Hung, K. M.; Chiu, S. T.

    1996-05-01

    This project investigated the feasibility of using sewage sludge to culture microalgae ( Chlorella-HKBU) and their subsequent usage as feeds for rearing different organisms. Part II of the project evaluated the results of applying the sludge-grown algae to feed Oreochromis mossambicus (fish), Macrobrachium hainenese (shrimp), and Moina macrocopa (cladocera). In general, the yields of the cultivated organisms were unsatisfactory when they were fed the sludge-grown algae directly. The body weights of O. mossambicus and M. macrocopa dropped 21% and 37%, respectively, although there was a slight increase (4.4%) in M. hainenese. However, when feeding the algal-fed cladocerans to fish and shrimp, the body weights of the fish and shrimp were increased 7% and 11% accordingly. Protein contents of the cultivated organisms were comparable to the control diet, although they contained a rather high amount of heavy metals. When comparing absolute heavy metal contents in the cultivated organisms, the following order was observed: alga > cladocera > shrimp, fish > sludge extracts. Bioelimination of heavy metals may account for the decreasing heavy metal concentrations in higher trophic organisms.

  19. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase. PMID:23890544

  20. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  1. Optimisation of sample treatment for arsenic speciation in alga samples by focussed sonication and ultrafiltration.

    PubMed

    Salgado, S García; Quijano Nieto, M A; Bonilla Simón, M M

    2006-02-28

    A procedure for arsenic species fractionation in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) by extraction is described. Several parameters were tested in order to evaluate the extraction efficiency of the process: extraction medium, nature and concentration (tris(hydroxymethyl)aminomethane, phosphoric acid, deionised water and water/methanol mixtures), extraction time and physical treatment (magnetic stirring, ultrasonic bath and ultrasonic focussed probe). The extraction yield of arsenic under the different conditions was evaluated by determining the total arsenic content in the extracts by ICP-AES. Arsenic compounds were extracted in 5mL of water by focussed sonication for 30s and subsequent centrifugation at 14,000xg for 10min. The process was repeated three times. Extraction studies show that soluble arsenic compounds account for about 65% of total arsenic. An ultrafiltration process was used as a clean-up method for chromatographic analysis, and also allowed us to determine the extracted arsenic fraction with a molecular weight lower than 10kDa, which accounts for about 100% for all samples analysed. Speciation studies were carried out by HPLC-ICP-AES. Arsenic species were separated on a Hamilton PRP-X100 column with 17mM phosphate buffer at pH 5.5 and 1.0mLmin(-1) flow rate. The chromatographic method allowed us to separate the species As(III), As(V), MMA and DMA in less than 13min, with detection limits of about 20ng of arsenic per species, for a sample injection volume of 100muL. The chromatographic analysis allowed us to identify As(V) in Hizikia (46+/-2mugg(-1)), Sargassum (38+/-2mugg(-1)) and Chlorella (9+/-1mugg(-1)) samples. The species DMA was also found in Chlorella alga (13+/-1mugg(-1)). However, in Laminaria alga only an unknown arsenic species was detected, which eluted in the dead volume.

  2. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    SciTech Connect

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO/sub 2/ fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress.

  3. Stable chloroplast transformation of the unicellular red alga Porphyridium species.

    PubMed

    Lapidot, Miri; Raveh, Dina; Sivan, Alex; Arad, Shoshana Malis; Shapira, Michal

    2002-05-01

    Red algae are extremely attractive for biotechnology because they synthesize accessory photosynthetic pigments (phycobilins and carotenoids), unsaturated fatty acids, and unique cell wall sulfated polysaccharides. We report a high-efficiency chloroplast transformation system for the unicellular red microalga Porphyridium sp. This is the first genetic transformation system for Rhodophytes and is based on use of a mutant form of the gene encoding acetohydroxyacid synthase [AHAS(W492S)] as a dominant selectable marker. AHAS is the target enzyme of the herbicide sulfometuron methyl, which effectively inhibits growth of bacteria, fungi, plants, and algae. Biolistic transformation of synchronized Porphyridium sp. cells with the mutant AHAS(W492S) gene that confers herbicide resistance gave a high frequency of sulfomethuron methyl-resistant colonies. The mutant AHAS gene integrated into the chloroplast genome by homologous recombination. This system paves the way for expression of foreign genes in red algae and has important biotechnological implications.

  4. Characterisation Of Polysacharides And Lipids From Selected Green Algae Species By FTIR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Gerulová, Kristína

    2015-06-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chromochloris zofingiensis (Dönz) Fucíková et L.A. Lewis (SAG 211-14, Gottingen, Germany), Acutodesmus obliguus (Turpin) Hegewald (SAG 276-1, Gottingen, Germany) and Chlorella sorokiniana (K. Brandt) Pröschold et Darienko (SAG 211-40c, Gottingen, Germany). Polysaccharides and lipids from these three algae species were determined using Fourier Transformed Infrared Spectroscopy (FTIR) with ATR accessory with diamante crystal in spectral range from 400 - 4000 cm-1 and resolution 4.

  5. Viruses of eukaryotic green algae. Progress report, August 1, 1984-March 1, 1986

    SciTech Connect

    Van Etten, J.L.

    1986-01-01

    PBCV-1 is a large dsDNA-containing, plaque forming virus that replicates in a unicellular, eukaryotic Chlorella-like green alga strain NC64A. We have discovered that PBCV-1 infection results in the appearance of a restriction and modification system in the host. Furthermore, we have isolated and partially characterized 30 additional large, dsDNA-containing viruses which replicate in the same host. Some, if not all, of these viruses probably induce the synthesis of modification and restriction systems which are different from that induced by PBCV-1. 16 refs.

  6. Use of oxygen-18 isotopic labeling to assay photorespiration in terrestrial plants and algae

    SciTech Connect

    de Veau, E.J.

    1988-01-01

    A new method was devised to quantify photorespiration. The assay utilized {sup 18}O{sub 2} to isotopically label intermediates of the glycolate pathway, specifically glycolate, glycine, and serine, for various time periods. The pathway intermediates were isolated and analyzed on a mass spectrometer to determine molecular percent {sup 18}O-enrichment. Rates of glycolate synthesis were determined from: {sup 18}O-labeling kinetics of the intermediates, derived rate equations, and non-linear regression techniques. The method was adapted to measure photorespiratory rates in both terrestrial plants and algae. Test plants are Triticum aestivum, Zea mays L., Pavlova lutheri and Chlorella pyrenoidosa.

  7. Global Analysis of Chlorella variabilis NC64A mRNA Profiles during the Early Phase of Paramecium bursaria Chlorella Virus-1 Infection

    PubMed Central

    Rowe, Janet M.; Jeanniard, Adrien; Gurnon, James R.; Xia, Yuannan; Dunigan, David D.; Van Etten, James L.; Blanc, Guillaume

    2014-01-01

    The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels. The population of genes with significant transcriptional changes gradually increased until stabilizing at 40 minutes post infection. Functional categories including cytoplasmic ribosomal proteins, jasmonic acid biosynthesis and anaphase promoting complex/cyclosomes had a significant excess in upregulated genes, whereas spliceosomal snRNP complexes and the shikimate pathway had significantly more down-regulated genes, suggesting that these pathways were activated or shut-down in response to the virus infection. Lastly, we examined the expression of C. varibilis RNA polymerase subunits, as PBCV-1 transcription depends on host RNA polymerases. Two subunits were up-regulated, RPB10 and RPC34, suggesting that they may function to support virus transcription. These results highlight genes and pathways, as well as overall trends, for further refinement of our understanding of the changes that take place during the early stages of viral infection. PMID:24608695

  8. Global analysis of Chlorella variabilis NC64A mRNA profiles during the early phase of Paramecium bursaria chlorella virus-1 infection.

    PubMed

    Rowe, Janet M; Jeanniard, Adrien; Gurnon, James R; Xia, Yuannan; Dunigan, David D; Van Etten, James L; Blanc, Guillaume

    2014-01-01

    The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels. The population of genes with significant transcriptional changes gradually increased until stabilizing at 40 minutes post infection. Functional categories including cytoplasmic ribosomal proteins, jasmonic acid biosynthesis and anaphase promoting complex/cyclosomes had a significant excess in upregulated genes, whereas spliceosomal snRNP complexes and the shikimate pathway had significantly more down-regulated genes, suggesting that these pathways were activated or shut-down in response to the virus infection. Lastly, we examined the expression of C. varibilis RNA polymerase subunits, as PBCV-1 transcription depends on host RNA polymerases. Two subunits were up-regulated, RPB10 and RPC34, suggesting that they may function to support virus transcription. These results highlight genes and pathways, as well as overall trends, for further refinement of our understanding of the changes that take place during the early stages of viral infection.

  9. Aerobic degradation of methyl tert-butyl ether in a closed symbiotic system containing a mixed culture of Chlorella ellipsoidea and Methylibium petroleiphilum PM1.

    PubMed

    Zhong, Weihong; Li, Yixiao; Sun, Kedan; Jin, Jing; Li, Xuanzhen; Zhang, Fuming; Chen, Jianmeng

    2011-01-30

    The contamination of groundwater by methyl tert-butyl ether (MTBE) is one of the most serious environmental problems around the world. MTBE degradation in a closed algal-bacterial symbiotic system, containing a mixed culture of Methylibium petroleiphilum PM1 and Chlorella ellipsoidea, was investigated. The algal-bacterial symbiotic system showed increased MTBE degradation. The MTBE-degradation rate in the mixed culture (8.808 ± 0.007 mg l(-1) d(-1)) was higher than that in the pure bacterial culture (5.664 ± 0.017 mg l(-1) d(-1)). The level of dissolved oxygen was also higher in the mixed culture than that in the pure bacterial culture. However, the improved efficiency of MTBE degradation was not in proportional to the biomass of the alga. The optimal ratio of initial cell population of bacteria to algae was 100:1. An immobilized culture of mixed bacteria and algae also showed higher MTBE degradation rate than the immobilized pure bacterial culture. A mixed culture with algae and PM1 immobilized separately in different gel beads showed higher degradation rate (8.496 ± 0.636 mg l(-1) d(-1)) than that obtained with algae and PM1 immobilized in the same gel beads (5.424 ± 0.010 mg l(-1) d(-1)).

  10. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco.

    PubMed

    Duval, B; Duval, E; Hoham, R W

    1999-03-01

    Snow algae (Chlorophyta) are reported from the Sierra Nevada mountains in southern Spain and the High Atlas mountains of Morocco. Populations of the snow algae Chlamydomonas sp., coloring the snow orange-red, were collected from Pico de Veleta, Spain, while snow samples from Mt. Neltner in the High Atlas mountains, contained resting spores of an orange-green colored Chloromonas sp. Other microbes observed in snow samples include bacteria, fungi, heterotrophic euglenids, diatoms, nematodes, and heterotrophic mastigotes (flagellated protists). This is the first report of snow algae from the Sierra Nevada mountains of Spain and from the Afro-alpine environment.

  11. Co-culturing Chlorella minutissima with Escherichia coli can increase neutral lipid production and improve biodiesel quality.

    PubMed

    Higgins, Brendan T; Labavitch, John M; VanderGheynst, Jean S

    2015-09-01

    Lipid productivity and fatty acid composition are important metrics for the production of high quality biodiesel from algae. Our previous results showed that co-culturing the green alga Chlorella minutissima with Escherichia coli under high-substrate mixotrophic conditions enhanced both culture growth and crude lipid content. To investigate further, we analyzed neutral lipid content and fatty acid content and composition of axenic cultures and co-cultures produced under autotrophic and mixotrophic conditions. We found that co-culturing C. minutissima with E. coli under high substrate conditions (10 g/L) increased neutral lipid content 1.9- to 3.1-fold and fatty acid content 1.5- to 2.6-fold compared to equivalent axenic C. minutissima cultures. These same co-cultures also exhibited a significant fatty acid shift away from trienoic and toward monoenoic fatty acids thereby improving the quality of the synthesized fatty acids for biodiesel production. Further investigation suggested that E. coli facilitates substrate uptake by the algae and that the resulting growth enhancement induces a nitrogen-limited condition. Enhanced carbon uptake coupled with nitrogen limitation is the likely cause of the observed neutral lipid accumulation and fatty acid profile changes.

  12. Nitrous Oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    NASA Astrophysics Data System (ADS)

    Guieysse, B.; Plouviez, M.; Coilhac, M.; Cazali, L.

    2013-10-01

    Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O) is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR) activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO) acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO), the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38-10.1 kg N2O-N ha-1 yr-1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions). These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  13. Novel salvage of queuine from queuosine and absence of queuine synthesis in Chlorella pyrenoidosa and Chlamydomonas reinhardtii.

    PubMed Central

    Kirtland, G M; Morris, T D; Moore, P H; O'Brian, J J; Edmonds, C G; McCloskey, J A; Katze, J R

    1988-01-01

    Partially purified extracts from Chlorella pyrenoidosa and Chlamydomonas reinhardtii catalyze the cleavage of queuosine (Q), a modified 7-deazaguanine nucleoside found exclusively in the first position of the anticodon of certain tRNAs, to queuine, the base of Q. This is the first report of an enzyme that specifically cleaves a 7-deazapurine riboside. Guanosine is not a substrate for this activity, nor is the epoxide a derivative of Q. We also establish that both algae can incorporate exogenously supplied queuine into their tRNA but lack Q-containing tRNA when cultivated in the absence of queuine, indicating that they are unable to synthesize Q de novo. Although no physiological function for Q has been identified in these algae, Q cleavage to queuine would enable algae to generate queuine from exogenous Q in the wild and also to salvage (and recycle) queuine from intracellular tRNA degraded during the normal turnover process. In mammalian cells, queuine salvage occurs by the specific cleavage of queuine from Q-5'-phosphate. The present data also support the hypothesis that plants, like animals, cannot synthesize Q de novo. PMID:3142853

  14. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice.

    PubMed

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-01-01

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252

  15. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice

    PubMed Central

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-01-01

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252

  16. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis.

    PubMed

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89mgg(-1) dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3mgL(-1)day(-1), respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga. PMID:27152772

  17. Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis.

    PubMed

    Liu, Jin; Sun, Zheng; Zhong, Yujuan; Huang, Junchao; Hu, Qiang; Chen, Feng

    2012-12-01

    The green alga Chlorella zofingiensis can accumulate high level of oleic acid (OA, C18:1△(9)) rich oils in response to stress conditions. To understand the regulation of biosynthesis of fatty acid in particular OA at the molecular level, we cloned and characterized the stearoyl acyl carrier protein (ACP) desaturase (SAD) responsible for OA formation through desaturation of stearic acid (C18:0) from C. zofingiensis. Southern blot indicated that the C. zofingiensis genome contained a single copy of SAD, from which the deduced amino acid sequence shared high identity to the corresponding homologs from other microalgae and higher plants. The desaturation activity of SAD was demonstrated in vitro using C18:0-ACP as a substrate. Stress conditions such as high light (HL), nitrogen deficiency (N(-)), or combination of HL and N(-) (HL + N(-)) drastically up-regulated the transcripts of biotin carboxylase (BC, a subunit of ACCase) and SAD, and therefore induced considerably the cellular accumulation of total fatty acids including OA. Glucose (50 mM) gave rise to the similar up-regulation of the two genes and induction of fatty acid accumulation. The accumulation of intracellular reactive oxygen species was found to be associated with the up-regulation of genes. This is the first report of characterization of Chlorella-derived SAD and the results may contribute to understanding of the mechanisms involved in fatty acid/lipid biosynthesis in microalgae. PMID:22855030

  18. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice.

    PubMed

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-09-02

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD.

  19. Glycolate metabolism in low and high CO sub 2 -grown chlorella pyrenoidosa and Pavlova lutheri as determined by sup 18 O-labeling

    SciTech Connect

    de Veau, E.J.; Burris, J.E. )

    1989-11-01

    Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring {sup 18}O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from {sup 18}O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO{sub 2}-grown cells than in air-grown cells when both were assayed under the same O{sub 2} and CO{sub 2} concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O{sub 2} levels and inhibited by high CO{sub 2} levels. Glycolate synthesis in 1.5% CO{sub 2}-grown Chlorella, when exposed to a 0.035% CO{sub 2} atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O{sub 2} concentration was increased from 21 to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O{sub 2} concentration was lowered to 2% or the CO{sub 2}-concentration was raised to 1.5%. Glycolate excretion was also sensitive to O{sub 2} and CO{sub 2} concentrations in 1.5% CO{sub 2}-grown cells and the glycolate that was excreted was {sup 18}O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory {sup 18}O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.

  20. Glycolate Metabolism in Low and High CO2-Grown Chlorella pyrenoidosa and Pavlova lutheri as Determined by 18O-Labeling 1

    PubMed Central

    de Veau, Edward J.; Burris, John E.

    1989-01-01

    Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring 18O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO2-grown cells than in air-grown cells when both were assayed under the same O2 and CO2 concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O2 levels and inhibited by high CO2 levels. Glycolate synthesis in 1.5% CO2-grown Chlorella, when exposed to a 0.035% CO2 atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O2 concentration was increased from 21% to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O2 concentration was lowered to 2% or the CO2 concentration was raised to 1.5%. Glycolate excretion was also sensitive to O2 and CO2 concentrations in 1.5% CO2-grown cells and the glycolate that was excreted was 18O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory 18O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media. PMID:16667116

  1. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides

    SciTech Connect

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2014-12-15

    We report that integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. We found that the result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Lastly, taken together, the

  2. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides1[OPEN

    PubMed Central

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. The result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Taken together, the metabolic network modeling assisted by experimental metabolomics and 13C labeling

  3. Clocks in algae.

    PubMed

    Noordally, Zeenat B; Millar, Andrew J

    2015-01-20

    As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.

  4. Synthesis of Nitrate Reductase in Chlorella

    PubMed Central

    Funkhouser, Edward A.; Shen, Teh-Chien; Ackermann, Renate

    1980-01-01

    Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically. PMID:16661310

  5. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry.

  6. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  7. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris

    SciTech Connect

    Greene, B.; Henzl, M.T.; Hosea, J.M.; Darnall, D.W.

    1986-01-01

    Freeze-dried preparations of Chlorella vulgaris will accumulate U(Vl) from alkaline, bicarbonate-containing waters collected from uranium mill process streams, provided that the pH is pre-adjusted to between 4.0 and 6.0. Bicarbonate ion complexes the uranyl ion in these waters and seriously interferes with the binding of U(Vl) to the algal cells at pH values above 6.0. No binding of U(Vl) to the algae occurred at the natural pH of 8.0 when Chlorella vulgaris was suspended in untreated mull-waters containing up to 2.5 x 10/sup -4/M U(Vl). However, when the pH of these waters was lowered from 8.0 to near 5.0, with nitric acid, nearly quantitative binding of U(Vl) to the alga was achieved. Binding is rapid and largely unaffected by ions including Na/sup +/, Cl/sup -/, NO/sub 3//sup -/, /sup -/OAc, and SO/sub 4//sup 2 -/. Our results indicate that provided steps are taken to eliminate bicarbonate interference, such as adjustment of the pH to near 5.0, dried algal biomass could prove useful for the removal and recovery of U(Vl) from high carbonate-containing waters.

  8. The effect of light:dark cycles of medium frequency on photosynthesis by Chlorella vulgaris and the implications for waste stabilisation pond design and performance.

    PubMed

    Ratchford, I A J; Fallowfield, H J

    2003-01-01

    The effect of light/dark (L:D) cycle times on the recovery from photoinhibition of green micro-alga Chlorella vulgaris (CCAP211/11c) and the cyanobacterium Synechococcus (CCAP1479/5) was investigated using an irradiated, temperature controlled oxygen electrode. The onset of photoinhibition in both organisms occurred at irradiances > 300 micromol m(-2)s(-1) at temperatures >15 degrees C. Light/dark cycle times were controlled independently using a relay timer and shutter placed between the quartz iodide light source and the oxygen electrode chamber. Oxygen evolution decreased rapidly when cells were continuously irradiated at 300, 500 and 750 micromol m(-2)s(-1). However, Chlorella cells irradiated at 300, 500 and 750 micromol m(-2)s(-1)on a L:D cycle of 60s:20s, 30s:60s and 60s: 120s respectively, maintained a constant rate of oxygen evolution over a 24 h incubation period. Exposure time to a given incident irradiance rather than the total light dose received appeared to determine the effect of light/dark cycle times on photosynthesis. A relationship was established between L:D ratio required to maintain constant oxygen production and incident photon flux density. The results suggest that the adverse effects of high irradiances on algae near the surface of a stratified waste stabilisation pond might be ameliorated by controlled mixing of algal cells through the depth of the pond.

  9. Visualization of oxygen distribution patterns caused by coral and algae.

    PubMed

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  10. [An experimental study and a mathematical model of interactions in mixed culture of invertebrates and algae in the "producer-consumer" aquatic biotic cycle].

    PubMed

    Pis'man, T I; Bogdanova, O N

    2004-01-01

    An experimental investigation was carried out, and a mathematical model of interaction between invertebrates (infusoria Paramecium caudatum and rotifera Brachionus plicatilis) and algae (Chlorella vulgaris and Scenedesmus quadricauda) in the "producer-consumer" aquatic biotic cycle with spatially divided links was constructed. The model describes the dynamics of a mixed culture of infusoria and rotifera in the "consumer" link, when they consume a mixed culture of algae coming from the "producer" link. A negative influence of products of algae Scenedesmus metabolism upon the reproduction of infusoria P. caudatum was revealed. Taking this into account, a qualitative coincidence of the results of mathematical modeling with experimental data was obtained. It was shown that the co-existence of mixed algae culture in the "producer" link with invertebrates in the "consumer" link in the "producer-consumer" aquatic biotic cycle is impossible because of the displacement of infusoria P. caudatum by rotifera Brachionus plicatilis. PMID:15612555

  11. The Respiratory Chain of Chlorella protothecoides

    PubMed Central

    Grant, Neil G.; Hommersand, Max H.

    1974-01-01

    The respiration and cytochrome properties of “glucose-bleached” Chlorella protothecoides Krüger, Indiana strain 25, were studied. This organism, when grown heterotrophically with high glucose and a low organic nitrogen source, has no chlorophyll, little carotenoid, and diminished chloroplast structure—factors which make it suitable for respiration studies. Whole cell endogenous oxygen uptake rates are either stimulated or only slightly inhibited by cyanide, azide, CO, and antimycin. When these inhibitors are used with m-chlorobenz-hydroxamic acid (mCLAM), an inhibitor of higher plant mitochondrial alternate oxidase, O2 uptake is inhibited. There is little effect of mCLAM by itself on the rate of oxygen uptake. The inhibition by CO of O2 uptake in the presence of mCLAM is reversed by light. The cytochrome chain of C. protothecoides consists of cytochromes aa3, b, and c, as revealed by room temperature difference spectra. In common with mitochondria of higher plants, there is a further reduction of cytochrome b with dithionite. In the presence of antimycin, the cytochromes aa3 and c are oxidized and cytochrome b is reduced. Cyanide causes a partial reduction of cytochromes aa3 and c while cytochrome b remains oxidized. This general response is characteristic of higher plant mitochrondria having large amounts of cyanide-resistant respiration. Carbon monoxide spectra reveal one CO-combining pigment. The cytochrome b region differs from that of higher plants in that the typical complex spectrum does not appear at low temperature (−190 C). The concentration of cytochrome aa3 per cell volume was observed during the greening of “glucose-bleached” cells. The concentration of these cytochromes nearly tripled during the 24 hours of the initial stages of greening. PMID:16658836

  12. Unlocking nature's treasure-chest: screening for oleaginous algae.

    PubMed

    Slocombe, Stephen P; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N; Black, Kenneth D; Stanley, Michele S; Day, John G

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for "health-foods" and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  13. Carbon and Metal Quantum Dots toxicity on the microalgae Chlorella pyrenoidosa.

    PubMed

    Xiao, An; Wang, Chao; Chen, Jiao; Guo, Ruixin; Yan, Zhengyu; Chen, Jianqiu

    2016-11-01

    In this report, we investigated the cytotoxicity of two types of quantum dots(QDs) (carbon quantum dots(CQDs): N, S doped CQDs, N doped CQDs, no doped CQDs; metal QDs(MQDs): CdTe QDs, CdS QDs, CuInS2/ZnS QDs) on Chlorella pyrenoidosa(C. Pyrenoidosa) at different concentrations. We compared the toxicity of different QDs on C. Pyrenoidosa through determination of the algal growth inhibition, acute toxicity tests (EC50), Chlorophyll a(Chla) contents, protein contents, the activity of enzymatic and metabolites contents. When C. Pyrenoidosa was treated by various concentrations of QDs, the Chla contents were consistent to the number of algae cells, showing a good dose-response relationship. At the 96h, the EC50 of N, S doped CQDs, N doped CQDs, no doped CQDs and CdTe QDs, CdS QDs, CuInS2/ZnS QDs were 38.56, 185.83, 232.47, 0.015, 4.88, 459.5mg/l, respectively. The toxicity order of them was: CuInS2/ZnS QDsalgae were exposed to QDs. In conclusion, the toxicity of CQDs was smaller than MQDs, but the toxicity of CuInS2/ZnS QDs was the smallest. PMID:27467021

  14. Carbon and Metal Quantum Dots toxicity on the microalgae Chlorella pyrenoidosa.

    PubMed

    Xiao, An; Wang, Chao; Chen, Jiao; Guo, Ruixin; Yan, Zhengyu; Chen, Jianqiu

    2016-11-01

    In this report, we investigated the cytotoxicity of two types of quantum dots(QDs) (carbon quantum dots(CQDs): N, S doped CQDs, N doped CQDs, no doped CQDs; metal QDs(MQDs): CdTe QDs, CdS QDs, CuInS2/ZnS QDs) on Chlorella pyrenoidosa(C. Pyrenoidosa) at different concentrations. We compared the toxicity of different QDs on C. Pyrenoidosa through determination of the algal growth inhibition, acute toxicity tests (EC50), Chlorophyll a(Chla) contents, protein contents, the activity of enzymatic and metabolites contents. When C. Pyrenoidosa was treated by various concentrations of QDs, the Chla contents were consistent to the number of algae cells, showing a good dose-response relationship. At the 96h, the EC50 of N, S doped CQDs, N doped CQDs, no doped CQDs and CdTe QDs, CdS QDs, CuInS2/ZnS QDs were 38.56, 185.83, 232.47, 0.015, 4.88, 459.5mg/l, respectively. The toxicity order of them was: CuInS2/ZnS QDsalgae were exposed to QDs. In conclusion, the toxicity of CQDs was smaller than MQDs, but the toxicity of CuInS2/ZnS QDs was the smallest.

  15. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc.

    PubMed

    Huang, Zhiyong; Li, Lianping; Huang, Gaoling; Yan, Qingpi; Shi, Bing; Xu, Xiaoqin

    2009-01-18

    Phytochelatins, with the general structure of (gamma-Glu-Cys)n-Gly (n=2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5cmx80cm) and a desalting column (G-25, 1.5cmx30cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p<0.05) on the cell growth were observed when excessive metals such as 80micromoll(-1) of Cd, and 60 and 80micromoll(-1) of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga. PMID:19019465

  16. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima.

    PubMed

    Oh, Sung Ho; Kwon, Min Chul; Choi, Woon Yong; Seo, Yong Chang; Kim, Ga Bin; Kang, Do Hyung; Lee, Shin Young; Lee, Hyeon Yong

    2010-08-01

    A unique perfusion process was developed to maintain high concentrations of marine alga, Chlorella minutissima. This method is based on recycling cells by continuous feeding with warm spent sea water from nuclear power plants, which has very similar properties as sea water. A temperature of at least 30 degrees C in a 200 L photo-bioreactor was maintained in this system by perfusion of the thermal plume for 80 days in the coldest season. The maximum cell concentration and total lipid content was 8.3 g-dry wt./L and 23.2 %, w/w, respectively, under mixotrophic conditions. Lipid production was found to be due to a partially or non-growth related process, which implies that large amounts of biomass are needed for a high accumulation of lipids within the cells. At perfusion rates greater than 1.5 L/h, the temperature of the medium inside the reactor was around 30 degrees C, which was optimal for cell growth. For this system, a perfusion rate of 2.8 L/h was determined to be optimal for maintaining rapid cell growth and lipid production during outdoor cultivation. It was absolutely necessary to maintain the appropriate perfusion rate so that the medium temperature was optimal for cell growth. In addition, the lipids produced using this process were shown to be feasible for biodiesel production since the lipid composition of C. minutissima grown under these conditions consisted of 17 % (w/w) of C(16) and 47% (w/w) of C(18). The combined results of this study clearly demonstrated that the discharged energy of the thermal plume could be reused to cultivate marine alga by maintaining a relatively constant temperature in an outdoor photo-bioreactor without the need for supplying any extra energy, which could allow for cheap production of biodiesel from waste energy.

  17. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media.

    PubMed

    Morales-Ventura, Jesús; Nandini, S; Sarma, S S S; Castellanos-Páez, Maria Elena

    2012-09-01

    Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold's basal) medium or the commercial liquid fertilizer (Bayfolan). Experiments were conducted at one algal concentration 1.0 x 10(6) cells/mL of C. vulgaris or its equivalent dry weight of 0.5 x 10(6) cells/mL of S. acutus. The population dynamics were tested at 23 +/- 1 degrees C in 100 mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates). For the life table experiments with M. macrocopa, we introduced 10 neonates (<24h old) into each test jar containing the specific algal type and concentration. For the rotifer experiments, we set 5mL tubes with one neonate each and 10 replicates for each algal species and culture medium. We found that the average rotifer life span was not influenced by the diet, but for M. macrocopa fed S. acutus cultured in Bold's medium, the average lifespan was significantly lower than with the other diets. The gross and net reproductive rates of A. fissa (ranging from 18-36 offspring per female) were significantly higher for C vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens

  18. Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production.

    PubMed

    Sun, Zheng; Zhou, Zhi-gang; Gerken, Henri; Chen, Feng; Liu, Jin

    2015-05-01

    The growth and oil production of nine Chlorella strains were comparatively assessed and Chlorellaprotothecoides CS-41 demonstrated the greatest lipid production potential. The effects of different nitrogen forms and concentrations, phosphorus concentrations and light intensities on growth and oil production were studied in laboratory columns. C. protothecoides CS-41 accumulated lipids up to 55% of dry weight, with triacylglycerol and oleic acid being 71% of total lipids and 59% of total fatty acids, respectively. High biomass and lipid productivities were achieved in outdoor panel PBRs, up to 1.25 and 0.59 g L(-1) day(-1), or 44. 1 and 16.1 g m(-2) day(-1), respectively. A two-stage cultivation strategy was proposed to enhance the algal biomass and lipid production. This is the first comprehensive investigation of both indoor and outdoor photoautotrophic C. protothecoides cultures for oil production, and C. protothecoides CS-41 represents a promising biofuel feedstock worthy of further exploration.

  19. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    PubMed

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment. PMID:27367150

  20. Metal distributions in complexes with Chlorella vulgaris in seawater and wastewater

    SciTech Connect

    Pascucci, P.R.; Kowalak, A.D.

    1999-10-01

    Divalent cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) simultaneous complexes with an algal biomass Chlorella vulgaris were studied for bioremediation purposes in various aqueous media: distilled-deionized water (DDIW), seawater, nuclear-reactor pool water, and process wastewater. Reactions were monitored using various dry masses of algae at constant temperature and constant metal concentrations for reaction times ranging from 0 to 150 minutes. Complexes occurred within 30 minutes and reached a steady state after 80 to 120 minutes. Distribution constants (K{prime}{sub d}) were calculated for the complexes and relative orders of K{prime}{sub d} were reported. The K{prime}{sub d} are used to evaluate relative efficiency of metal remediation from waters. Lead, Cu, and Ni complexes had the greatest K{prime}{sub d} values and those metals were most efficiently removed from these waters. Zinc and Fe formed the most labile complexes. The order of K{prime}{sub d} values for complexes in DDIW was Pb > Cu > Cd > Zn, then Cu > Cd > Zn in seawater, Cd > Cu > Zn in reactor pool water, and Ni > Cd > Cu > Zn > Fe in wastewater. C. vulgaris biomass may potentially be used as an alternative to traditional water treatment methods for simultaneous extraction of metals from seawater, process wastewater, or drinking water.

  1. Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation.

    PubMed

    Zhu, Shunni; Wang, Yajie; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-08-01

    Cellular biochemical composition of the microalga Chlorella zofingiensis was studied under favorable and nitrogen starvation conditions, with special emphasis on lipid classes and fatty acids distribution. When algal cells were grown in nitrogen-free medium (N stress), the increase in the contents of lipid and carbohydrate while a decrease in protein content was detected. Glycolipids were the major lipid fraction (50.7% of total lipids) under control condition, while neutral lipids increased to be predominant (86.7% of total lipids) under N stress condition. Triacylglycerol (TAG) content in N stressed cells was 27.3% dw, which was over three times higher than that obtained under control condition. Within neutral lipids fraction, monounsaturated fatty acids (MUFA) were the main group (40.6%) upon N stress, in which oleic acid was the most representative fatty acids (34.5%). Contrarily, glycolipids and phospholipids showed a higher percentage of polyunsaturated fatty acids (PUFA). Lipid quality assessment indicated the potential of this alga as a biodiesel feedstock when its neutral lipids were a principal lipid fraction. The results demonstrate that the neutral lipids content is key to determine the suitability of the microalga for biodiesel, and the stress cultivation is essential for lipid quality.

  2. Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa.

    PubMed

    Zhang, Jinhua; Wang, Jie; Feng, Jia; Lv, Junping; Cai, Jin; Liu, Qi; Xie, Shulian

    2016-09-01

    1,4-Dichlorobenzene (1,4-DCB) is a common organic contaminant in water. To determine the effects of this contaminant on photosynthesis in the freshwater alga Chlorella pyrenoidosa, algal cells were treated with 1,4-DCB at different concentrations for various times, and their photosynthetic pigment contents and chlorophyll fluorescence traits were analyzed. The results showed that 1,4-DCB exerted toxic effects on photosynthesis in C. pyrenoidosa, especially at concentrations exceeding 10 mg/L. The inhibitory effects of 1,4-DCB were time- and concentration-dependent. After treatment with 1,4-DCB (≥10 mg/L), the contents of photosynthetic pigments decreased significantly, the photosystem II reaction center was irreversibly damaged, and the quantum yield of photosystem II decreased significantly. Also, there were sharp decreases in the efficiency of photosynthetic electron transport and energy conversion. Photosystem II became overloaded as the amount of excitation energy distributed to it increased. All of these events weakened the photochemical reaction, and ultimately led to serious inhibition of photosynthesis. PMID:27542668

  3. Chlorella saccharophila cytochrome f and its involvement in the heat shock response

    PubMed Central

    Zuppini, Anna; Gerotto, Caterina; Moscatiello, Roberto; Bergantino, Elisabetta; Baldan, Barbara

    2009-01-01

    Cytochrome f is an essential component of the major redox complex of the thylakoid membrane. Cloning and characterization are presented here of a novel partial cDNA (ChspetA) encoding cytochrome f in the psychrophile unicellular green alga Chlorella saccharophila and its involvement in the heat shock (HS) response pathway has been analysed. Semi-quantitative reverse transcriptase PCR analysis showed that ChspetA expression is up-regulated in heat-shocked cells and the protein profile of cytochrome f highlighted a release of cytochrome f into the cytosol depending on the time lapse from the HS. Evans Blue assay, analysis of chromatin condensation, and chloroplast alterations showed the induction of cell death in cell suspensions treated with cytosolic extracts from heat-shocked cells. This study identifies cytochrome f in C. saccharophila that seems to be involved in the HS-induced programmed cell death process. The data suggest that cytochrome f fulfils its role through a modulation of its transcription and translation levels, together with its intracellular localization. This work focuses on a possible role of cytochrome f into the programmed cell death-like process in a unicellular chlorophyte and suggests the existence of chloroplast-mediated programmed cell death machinery in an organism belonging to one of the primary lineages of photosynthetic eukaryotes. PMID:19773387

  4. Vitreoscilla hemoglobin gene ( vgb) improves lutein production in Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Ma, Ruijuan; Lin, Xiangzhi

    2014-03-01

    Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the efficiency of cell respiration and metabolism. In this study, we introduced a Vitreoscilla hemoglobin gene ( vgb) into Chlorella vulgaris by Agrobacterium tumefaciens -mediated transformation (ATMT). PCR analysis confirmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome. Analysis of biomass obtained in shake flasks revealed transformant biomass concentrations as high as 3.28 g/L, which was 38.81% higher than that of the wild-type strain. Lutein content of transformants also increased slightly. Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants, which was 36.77% higher than that of the wild-type strain. The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris, with applications to lutein production from Chlorella during fermentation.

  5. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    PubMed

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  6. Evaluation of Chlorella as a Decorporation Agent to Enhance the Elimination of Radioactive Strontium from Body

    PubMed Central

    Ogawa, Kazuma; Fukuda, Tadahisa; Han, Jaegab; Kitamura, Yoji; Shiba, Kazuhiro; Odani, Akira

    2016-01-01

    Background Release of radionuclides, such as 137Cs and 90Sr, into the atmosphere and the ocean presents an important problem because internal exposure to 137Cs and 90Sr could be very harmful to humans. Chlorella has been reported to be effective in enhancing the excretion of heavy metals; thus, we hypothesized that Chlorella could also enhance the elimination of 137Cs or 90Sr from the body. We evaluated the potential of Chlorella as a decorporation agent in vitro and in vivo, using 85Sr instead of 90Sr. Methods In vitro experiments of adsorption of 137Cs and 85Sr to Chlorella were performed under wide pH conditions. The maximum sorption capacity of Chlorella to strontium was estimated using the Langmuir model. A 85Sr solution was orally administrated to mice pretreated with Chlorella. At 48 h after 85Sr administration, the biodistribution of radioactivity was determined. Results In the in vitro experiments, although 85Sr barely adsorbed to Chlorella at low pH, the 85Sr adsorption ratio to Chlorella increased with increasing pH. The maximum sorption capacity of Chlorella to strontium was 9.06 mg / g. 137Cs barely adsorbed to Chlorella under any pH conditions. In the biodistribution experiments, bone accumulation of radioactivity after 85Sr administration was significantly decreased in the Chlorella pretreatment group compared with the non-treatment control group. Conclusions In conclusion, these results indicated that Chlorella could inhibit the absorption of 90Sr into the blood and enhance the elimination of 90Sr from the body through adsorption in intestine. Further studies are required to elucidate the mechanism and the components of Chlorella needed for adsorption to strontium and could promote the development of more effective decorporation agents. PMID:26828430

  7. Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling.

    PubMed

    Onwudili, Jude A; Lea-Langton, Amanda R; Ross, Andrew B; Williams, Paul T

    2013-01-01

    Chlorella vulgaris, Spirulina platensis and Saccharina latissima were processed under supercritical water gasification conditions at 500 °C, 36 MPa in an Inconel batch reactor for 30 min in the presence/absence of NaOH and/or Ni-Al(2)O(3). Hydrogen gas yields were more than two times higher in the presence of NaOH than in its absence and tar yields were reduced by up to 71%. Saccharina, a carbohydrate-rich macro-alga, gave the highest hydrogen gas yields of 15.1 mol/kg. The tars from all three algae contained aromatic compounds, including phenols, alkyl benzenes and polycyclic aromatic hydrocarbons as well as heterocyclic nitrogen compounds. Tars from Chlorella and Spirulina contained high yields of pyridines, pyrroles, indoles and pyrimidines. Up to 97% TOC removal were achieved in the process waters from the gasification of the algae. Analyses for specific nutrients in the process waters indicated that the process waters from Saccharina could potentially be used for microalgae cultivation. PMID:23131625

  8. Photosynthetic Shutdown in Chlorella NC64A Associated with the Infection Cycle of Paramecium bursaria Chlorella Virus-1.

    PubMed

    Seaton, GGR.; Lee, K.; Rohozinski, J.

    1995-08-01

    The effects of the algal virus Paramecium bursaria Chlorella virus-1 on the photosynthetic physiology of its host, Chlorella NC64A, was studied by observing changes in Chl fluorescence quenching and O2 exchange. Metabolic changes were calibrated against electron microscopic analysis of the morphological changes that occur during the infection cycle. It takes approximately 10 h from attachment of the virus to final lysis of the host cell, so a complete infection cycle can be observed continuously in one experiment. During the early stages of the infection cycle many rapid changes occurred in the host cell's metabolism and these were reflected in changes of photosynthetic and respiratory rates. The dramatic inhibition of photosynthesis in Chlorella NC64A cells by P. bursaria Chlorella virus-1 has facilitated the use of fluorescence quenching as an accurate measure of the first phase of viral infection (attachment and penetration of the host cell) and the extent to which a population of host cells is infected. Effects of temperature and cation requirement of the infection cycle are described. The relevance of our observations to the events observed during viral infection of higher plants is discussed.

  9. Photosynthetic Shutdown in Chlorella NC64A Associated with the Infection Cycle of Paramecium bursaria Chlorella Virus-1.

    PubMed Central

    Seaton, GGR.; Lee, K.; Rohozinski, J.

    1995-01-01

    The effects of the algal virus Paramecium bursaria Chlorella virus-1 on the photosynthetic physiology of its host, Chlorella NC64A, was studied by observing changes in Chl fluorescence quenching and O2 exchange. Metabolic changes were calibrated against electron microscopic analysis of the morphological changes that occur during the infection cycle. It takes approximately 10 h from attachment of the virus to final lysis of the host cell, so a complete infection cycle can be observed continuously in one experiment. During the early stages of the infection cycle many rapid changes occurred in the host cell's metabolism and these were reflected in changes of photosynthetic and respiratory rates. The dramatic inhibition of photosynthesis in Chlorella NC64A cells by P. bursaria Chlorella virus-1 has facilitated the use of fluorescence quenching as an accurate measure of the first phase of viral infection (attachment and penetration of the host cell) and the extent to which a population of host cells is infected. Effects of temperature and cation requirement of the infection cycle are described. The relevance of our observations to the events observed during viral infection of higher plants is discussed. PMID:12228553

  10. Origin of the algae.

    PubMed

    Perasso, R; Baroin, A; Qu, L H; Bachellerie, J P; Adoutte, A

    1989-05-11

    Eukaryotic algae are traditionally separated into three broad divisions: the rhodophytes, the chromophytes and the chlorophytes. The evolutionary relationships between these groups, their links with other eukaryotes and with other photosynthetic groups, such as euglenophytes and cryptophytes, have been the subject of much debate and speculation. Here we analyse partial sequences of the large (28S) cytoplasmic ribosomal RNA from ten new species of protists belonging to various groups of unicellular algae. By combining them with the homologous sequences from 14 other unicellular and multicellular eukaryotes, we show that rhodophytes, chromophytes and chlorophytes emerge as three distinct groups late among eukaryotes, that is, close to the metazoa-metaphytes radiation. This implies a relatively late occurrence of eukaryotic photosynthetic symbiosis. We also provide details of intra- and inter-phyla relationships.

  11. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  12. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    PubMed

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. PMID:24841576

  13. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. [Chlamydomonas reinhardii; Chlorella pyrenoidosa; Chlorococcum minutum

    SciTech Connect

    Ohta, S.; Miyamoto, K.; Miura, Y.

    1987-04-01

    Dark anaerobic fermentation in the green algae Chlamydomonas MGA 161, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Chlorococcum minutum was studied. Their isolate, Chlamydomonas MGA 161, was unusual in having high H/sub 2/ but almost no formate. The fermentation pattern in Chlamydomonas MGA 161 was altered by changes in the NaCl or NH/sub 4/Cl concentration. Glycerol formation increased at low (0.1%) and high (7%) NaCl concentrations starch degradation, and formation of ethanol, H/sub 2/, and CO/sub 2/ increased with the addition of NH/sub 4/Cl to above 5 millimolar in N-deficient cells. C. reinhardtii and C.pyrenoidosa exhibited a very similar anaerobic metabolism, forming formate, acetate and ethanol in a ratio of about 2:2:1. C. minimum was also unusual in forming acetate, glycerol, and CO/sub 2/ as its main products, with H/sub 2/, formate, and ethanol being formed in negligible amounts. In the presence of CO, ethanol formation increased twofold in Chlamydomonas MGA 161 and C. reinhardtii, but the fermentation pattern in C. minimum did not change. An experiment with hypophosphite addition showed that dark H/sub 2/ evolution of the Escherichia coli type could be ruled out in Chlamydomonas MGA 161 and C. reinhardtii. Among the green algae investigated, three fermentation types were identified by the distribution pattern of the end products, which reflected the consumption model of reducing equivalents in the cells.

  14. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    PubMed

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture.

  15. Effect of temperature on extracellular organic matter (EOM) of Chlorella pyrenoidosa and effect of EOM on irreversible membrane fouling.

    PubMed

    Zhao, Fangchao; Su, Yiming; Tan, Xiaobo; Chu, Huaqiang; Zhang, Yalei; Yang, Libin; Zhou, Xuefei

    2015-12-01

    Extracellular organic matter (EOM) can cause serious membrane fouling during the algae harvesting process. In this study, the secretion of EOM, including bound-EOM (bEOM) and dissolved-EOM (dEOM), by Chlorella pyrenoidosa (C. pyrenoidosa) at different culturing temperatures, and their influences on membrane filtration, have been investigated. The secretion of EOM was markedly reduced at high temperatures. The specific EOM secretion rate (SEOM) reached 831.1 ± 55.3mg/g at the lowest temperatures of 15 °C; in contrast, the SEOM decreased to only 370-442 and 356-406 mg/g with temperature rising above 20-25 and 30-35 °C, respectively. Based on membrane filtration experiments, the influence of EOM on irreversible membrane fouling was studied. In a critical flux experiment, low critical flux (24 L/m(2)h) was observed in a system with a high EOM concentration. The fouled membranes were rinsed by water and then used for continuous filtration, scanning electron microscope (SEM) analysis and fourier transform infrared spectroscopy (FTIR) analysis. The results revealed that there was irreversible membrane fouling caused by EOM, and irreversible membrane fouling can be more serious when an algae solution contains high EOM levels.

  16. Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg-phytochelatins.

    PubMed

    Gómez-Jacinto, Verónica; García-Barrera, Tamara; Gómez-Ariza, José Luis; Garbayo-Nores, Inés; Vílchez-Lobato, Carlos

    2015-08-01

    Algae and aquatic macrophytes are capable of accumulating heavy metals up to concentrations several orders of magnitude higher than those existing in their surrounding environment. Investigation of mercury toxicology in microalgae is of great interest from ecological point of view, since they could be used as bioindicator to evaluate aquatic ecosystems affected by Hg pollution. In this study, we have performed an exposure experiment focused on the biological response of microalgae Chlorella sorokiniana, a unicellular model organism, to Hg-induced toxicity. The culture was exposed to different concentrations of this element for nine days, namely 0.5, 1, 5 and 10mg L(-1) of HgCl2 (as Hg). To achieve a better understanding of the biological mechanisms triggered by Hg-induced toxicity in this alga a metallomic approach based on SEC-ICP-ORS-MS was applied to survey biomarkers of biological response to mercury contamination in surface water. In addition, the combination of RP-HPLC-ICP-ORS-MS and RP-HPLC-ESI-QqQ-TOF-MS was applied to identify, for the first time, two Hg-binding phytochelatins in this aquatic organism, using cell extracts from microalgae exposed to inorganic mercury. PMID:26079052

  17. Zinc acclimation and its effect on the zinc tolerance of Raphidocelis subcapitata and Chlorella vulgaris in laboratory experiments.

    PubMed

    Muyssen, B T; Janssen, C R

    2001-11-01

    The effect of zinc acclimation of Raphidocelis subcapitata (syn. Selenastrum capricornutum) and Chlorella vulgaris on their sensitivity towards this metal was examined in a series of laboratory experiments. These two commonly used algal species were acclimated to 65 microg Zn/l and changes in zinc tolerance were monitored using standard growth inhibition tests. The chemically defined ISO medium was used as a control culture medium. Both species demonstrated a maximum increase in zinc tolerance of a factor of 3 after 100 days of acclimation. Shifts in the shape of the concentration-response curve due to acclimation were observed for R. subcapitata. Compared to non-acclimated algae, acclimated R. subcapitata exhibited higher growth rates in all zinc treatments as well as in the controls. This suggests that the use of ISO-medium results in sub-optimal growth due to zinc deficiency. These effects could not be demonstrated for C. vulgaris. The zinc tolerance of both species decreased significantly one week after returning the acclimated algae to control (ISO) medium. 72hEC50 values based on growth rate were two to four times higher than those calculated using biomass measurements. Algal toxicity test results, particularly if used for metal risk assessments, must not be conducted using nutrient deficient media. PMID:11680746

  18. Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg-phytochelatins.

    PubMed

    Gómez-Jacinto, Verónica; García-Barrera, Tamara; Gómez-Ariza, José Luis; Garbayo-Nores, Inés; Vílchez-Lobato, Carlos

    2015-08-01

    Algae and aquatic macrophytes are capable of accumulating heavy metals up to concentrations several orders of magnitude higher than those existing in their surrounding environment. Investigation of mercury toxicology in microalgae is of great interest from ecological point of view, since they could be used as bioindicator to evaluate aquatic ecosystems affected by Hg pollution. In this study, we have performed an exposure experiment focused on the biological response of microalgae Chlorella sorokiniana, a unicellular model organism, to Hg-induced toxicity. The culture was exposed to different concentrations of this element for nine days, namely 0.5, 1, 5 and 10mg L(-1) of HgCl2 (as Hg). To achieve a better understanding of the biological mechanisms triggered by Hg-induced toxicity in this alga a metallomic approach based on SEC-ICP-ORS-MS was applied to survey biomarkers of biological response to mercury contamination in surface water. In addition, the combination of RP-HPLC-ICP-ORS-MS and RP-HPLC-ESI-QqQ-TOF-MS was applied to identify, for the first time, two Hg-binding phytochelatins in this aquatic organism, using cell extracts from microalgae exposed to inorganic mercury.

  19. Effect of lycopene from Chlorella marina on high cholesterol-induced oxidative damage and inflammation in rats.

    PubMed

    Renju, G L; Kurup, G Muraleedhara; Saritha Kumari, C H

    2014-02-01

    Even though the role of all-trans lycopene from tomato in controlling atherosclerosis was reported, but no report is available on the cis-isomer of lycopene obtained from an easily available source green algae Chlorella marina. So in this study, Sprague Dawley rats fed with high-cholesterol diet were given standard drug lovastatin; algal lycopene (AL) (cis/all-trans 40:60) and tomato all-trans lycopene (TL) and the following parameters were studied. Total cholesterol, low-density lipoprotein, triglycerides were decreased significantly and the high-density lipoprotein levels were increased on treatment with AL. The activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase were found to be increased, whereas thiobarbituric acid reactive substances levels were decreased in AL when compared to the drug and TL-treated rats. The activities of inflammatory marker enzymes like cyclooxygenase, 15-lipoxygenase in monocytes and myeloperoxidase, C-reactive protein and ceruloplasmin levels in serum were found to be decreased on treatment with AL. Histopathological studies revealed that lycopene from this alga could reduce fatty liver and aortic plaque when compared to the drug and TL. Algal lycopene showed very significant antioxidant and anti-inflammatory effect in high-cholesterol fed rats. Therefore, AL from C. marina would be recommended for the treatment of hyperlipidemia. PMID:23887896

  20. Assessment of a tannin-based organic polymer to harvest Chlorella vulgaris biomass from swine wastewater digestate phycoremediation.

    PubMed

    Mezzari, M P; da Silva, M L B; Pirolli, M; Perazzoli, S; Steinmetz, R L R; Nunes, E O; Soares, H M

    2014-01-01

    This study investigated the efficiency of an organic tannin polymer alone or amended with polyacrylamide to harvest Chlorella vulgaris biomass grown in a laboratory-scale photobioreactor treating swine wastewater digestate. The effect of biomass concentration, tannin (TAN) dosages and changes in pH were evaluated in jar test experiments. Among the TAN concentrations tested (11, 22, 44, 89, 178 mg L(-1)), 11 mg L(-1) showed the highest biomass recovery (97%). The highest coagulation/ flocculation efficiencies were obtained at pH 5 to 7. Flocculation efficiency improved from 50 to 97% concomitant with the increasing biomass concentrations from 45 to 165 mg L(-1), respectively. Recovery efficiencies above 95% were achieved with the same TAN dosage (11 mg L(-1)) irrespective of the concentration of organic carbon present (75 to 300 mg TOC L(-1)). Overall, the results suggest that TAN could become an interesting alternative choice of non-toxic organic polymer for harvesting Chlorella sp. from organic-rich wastewater. PMID:25225937

  1. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  2. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  3. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    PubMed

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-01

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96 h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM.

  4. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources.

    PubMed

    Birungi, Z S; Chirwa, E M N

    2015-12-15

    Thallium (Tl) is a highly volatile and toxic heavy metal regarded to cause pollution even at very low concentrations of several parts per million. Despite the extremely high risk of Tl in the environment, limited information on removal/recovery exists. The study focussed on the use of green algae to determine the sorption potential and recovery of Tl. From the study, removal efficiency was achieved at 100% for lower concentrations of ≥150 mg/L of Tl. At higher concentrations in a range of 250-500 mg/L, the performance of algae was still higher with sorption capacity (qmax) between 830 and 1000 mg/g. Generally, Chlorella vulgaris was the best adsorbent with a high qmax and lower affinity of 1000 mg/g and 1.11 L/g, respectively. When compared to other studies on Tl adsorption, the tested algae showed a better qmax than most adsorbents. The kinetic studies showed better correlation co-efficient of ≤0.99 for Pseudo-second order model than the first order model. Recovery was achieved highest for C. vulgaris using nitric acid at 93.3%. The strongest functional groups responsible for Tl binding on the algal cell wall were carboxyl and phenols. Green algae from freshwater bodies showed significant potential for Tl removal/recovery from industrial wastewater.

  5. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption. PMID:26964936

  6. Settlement of marine periphytic algae in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Nayar, S.; Goh, B. P. L.; Chou, L. M.

    2005-08-01

    This note describes settlement studies of marine periphytic algae on glass substrata in a tropical estuary in Singapore. The rates of production in terms of 14C radiotracer uptake, biomass in terms of chlorophyll a, community structure and cell abundance were measured from the settled periphytic algae at various depths in the water column and compared with the prevailing hydrographical conditions. Relatively higher periphytic algal settlement was observed at 1 m depth, even though it was not statistically different from other depths. Diatoms such as Skeletonema costatum and Thalassiosira rotula dominated the assemblage, together with the marine cyanobacteria Synechococcus sp. The three settlement parameters viz., periphytic algal production, chlorophyll a and cell counts showed significant differences between the days of settlement, with no significant differences observed for different depths. The periphytic algal community in this study comprised 30 microalgal species, dominated by diatoms (78%), followed by cyanobacteria (19% - primarily Synechococcus sp.), green flagellates (1%), dinoflagellates (1%) and other forms accounting for the remaining 1% of the total cell counts. Correlation studies and principal component analysis (PCA) revealed significant influence of silicate concentrations in the water column with the settlement of periphytic algae in this estuary. Though photoinhibited at the surface, photosynthetically available radiation did not seem to influence the overall settlement of periphytic algae. Diatoms and Synechococcus in the periphytic algal community were influenced by water temperature, PAR, pH and dissolved oxygen as seen in the PCA plots.

  7. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.

  8. Comparative study of the trophic transfer of two mercury compounds--HgCl/sub 2/ and CH/sub 3/HgCl--between Chlorella vulgaris and Daphnia magna. Influence of temperature

    SciTech Connect

    Baudou, A.; Ribeyre, F.

    1981-12-01

    A comparative study is presented of the transfer of HgCl/sub 2/ and CH/sub 3/HgCl between a species representative of the ''producer'' level -- Chlorella vulgaris -- and a primary consumer -- Daphnia magna. The experiment was carried out at two temperatures, 10 and 18/sup 0/C, and the concentration of metal in the environment was 1 ..mu..g.l/sup -1/ (1 ppb). Results seem to indicate that the two contaminants, which are first introduced into the environment and then fixed by the unicellular algae, retain their specific property of crossing the digestive barrier of the consumer link.

  9. Viruses of eukaryotice green algae

    SciTech Connect

    Van Etten, J.L.

    1989-01-01

    The primary objective of our research was to develop the Chlorella-PBCV-1 virus system so that it can be used as a model system for studying gene expression in a photosynthetic eukaryote. We have made considerable progress and have learned much about PBCV-1 and its replication cycle. In addition, several significant discoveries were made in the last 3 to 4 years. These discoveries include: (i) the finding that morphologically similar, plaque forming, dsDNA containing viruses are common in nature and can be isolated readily from fresh water, (ii) the finding that all of these Chlorella viruses contain methylated bases which range in concentration from 0.1% to 47.5% m{sup 5}dC and 0 to 37% m{sup 6}dA and (iii) the discovery that infection with at least some of these viruses induces the appearance of DNA modification/restriction systems. 26 refs.

  10. Photosynthetic responses and accumulation of mesotrione in two freshwater algae.

    PubMed

    Ni, Yan; Lai, Jinhu; Wan, Jinbao; Chen, Lianshui

    2014-01-01

    Mesotrione is a herbicide used for killing annual grasses and broad-leaved weeds in maize. A recent investigation has shown that mesotrione has been detected as an organic contaminant in aquatic environments and may have a negative impact on aquatic organisms. To evaluate the eco-toxicity of mesotrione to algae, experiments focusing on photosynthetic responses and mesotrione accumulation in Microcystis sp. and Scenedesmus quadricauda were carried out. Both algae treated with mesotrione at 0.05-10 mg L(-1) for 7 days reduced the photosynthetic capacity. The fluorescence of chlorophyll a, the maximal PSII activity (Fv/Fm), and the parameters (Ik, α and ETRmax) of rapid light curves (RLCs) in both algae were decreased under mesotrione exposure. The 96 h EC50 values for mesotrione on S. quadricauda and Microcystis sp. were 4.41 and 6.19 mg L(-1), respectively. The latter shows more tolerance to mesotrione. Mesotrione was shown to be readily accumulated by both species. Such uptake of mesotrione led to the rapid removal of mesotrione from the medium. Overall, this study represents the initial comprehensive analyses of Microcystis sp. and S. quadricauda in adaptation to the mesotrione contaminated aquatic ecosystems. PMID:25059419

  11. Heme Inhibition of [delta]-Aminolevulinic Acid Synthesis Is Enhanced by Glutathione in Cell-Free Extracts of Chlorella.

    PubMed Central

    Weinstein, J. D.; Howell, R. W.; Leverette, R. D.; Grooms, S. Y.; Brignola, P. S.; Mayer, S. M.; Beale, S. I.

    1993-01-01

    In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition. PMID:12231722

  12. Heme inhibition of [delta]-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella

    SciTech Connect

    Weinstein, J.D.; Howell, R.W.; Grooms, S.Y.; Brignola, P.S. ); Mayer, S.M.; Beale, S.I. )

    1993-02-01

    In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADAPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition. 48 refs., 7 figs., 4 tabs.

  13. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress.

    PubMed

    Cheng, Jun; Lu, Hongxiang; Huang, Yun; Li, Ke; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2016-03-01

    In order to produce biodiesel from microalgae cultured with abundant seawater, Chlorella sp. was mutated with (137)Se-γ ray irradiation and domesticated with f/2 seawater culture medium (salinity=3 wt.%) under 15 vol.% CO2 stress. Biomass yield of the mutant increased by 25% compared with wild species and lipid content increased to 54.9%. When nitrogen and phosphorus concentrations in the initial substrate increased, the increased propagation speed of the mutant resulted in decreased cell diameter by 26.6% and decreased cell wall thickness by 69.7%. The dramatically increased biomass yield of the mutant with sufficient initial substrate and relative nitrogen starvation in the later growth period with continuous 15 vol.% CO2 led to an increased lipid yield of 1.0 g/L. The long-chain unsaturated fatty acids increased, whereas short-chain saturated fatty acids decreased.

  14. Water Permeability of Chlorella Cell Membranes by Nuclear Magnetic Resonance

    PubMed Central

    Stout, Darryl G.; Steponkus, Peter L.; Bustard, Larry D.; Cotts, Robert M.

    1978-01-01

    Measurement by two nuclear magnetic resonance (NMR) techniques of the mean residence time τa of water molecules inside Chlorella vulgaris (Beijerinck) var. “viridis” (Chodot) is reported. The first is the Conlon and Outhred (1972 Biochim Biophys Acta 288: 354-361) technique in which extracellular water is doped with paramagnetic Mn2+ ions. Some complications in application of this technique are identified as being caused by the affinity of Chlorella cell walls for Mn2+ ions which shortens the NMR relaxation times of intra- and extracellular water. The second is based upon observations of effects of diffusion on the spin echo of intra- and extracellular water. Echo attenuation of intracellular water is distinguished from that of extracellular water by the extent to which diffusive motion is restricted. Intracellular water, being restricted to the cell volume, suffers less echo attenuation. From the dependence of echo amplitude upon gradient strength at several values of echo time, the mean residence time of intracellular water can be determined. From the mean residence time of intracellular water, the diffusional water permeability coefficient of the Chlorella membrane is calculated to be 2.1 ± 0.4 × 10−3 cm sec−1. PMID:16660456

  15. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture.

    PubMed

    Ometto, Francesco; Pozza, Carlo; Whitton, Rachel; Smyth, Beatrice; Gonzalez Torres, Andrea; Henderson, Rita K; Jarvis, Peter; Jefferson, Bruce; Villa, Raffaella

    2014-04-15

    Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions.

  16. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  17. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  18. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances. PMID:27362920

  19. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances.

  20. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491