Science.gov

Sample records for algae chlorella sp

  1. Cultivation of Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae in Batch culture using Nile tilapia effluent.

    PubMed

    Guerrero-Cabrera, Luis; Rueda, José A; García-Lozano, Hiram; Navarro, A Karin

    2014-06-01

    Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae were cultured in three volumes of Tilapia Effluent Medium (TEM) in comparison with the Bold Basal Medium (BBM) (Nichols and Bold, 1965). Specific growth rate (μ'), biomass dry productivity (Q), volumetric productivity (Qv) as well as lipid and protein content were measured. Then, volumetric productivities for both lipids and proteins were calculated (QVL and QVP). In Scenedesmus sp., BBM produced higher μ' and Qv than TEM in 1.5L volume. Chlorella sp. showed a higher QVL for BBM than TEM. Any observed difference in protein or lipid productivities among volumes was in favor of a greater productivity for 1.5L volume. Even when TEM had a larger protein content in Chlorella sp. than BBM, QVP was not different. Current results imply that TEM can be used as an alternative growth medium for algae when using Batch cultures, yet productivity is reduced.

  2. Accumulation of heavy metals (Cu, Cr, Pb and Cd) in freshwater micro algae (Chlorella sp.).

    PubMed

    Kumar, Rajesh M; Frankilin, J; Raj, Samuel Paul

    2013-07-01

    Some selected micro algae were used for the removal of heavy metals from wastewater. In this present investigation, Chlorella sp was studied for accumulation of heavy metals, namely copper, chromium, lead and cadmium. The salts containing heavy metals were dissolved in Blue Green 11 medium at different concentrations in a glass jar of 10 litre capacity each and subsequently they were bubbled with air for 12 days at a temperature of 33 degrees C and light intensity of 2200 lux. The removal rates of heavy metals were recorded for every 4 days during the experimental period. Chlorella sp. removed 37%, 43% and 67% of copper after 4, 8, 12 days respectively. The percentage removal of chromium was 34%, 43% and 50% respectively at 4, 8, and 12 days. Lead removal rates of Chlorella sp were 56% after 4 days, 69% after 8 days and 77% after 12 days. The reduction of cadmium in the culture medium after 12 days was 93%. From the present investigation, it is concluded that heavy metal removal ability of Chlorella sp. can be exploited for metal detoxification and environmental clean up.

  3. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  4. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    PubMed Central

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  5. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    PubMed

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  6. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    PubMed

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  7. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp.

    PubMed

    Lee, Choon-Geun; Kang, Do-Hyung; Lee, Dong-Bog; Lee, Hyeon-Yong

    2013-11-01

    The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for

  8. Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica

    USGS Publications Warehouse

    Morgan-Kiss, R. M.; Ivanov, A.G.; Modla, S.; Czymmek, K.; Huner, N.P.A.; Priscu, J.C.; Lisle, J.T.; Hanson, T.E.

    2008-01-01

    Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the 'photopsychrophiles') in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10??C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes. ?? 2008 Springer.

  9. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.

    PubMed

    da Silva Vaz, Bruna; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.

  10. Biosorption of Lead from Wastewater Using Fresh Water Algae Chlorella.

    PubMed

    Kanchana, S; Jeyanthi, J

    2014-04-01

    The potential use of fresh water algae Chlorella to sorb lead ions from wastewater was evaluated in this study. Fourier transform infra-red analysis of algal species revealed the presence of amino, carboxylic, hydroxyl and carbonyl groups, which were responsible for biosorption of lead ions. Batch sorption experiments were performed to determine the effects of contact time, biosorbent dosage and pH on the adsorption of Pb2+ ions. The optimum conditions of biosorbent dosage, pH and contact time were found to be l0 g/L, 5 and 100 min respectively. The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The adsorption of lead ions on the algae Chlorella fitted well with Freundlich isotherm with a very high correlation coefficient.

  11. Lipid production by a CO₂-tolerant green microalga, Chlorella sp. MRA-1.

    PubMed

    Zheng, Yanlin; Yuan, Cheng; Liu, Junhan; Hu, Guangrong; Li, Fuli

    2014-05-01

    Since CO2 concentrations in industrial flue gases are usually 10%-20%, one of the prerequisites for efficient CO2 removal by algae is the level of tolerance of microalgal species to exposure to high concentrations of CO2. A newly isolated microalgal strain, Chlorella sp. MRA-1, could retain growth with high concentrations of CO2 up to 15%. The highest lipid productivity for Chlorella sp. MRA-1 was 0.118 g/l/day with a 5% CO2 concentration. Octadecenoic acid and hexadecanoic acid, the main components of biodiesel, accounted for 70% of the total fatty acids. A lipid content of 52% of dry cell weight was achieved with limited amounts of nitrogen. Chlorella sp. MRA-1 seems to be an ideal candidate for biodiesel production when cultured with high concentrations of CO2.

  12. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  13. Aluminum bioavailability to the green alga Chlorella pyrenoidosa in acidified synthetic soft water

    SciTech Connect

    Parent, L.; Campbell, P.G.C. )

    1994-04-01

    A unicellular green alga, Chlorella pyrenoidosa, was exposed to inorganic Al under controlled experimental conditions to determine whether the biological response elicited by the dissolved metal could be predicted from the free-metal ion concentration, [Al[sup 3+

  14. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain

    NASA Astrophysics Data System (ADS)

    Liang, Fang; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2014-11-01

    SO2 is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO2 from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m2·s), NaHCO3 concentration of 6 g/L, initial cell density (OD540) of 0.8 and pH of 9-10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO2- 3 to SO2- 4, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO2, assuming there is adequate control of the pH.

  15. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply

    PubMed Central

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L−1 d−1 urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L−1 d−1 urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  16. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae.

    PubMed

    Graves, M V; Burbank, D E; Roth, R; Heuser, J; DeAngelis, P L; Van Etten, J L

    1999-04-25

    We previously reported that the chlorella virus PBCV-1 genome encodes an authentic, membrane-associated glycosyltransferase, hyaluronan synthase (HAS). Hyaluronan, a linear polysaccharide chain composed of alternating beta1,4-glucuronic acid and beta1, 3-N-acetylglucosamine groups, is present in vertebrates as well as a few pathogenic bacteria. Studies of infected cells show that the transcription of the PBCV-1 has gene begins within 10 min of virus infection and ends at 60-90 min postinfection. The hyaluronan polysaccharide begins to accumulate as hyaluronan-lyase sensitive, hair-like fibers on the outside of the chlorella cell wall by 15-30 min postinfection; by 240 min postinfection, the infected cells are coated with a dense fibrous network. This hyaluronan slightly reduces attachment of a second chlorella virus to the infected algae. An analysis of 41 additional chlorella viruses indicates that many, but not all, produce hyaluronan during infection.

  17. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield.

  18. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.

  19. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.

    PubMed

    Deng, Lin; Wang, Hongli; Deng, Nansheng

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (lambda = 365 nm, 250 W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0 mg L(-1) and initial algae concentration ranged from ABS(algae) (the absorbency of algae) = 0.025 to ABS(algae) = 0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250 W metal halide lamps was V0 = kC(0)(0.1718)A(algae)(0.5235) (C0 was initial concentration of Cr(VI); A(algae) was initial concentration of algae) under the condition of pH 4.

  20. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%.

  1. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  2. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts.

    PubMed

    Margulis, L; Hinkle, G; McKhann, H; Moynihan, B

    1988-09-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  3. Cultivation of Chlorella sp. with livestock waste compost for lipid production.

    PubMed

    Zhu, L-D; Li, Z-H; Guo, D-B; Huang, F; Nugroho, Y; Xia, K

    2017-01-01

    Cultivation of microalgae Chlorella sp. with livestock waste compost as an alternative nutrient source was investigated in this present study. Five culture media with different nutrient concentrations were prepared. The characteristics of algal growth and lipid production were examined. The results showed that the specific growth rate together with biomass and lipid productivities was different among all the cultures. As the initial nutrient concentration decreased, the lipid content of Chlorella sp. increased. The variations in lipid productivity of Chlorella sp. among all the cultures were mainly due to the deviations in biomass productivity. The livestock waste compost medium with 2000mgL(-1)COD provided an optimal nutrient concentration for Chlorella sp. cultivation, where the highest productivities of biomass (288.84mgL(-1)day(-1)) and lipid (104.89mgL(-1)day(-1)) were presented.

  4. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal.

    PubMed

    Hu, Bing; Min, Min; Zhou, Wenguang; Du, Zhenyi; Mohr, Michael; Chen, Paul; Zhu, Jun; Cheng, Yanling; Liu, Yuhuan; Ruan, Roger

    2012-12-01

    The objectives were to assess the feasibility of using fermented liquid swine manure (LSM) as nutrient supplement for cultivation of Chlorella sp. UMN271, a locally isolated facultative heterotrophic strain, and to evaluate the nutrient removal efficiencies by alga compared with those from the conventionally decomposed LSM-algae system. The results showed that addition of 0.1% (v/v) acetic, propionic and butyric acids, respectively, could promote algal growth, enhance nutrient removal efficiencies and improve total lipids productivities during a 7-day batch cultivation. Similar results were observed when the acidogenic fermentation was applied to the sterilized and raw digested LSM rich in volatile fatty acids (VFAs). High algal growth rate (0.90 d(-1)) and fatty acid content (10.93% of the dry weight) were observed for the raw VFA-enriched manure sample. Finally, the fatty acid profile analyses showed that Chlorella sp. grown on acidogenically digested manure could be used as a feedstock for high-quality biodiesel production.

  5. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. )

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  6. Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two novel Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats.

    PubMed

    Neustupa, Jirí; Nemcová, Yvonne; Veselá, Jana; Steinová, Jana; Škaloud, Pavel

    2013-01-01

    The diversity of green microalgae in subaerial habitats remains largely unexplored and a number of new genus- and species-level lineages have been discovered recently. The traditional green algal genus, Chlorella, which accommodated coccoid unicellular green algal species with globular to oval cells, reproducing entirely by autospores, has been found to be polyphyletic. In this study, we provide a detailed characterization of two strains of microalgae isolated from tree bark in the Mediterranean. These algae share the general Chlorella-like morphology and their 18S rRNA and rbcL gene sequences place them in the Trebouxiophyceae. Strain CAUP H8401 forms an independent trebouxiophycean lineage, together with three previously published 18S rRNA gene environmental sequences of undescribed microalgae, which were retrieved from profoundly different habitats. In contrast, strain CAUP H7902 is related to Kalinella bambusicola in the Watanabea clade of the Trebouxiophyceae on the basis of its 18S rRNA gene sequence. This relationship is also supported by the rbcL gene sequence, acquired from the type strain of K. bambusicola. The investigated strains are described as representatives of a novel species in a new genus, Leptochlorella corticola gen. et sp. nov., and a novel species, Kalinella apyrenoidosa sp. nov., according to the International Code of Nomenclature for Algae, Fungi and Plants.

  7. Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae.

    PubMed

    Babel, Sandhya; Takizawa, Satoshi; Ozaki, Hiroaki

    2002-03-01

    A seasonal fluctuation pattern was observed in membrane filtration resistance by Chlorella algae cultured in open ponds in the tropical environment. In order to investigate the causes of this phenomenon, Chlorella was cultivated under controlled conditions and the cake resistance was measured by batch filtration in dead-end mode. The filtration resistance was found to be a function of environmental conditions. Algae could grow favourably and offered low specific cake resistance (R,s) on the order of 10(11) m/g for the culture temperature from 28 degrees C to 35 degrees C. The algal growth was inhibited and the specific cake resistance increased to the order of 10(12) m/g below or above this optimum temperature range. Strong solar radiation, coupled with high temperatures, also inhibited the growth of algae and resulted in higher specific cake resistance. The specific cake resistance of algae cultured at different temperatures increased with the amount of the extracellular organic matter (EOM) extracted by 0.1 N NaOH. Hence EOM, rather than bacteria present in the mono-algal culture, was considered to be the primary factor affecting the cake resistance. The specific cake resistance increased drastically after actively growing cells were stored in nutrient-free water under dark conditions. However, the resistance was slightly decreased when the algal cells were stored in NSIII nutrient media in a dark room, indicating the effect of nutrient availability on the change of the specific cake resistance under the light-limiting conditions. EOM extracted from the cells kept in the nutrient-free water contained less sugar than the fresh culture, whereas the EOM extracted from the cells stored in the NSIII media contained more sugar. The molecular distribution of the EOM shifted from below 1,000 kDa before storage to more than 2,000 kDa after storage in both the nutrient-free and NSIII media.

  8. Lutein recovery from Chlorella sp. ESP-6 with coagulants.

    PubMed

    Utomo, Rhesa Pramudita; Chang, Yin-Ru; Lee, Duu-Jong; Chang, Jo-Shu

    2013-07-01

    Production of algal lutein included cell cultivation, biomass harvesting, cell wall disruption, and subsequent purification if needed. This work cultivated Chlorella sp. ESP-6 cells in photobioreactor to a biomass content of 1.1 gl(-1) and then the freezing-grinding, ultrasonic treatment (20 and 42kHz) and microwave treatment were used to disrupt the cell walls for recover intracellular lutein. The grinding recovered more lutein than ultrasound or microwave pretreatment. Single coagulation using >30 mgl(-1) chitosan or dual-conditioning using 10 mg l(-1) polyaluminum chloride and 10 mgl(-1) chitosan effectively enhance sedimentation and membrane filtration efficiency of algal suspensions. However, the presence of coagulants lowers the lutein yield from algal biomass in the subsequent 20 kHz ultrasound treatment and purification process. Simulation results revealed affine adsorption of lutein onto chitosan molecules via hydroxyl-amine interaction. The possible drawback by pre-treatment stage should be considered together with the subsequent recovery stage in whole process assessment.

  9. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity.

    PubMed

    Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan

    2016-11-01

    The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity.

  10. Inorganic carbon acquisition in the acid-tolerant alga Chlorella kessleri.

    PubMed

    El-Ansari, Omar; Colman, Brian

    2015-01-01

    The ability of the freshwater alga, Chlorella kessleri, to maintain a carbon concentrating mechanism when grown at acid pH was investigated. The alga grows over the pH range 4.0-9.0 and was found to take up bicarbonate and CO2 actively when grown at pH 6.0. However, when grown at acid pH (below 5.5), it does not have active CO2 uptake. The acidotolerant species maintained an internal pH of 6.1-7.5 over the external pH range 4.5-7.5, thus the pH difference between the cell interior and the external medium was large enough to allow for the diffusive uptake of CO2 at acid external pH. Mass spectrometric monitoring of O2 and CO2 fluxes by suspensions of C. kessleri, grown at acid pH, and maintained at pH 7.5 showed that the rates of O2 evolution did not exceed those of CO2 uptake. The final CO2 compensation concentrations of 14.0-17.7 µM reached by photosynthetic cells were above the CO2 equilibrium concentration in the external medium, indicating a lack of active CO2 uptake at acid pH. Chlorella kessleri accumulated CO2 with internal concentrations that were 9.9, 18.7 and 22.7-fold that of the external medium for cells grown, respectively, at pH 4.5, 5.0 and 5.5. The ability of C. kessleri cells to accumulate high intracellular concentrations of inorganic carbon at acid pH would provide a sufficiently high concentration of CO2 at the active site of Rubisco thus allowing the alga to maintain growth rates similar to those at alkaline pH.

  11. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae.

    PubMed

    Polonini, Hudson C; Brandão, Humberto M; Raposo, Nádia R B; Brandão, Marcos Antônio F; Mouton, Ludovic; Couté, Alain; Yéprémian, Claude; Sivry, Yann; Brayner, Roberta

    2015-05-01

    Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m(2) g(-1) surface area) and cubic BT (~60 nm, 16.60 m(2) g(-1)) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.

  12. Technique for harvesting unicellular algae using colloidal gas aphrons. [Chlorella vulgaris

    SciTech Connect

    Honeycutt, S.S.; Wallis, D.A.; Sebba, F.

    1983-01-01

    A novel technique using colloidal gas aphron (CGA) dispersions has been investigated for harvesting Chlorella vulgaris, a unicellular green algae, from dilute suspension. CGA are very small gas bubbles, on the order of 25 ..mu..m in diameter, that are each encapsulated in an aqueous shell of surfactant solution. The process is based on the technology of CGA flotation, which involves the formation of algae-bubble complexes and their subsequent flotation to the surface. At neutral pH, the efficiency of algae removal was maximized when a cationic surfactant (lauryl pyridinium chloride) was used for CGA generation. At pH 10, both the cationic and anionic (sodium dodecyl benzene sulfonate) CGA dispersions yielded comparable removals. Addition of small quantities of alum (to 10/sup -4/M) improved removals using the cationic CGA, and at pH 10 this combination yielded the maximum removals that were achieved: 52.1% removal after a single application of CGA dispersion (1 to 1, dispersion to sample volume ratio), and 89.2% removal after an additional application. 12 references, 1 figure, 2 tables.

  13. Osmoregulation in the Extremely Euryhaline Marine Micro-Alga Chlorella autotrophica1

    PubMed Central

    Ahmad, Iftikhar; Hellebust, Johan A.

    1984-01-01

    Chlorella autotrophica (Clone 580) grows over the external salinity range of 1 to 400% artificial sea water (ASW), can photosynthesize over the range from 1 to 600% ASW, and survives the complete evaporation of seawater. The alga grown at high salinities shows an increase in cell volume and a small decrease in cell water content. Measurements of ion content were made by neutron activation analysis on cells washed in isoosmotic sorbitol solutions which contained a few millimolar of major ions to prevent ion leakage. Cells grown at various ASW concentrations contain large quantities of sodium, potassium, and chloride ions. Measurements of cations associated with cell wall and intracellular macromolecules were made to determine intracellular concentration of free ions. The proline content of cells increases in response to increases in external salinity. Cells in 300% ASW contain 1500 to 1600 millimolar proline. PMID:16663495

  14. Osmoregulation in the Extremely Euryhaline Marine Micro-Alga Chlorella autotrophica.

    PubMed

    Ahmad, I; Hellebust, J A

    1984-04-01

    Chlorella autotrophica (Clone 580) grows over the external salinity range of 1 to 400% artificial sea water (ASW), can photosynthesize over the range from 1 to 600% ASW, and survives the complete evaporation of seawater. The alga grown at high salinities shows an increase in cell volume and a small decrease in cell water content. Measurements of ion content were made by neutron activation analysis on cells washed in isoosmotic sorbitol solutions which contained a few millimolar of major ions to prevent ion leakage. Cells grown at various ASW concentrations contain large quantities of sodium, potassium, and chloride ions. Measurements of cations associated with cell wall and intracellular macromolecules were made to determine intracellular concentration of free ions. The proline content of cells increases in response to increases in external salinity. Cells in 300% ASW contain 1500 to 1600 millimolar proline.

  15. Prediction of ecotoxicological behavior of chemicals: relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella

    SciTech Connect

    Geyer, H.; Politzki, G.; Freitag, D.

    1984-01-01

    The bioaccumulation potential of organic chemicals by the green alga Chlorella fusca was determined. A quantitative relationship was found to exist between the lipophilicity (n-octanol/water partition coefficient) of the chemicals and the bioaccumulation factor.

  16. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion.

    PubMed

    Zhu, Shunni; Wang, Yajie; Xu, Jin; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-12-01

    The aim of this research was to study the effect of phosphorus supply on starch and lipid production under nitrogen starvation using Chlorella sp. as a model. High phosphate level had marginal effect on cell density but increased biomass growth. Massive phosphorus was assimilated quickly and mainly stored in the form of polyphosphate. The algal cells ceased phosphorus uptake when intracellular phosphorus reached a certain level. 5mM phosphate in the culture rendered a 16.7% decrease of starch synthesis and a 22.4% increase of lipid synthesis relative to low phosphate (0.17 mM). It is plausible that phosphate can regulate carbon partitioning between starch and lipid synthesis pathway by influencing ADP-glucose pyrophosphorylase activity. Moreover, high phosphate concentration enhanced the abundance of oleic acid, improving oil quality for biodiesel production. It is a promising cultivation strategy by integration of phosphorus removal from wastewater with biodiesel production for this alga.

  17. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.

    PubMed

    Wang, Liang; Li, Yecong; Chen, Paul; Min, Min; Chen, Yifeng; Zhu, Jun; Ruan, Roger R

    2010-04-01

    The present study was to investigate the effectiveness of using digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Different dilution multiples of 10, 15, 20, and 25 were applied to the digested manure and algal growth was compared in regard to growth rate, nutrient removal efficiency, and final algal fatty acids content and composition. Slower growth rates were observed with less diluted manure samples with higher turbidities in the initial cultivation days. A reverse linear relationship (R(2) = 0.982) was found between the average specific growth rate of the beginning 7 days and the initial turbidities. Algae removed ammonia, total nitrogen, total phosphorus, and COD by 100%, 75.7-82.5%, 62.5-74.7%, and 27.4-38.4%, respectively, in differently diluted dairy manure. COD in digested dairy manure, beside CO(2), proved to be another carbon source for mixotrophic Chlorella. Fatty acid profiles derived from triacylglyceride (TAG), phospholipid and free fatty acids showed that octadecadienoic acid (C18:2) and hexadecanoic acid (C16:0) were the two most abundant fatty acids in the algae. The total fatty acid content of the dry weight increased from 9.00% to 13.7% along with the increasing dilution multiples. Based on the results from this study, a process combining anaerobic digestion and algae cultivation can be proposed as an effective way to convert high strength dairy manure into profitable byproducts as well as to reduce contaminations to environment.

  18. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris.

    PubMed

    Silva, Aurora; Santos, Lúcia H M L M; Delerue-Matos, Cristina; Figueiredo, Sónia A

    2014-01-01

    Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used in the treatment of major depression. It has been detected in surface and wastewaters, being able to negatively affect aquatic organisms. Most of the ecotoxicity studies focused only in pharmaceuticals, though excipients can also pose a risk to non-target organisms. In this work the ecotoxicity of five medicines (three generic formulations and two brand labels) containing the same active substance (fluoxetine hydrochloride) was tested on the alga Chlorella vulgaris, in order to evaluate if excipients can influence their ecotoxicity. Effective concentrations that cause 50% of inhibition (EC50) ranging from 0.25 to 15 mg L⁻¹ were obtained in the growth inhibition test performed for the different medicines. The corresponding values for fluoxetine concentration are 10 times lower. Higher EC50 values had been published for the same alga considering only the toxicity of fluoxetine. Therefore, this increase in toxicity may be attributed to the presence of excipients. Thus more studies on ecotoxicological effects of excipients are required in order to assess the environmental risk they may pose to aquatic organisms.

  19. Ecotoxicity tests using the green algae Chlorella vulgaris--a useful tool in hazardous effluents management.

    PubMed

    Silva, Aurora; Figueiredo, Sónia A; Sales, M Goreti; Delerue-Matos, Cristina

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  20. Release of reduced inorganic selenium species into waters by the green fresh water algae Chlorella vulgaris.

    PubMed

    Simmons, Denina Bobbie Dawn; Wallschläger, Dirk

    2011-03-15

    The common green fresh water algae Chlorella vulgaris was exposed to starting concentrations of 10 μg/L selenium in the form of selenate, selenite, or selenocyanate (SeCN(-)) for nine days in 10% Bold's basal medium. Uptake of selenate was more pronounced than that of selenite, and there was very little uptake of selenocyanate. Upon uptake of selenate, significant quantities of selenite and selenocyanate were produced by the algae and released back into the growth medium; no selenocyanate was released after selenite uptake. Release of the reduced metabolites after selenate exposure appeared to coincide with increasing esterase activity in solution, indicating that cell death (lysis) was the primary emission pathway. This is the first observation of biotic formation of selenocyanate and its release into waters from a nonindustrial source. The potential environmental implications of this laboratory observation are discussed with respect to the fate of selenium in impacted aquatic systems, the ecotoxicology of selenium bioaccumulation, and the interpretation of environmental selenium speciation data generated, using methods incapable of positively identifying reduced inorganic selenium species, such as selenocyanate.

  1. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp.

    NASA Astrophysics Data System (ADS)

    Sadiq, I. Mohammed; Pakrashi, Sunandan; Chandrasekaran, N.; Mukherjee, Amitava

    2011-08-01

    In view of increasing commercial applications of metal oxide nanoparticles their toxicity assessment becomes important. Alumina (Al2O3) nanoparticles have wide range of applications in industrial as well as personal care products. In the absence of prior report on toxicological impact of alumina nanoparticles to microalgae, the principal objective of this study was to demonstrate the effect of the nanoparticles on microalgae isolated from aquatic environment ( Scenedesmus sp. and Chlorella sp.). The growth inhibitory effect of alumina nanoparticles was observed for both the species (72 h EC50 value, 45.4 mg/L for Chlorella sp.; 39.35 mg/L for Scenedesmus sp.). Bulk alumina also showed toxicity though to a lesser extent (72 h EC50 value, 110.2 mg/L for Chlorella sp.; 100.4 mg/L for Scenedesmus sp.). A clear decrease in chlorophyll content was observed in the treated cells compared to the untreated ones, more effect being notable in the case of nanoparticles. Preliminary results based on FT-IR studies, optical and scanning electron microscopic images suggest interaction of the nanoparticles with the cell surface.

  2. Evaluation of higher plant virus resistance genes in the green alga, Chlorella variabilis NC64A, during the early phase of infection with Paramecium bursaria chlorella virus-1

    PubMed Central

    Rowe, Janet M.; Dunigan, David D.; Blanc, Guillaume; Gurnon, James R.; Xia, Yuannan; Van Etten, James L.

    2014-01-01

    With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host–virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data showed that 325 of these homologs were expressed in healthy and early PBCV-1 infected (≤60 min) cells. For each of the RNA silencing genes to which homologs were found, mRNA transcripts were detected in healthy and infected cells. C. variabilis, like higher plants, may employ certain RNA silencing pathways to defend itself against virus infection. To our knowledge this is the first examination of RNA silencing genes in algae beyond core proteins, and the first analysis of their transcription during virus infection. PMID:23701839

  3. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris.

    PubMed Central

    Yoshida, Takehito; Hairston, Nelson G.; Ellner, Stephen P.

    2004-01-01

    Trade-offs between defence and other fitness components are expected in principle, and can have major qualitative impacts on ecological dynamics. Here we show that such a trade-off exists even in the simple unicellular alga Chlorella vulgaris. We grew algal populations for multiple generations in either the presence ('grazed algae') or absence ('non-grazed algae') of the grazing rotifer Brachionus calyciflorus, and then evaluated their defence and competitive abilities. Grazed algae were better defended, yielding rotifer growth rate 32% below that of animals fed non-grazed algae, but they also had diminished competitive ability, with a growth rate under nutrient-limiting conditions 28% below that of non-grazed algae. Grazed algae also had a smaller cell size and were more concentrated in carbon and nitrogen. Thus, C. vulgaris genotypes vary phenotypically in their position along a trade-off curve between defence against grazing and competitive ability. This genetic variation underlies rapid algal evolution that significantly alters the ecological predator-prey cycles between rotifers and algae. PMID:15347519

  4. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris.

    PubMed

    Yoshida, Takehito; Hairston, Nelson G; Ellner, Stephen P

    2004-09-22

    Trade-offs between defence and other fitness components are expected in principle, and can have major qualitative impacts on ecological dynamics. Here we show that such a trade-off exists even in the simple unicellular alga Chlorella vulgaris. We grew algal populations for multiple generations in either the presence ('grazed algae') or absence ('non-grazed algae') of the grazing rotifer Brachionus calyciflorus, and then evaluated their defence and competitive abilities. Grazed algae were better defended, yielding rotifer growth rate 32% below that of animals fed non-grazed algae, but they also had diminished competitive ability, with a growth rate under nutrient-limiting conditions 28% below that of non-grazed algae. Grazed algae also had a smaller cell size and were more concentrated in carbon and nitrogen. Thus, C. vulgaris genotypes vary phenotypically in their position along a trade-off curve between defence against grazing and competitive ability. This genetic variation underlies rapid algal evolution that significantly alters the ecological predator-prey cycles between rotifers and algae.

  5. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge.

    PubMed

    Wang, Meng; Sahu, Ashish K; Rusten, Bjørn; Park, Chul

    2013-08-01

    The study investigated the growth characteristics of environmental algal strain, Chlorella, in the modified Zarrouk medium and its anaerobic co-digestion with waste activated sludge (WAS). Analysis of extracellular polymeric substances (EPS) in algal culture and WAS indicated that Chlorella secreted more EPS into the surrounding liquid than formed floc-associated EPS as in activated sludge. Mesophilic anaerobic digestion of algae alone required extended digestion period to produce methane, with biogas yield at 262 mL/gVSfed after 45 days of digestion. When algae was co-digested with varying amounts of WAS, 59-96% in mass, not only biogas yield of microalgae improved but the gas phase was reached more quickly. The dewaterability of co-digestion products were also better than two controls digesting WAS or algae only. These results suggest that anaerobic co-digestion of algae and sludge improves the digestibility of microalgae and could also bring synergistic effects on the dewaterability of digested products for existing anaerobic digesters.

  6. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time

  7. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris.

    PubMed

    Ferrándiz-Mas, V; Bond, T; Zhang, Z; Melchiorri, J; Cheeseman, C R

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740°C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700°C, with chlorophyll-a concentrations reaching up to 11.1±0.4μg/cm(2) of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure.

  8. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  9. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    PubMed

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  10. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure.

    PubMed

    Rachlin, J W; Grosso, A

    1993-01-01

    Using the growth response of the green alga Chlorella vulgaris as a model system, the effects of combinations of the environmentally active cations Cd, Co, and Cu were evaluated. The 96-h static EC50 for these cations to C. vulgaris were, respectively, 0.89 microM, 9.0 microM, and 2.8 microM, yielding a toxicity series such that Cd > Cu > Co. The cation combinations of Cd + Cu, and Cu + Co acted synergistically, while Cd + Co, and the tri-metallic combination Cd + Cu + Co resulted in antagonistic interactions. Examination of these toxic combinations at 24, 48, 72, and 96 h indicate that the cellular response is not a uniform one. Failure of energy dispersive X-ray spectrophotometric analysis to demonstrate any intracellular incorporation of these cations (except for a weak cytoplasmic Cu peak at the 8.0 KEV position) suggests that the toxic actions of these cations at EC50 concentrations are exerted at the level of the plasma membrane.

  11. Kinetic flux profiling dissects nitrogen utilization pathways in the oleaginous green alga Chlorella protothecoides.

    PubMed

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2016-02-01

    As a promising candidate for biodiesel production, the green alga Chlorella protothecoides can efficiently produce oleaginous biomass and the lipid biosynthesis is greatly influenced by the availability of nitrogen source and corresponding nitrogen assimilation pathways. Based on isotope-assisted kinetic flux profiling (KFP), the fluxes through the nitrogen utilization pathway were quantitatively analyzed. We found that autotrophic C. protothecoides cells absorbed ammonium mainly through glutamate dehydrogenase (GDH), and partially through glutamine synthetase (GS), which was the rate-limiting enzyme of nitrogen assimilation process with rare metabolic activity of glutamine oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase); whereas under heterotrophic conditions, the cells adapted to GS-GOGAT cycle for nitrogen assimilation in which GS reaction rate was associated with GOGAT activity. The fact that C. protothecoides chooses the adenosine triphosphate-free and less ammonium-affinity GDH pathway, or alternatively the energy-consuming GS-GOGAT cycle with high ammonium affinity for nitrogen assimilation, highlights the metabolic adaptability of C. protothecoides exposed to altered nitrogen conditions.

  12. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor.

    PubMed

    Xu, Meng; Bernards, Matthew; Hu, Zhiqiang

    2014-02-01

    An algae-based membrane bioreactor (A-MBR) was evaluated for high-density algae cultivation and phosphorus (P) removal. The A-MBR was seeded with Chlorella emersonii and operated at a hydraulic retention time of 1day with minimal biomass wastage for about 150days. The algae concentration increased from initially 385mg/L (or 315mg biomass COD/L) to a final of 4840mg/L (or 1664mg COD/L), yielding an average solids (algae biomass+minerals) production rate of 32.5gm(-3)d(-1) or 6.2gm(-2)d(-1). The A-MBR was able to remove 66±9% of the total P from the water while the algal biomass had an average of 7.5±0.2% extracellular P and 0.4% of intracellular P. The results suggest that algae-induced phosphate precipitation by algae is key to P removal and high-density algae cultivation produces P-rich algal biomass with excellent settling properties.

  13. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris.

    PubMed

    Cheng, Jinfeng; Qiu, Hongchen; Chang, Zhaoyang; Jiang, Zaimin; Yin, Wenke

    2016-01-01

    The objective of the present work was to evaluate the effect of exogenously applied cadmium on the physiological response of green algae Chlorella vulgaris. The study investigated the long-term effect (18 days) of cadmium on the levels of algae biomass, assimilation pigment composition, soluble protein, oxidative status (production of hydrogen peroxide and superoxide anion), antioxidant enzymes (such as superoxide dismutase, peroxidase, catalase and glutathione reductase enzyme) in C. vulgaris. The results showed that growth, the amount of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids gradually decreased with increasing cadmium over 18 days exposure. Cadmium at concentration of 7 mg L(-1) inhibited algal growth expressed as the number of cells. Our research found that C. vulgaris has a high tolerance to cadmium. Contents of chlorophylls (Chl a and Chl b) and carotenoids (Car) of C. vulgaris was significantly decline with rising concentration of cadmium (p < 0.05). The decrease of 54.04 and 93.37 % in Chl a, 60.65 and 74.32 % in Chl b, 50.00 and 71.88 % in total carotenoids was noticed following the treatment with 3 and 7 mg L(-1) cadmium doses compared with control treatment, respectively. Cadmium treatments caused a significant change in the physiological competence (calculated as chlorophyll a/b) which increased with increasing Cd(II) doses up to 1 mg L(-1) but decreased at 3 mg L(-1). While accumulation of soluble protein was enhanced by presence of cadmium, the treatment with cadmium at 3 and 7 mg L(-1) increased the concentration of soluble proteins by 88, 95.8 % in C. vulgaris, respectively. Moreover, low doses of cadmium stimulated enzymatic (superoxide dismutase, catalase and glutathione reductase) in C. vulgaris, The content of peroxidase increased with the increasing cadmium concentration, and had slightly decreased at the concentration of 7 mg L(-1), but was still higher than control group, which showed that cadmium

  14. [Study on the Visualization of the Biomass of Chlorella sp., Isochrysis galbana, and Spirulina sp. Based on Hyperspectral Imaging Technique].

    PubMed

    Jiang, Lu-lu; Wet, Xuan; Zhao, Yan-ru; Shao, Yong-ni; Qiu, Zheng-jun; He, Yong

    2016-03-01

    Effective cultivation of the microalgae is the key issue for microalgal bio-energy utilization. In nutrient rich culture conditions, the microalge have a fast growth rate, but they are more susceptible to environmental pollution and influence. So to monitor the the growth process of microalgae is significant during cultivating. Hyperspectral imaging has the advantages of both spectra and image analysis. The spectra contain abundant material quality signal and the image contains abundant spatial information of the material about the chemical distribution. It can achieve the rapid information acquisition and access a large amount of data. In this paper, the authors collected the hyperspectral images of forty-five samples of Chlorella sp., Isochrysis galbana, and Spirulina sp., respectively. The average spectra of the region of interest (ROI) were extracted. After applying successive projection algorithm (SPA), the authors established the multiple linear regression (MLR) model with the spectra and corresponding biomass of 30 samples, 15 samples were used as the prediction set. For Chlorella sp., Isochrysis galbana, and Spirulina sp., the correlation coefficient of prediction (r(pre)) are 0.950, 0.969 and 0.961, the root mean square error of prediction (RMSEP) for 0.010 2, 0.010 7 and 0.007 1, respectively. Finally, the authors used the MLR model to predict biomass for each pixel in the images of prediction set; images displayed in different colors for visualization based on pseudo-color images with the help of a Matlab program. The results show that using hyperspectral imaging technique to predict the biomass of Chlorella sp. and Spirulina sp. were better, but for the Isochrysis galbana visualization needs to be further improved. This research set the basis for rapidly detecting the growth of microalgae and using the microalgae as the bio-energy.

  15. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.

    PubMed

    Geiger, Elisabeth; Hornek-Gausterer, Romana; Saçan, Melek Türker

    2016-07-01

    Organisms in the aquatic environment are exposed to a variety of substances of numerous chemical classes. The unintentional co-occurrence of pharmaceuticals and other contaminants of emerging concern may pose risk to non-target organisms. In this study, individual and binary mixture toxicity experiments of selected pharmaceuticals (ibuprofen and ciprofloxacin) and chlorophenols (2.4-dichlorophenol (2,4-DCP) and 3-chlorophenol (3-CP)) have been performed with freshwater algae Chlorella vulgaris. All experiments have been carried out according to the 96-h algal growth inhibition test OECD No. 201. Binary mixture tests were conducted using proportions of the respective IC50s in terms of toxic unit (TU). The mixture concentration-response curve was compared to predicted effects based on both the concentration addition (CA) and the independent action (IA) model. Additionally, the Combination Index (CI)-isobologram equation method was used to assess toxicological interactions of the binary mixtures. All substances individually tested had a significant effect on C. vulgaris population density and revealed IC50 values <100mgL(-1) after exposure period of 96-h. The toxic ranking of these four compounds to C. vulgaris was 2,4-DCP>ciprofloxacin>3-CP>ibuprofen. Generally, it can be concluded from this study that toxic mixture effects of all tested chemicals to C. vulgaris are higher than the individual effect of each mixture component. It could be demonstrated that IC50 values of the tested mixtures predominately lead to additive effects. The CA model is appropriate to estimate mixture toxicity, while the IA model tends to underestimate the joint effect. The CI-isobologram equation method predicted the mixtures accurately and elicited synergism at low effect levels for the majority of tested combinations.

  16. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects.

    PubMed

    García-Casal, Maria N; Ramírez, José; Leets, Irene; Pereira, Ana C; Quiroga, Maria F

    2009-01-01

    Marine algae are easily produced and are good sources of Fe. If this Fe is bioavailable, algae consumption could help to combat Fe deficiency and anaemia worldwide. The objective of the present study was to evaluate Fe bioavailability, polyphenol content and antioxidant capacity from three species of marine algae distributed worldwide. A total of eighty-three subjects received maize- or wheat-based meals containing marine algae (Ulva sp., Sargassum sp. and Porphyra sp.) in different proportions (2.5, 5.0 and 7.5 g) added to the water to prepare the dough. All meals administered contained radioactive Fe. Absorption was evaluated calculating radioactive Fe incorporation in subjects' blood. The three species of marine algae were analysed for polyphenol content and reducing power. Algae significantly increased Fe absorption in maize- or wheat-based meals, especially Sargassum sp., due to its high Fe content. Increases in absorption were dose-dependent and higher in wheat- than in maize-based meals. Total polyphenol content was 10.84, 18.43 and 80.39 gallic acid equivalents/g for Ulva sp., Porphyra sp. and Sargassum sp., respectively. The antioxidant capacity was also significantly higher in Sargassum sp. compared with the other two species analysed. Ulva sp., Sargassum sp. and Porphyra sp. are good sources of bioavailable Fe. Sargassum sp. resulted in the highest Fe intake due to its high Fe content, and a bread containing 7.5 g Sargassum sp. covers daily Fe needs. The high polyphenol content found in Sargassum sp. could be partly responsible for the antioxidant power reported here, and apparently did not affect Fe absorption.

  17. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  18. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    PubMed Central

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  19. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments.

    PubMed

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤ 75 mg L(-1)) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L-1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L-1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health.

  20. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography.

    PubMed

    Hodač, Ladislav; Hallmann, Christine; Spitzer, Karolin; Elster, Josef; Faßhauer, Fabian; Brinkmann, Nicole; Lepka, Daniela; Diwan, Vaibhav; Friedl, Thomas

    2016-08-01

    Chlorella and Stichococcus are morphologically simple airborne microalgae, omnipresent in terrestrial and aquatic habitats. The minute cell size and resistance against environmental stress facilitate their long-distance dispersal. However, the actual distribution of Chlorella- and Stichococcus-like species has so far been inferred only from ambiguous morphology-based evidence. Here we contribute a phylogenetic analysis of an expanded SSU and ITS2 rDNA sequence dataset representing Chlorella- and Stichococcus-like species from terrestrial habitats of polar, temperate and tropical regions. We aim to uncover biogeographical patterns at low taxonomic levels. We found that psychrotolerant strains of Chlorella and Stichococcus are closely related with strains originating from the temperate zone. Species closely related to Chlorella vulgaris and Muriella terrestris, and recovered from extreme terrestrial environments of polar regions and hot deserts, are particularly widespread. Stichococcus strains from the temperate zone, with their closest relatives in the tropics, differ from strains with the closest relatives being from the polar regions. Our data suggest that terrestrial Chlorella and Stichococcus might be capable of intercontinental dispersal; however, their actual distributions exhibit biogeographical patterns.

  1. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting.

    PubMed

    Nasir, Nurfarahana Mohd; Bakar, Nur Syuhada Abu; Lananan, Fathurrahman; Abdul Hamid, Siti Hajar; Lam, Su Shiung; Jusoh, Ahmad

    2015-08-01

    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.

  2. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake.

    PubMed

    Upadhyay, A K; Singh, N K; Singh, R; Rai, U N

    2016-02-01

    The present study was conducted to assess the responses of rice (Oryza sativa L. var. Triguna) by inoculating alga; Chlorella vulgaris and Nannochlropsis sp. supplemented with As(III) (50µM) under hydroponics condition. Results showed that reduced growth variables and protein content in rice plant caused by As toxicity were restored in the algae inoculated plants after 7d of treatment. The rice plant inoculated with Nannochloropsis sp. exhibited a better response in terms of increased root, shoot length and biomass than C. vulgaris under As(III) treatment. A significant reduction in cellular toxicity (thiobarbituric acid reactive substances) and antioxidant enzyme (SOD, APX and GR) activities were observed in algae inoculated rice plant under As(III) treatment in comparison to uninoculated rice. In addition, rice treated with As(III), accumulated 35.05mgkg(-1)dw arsenic in the root and 29.96mgkg(-1)dw in the shoot. However, lower accumulation was observed in As(III) treated rice inoculated with C. vulgaris (24.09mg kg(-1)dw) and Nannochloropsis sp. (20.66mgkg(-1)dw) in the roots, while in shoot, it was 20.10mgkg(-1)dw and 11.67mgkg(-1)dw, respectively. Results demonstrated that application of these algal inoculum ameliorates toxicity and improved tolerance in rice through reduced As uptake and modulating antioxidant enzymes. Thus, application of algae could provide a low-cost and eco-friendly mitigation approach to reduce accumulation of arsenic in edible part of rice as well as higher yield in the As contaminated agricultural field.

  3. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp.

    PubMed

    Rajasekhar, Pradeep; Fan, Linhua; Nguyen, Thang; Roddick, Felicity A

    2012-04-01

    Blooms of toxic cyanobacteria such as Microcystis aeruginosa periodically occur within wastewater treatment lagoons in the warmer months, and may consequently cause contamination of downstream water and outages of the supply of recycled wastewater. Lab-scale sonication (20 kHz) was conducted on suspensions of M. aeruginosa isolated from a wastewater treatment lagoon, and two other algal strains, Anabaena circinalis and Chlorella sp., to investigate cell reduction, growth inhibition, release of microcystin and sonication efficiency in controlling the growth of the M. aeruginosa. For M. aeruginosa, for all sonication intensities and exposure times trialled, sonication led to an immediate reduction in the population, the highest reduction rate occurring within the initial 5 min. Sonication for 5 min at 0.32 W/mL, or for a longer exposure time (>10 min) at a lower power intensity (0.043 W/mL), led to an immediate increase in microcystin level in the treated suspensions. However, prolonged exposure (>10 min) to sonication at higher power intensities reduced the microcystin concentration significantly. Under the same sonication conditions, the order of decreasing growth inhibition of the three algal species was: A. circinalis > M. aeruginosa > Chlorella sp., demonstrating sonication has the potential to selectively remove/deactivate harmful cyanobacteria from the algal communities in wastewater treatment lagoons.

  4. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.

    PubMed

    González-Sánchez, Armando; Posten, Clemens

    2017-04-15

    The H2S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO2 and H2S are absorbed. The dissolved H2S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H2S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H2S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H2S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation.

  5. Biomass Production Potential of a Wastewater Alga Chlorella vulgaris ARC 1 under Elevated Levels of CO2 and Temperature

    PubMed Central

    Chinnasamy, Senthil; Ramakrishnan, Balasubramanian; Bhatnagar, Ashish; Das, Keshav C.

    2009-01-01

    The growth response of Chlorella vulgaris was studied under varying concentrations of carbon dioxide (ranging from 0.036 to 20%) and temperature (30, 40 and 50°C). The highest chlorophyll concentration (11 μg mL–1) and biomass (210 μg mL–1), which were 60 and 20 times more than that of C. vulgaris at ambient CO2 (0.036%), were recorded at 6% CO2 level. At 16% CO2 level, the concentrations of chlorophyll and biomass values were comparable to those at ambient CO2 but further increases in the CO2 level decreased both of them. Results showed that the optimum temperature for biomass production was 30°C under elevated CO2 (6%). Although increases in temperature above 30°C resulted in concomitant decrease in growth response, their adverse effects were significantly subdued at elevated CO2. There were also differential responses of the alga, assessed in terms of NaH14CO3 uptake and carbonic anhydrase activity, to increases in temperature at elevated CO2. The results indicated that Chlorella vulgaris grew better at elevated CO2 level at 30°C, albeit with lesser efficiencies at higher temperatures. PMID:19333419

  6. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  7. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong; Zou, Yuqin; Liu, Huijun

    2016-09-01

    The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).

  8. The combined and second exposure effect of copper (II) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa.

    PubMed

    Lu, Lei; Wu, Yixiao; Ding, Huijun; Zhang, Weihao

    2015-07-01

    In the experiment, Chlorella pyrenoidosa and Microcystis aeruginosa were chosen to test the individual, combined and second exposure effect of Cu(2+) and chlortetracycline (CTC). The 96 h EC50s of each test were calculated, with the ranges of 0.972-15.6 μmol/L (Cu(2+)), 29.5-102.5 μmol/L (CTC), 14.4-78.9 μmol/L (mixture). The combined toxicities were evaluated with toxicity units (TU) method. The toxicity of complex of Cu(2+) and chlortetracycline was analyzed using concentration addition (CA) model. In the initial test, the combined effect of the two substances was partly additive to C. pyrenoidosa and antagonistic to M. aeruginosa, while in the second exposure test, the combined effect was synergistic to both algae. The biochemical indicators measured in the experiment included chlorophyll fluorescence (Fv/Fm), MDA content, SOD activity and content of soluble proteins. When under combined stress, the biochemical features of both algae were significantly different between the initial test and the second exposure test.

  9. Characterization of growth and lipid production by Chlorella sp. PCH90, a microalga native to Quebec.

    PubMed

    Abdelaziz, Ahmed Elsayed Mohamed; Ghosh, Dipankar; Hallenbeck, Patrick C

    2014-03-01

    Microalgae are being investigated as potential candidates for biodiesel production since they can be grown without competition with food production, have an inherently fast growth rate, and can have a high lipid content under different nutrient limiting conditions. However, large scale production will best be carried out with indigenous strains, well adapted to local conditions. This study reports on the characterization of the novel microalga Chlorella sp. PCH90, isolated in Quebec. Its molecular phylogeny was established and lipid production studies as a function of the initial concentrations of nitrate, phosphate, and sodium chloride were carried out using response surface methodology. Under the appropriate conditions this microalga could produce up to 36% lipid and grew well in both synthetic medium and secondary effluent from a wastewater treatment plant at both 22 and 10°C. Thus, this strain is promising for further development as a potential biofuels producer under local climatic conditions.

  10. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata.

    PubMed

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-07-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae.

  11. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35).

    PubMed

    Rahman, M Azizur; Hogan, Ben; Duncan, Elliott; Doyle, Christopher; Krassoi, Rick; Rahman, Mohammad Mahmudur; Naidu, Ravi; Lim, Richard P; Maher, William; Hassler, Christel

    2014-08-01

    In the environment, arsenic (As) exists in a number of chemical species, and arsenite (As(III)) and arsenate (As(V)) dominate in freshwater systems. Toxicity of As species to aquatic organisms is complicated by their interaction with chemicals in water such as phosphate that can influence the bioavailability and uptake of As(V). In the present study, the toxicities of As(III), As(V) and dimethylarsinic acid (DMA) to three freshwater organisms representing three phylogenetic groups: a phytoplankton (Chlorella sp. strain CE-35), a floating macrophyte (Lemna disperma) and a cladoceran grazer (Ceriodaphnia cf. dubia), were determined using acute and growth inhibition bioassays (EC₅₀) at a range of total phosphate (TP) concentrations in OECD medium. The EC₅₀ values of As(III), As(V) and DMA were 27 ± 10, 1.15 ± 0.04 and 19 ± 3 mg L(-1) for Chlorella sp. CE-35; 0.57 ± 0.16, 2.3 ± 0.2 and 56 ± 15 mg L(-1) for L. disperma, and 1.58 ± 0.05, 1.72 ± 0.01 and 5.9 ± 0.1 mg L(-1) for C. cf. dubia, respectively. The results showed that As(III) was more toxic than As(V) to L. disperma; however, As(V) was more toxic than As(III) to Chlorella sp. CE-35. The toxicities of As(III) and As(V) to C. cf. dubia were statistically similar (p>0.05). DMA was less toxic than iAs species to L. disperma and C. cf. dubia, but more toxic than As(III) to Chlorella sp. CE-35. The toxicity of As(V) to Chlorella sp. CE-35 and L. disperma decreased with increasing TP concentrations in the growth medium. Phosphate concentrations did not influence the toxicity of As(III) to either organism. Chlorella sp. CE-35 showed the ability to reduce As(V) to As(III), indicating a substantial influence of phytoplankton on As biogeochemistry in freshwater aquatic systems.

  12. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.

  13. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high.

  14. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  15. N/sub 2/O evolution by green algae. [Chlorella; Scenedesmus; Coelastrum; Chlorococcum

    SciTech Connect

    Weathers, P.J.

    1984-12-01

    Nitrous oxide (N/sub 2/O) is an intermediate in denitrification and a by-product of both nitrification and dissimilatory nitrogen oxide reduction. The extent of the global source and pool of N/sub 2/O is uncertain and especially controversial in aquatic systems. Recognition of new, widespread biological sources of N/sub 2/O affects current theories of the global N/sub 2/O balance. Evidence is presented here that axenic cultures of Chlorella, Scenedesmus, Coelastrum, and Chlorococcum spp. evolve N/sub 2/O when grown on NO/sub 2//sup -/, showing that the Chlorophyceae are a source of N/sub 2/O in aquatic systems. 18 references, 2 tables.

  16. The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris.

    PubMed

    Pinheiro, Carlos; Azevedo, Joana; Campos, Alexandre; Vasconcelos, Vítor; Loureiro, Susana

    2016-05-01

    Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative cyanobacterial cyanotoxins. They have been simultaneously detected in aquatic systems, but their combined ecotoxicological effects to aquatic organisms, especially microalgae, is unknown. In this study, we examined the effects of these cyanotoxins individually and as a binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the MIXTOX tool, the reference model concentration addition (CA) was selected to evaluate the combined effects of MC-LR and CYN on the growth of the freshwater green algae due to its conservative prediction of mixture effect for putative similar or dissimilar acting chemicals. Deviations from the CA model such as synergism/antagonism, dose-ratio and dose-level dependency were also assessed. In single exposures, our results demonstrated that MC-LR and CYN had different impacts on the growth rates of C. vulgaris at the highest tested concentrations, being CYN the most toxic. In the mixture exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual model CA as the best descriptive model. MC-LR individually was not toxic even at high concentrations (37 mg L(-1)); however, the presence of MC-LR at much lower concentrations (0.4-16.7 mg L(-1)) increased the CYN toxicity. From these results, the combined exposure of MC-LR and CYN should be considered for risk assessment of mixtures as the toxicity may be underestimated when looking only at the single cyanotoxins and not their combination. This study also represents an important step to understand the interactions among MC-LR and CYN detected previously in aquatic systems.

  17. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  18. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production.

  19. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341.

    PubMed

    Li, ZhaoSheng; Yuan, HongLi; Yang, JinShui; Li, BaoZhen

    2011-10-01

    High production cost is a major obstacle to the extensive use of microalgae biodiesel. To cut the cost and achieve higher biomass productivity, Chlorella minutissima UTEX2341 was cultured under photoheterotrophic conditions. With the carbon, nitrogen and phosphorus concentration of 26.37, 2.61 and 0.03 g L⁻¹ d⁻¹ respectively, a maximum biomass productivity of 1.78 g L⁻¹ d⁻¹ was obtained, which was 59 times more than that cultured under autotrophic condition. The lipid productivity reached 0.29 g L⁻¹ d⁻¹, which was 11.9 times higher than the highest value reported by Oh et al. (2010). The conversion rate of microalgae lipids to FAME was found to be elevated from 45.65% to 62.97% and the FAME productivity increased from 1.16 to 180.68 mg L⁻¹ d⁻¹ after the optimization. 94% of the fatty acid of C. minutissima UTEX2341 was found to be composed of palmitic, oleic, linoleic and γ linoleic and the unsaturated fatty acids were the main parts (79.42%).

  20. Rhodovulum algae sp. nov., isolated from an algal mat.

    PubMed

    Ramaprasad, E V V; Tushar, L; Dave, Bharti; Sasikala, Ch; Ramana, Ch V

    2016-09-01

    A reddish-brown-pigmented, phototrophic bacterium, designated strain JA877T, was isolated from a brown algae mat sample collected from Jalandhar beach, Gujarat, India. On the basis of the 16S rRNA gene sequence, strain JA877T belongs to the class Alphaproteobacteria and is closely related to the type strains Rhodovulum viride JA756T (99.0 %), Rhodovulum sulfidophilum Hansen W4T (98.9 %), Rhodovulumvisakhapatnamense JA181T (98.8 %),Rhodovulum kholense JA297T (97.5 %) and Rhodovulum salis JA746T (97.0). However, strain JA877T showed only 20-45 % relatedness with its phylogenetic neighbours and had a ∆Tm between 5.8 and 7.0 °C. The major respiratory quinone was ubiquinone-10 (Q10), and the polar lipid profile was composed of the major components phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, two unidentified sulfolipids and five unidentified lipids. The major fatty acids were C18 : 1ω5c, C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and C18 : 0. The DNA G+C content was 64.5 mol%. On the basis of 16S rRNA gene sequence analysis, physiological data, and chemotaxonomic and molecular differences, strain JA877T is significantly different from other species of the genus Rhodovulum and represents a novel species, for which the name Rhodovulum algae sp. nov. is proposed. The type strain is JA877T (=LMG 29228T= KCTC 42963T).

  1. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.

    PubMed

    Li, Dengjin; Wang, Liang; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2015-06-01

    CO2 capture by microalgae is a promising method to reduce greenhouse gas emissions. It is critical to construct a highly efficient way to obtain a microalgal strain tolerant to high CO2 concentrations with high CO2 fixation capability. In this study, two evolved Chlorella sp. strains, AE10 and AE20 were obtained after 31 cycles of adaptive laboratory evolution (ALE) under 10% and 20% CO2, respectively. Both of them grew rapidly in 30% CO2 and the maximal biomass concentration of AE10 was 3.68±0.08g/L, which was 1.22 and 2.94 times to those of AE20 and original strain, respectively. The chlorophyll contents of AE10 and AE20 were significantly higher than those of the original one under 1-30% CO2. The influences of ALE process on biochemical compositions of Chlorella cells were also investigated. This study proved that ALE was an effective approach to improve high CO2 tolerance of Chlorella sp.

  2. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts.

    PubMed

    Choi, Cheol Soon; Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system.

  3. Comparison of Different Artificial Neural Network (ANN) Architectures in Modeling of Chlorella sp. Flocculation.

    PubMed

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-01-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae specie, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network (ANN). Neural network architectures of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  4. Production of Biodiesel from Chlorella sp. Enriched with Oyster Shell Extracts

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system. PMID:24696841

  5. Polishing of POME by Chlorella sp. in suspended and immobilized system

    NASA Astrophysics Data System (ADS)

    Lahin, F. A.; Sarbatly, R.; Suali, E.

    2016-06-01

    The effect of using suspended and immobilized growth of Chlorella sp. to treat POME was studied. Cotton and nylon ropes were used as the immobilization material in a rotating microalgae biofilm reactor. The result showed that POME treated in suspended growth system was able to remove 81.9% and 55.5% of the total nitrogen (TN) and total phosphorus (TP) respectively. Whereas the immobilized system showed lower removal of 77.22% and 53.02% for TN and TP. Lower performance of immobilized microalgae is due to the limited light penetration and supply of CO2 inside the immobilization materials. The rotating microalgae biofilm reactor was able to reduce the biochemical oxygen demand (BOD) to 90 mg/L and chemical oxygen demand (COD) to 720 mg/L. Higher BOD and COD reading were obtained in suspended growth due to the presence of small number of microalgae cell in the samples. This study shows that suspended growth system is able to remove higher percentages of nitrogen and phosphorus. However, an efficient separation method such as membrane filtration is required to harvest the cultivated microalgae cell to avoid organic matter release into water bodies.

  6. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    PubMed

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control.

  7. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae).

    PubMed

    Piotrowska-Niczyporuk, Alicja; Bajguz, Andrzej; Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2012-03-01

    The present study was undertaken to test the influence of exogenously applied phytohormones: auxins (IAA, IBA, NAA, PAA), cytokinins (BA, CPPU, DPU, 2iP, Kin, TDZ, Z), gibberellin (GA(3)), jasmonic acid (JA) as well as polyamine - spermidine (Spd) upon the growth and metabolism of green microalga Chlorella vulgaris (Chlorophyceae) exposed to heavy metal (Cd, Cu, Pb) stress. The inhibitory effect of heavy metals on algal growth, metabolite accumulation and enzymatic as well as non-enzymatic antioxidant system was arranged in the following order: Cd > Pb > Cu. Exogenously applied phytohormones modify the phytotoxicity of heavy metals. Auxins, cytokinins, gibberellin and spermidine (Spd) can alleviate stress symptoms by inhibiting heavy metal biosorption, restoring algal growth and primary metabolite level. Moreover, these phytohormones and polyamine stimulate antioxidant enzymes' (superoxide dismutase, ascorbate peroxidase, catalase) activities and ascorbate as well as glutathione accumulation by producing increased antioxidant capacity in cells growing under abiotic stress. Increased activity of antioxidant enzymes reduced oxidative stress expressed by lipid peroxidation and hydrogen peroxide level. In contrast JA enhanced heavy metal toxicity leading to increase in metal biosorption and ROS generation. The decrease in cell number, chlorophylls, carotenoids, monosaccharides, soluble proteins, ascorbate and glutathione content as well as antioxidant enzyme activity was also obtained in response to JA and heavy metals. Determining the stress markers (lipid peroxidation, hydrogen peroxide) and antioxidants' level as well as antioxidant enzyme activity in cells is important for understanding the metal-specific mechanisms of toxicity and that these associated novel endpoints may be useful metrics for accurately predicting toxicity. The data suggest that phytohormones and polyamine play an important role in the C. vulgaris responding to abiotic stressor and algal

  8. The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris.

    PubMed

    Baker, Josh; Wallschläger, Dirk

    2016-11-01

    A freshwater microalga, Chlorella vulgaris, was grown in the presence of varying phosphate concentrations (<10-500μg/L P) and environmentally realistic concentrations of arsenate (As(V)) (5-50μg/L As). Arsenic speciation in the culture medium and total cellular arsenic were measured using AEC-ICP-MS and ICP-DRC-MS, respectively, to determine arsenic biotransformation and uptake in the various phosphorus scenarios. At high phosphate concentration in the culture medium, >100μg/L P, the uptake and biotransformation of As(V) was minimal and dimethylarsonate (DMAs(V)) was the dominant metabolite excreted by C. vulgaris, albeit at relatively low concentrations. At common environmental P concentrations, 0-50μg/L P, the uptake and biotransformation of As(V) increased. At these higher As-uptake levels, arsenite (As(III)) was the predominant metabolite excreted from the cell. The concentrations of As(III) in these low P conditions were much higher than the concentrations of methylated arsenicals observed at the various P concentrations studied. The switchover threshold between the (small) methylation and (large) reduction of As(V) occurred around a cellular As concentration of 1fg/cell. The observed nearly quantitative conversion of As(V) to As(III) under low phosphate conditions indicates the importance of As(V) bio-reduction at common freshwater P concentrations. These findings on the influence of phosphorus on arsenic uptake, accumulation and excretion are discussed in relation to previously published research. The impact that the two scenarios of As(V) metabolism, As(III) excretion at high As(V)-uptake and methylarsenical excretion at low As(V)-uptake, have on freshwater arsenic speciation is discussed.

  9. Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B; Renger, G

    2014-04-01

    Measurements of Single Flash Induced Transient Fluorescence Yield (SFITFY) on spinach leaves and whole cells of green thermophilic alga Chlorella pyrenoidosa Chick were analyzed for electron transfer (ET) steps and coupled proton transfer (PT) on both the donor and the acceptor side of the reaction center (RC) of photosystem II (PS II). A specially developed PS II model (Belyaeva et al., 2008, 2011a) allowed the determination of ET steps that occur in a hierarchically ordered time scale from nanoseconds to several seconds. Our study demonstrates that our SFITFY data is consistent with the concept of the reduction of P680(+) by YZ in both leaves and algae (studied on spinach leaves and cells of Chlorella pyrenoidosa Chick). The multiphasic P680(+) reduction kinetics by YZ in PS II core complexes with high oxygen evolution capacity was seen in both algae and leaves. Model simulation to fit SFITFY curves for dark adapted species used here gives the rate constants to verify nanosecond kinetic stages of P680(+) reduction by YZ in the redox state S1 of the water oxidizing complex (WOC) shown in Kühn et al. (2004). Then a sequence of relaxation steps in the redox state S1, outlined by Renger (2012), occurs in both algae and leaves as a similar non-adiabatic ET reactions. Coupled PT is discussed briefly to understand a rearrangement of hydrogen bond protons in the protein matrix of the WOC (Umena et al., 2011). On the other hand, present studies showed a slower reoxidation of reduced QA by QB in algal cells as compared with that in a leaf that might be regarded as a consequence of differences of spatial domains at the QB-site in leaves compared to algae. Our comparative study helped to correlate theory with experimental data for molecular photosynthetic mechanisms in thylakoid membranes.

  10. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca.

    PubMed

    Mitchell, Rebecca J; Myers, Anne L; Mabury, Scott A; Solomon, Keith R; Sibley, Paul K

    2011-11-01

    Perfluorinated acids (PFAs) have elicited significant global regulatory and scientific concern due to their persistence and global pervasiveness. A source of PFAs in the environment is through degradation of fluorotelomer carboxylic acids (FTCAs) but little is known about the toxicity of these degradation products. Previous work found that FTCAs were two to three orders of magnitude more toxic to some freshwater invertebrates than their PFA counterparts and exhibited comparable chain-length-toxicity relationships. In this study, we investigated the toxicity of the 6:2, 8:2, and 10:2 saturated (FTsCA) and unsaturated (FTuCA) fluorotelomer carboxylic acids to two species of freshwater algae, Chlorella vulgaris and Pseudokirchneriella subcapitata, and the amphipod, Hyalella azteca. C. vulgaris was generally the most sensitive species, with EC₅₀s of 26.2, 31.8, 11.1, and 4.2 mg/L for the 6:2 FTsCA, 6:2 FTuCA, 8:2 FTuCA, and 10:2 FTsCA, respectively. H. azteca was most sensitive to the 8:2 FTsCA and 10:2 FTuCA, with LC₅₀s of 5.1 and 3.7 mg/L. The toxicity of the FTCAs generally increased with increasing carbon chain length, and with saturation for most of the species tested, with the exception of P. subcapitata, which did not exhibit any trend. These observations agree with chain-length-toxicity relationships previously reported for the PFCAs and support the greater toxicity of the FTCAs compared to PFCAs. However, the toxicity values are approximately 1000-fold above those detected in the environment indicating negligible risk to aquatic invertebrates.

  11. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29.

    PubMed

    Goncalves, Elton C; Johnson, Jodie V; Rathinasabapathi, Bala

    2013-11-01

    Algal lipids are ideal biofuel sources. Our objective was to determine the contributors to triacylglycerol (TAG) accumulation and lipid body formation in Chlorella UTEX29 under nitrogen (N) deprivation. A fivefold increase in intracellular lipids following N starvation for 24 h confirmed the oleaginous characteristics of UTEX29. Ultrastructural studies revealed increased number of lipid bodies and decreased starch granules in N-starved cells compared to N-replete cells. Lipid bodies were observed as early as 3 h after N removal and plastids collapsed after 48 h of stress. Moreover, the identification of intracellular pyrenoids and differences in the expected nutritional requirements for Chlorella protothecoides (as UTEX29 is currently classified) led us to conduct a phylogenetic study using 18S and actin cDNA sequences. This indicated UTEX29 to be more phylogenetically related to Chlorella vulgaris. To investigate the fate of different lipids after N starvation, radiolabeling using ¹⁴C-acetate was used. A significant decrease in ¹⁴C-galactolipids and phospholipids matched the increase in ¹⁴C-TAG starting at 3 h of N starvation, consistent with acyl groups from structural lipids as sources for TAG under N starvation. These results have important implications for the identification of key steps controlling oil accumulation in N-starved biofuel algae and demonstrate membrane recycling during lipid body formation.

  12. Benefits of oral and topical administration of ROQUETTE Chlorella sp. on skin inflammation and wound healing in mice.

    PubMed

    Hidalgo-Lucas, Sophie; Bisson, Jean-Francois; Duffaud, Anais; Nejdi, Amine; Guerin-Deremaux, Laetitia; Baert, Blandine; Saniez-Degrave, Marie-Helene; Rozan, Pascale

    2014-01-01

    The human body is constantly exposed to the risk of traumatic lesions. Chlorella is a green microalgae enriched with nutrients, vitamins, minerals and chlorophyll. In some communities, Chlorella is a traditional medicinal plant used for the management of inflammation-related diseases. ROQUETTE Chlorella sp. (RCs) was investigated by oral administration (125, 250 and 500 mg/kg) and cutaneous application (2.5, 5.0 and 10.0%) to evaluate its impact in two dermatological disorder models in mice: skin inflammation and wound healing. For skin inflammation, it was administered during 14 days starting one week before the induction of chronic skin inflammation by repeated cutaneous application of 12-Otetradecanoylphorbol 13-acetate (TPA). For wound healing the microalgae was administered by topical application after scarification of the skin until complete wound healing. Results indicated that oral and topical administrations of the two higher doses of RCs had significant effects on macroscopic score of skin inflammation with an efficient effect on microscopic score with cutaneous application. The microalgae had also efficient effect on healing process and duration of wound healing for both administration routes and particularly at the two highest doses of RCs. These findings suggest that administration of RCs by both oral and topical routes appeared to have beneficial effects on skin lesions.

  13. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor.

  14. Sulfitobacter undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Won, Sung-Min; Park, Ji-Min; Yoon, Jung-Hoon

    2015-05-01

    A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and coccoid, ovoid or rod-shaped bacterial strain, W-BA2(T), was isolated from a brown algae reservoir in Wando of South Korea. Strain W-BA2(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of approximately 2.0-3.0% (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain W-BA2(T) fell within the clade comprising the type strains of species of the genus Sulfitobacter , clustering coherently with the type strains of Sulfitobacter donghicola and Sulfitobacter guttiformis showing sequence similarity values of 98.0-98.1%. Sequence similarities to the type strains of the other species of the genus Sulfitobacter were 96.0-97.4%. Strain W-BA2(T) contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain W-BA2(T) were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain W-BA2(T) was 55.0 mol% and its DNA-DNA relatedness values with the type strains of Sulfitobacter donghicola , Sulfitobacter guttiformis and Sulfitobacter mediterraneus were 16-23%. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain W-BA2(T) is separated from other species of the genus Sulfitobacter . On the basis of the data presented, strain W-BA2(T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter undariae sp. nov. is proposed. The type strain is W-BA2(T) ( = KCTC 42200(T) = NBRC 110523(T)).

  15. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    PubMed

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-01-27

    Novel agar-degrading, Gram-staining-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa, respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and 1-3% (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1T were C18:1 ω7c, C16:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The predominant polar lipids in strain Z1T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and aminolipid (AL). The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1T and JL1 were closely related, with 99.9% 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1T and JL1 was 99.3%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1T and JL1 form a distinct phyletic line within the class Gammaproteobacteria, with less than 92.3% similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a new genus and species designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of Marinagarivorans algicola is Z1T (=ATCC BAA-2617T=CICC 10859T).

  16. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal.

    PubMed

    Liu, Hui; Lu, Qian; Wang, Qin; Liu, Wen; Wei, Qian; Ren, Hongyan; Ming, Caibing; Min, Min; Chen, Paul; Ruan, Roger

    2017-03-22

    Algae were able to grow healthy on bacteria-containing centrate wastewater in a pilot-scale bioreactor. The batch experiment indicated that the co-cultivation of algae and wastewater-borne bacteria improved the removal efficiencies of chemical oxygen demand and total phosphorus in centrate wastewater to 93.01% and 98.78%, respectively. A strain of beneficial aerobic bacteria, Acinetobacter sp., was isolated and its biochemical characteristics were explored. Synergistic cooperation was observed in the growth of algae and Acinetobacter sp. Removal efficiencies of some nutrients were improved significantly by the co-cultivation of algae and Acinetobacter sp. After treatment, residual nutrients in centrate wastewater reached the permissible discharge limit. The cooperation between algae and Acinetobacter sp. was in part attributed to the exchange of carbon dioxide and oxygen between the algae and bacteria. This synergetic relationship between algae and Acinetobacter sp. provided a promising way to treat the wastewater by improving the nutrients removal and biomass production.

  17. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.

    PubMed

    Weger, Harold G; Walker, Crystal N; Fink, Michael B

    2007-10-01

    The colorimetric Fe2+ indicators bathophenanthroline disulfonic acid (BPDS) and 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine (FZ) are routinely used to assay for plasma membrane ferric reductase activity in iron-limited algal cells and also in roots from iron-limited plants. Ferric reductase assays using these colorimetric indicators must take into account the fact that Fe3+ chelators (e.g. ethylenediaminetetraacetic acid) can also in general bind Fe2+ and may therefore compete with the colorimetric Fe2+ indicators, leading to the potential for underestimation of the ferric reduction rate. Conversely, the presence of BPDS or FZ may also facilitate the reduction of Fe3+ chelates, potentially leading to overestimation of ferric reduction rates. Last, both BPDS and FZ have non-negligible affinities for Fe3+ in addition to their well-known affinities for Fe2+; this leads to potential difficulties in ascertaining whether free and/or chelated Fe3+ are potential substrates for the ferric reductase. Similar issues arise when assaying for cupric reductase activity using the colorimetric Cu+ indicator bathocuproinedisulfonic acid (BCDS). In this paper, we describe an oxygen-electrode-based assay (conducted in darkness) for both ferric and cupric reductase activities that does not use colorimetric indicators. Using this assay system, we show that the plasma membrane metal reductase activity of iron-limited cells of the green alga Chlorella kessleri reduced complexed Fe3+ (i.e. Fe3+ chelates) but did not reduce free (non-chelated) Fe3+, and also reduced free Cu2+ to Cu+, but did not reduce Cu2+ that was part of Cu2+ chelates. We suggest that the potential for reduction of free Fe3+ cannot be adequately assayed using colorimetric assays. As well, the BPDS-based assay system consistently yielded similar estimates of ferric reductase activity compared with the O2-electrode-based assays at relatively low Fe3+ concentration, but higher estimates at higher Fe3

  18. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis.

    PubMed

    Liang, Zhijie; Liu, Yan; Ge, Fei; Xu, Yin; Tao, Nengguo; Peng, Fang; Wong, Minghung

    2013-08-01

    To achieve better removal of NH4(+) and TP in wastewater, a new algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis was investigated in a 6-d experiment. The results showed that 78% of NH4(+) could be removed in the combined system, while 29% in single algae system and only 1% in single bacteria system. Approximately 92% of TP was removed in the combined system, compared with 55% and 78% in single algae and bacteria system, respectively. B. licheniformis was proven to be a growth-promoting bacterium for C. vulgaris by comparing Chl a concentrations in the single and combined systems. In the removal process, pH of the combined system was observed to reduce significantly from 7.0 to 3.5. Whereas with pH regulated to 7.0, higher removal efficiencies of NH4(+) (86%) and TP (93%) were achieved along with the recovery of algal cells and the increase of Chl a. These results suggest that nutrients in wastewater can be removed efficiently by the algae-bacteria combined system and pH control is crucial in the process.

  19. Algibacter undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Lee, Jung-Sook; Lee, Keun-chul; Yoon, Jung-Hoon

    2013-10-01

    A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY9(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY9(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY9(T) clustered with the type strain of Algibacter lectus with a bootstrap resampling value of 100 %. Strain WS-MY9(T) exhibited 16S rRNA gene sequence similarity values of 98.5 and 96.7 % to the type strains of A. lectus and Algibacter mikhailovii, respectively, and less than 96.1 % sequence similarity to other members of the family Flavobacteriaceae. Strain WS-MY9(T) contained MK-6 as the predominant menaquinone and anteiso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 as the major fatty acids. The major polar lipids of strain WS-MY9(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY9(T) was 35.0 mol% and its DNA-DNA relatedness value with A. lectus KCTC 12103(T) was 15 %. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY9(T) is separate from the two recognized species of the genus Algibacter. On the basis of the data presented, strain WS-MY9(T) represents a novel species of the genus Algibacter, for which the name Algibacter undariae sp. nov. is proposed. The type strain is WS-MY9(T) ( = KCTC 32259(T) = CCUG 63684(T)).

  20. Lacinutrix undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Park, Ji-Min; Jung, Yong-Taek; Kang, Chul-Hyung; Yoon, Jung-Hoon

    2015-08-01

    A Gram-stain-negative, aerobic, non-flagellated, non-gliding and ovoid or rod-shaped bacterium, designated strain W-BA8T, was isolated from a brown algae reservoir on the South Sea, South Korea, and subjected to a polyphasic taxonomic approach. Strain W-BA8T grew optimally at 25 °C, at pH 7.0-7.5 and in the presence of 1.0-2.0% (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain W-BA8T clustered with the type strains of species of the genus Lacinutrix. Strain W-BA8T exhibited 16S rRNA gene sequence similarity values of 94.9-96.5% to the type strains of Lacinutrix species and of less than 95.8% to the type strains of other recognized species. Strain W-BA8T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH as major fatty acids. The polar lipid profile of strain W-BA8T contained phosphatidylethanolamine, two unidentified lipids and one unidentified glycolipid as major components. The DNA G+C content of strain W-BA8T was 35 mol%. Differential phenotypic properties, together with phylogenetic distinctiveness, revealed that strain W-BA8T is separated from other species of the genus Lacinutrix. On the basis of the data presented, strain W-BA8T is considered to represent a novel species of the genus Lacinutrix, for which the name Lacinutrix undariae sp. nov. is proposed. The type strain is W-BA8T ( = KCTC 42176T = CECT 8671T).

  1. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas.

    PubMed

    Kuo, Chiu-Mei; Jian, Jhong-Fu; Lin, Tsung-Hsien; Chang, Yu-Bin; Wan, Xin-Hua; Lai, Jinn-Tsyy; Chang, Jo-Shu; Lin, Chih-Sheng

    2016-12-01

    A microalgal strain, Chlorella sp. GD, cultivated in aquaculture wastewater (AW) aerated with boiler flue gas, was investigated. When AW from a grouper fish farm was supplemented with additional nutrients, the microalgal biomass productivity after 7days of culture was 0.794gL(-1)d(-1). CO2 fixation efficiencies of the microalgal strains aerated with 0.05, 0.1, 0.2, and 0.3vvm of boiler flue gas (containing approximately 8% CO2) were 53, 51, 38, and 30%, respectively. When the microalgal strain was cultured with boiler flue gas in nutrient-added AW, biomass productivity increased to 0.892gL(-1)d(-1). In semi-continuous cultures, average biomass productivities of the microalgal strain in 2-day, 3-day, and 4-day replacement cultures were 1.296, 0.985, and 0.944gL(-1)d(-1), respectively. These results demonstrate the potential of using Chlorella sp. GD cultivations in AW aerated with boiler flue gas for reusing water resources, reducing CO2 emission, and producing microalgal biomass.

  2. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227.

    PubMed

    Cho, Sunja; Lee, Dukhaeng; Luong, Thao Thanh; Park, Sora; Oh, You-Kwan; Lee, Taeho

    2011-10-01

    In order to investigate and generalize the effects of carbon and nitrogen sources on the growth of and lipid production in Chlorella sp. 227, several nutritional combinations consisting of different carbon and nitrogen sources and concentrations were given to the media for cultivation of Chlorella sp. 227, respectively. The growth rate and lipid content were affected largely by concentration rather than by sources. The maximum specific growth was negatively affected by low concentrations of carbon and nitrogen. There is a maximum allowable inorganic carbon concentration (less than 500~1,000 mM bicarbonate) in autotrophic culture, but the maximum lipid content per gram dry cell weight (g DCW) was little affected by the concentration of inorganic carbon within the concentration. The lipid content per g DCW was increased when the microalga was cultured with the addition of glucose and bicarbonate (mixotrophic) at a fixed nitrogen concentration and with the lowest nitrogen concentration (0.2 mM), relatively. Considering that lipid contents per g DCW increased in those conditions, it suggests that a high ratio of carbon to nitrogen in culture media promotes lipid accumulation in the cells. Interestingly, a significant increase of the oleic acid amount to total fatty acids was observed in those conditions. These results showed the possibility to induce lipid production of high quality and content per g DCW by modifying the cultivation conditions.

  3. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.

    PubMed

    Liu, Junzhuo; Vyverman, Wim

    2015-03-01

    The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio.

  4. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  5. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.

    PubMed

    Cheng, Jun; Huang, Yun; Feng, Jia; Sun, Jing; Zhou, Junhu; Cen, Kefa

    2013-05-01

    To improve biomass productivity and CO2 fixation of microalgae under 15% (v/v) CO2 of flue gas, Chlorella species were mutated by nuclear irradiation and domesticated with high concentrations of CO2. The biomass yield of Chlorella pyrenoidosa mutated using 500 Gy of (60)Co γ irradiation increased by 53.1% (to 1.12 g L(-1)) under air bubbling. The mutants were domesticated with gradually increased high concentrations of CO2 [from 0.038% (v/v) to 15% (v/v)], which increased the biomass yield to 2.41 g L(-1). When light transmission and culture mixing in photo-bioreactors were enhanced at 15% (v/v) CO2, the peak growth rate of the domesticated mutant (named Chlorella PY-ZU1) was increased to 0.68 g L(-1) d(-1). When the ratio of gas flow rate (L min(-1)) to 1L of microalgae culture was 0.011, the peak CO2 fixation rate and the efficiency of Chlorella PY-ZU1 were 1.54 g L(-1) d(-1) and 32.7%, respectively.

  6. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  7. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production.

    PubMed

    Pradeep, Vishnupriya; Van Ginkel, Steven W; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-08-31

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer-B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction.

  8. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production

    PubMed Central

    Pradeep, Vishnupriya; Van Ginkel, Steven W.; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer—B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction. PMID:26404247

  9. Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources.

    PubMed

    Gautam, Kshipra; Pareek, Ashwani; Sharma, Durlubh Kumar

    2013-11-01

    Mixotrophic growth of Chlorella minutissima with carbon supplements such as glucose, glycerol, succinate, molasses and press mud resulted in maximum biomass accumulation in glucose supplemented culture. Lipid content was maximum with molasses followed by press mud, fatty acid compositions of which also were best suited for biodiesel production.

  10. GAS EXCHANGE OF ALGAE. I. EFFECTS OF TIME, LIGHT INTENSITY, AND SPECTRAL-ENERGY DISTRIBUTION ON THE PHOTOSYNTHETIC QUOTIENT OF CHLORELLA PYRENOIDOSA.

    PubMed

    AMMANN, E C; LYNCH, V H

    1965-07-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO(2)/O(2)) and O(2) values during 6 months of observations. The PQ for the entire study was 0.90 +/- 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O(2) production (0.90 +/- 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 +/- 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O(2) values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use.

  11. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    PubMed

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced.

  12. Enhancement in lipid content of Chlorella sp. MJ 11/11 from the spent medium of thermophilic biohydrogen production process.

    PubMed

    Ghosh, Supratim; Roy, Shantonu; Das, Debabrata

    2017-01-01

    The present study investigates the effect of spent media of acetogenic dark fermentation for mixotrophic algal cultivation for biodiesel production. Mixotrophic growth conditions were optimized in culture flask (250mL) using Chlorella sp. MJ 11/11. Maximum lipid accumulation (58% w/w) was observed under light intensity, pH, nitrate and phosphate concentration of 100μmolm(-2)s(-1), 7, 2.7mM and 1.8mM, respectively. Air lift (1.4L) and flat panel (1.4L) reactors were considered for algal cultivation. Air lift showed significant improvement in biomass and lipid production as compared to flat panel reactor. The results could help in development of sustainable technology involving acetogenic hydrogen production integrated with sequential mitigation of spent media by algal cultivation for improved energy recovery.

  13. Enhanced algal CO(2) sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond.

    PubMed

    Ramanan, Rishiram; Kannan, Krishnamurthi; Deshkar, Ashok; Yadav, Raju; Chakrabarti, Tapan

    2010-04-01

    Biological CO(2) sequestration using algal reactors is one of the most promising and environmentally benign technologies to sequester CO(2). This research study was taken up to alleviate certain limitations associated with the technology such as low CO(2) sequestration efficiency and low biomass yields. The study demonstrates an increase in CO(2) sequestration efficiency by maneuvering chemically aided biological sequestration of CO(2). Chlorella sp. and Spirulina platensis showed 46% and 39% mean fixation efficiency, respectively, at input CO(2) concentration of 10%. The effect of acetazolamide, a potent carbonic anhydrase inhibitor, on CO(2) sequestration efficiency was studied to demonstrate the role of carbonic anhydrase in calcite deposition. Calcite formed by both species was characterized by scanning electron microscopy coupled electron dispersive spectroscopy and X-ray diffraction. The overall scheme of calcite deposition coupled CO(2) fixation with commercially utilizable biomass as a product seems a viable option in the efforts to sequester increasing CO(2) emissions.

  14. Chlorella: 125 years of the green survivalist.

    PubMed

    Krienitz, Lothar; Huss, Volker A R; Bock, Christina

    2015-02-01

    Chlorella, the archetype of unicellular green algae, is a high-performance primary producer in aquatic and terrestrial ecosystems. Under the simple spherical morphology of Chlorella, many other 'green balls' unfolded as independent phylogenetic lineages as a result of convergent evolution. By contrast, green algae with strikingly different phenotypes were unmasked as close relatives of Chlorella by modern molecular techniques. Here, we point to the increasing impact of these diverse protists on ecology, evolution, and biotechnology in the light of integrative taxonomy.

  15. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass.

  16. CO2 capture using limestone for cultivation of the freshwater microalga Chlorella sorokiniana PAZ and the cyanobacterium Arthrospira sp. VSJ.

    PubMed

    Zawar, Prachi; Javalkote, Vivek; Burnap, Robert; Mahulikar, Pramod; Puranik, Pravin

    2016-12-01

    The present study reports a process wherein CO2 is captured in the form of bicarbonates using calcium oxide and photosynthetically fixed into biomass. Microalgal cultures viz. Chlorella sorokiniana PAZ and Arthrospira sp. VSJ were grown in the medium containing bicarbonates. The rate of bicarbonate utilization by C. sorokiniana PAZ was higher when CO2 trapped in the presence of 2.67mM calcium oxide than in the presence of 10mM sodium hydroxide and with direct addition of 10mM sodium bicarbonate. For Arthrospira sp. VSJ the bicarbonate utilization was 92.37%, 88.34% and 59.23% for the medium containing CaO, NaOH and NaHCO3, respectively. Illumination of photosynthetically active radiation (PAR)+ultraviolet A radiation (UVA) enhanced the yield of C. sorokiniana PAZ and Arthrospira sp. VSJ by 1.3 and 1.8 folds, respectively. FTIR analysis revealed elevation in the biosynthesis of specific metabolites in response to the UVA exposure.

  17. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  18. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    PubMed

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  19. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  20. Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2013-10-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.

  1. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2012-10-01

    Sorption of copper ions by the alga Spirogyra sp. was investigated to determine the influence of experimental conditions and the methods of sample preparation on the process. The experiments were carried out both under the static and the dynamic conditions. Kinetics and equilibrium parameters of the sorption were evaluated. In addition, the influence was studied of the algae preparation methods on the conductivity of demineralized water in which the algae samples were immersed. The static experiments showed that the sorption of Cu(2+) ions reached equilibrium in about 30 min, with approximately 90% of the ions adsorbed in the initial 15 min. The sorption capacity determined from the Langmuir isotherms appeared highly uncertain (SD=±0.027 mg/g dry mass or ±11%, for the live algae). Under static conditions, the slopes of the Langmuir isotherms depended on the ratio of the alga mass to the volume of solution. The conductometric measurements were proven to be a simple and fast way to evaluate the quality of algae used for the experiments.

  2. Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ.

    PubMed

    Zhan, Jingjing; Hong, Yu; Hu, Hongying

    2016-07-28

    Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/ 25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

  3. The Effect of Copper and Selenium Nanocarboxylates on Biomass Accumulation and Photosynthetic Energy Transduction Efficiency of the Green Algae Chlorella Vulgaris

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, Natalia F.; Zolotareva, Elena K.

    2017-02-01

    Nanoaquachelates, the nanoparticles with the molecules of water and/or carboxylic acids as ligands, are used in many fields of biotechnology. Ultra-pure nanocarboxylates of microelements are the materials of spatial perspective. In the present work, the effects of copper and selenium nanoaquachelates carboxylated with citric acid on biomass accumulation of the green algae Chlorella vulgaris were examined. Besides, the efficiency of the reactions of the light stage of photosynthesis was estimated by measuring chlorophyll a fluorescence. The addition of 0.67-4 mg L-1 of Cu nanocarboxylates resulted in the increase in Chlorella biomass by ca. 20%; however, their concentrations ranging from 20 to 40 mg L-1 strongly inhibited algal growth after the 12th day of cultivation. Se nanocarboxylates at 0.4-4 mg L-1 concentrations also stimulated the growth of C. vulgaris, and the increase in biomass came up to 40-45%. The addition of Se nanocarboxylates at smaller concentrations (0.07 or 0.2 mg L-1) at first caused the retardation of culture growth, but that effect disappeared after 18-24 days of cultivation. The addition of 2-4 mg L-1 of Cu nanocarboxylates or 0.4-4 mg L-1 of Se nanocarboxylates caused the evident initial increase in such chlorophyll a fluorescence parameters as maximal quantum yield of photosystem II photochemistry ( F v/ F m) and the quantum yield of photosystem II photochemistry in the light-adapted state ( F v'/ F m'). Photochemical fluorescence quenching coefficients declined after 24 days of growth with Cu nanocarboxylates, but they increased after 6 days of the addition of 2 or 4 mg L-1 Se nanocarboxylates. Those alterations affected the overall quantum yield of the photosynthetic electron transport in photosystem II.

  4. Rational design of a culture medium for the intensification of lipid storage in Chlorella sp. Performance evaluation in air-lift bioreactor.

    PubMed

    Giordano, Pablo C; Beccaria, Alejandro J; Goicoechea, Héctor C

    2014-04-01

    An optimal medium to culture Chlorella sp., microalgae capable of storage intracellular lipids was obtained. This culture medium consists of a saline base plus carbon-energy and nitrogen sources. Significant factors exerting influence on the culture parameters were selected. Then, by applying response surface methodology coupled to desirability function, an optimal formulation, specific for the heterotrophic growth of Chlorella sp. that allows maximizing lipid concentration was obtained. During the experimental verification, the possibility of replacing commercial glucose by hydrolysates obtained from lignocellulosic materials was evaluated. Biochemical hydrolysate of corn bran allowed obtaining important improvements in lipid concentration. Finally, the optimal formulation was evaluated in an air-lift bioreactor performing a fed-batch culture. Culturing the strain in these conditions allowed rising lipid concentrations.

  5. Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production.

    PubMed

    Lu, Weidong; Wang, Zhongming; Yuan, Zhenhong

    2015-09-01

    In this work, neutral lipids (NLs) extraction capacity and selectivity of six solvents were firstly compared. In addition, an eco-friendly solvent combination of ethyl acetate and ethanol (EA/E) was proposed and tested for lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds and effect of extraction variables on lipid yield were intensively studied. Results indicated that lipid extraction yield was increased with solvent to biomass ratio but did not vary significantly when the value exceeded 20:1. Lipid yield was found to be strongly dependent on extraction temperature and time. Finally, fatty acid profiles of lipid were determined and results indicated that the major components were octadecanoic acid, palmitic acid, linoleic acid and linolenic acid, demonstrating that the lipid extracted from the Chlorella sp. cultivated in outdoor raceway ponds by EA/E was suitable feedstock for biodiesel production.

  6. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed

    Kilian, Oliver; Benemann, Christina S E; Niyogi, Krishna K; Vick, Bertrand

    2011-12-27

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology.

  7. Benefits of Preventive Administration of Chlorella sp. on Visceral Pain and Cystitis Induced by a Single Administration of Cyclophosphamide in Female Wistar Rat.

    PubMed

    Hidalgo-Lucas, Sophie; Rozan, Pascale; Guérin-Deremaux, Laetitia; Baert, Blandine; Violle, Nicolas; Saniez-Degrave, Marie-Hélène; Bisson, Jean-François

    2016-05-01

    Chlorella sp. is a green microalgae containing nutrients, vitamins, minerals, and chlorophyll. In some communities, Chlorella sp. is a traditional medicinal plant used for the management of inflammation-related diseases. In a rat model, ROQUETTE Chlorella sp. (RCs) benefits were investigated on visceral pain and associated inflammatory parameters related to cystitis both induced by cyclophosphamide (CYP). RCs was orally administered every day from day 1-16 (250 and 500 mg/kg body weight). Six hours after an intraperitoneal injection of 200 mg/kg body weight of CYP, body temperature, general behavior, food intake, and body weight were recorded. Twenty-four hours after CYP injection, rats were tested in two behavioral tests, an open field and the aversive light stimulus avoidance conditioning test, to evaluate the influence of pain on general activity and learning ability of rats. After euthanasia, bladders were weighed, their thickness was scored, and the urinary hemoglobin was measured. RCs orally administered at the two dosages significantly reduced visceral pain and associated inflammatory parameters related to cystitis both induced by CYP injection, and improved rat behavior. To conclude, RCs demonstrated beneficial effects against visceral pain and cystitis.

  8. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    PubMed

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  9. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand

    PubMed Central

    Nelson, Wendy A.

    2013-01-01

    Abstract A commonly found red alga of the upper intertidal zone of New Zealand rocky coasts is described for the first time as Pyropia plicata sp. nov. This species has been incorrectly known as Porphyra columbina Mont. (now Pyropia columbina (Mont.) W.A.Nelson) for many years. Pyropia plicata is widespread and common, and it is readily distinguished from other species of bladed Bangiales in New Zealand by its distinctive morphology, with pleated blades attached by a central rhizoidal holdfast. PMID:23794933

  10. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand.

    PubMed

    Nelson, Wendy A

    2013-01-01

    A commonly found red alga of the upper intertidal zone of New Zealand rocky coasts is described for the first time as Pyropia plicata sp. nov. This species has been incorrectly known as Porphyra columbina Mont. (now Pyropia columbina (Mont.) W.A.Nelson) for many years. Pyropia plicata is widespread and common, and it is readily distinguished from other species of bladed Bangiales in New Zealand by its distinctive morphology, with pleated blades attached by a central rhizoidal holdfast.

  11. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  12. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  13. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Pick, Uri

    2015-01-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers—plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)—are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae. PMID:26357883

  14. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.

    PubMed

    Ghosh, Supratim; Roy, Shantonu; Das, Debabrata

    2015-04-01

    Algal biomass is gaining importance for biofuel production as it is rich in lipids. It becomes more significant when biomass is produced by capturing atmospheric greenhouse gas, CO2. In the present study, the effect of different physicochemical parameters were studied on the biomass and lipid productivity in Chlorella sp. MJ 11/11. The different parameters viz. initial pH, nitrate concentration, and phosphate concentration were optimized using single-parameter studies. The interactions between the parameters were determined statistically using the Box-Behnken design of optimization. The optimal values were decided by analyzing them with response surface methodology. The optimum levels of the parameters (pH 6.5, nitrate concentration 0.375 g L(-1), and phosphate concentration 0.375 mL L(-1)) yielded a maximum biomass concentration of 1.26 g L(-1) at a constant light intensity of 100 μmol m(-2) s(-1) and temperature of 30 °C. The effect of CO2 concentration on the biomass production was also investigated and was found to be a maximum of 4 g L(-1) at 5 % air-CO2 mixture (v/v). Maximum lipid content of 24.6 % (w/w) was observed at 2 % air-CO2 mixture (v/v). Fatty acid analyses of the obtained algal biomass suggested that they could be a suitable feedstock for biodiesel production.

  15. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-07-01

    We exposed the microalgal strain, Chlorella sp. MM3, to unused or used engine oil, or their water accommodated fractions (WAFs) to determine growth inhibition and response of antioxidant enzymes. Oil type and oil concentration greatly affected the microalgal growth. Used oil at 0.04 % (0.4 g L(-1)) resulted in 50 % inhibition in algal growth, measured in terms of chlorophyll-a, while the corresponding concentration of unused oil was nontoxic. Similarly, used oil WAF showed significant toxicity to the algal growth at 10 % level, whereas WAF from unused oil was nontoxic even at 100 % concentration. Peroxidase enzyme in the microalga significantly increased with used oil at concentrations above 0.04 g L(-1) whereas the induction of superoxide dismutase and catalase was apparent only at 0.06 g L(-1). Activities of the antioxidant enzymes increased significantly when the microalga was exposed to 75 and 100 % WAF obtained from used oil. The used oil toxicity on microalga could be due to the presence of toxic soluble mono- and polyaromatic compounds, heavy metals, and other compounds attained by the oil during its use in the motor engines.

  16. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature.

    PubMed

    Shekh, Ajam Yakub; Shrivastava, Preeti; Gupta, Ankit; Krishnamurthi, Kannan; Devi, Sivanesan Saravana; Mudliar, Sandeep N

    2016-02-01

    In this study, the concentrations of MgSO4, salinity and light intensity were optimised for maximum biomass productivity and lipid content in Chlorella sp. Lipid synthesized at varied experimental conditions was also assessed in detail for biodiesel properties through FAME analysis. FAMEs mainly composed of C16:0, C16:1(9), C16:3(7, 10, 13), C18:0, C18:1(11), C18:2(9, 12), C18:3(9, 12, 15). The optimum biomass productivity (372.50mgL(-1)d(-1)) and lipid content (32.57%) was obtained at MgSO4-150ppm; salinity-12.5ppm, and light intensity-25μmolm(-2)s(-1). However, at this condition the cetane number, a major biodiesel property was not complying with worldwide biodiesel standard. Therefore, further optimisations were done to check the suitability of biodiesel fuel. The optimum biomass productivity (348.47mgL(-1)d(-1)) and lipid content (12.43%) with suitable biodiesel fuel properties was obtained at MgSO4-50ppm, salinity-25ppm and light intensity-100μmolm(-2)s(-1). The validation experiments confirmed the closeness of predicted and measured response values.

  17. Some Nutritional Characteristics of a Naturally Occurring Alga (Microcystis sp.) in a Guatemalan Lake

    PubMed Central

    de la Fuente, Gabriel; Flores, Antonio; Molina, Mario R.; Almengor, Leticia; Bressani, Ricardo

    1977-01-01

    The nutritional characteristics of an alga (Microcystis sp.) that occurs naturally in a Guatemalan lake were determined. The sun-dried material proved to have a high protein content (55.6%) and to be a possible good source of calcium and phosphorus (1, 169.1 and 633.4 mg/100 mg, respectively). Amino acid analysis showed that total sulfur amino acids were the most deficient ones, giving a protein score of 42 to the material. The in vitro protein digestibility of the material was 69.5%. Biological trials demonstrated that when the material was offered as the only protein source, very low consumption and a high mortality rate were obtained whether or not the diet was supplemented with 0.4% dl-methionine. However, when the material supplied 25% of the total protein of a corn-algae diet, the protein quality of the cereal was significantly improved (P < 0.05). PMID:16345191

  18. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore.

    PubMed

    Eliás, Marek; Nemcová, Yvonne; Skaloud, Pavel; Neustupa, Jirí; Kaufnerová, Veronika; Sejnohová, Lenka

    2010-05-01

    The algal flora of subaerial habitats in the tropics remains largely unexplored, despite the fact that it potentially encompasses a wealth of new evolutionary diversity. Here we present a detailed morphological and molecular characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells. Autosporulation was the only mode of reproduction observed. The cell periphery was filled with numerous vacuoles, and a single parietal chloroplast contained a conspicuous pyrenoid surrounded by a bipartite starch envelope. The cell wall was composed of a thick inner layer and a thin trilaminar outer layer, and the cell surface was ornamented with a few delicate ribs. Phylogenetic analyses of 18S rRNA gene sequences placed our strain in the family Scenedesmaceae (Sphaeropleales, Chlorophyceae) as a strongly supported sister branch of the genus Desmodesmus. Analyses of an alternative phylogenetic marker widely used for the Scenedesmaceae, the ITS2 region, confirmed that the strain is distinct from any scenedesmacean alga sequenced to date, but is related to the genus Desmodesmus, despite lacking the defining phenotypic features of Desmodesmus (cell wall with four sporopolleninic layers ornamented with peculiar submicroscopic structures). Collectively, our results establish that we identified a novel, previously undocumented, evolutionary lineage of scenedesmacean algae necessitating its description as a new species in a new genus. We propose it be named Hylodesmus singaporensis gen. et sp. nov. A cryopreserved holotype specimen has been deposited into the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP C-H8001.

  19. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    PubMed

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal.

  20. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434

    PubMed Central

    Chen, Zhengbo; Hao, Jiejie; Wang, Liping; Wang, Yi; Kong, Fandong; Zhu, Weiming

    2016-01-01

    Wailupemycins H (1) and I (2) with a new skeleton coupled two 6-(2-phenylnaphthalene-1-yl)pyrane-2-one nuclei to a –CH2– linkage were identified from the culture of Streptomyces sp. OUCMDZ-3434 associated with the marine algae, Enteromorpha prolifera. Compounds 1 and 2 are two new α-glucosidase inhibitors with the Ki/IC50 values of 16.8/19.7 and 6.0/8.3 μM, respectively. In addition, the absolute configurations of wailupemycins D (3) and E (4) are also resolved in this paper for the first time. PMID:26822662

  1. Effect of the Carbon Concentration, Blend Concentration, and Renewal Rate in the Growth Kinetic of Chlorella sp.

    PubMed Central

    Henrard, Adriano Arruda; da Rosa, Gabriel Martins; Moraes, Luiza; de Morais, Michele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    The microalgae cultivation can be used as alternative sources of food, in agriculture, residual water treatment, and biofuels production. Semicontinuous cultivation is little studied but is more cost-effective than the discontinuous (batch) cultivation. In the semicontinuous cultivation, the microalga is maintained in better concentration of nutrients and the photoinhibition by excessive cell is reduced. Thus, biomass productivity and biocompounds of interest, such as lipid productivity, may be higher than in batch cultivation. The objective of this study was to examine the influence of blend concentration, medium renewal rate, and concentration of sodium bicarbonate on the growth of Chlorella sp. during semicontinuous cultivation. The cultivation was carried out in Raceway type bioreactors of 6 L, for 40 d at 30°C, 41.6 µmol m−2 s−1, and a 12 h light/dark photoperiod. Maximum specific growth rate (0.149 d−1) and generating biomass (2.89 g L−1) were obtained when the blend concentration was 0.80 g L−1, the medium renewal rate was 40%, and NaHCO3 was 1.60 g L−1. The average productivity (0.091 g L−1 d−1) was achieved with 0.8 g L−1 of blend concentration and NaHCO3 concentration of 1.6 g L−1, independent of the medium renewal rate. PMID:25580453

  2. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    PubMed

    Shiratake, Takuma; Sato, Atsushi; Minoda, Ayumi; Tsuzuki, Mikio; Sato, Norihiro

    2013-01-01

    Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w), relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w), relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the algal species.

  3. Cellular Fe-hydroxides and heavy metal sorption in Euglena sp. (algae): implications for biomineralization

    SciTech Connect

    Mann, H.; Beveridge, T.O. Fyfe, W.S.; Tazaki, K.

    1985-01-01

    STEM imagery and electron diffraction patterns of Euglena sp. reveal pronounced intra and cellular-membrane aggregates of Fe-hydroxides (some lepidocrocite), in natural communities from tailings waters, Elliott Lake, Ontario. Pure isolates of Euglena sp. contain 40-70% Fe by dry weight and in addition average Al 28,000 ppm, Sr 150, Ba 40, Zn 150, Mn 250, Ni 120, Pb 1600, Th 70, Cu 200 and U 180. In tailings waters, Fe solute concentrations average 560 ppm and U 50 ppb. Concentration factors for Fe, Ba, Zn, Mn, Ti, V, Ni, Pb, Cr, Ag, Co and Cu in algae referenced to average world river waters are greater than or equal to 10/sup 6/. These results endorse the premise that microorganisms mediate transfer of many solutes between the hydrosphere and sedimentary regime.

  4. Structural characteristics and biological activity of Fucoidans from the brown algae Alaria sp. and Saccharina japonica of different reproductive status.

    PubMed

    Vishchuk, Olesya S; Tarbeeva, Dariya V; Ermakova, Svetlana P; Zvyagintseva, Tatyana N

    2012-04-01

    Structural characteristics and the antitumor activity of fucoidans isolated from vegetative and reproductive tissue of the brown algae Alaria sp. and Saccharina japonica were studied. The reproductive status of the brown algae affected the yield of fucoidans and their structural characteristics. The fucoidan yield was 5.7% (w/w on the basis of the dried algae weight) for fertile and 3.8% for sterile Alaria sp. and 1.42 and 0.71% for fertile and sterile S. japonica, respectively. The fucoidans from fertile Alaria sp. and S. japonica had a slightly higher degree of sulfation and a somewhat more homogeneous monosaccharide composition, with predominate amounts of fucose and galactose, than those isolated from sterile algae tissue. The fucoidans from both the sterile and fertile brown algae tissue tested possessed selective cytotoxicity towards human breast cancer (T-47D) and melanoma (RPMI-7951) cell lines, but not to normal mouse epidermal cells (JB6 Cl41), and effectively inhibited the proliferation and colony formation of the breast cancer and melanoma cell lines. The fucoidans from reproductive tissue of brown algae possessed higher antitumor activity than those from vegetative plants.

  5. Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp.

    PubMed

    Cáceres, Tanya; Megharaj, Mallavarapu; Naidu, Ravi

    2008-07-15

    The acute toxicity of an organophosphorous pesticide, fenamiphos and its metabolites, fenamiphos sulfoxide (FSO), fenamiphos sulfone (FSO(2)), fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO(2)P), to the aquatic alga Pseudokirchneriella subcapitata and the terrestrial alga Chlorococcum sp. was studied. The toxicity followed the order: fenamiphos phenol>fenamiphos sulfone phenol>fenamiphos sulfoxide phenol>fenamiphos. The oxidation products of fenamiphos, FSO and FSO(2) were not toxic to the algal species up to 100 mg L(-1). Both algae were able to transform fenamiphos, FSO and FSO(2), while the phenols were found to be stable in the incubation media. Bioaccumulation of both fenamiphos and its metabolites was observed in the case of Chlorococcum sp. while only metabolites were accumulated in P. subcapitata. This study demonstrates that (i) the hydrolysis products of fenamiphos, FSOP and FSO(2)P are more toxic to both fresh water and soil algae than their parent chemicals, (ii) further fenamiphos can be transformed and bioconcentrated by these algae. Therefore, contamination of natural environments such as waterbodies with fenamiphos or its metabolites can have adverse impacts on the food chain and associated biota (especially to the primary consumers such as Daphnia) since algae are the primary producers located at the base of the food chain. Further, the finding that the fenamiphos phenols are more toxic to algae highlights the need to consider the transformation products in ecological risk assessment of fenamiphos.

  6. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae

    PubMed Central

    Ji, Shi-Qi; Wang, Bing; Lu, Ming

    2015-01-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2T. Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing d-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD+, and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. PMID:26590273

  7. Optimization of nutritional compositions of growth medium for Chlorella sp. FJ3 growth kinetics in batch and continuous-flow photoreactors.

    PubMed

    Leu, Jyh-Yih; Lin, Yen-Hui

    2013-01-01

    This study investigates improvement to culture medium for specific growth rate of Chlorella sp. FJ3 using a fractional factorial design for 32 experiments with six variable components. Six tested components were NaNO3 (0.5 or 3.0 g/l), K2HPO4 (0.01 or 0.06 g/l), MgSO4 7H2O (0.05 or 1.0 g/l), CaCl2 x 2H2O (0.01 or 0.06 g/l), ferric ammonium citrate (0.002 or 0.02 g/l) and NaCl (0.5 or 5.0 g/l). Magnesium sulphate and interaction between magnesium sulphate and ferric ammonium citrate were found to be critical for the cultivation of Chlorella sp. FJ3. The optimal concentrations of MgSO4 x 7H2O and ferric ammonium citrate were found to be 2.0 and 0.35 g/l, respectively. The concentration of carbonate (CO3(2-)) in effluent confirmed that the optimized culture medium was associated with a high carbonate utilization rate and specific growth rate during a transient period in batch and continuous-flow tests. The extent of growth of strain FJ3 in the optimized medium was 1.61 times greater than that in a non-optimized medium in the batch test. In the continuous-flow test, the maximum growth of Chlorella strain FJ3 in the optimized medium was 1.77 times higher than that in a non-optimized medium. The rate of CO3(2-) fixation in the non-optimized and the optimized media was 339 mg/l-day and 887 mg/l-day, respectively, in the steady state. These experimental and modelling results indicated that optimization of concentration in nutritional compositions in the culture medium enhanced the capacity of Chlorella sp. FJ3 for inorganic carbon fixation in batch and continuous-flow modes of photoreactors.

  8. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp.

    PubMed

    Iswarya, V; Bhuvaneshwari, M; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri; Chandrasekaran, Prathna Thanjavur; Bhalerao, Gopalkrishna M; Chakravarty, Sujoy; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2015-04-01

    In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem.

  9. Sphacelaria lacustris sp. nov. , a freshwater brown alga from Lake Michigan

    SciTech Connect

    Schloesser, R.E.; Blum, J.L.

    1980-06-01

    The growth, reproduction and ultrasturcture of a new freshwater phaeophyte, Sphacelaria lacustris sp. nov., are described. The plant occurs as a minute calcified thallus at 5 to 15 m depth along the western shoreline of Lake Michigan. Both freshly collected and laboratory grown plants show apical growth of erect and basal filaments, intermittent longitudinal divisions in filament segments, vegetative reproduction by propagules, numerous parietal chloroplasts and an absence of pyrenoids, characteristics of Sphacelaria. This material is separated from the only other freshwater species in the genus (S. fluviatilis Jao) at least by differences in longitudinal septation, in branching, in its propagules and in general aspect. Between this plant and marine brown algae there are essential similarities of ultrastructure of cell wall and pores, chloroplasts, mitochondria, nucleus and the production/excretion of physodes.

  10. Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae.

    PubMed

    Ivanova, Elena P; Alexeeva, Yulia V; Flavier, Sébastien; Wright, Jonathan P; Zhukova, Natalia V; Gorshkova, Natalia M; Mikhailov, Valery V; Nicolau, Dan V; Christen, Richard

    2004-05-01

    Four light-yellow-pigmented, Gram-negative, short-rod-shaped, non-motile isolates were obtained from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The isolates studied were chemo-organotrophic, alkalitolerant and mesophilic. Polar lipids were analysed and phosphatidylethanolamine was the only phospholipid identified. The predominant cellular fatty acids were 15 : 0, i15 : 0, ai15 : 0, i15 : 1 and 15 : 1(n-6). The DNA G+C contents of the four strains were 34.0-34.4 mol%. The level of DNA relatedness of the four isolates was conspecific (88-98 %), indicating that they belong to the same species. The 16S rDNA sequence of strain KMM 3553(T) was determined. Phylogenetic analysis revealed that KMM 3553(T) formed a distinct phyletic line in the phylum Bacteroidetes, class Flavobacteria in the family Flavobacteriaceae and that, phylogenetically, this strain could be placed almost equidistant from the genera Gelidibacter and Psychroserpens (16S rRNA gene sequence similarities of 94 %). On the basis of significant differences in phenotypic and chemotaxonomic characteristics, it is suggested that the isolates represent a novel species in a new genus; the name Formosa algae gen. nov., sp. nov. is proposed. The type strain is KMM 3553(T) (=CIP 107684(T)).

  11. Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga.

    PubMed

    Withers, N W; Alberte, R S; Lewin, R A; Thornber, J P; Britton, G; Goodwin, T W

    1978-05-01

    Six samples of the prokaryotic, unicellular algae Prochloron sp., which occur in association with didemnid ascidians, were collected from various localities in the tropical Pacific Ocean, and their pigments and chlorophyll-protein complexes were identified and characterized. No phycobilin pigments were detected in any of the species. Chlorophylls a and b were present in ratios of a/b = 4.4-6.9. The major carotenoids were beta-carotene (70%) and zeaxanthin (20%). Minor carotenoids of one isolate were identified as echinenone, cryptoxanthin, isocryptoxanthin, mutachrome, and trihydroxy-beta-carotene; no epsilon-ring carotenoids were found in any sample. Except for the absence of glycosidic carotenoids, the overall pigment composition is typical of cyanobacteria. A chlorophyll a/b-protein complex was present in Prochloron; it was electrophoretically and spectrally indistinguishable from the light-harvesting chlorophyll a/b-protein of higher plants and green algae. It accounted for 26% (compared to approximately 50% in green plants) of the total chlorophyll; 17% was associated with a P700-chlorophyll a-protein. The photosynthetic unit size of 240 +/- 10 chlorophylls per P700 in Prochloron was about half that of eukaryotic green plants. A model is proposed for the in vivo organization of chlorophyll in Prochloron.

  12. Formosa undariae sp. nov., isolated from a reservoir containing the brown algae Undaria pinnatifida.

    PubMed

    Park, Sooyeon; Lee, Jung-Sook; Lee, Keun-Chul; Yoon, Jung-Hoon

    2013-11-01

    A strain of Gram-staining-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacteria, designated WS-MY3(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY3(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0-3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY3(T) fell within the cluster comprising the type strains of species of the genus Formosa, clustering coherently with the type strains of Formosa agariphila and Formosa algae. It exhibited 16S rRNA gene sequence similarity values of 98.7, 97.9 and 96.8 % to the type strains of F. agariphila, F. algae and Formosa spongicola, respectively. Strain WS-MY3(T) contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C16 : 0 3-OH, iso-C15 : 1 G and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids of strain WS-MY3(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY3(T) was 37.3 mol% and its DNA-DNA relatedness values with F. agariphila KCTC 12365(T) and F. algae KCTC 12364(T) were 23 % and 17 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY3(T) is separate from the three recognized species of the genus Formosa. On the basis of the data presented, strain WS-MY3(T) is considered to represent a novel species of the genus Formosa, for which the name Formosa undariae sp. nov. is proposed. The type strain is WS-MY3(T) ( = KCTC 32328(T) = CECT 8286(T)).

  13. Lacinutrix gracilariae sp. nov., a bacterium isolated from the surface of a marine red alga Gracilaria sp.

    PubMed

    Huang, Zhaobin; Li, Guizhen; Lai, Qiliang; Gu, Li; Shao, Zongze

    2015-11-09

    A Gram-negative, aerobic, non-flagellated, rod-shaped bacterium, designated as strain Lxc1T, was isolated from the surface of a marine red alga, Gracilaria sp., which was collected from the coastal regions in Jinjiang, Fujian Province, China. The colony of the strain was orange-yellow, circular and smooth. The 16S rRNA gene of Lxc1T had maximum sequence similarity with Lacinutrix himadriensis E4-9aT (97.1%), followed by L. jangbogonensis PAMC 27137T, L. copepodicola DJ3T, L. algicola AKS293T, and L. mariniflava AKS 432T (similarities <96.4%). Phylogenetic analysis showed strain Lxc1T formed a tight cluster with L. himadriensis E4-9aT and L. copepodicola DJ3T, but represented a novel lineage belonging to the genus Lacinutrix. The predominant fatty acids were iso-C15:1 G (18.3%), iso-C15:0 (16.7%), iso-C17:0-3OH (10.6%), and iso-C15:0-3OH (8.6%). Menaquinone-6 (MK-6) was the only respiratory quinone present. The DNA G+C content of Lxc1T was 31.7 mol%. Combining the results above, it was ascertained that the strain Lxc1T represented a novel species of the genus Lacinutrix, for which the name Lacinutrix gracilariae sp. nov. is proposed. The type strain is Lxc1T (=MCCC 1A01567T=KCTC 42808T).

  14. Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa.

    PubMed

    Zhang, Xue; Hu, Hong-Ying; Men, Yu-Jie; Yang, Jia; Christoffersen, Kirsten

    2009-07-01

    Microcystis aeruginosa has quickly risen in infamy as one of the most universal and toxic bloom-forming cyanobacteria. Here we presented a species of golden alga (Poterioochromonas sp. strain ZX1), which can feed on toxic M. aeruginosa without any adverse effects from the cyanotoxins. Using flow cytometry, the ingestion and maximal digestion rates were estimated to be 0.2 approximately 1.2 and 0.2 M. aeruginosa cells (ZX1 cell)(-1)h(-1), respectively. M. aeruginosa in densities below 10(7)cells mL(-1) could be grazed down by ZX1, but no significant decrease was observed when the initial density was 3.2 x 10(7)cells mL(-1). ZX1 grazing was a little influenced by the light intensity (0.5 approximately 2500l x) and initial pH of the medium (pH=5.0 approximately 9.5). ZX1 could not survive in continuous darkness for longer than 10 days. The pH value was adjusted to 8 by ZX1 while to 10 by M. aeruginosa. This study may shed light on understanding the ecological interactions between M. aeruginosa and mixotrophic Poterioochromonas sp. in aquatic ecosystems.

  15. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C.

    PubMed

    Kim, Eun Jae; Jung, Woongsic; Lim, Suyoun; Kim, Sanghee; Han, Se Jong; Choi, Han-Gu

    2016-01-01

    Biodiesel produced from microalgae is a promising source of alternative energy. In winter, however, outdoor mass cultivation for biodiesel production is hampered by poor growth. Here, we report that Arctic Chlamydomonas sp. KNM0029C exhibits optimal growth at 4 °C and reaches densities up to 1.4 × 10(7) cells mL(-1). Lipid body formation in the alga was visualized through BODIPY 505/515 staining and fluorescence microscopy. The fatty acid methyl ester (FAME) production level of KNM0029C was 178.6 mg L(-1) culture and 2.3-fold higher than that of C. reinhardtii CC-125 at 4 °C. Analysis of the FAME content showed a predominance of polyunsaturated fatty acids such as C16:3, C18:2, C18:3, and C20:2. C18:3 fatty acids comprised the largest fraction (20.7%), and the content of polyunsaturated fatty acids (39.6%) was higher than that of saturated fatty acids (6.8%) at 4 °C. These results indicate that Chlamydomonas sp. KNM0029C, as a psychrophilic microalga, might represent a favorable source for biodiesel production in cold environments.

  16. Purification and photobiochemical profile of photosystem 1 from a high-salt tolerant, oleaginous Chlorella (Trebouxiophycaea, Chlorophyta).

    PubMed

    McConnell, Michael D; Lowry, David; Rowan, Troy N; van Dijk, Karin; Redding, Kevin E

    2015-06-01

    The eukaryotic green alga Chlamydomonas reinhardtii has been studied extensively within the biofuel industry as a model organism, as researchers look towards algae to provide chemical feedstocks (i.e., lipids) for the production of liquid transportation fuels. C. reinhardtii, however, is unsuitable for high-level production of such precursors due to its relatively poor lipid accumulation and fresh-water demand. In this study we offer insight into the primary light harvesting and electron transfer reactions that occur during phototropic growth in a high-salt tolerant strain of Chlorella (a novel strain introduced here as NE1401), a single-celled eukaryotic algae also in the phylum Chlorophyta. Under nutrient starvation many eukaryotic algae increase dramatically the amount of lipids stored in lipid bodies within their cell interiors. Microscopy and lipid analyses indicate that Chlorella sp. NE1401 may become a superior candidate for algal biofuels production. We have purified highly active Photosystem 1 (PS1) complexes to study in vitro, so that we may understand further the photobiochemisty of this promising biofuel producer and how its characteristics compare and contrast with that of the better understood C. reinhardtii. Our findings suggest that the PS1 complex from Chlorella sp. NE1401 demonstrates similar characteristics to that of C. reinhardtii with respect to light-harvesting and electron transfer reactions. We also illustrate that the relative extent of the light state transition performed by Chlorella sp. NE1401 is smaller compared to C. reinhardtii, although they are triggered by the same dynamic light stresses.

  17. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2013-09-01

    The effect of UV radiation on the accumulation of novel mycosporine-like amino acids (MAAs) along with their photoprotective function was investigated in the green alga Tetraspora sp. CU2551. No UV-absorbing compound was detected in this organism growing under normal light condition while two MAAs with absorption maxima at 324 nm and 322 nm were found to be accumulated after UV irradiation. The effects of UV exposure time with different cut-off filter foils namely 295 (PAR + UV-A + UV-B), 320 (PAR + UV-A) and 395 nm (PAR only) were studied on induction of the synthesis of these MAAs. Concentration of MAAs was found to increase with increase in exposure time under UV radiation. Furthermore, the antioxidant and photoprotective action of these MAAs was also investigated. The role of MAAs in diminishing the UV-induced production of ROS in vivo was also demonstrated using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and results obtained supported the results of DPPH free radical scavenging assay. The MAAs also exhibited efficient photoprotective ability on Escherichia coli cells against UV-B stress. Thus, the MAAs in Tetraspora sp. CU2551 may act as efficient antioxidants as well as UV-sunscreen. This is the first report for the UV-induced synthesis and co-accumulation of these MAAs and their photoprotective actions in Tetraspora sp. which is a member of the class Chlorophyceae. Moreover, UV-induced accumulation as well as photoprotective function of these compounds may facilitate this chlorophyte to perform important ecological functions in harsh environmental conditions with high UV-B fluxes in their brightly lit habitats.

  18. Building a better mousetrap I: using Design of Experiments with unconfounded ions to discover superior media for growth and lipid production by Chlorella sp. EN1234.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    An unconfounded Scheffe Mix approach was used to probe important ions and their interactions in supporting biomass and lipid production by Chlorella sp. EN1234. Six major cations and anions; NH4(+), NO3(-), Na(+), K(+) PO4(-) and Cl(-) were examined. Piepel plots and RSM analysis showed that in a number of cases, the major media anions PO4(-) and Cl(-) negatively influence final cell densities, and that maximal cell density is obtained with nitrate over ammonium, with an optimal effect when mixed with equal molar potassium. As well, although it is commonly assumed that lipid content increases in nitrogen deficient media, here little correlation between nitrogen content and total lipid content was found with mixtures that supported high lipid productivity. Thus these mixtures define the composition space within which further R&D might produce the best trade-off between total biomass production and high cellular lipid content.

  19. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

    PubMed

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Park, Ji-Yeon; Lee, Jin-Suk; Lee, Young-Chul; Oh, You-Kwan

    2014-11-01

    Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers.

  20. Structure and Biological Evaluation of Novel Cytotoxic Sterol Glycosides from the Marine Red Alga Peyssonnelia sp.

    PubMed Central

    Lin, An-Shen; Engel, Sebastian; Smith, Benjamin A.; Fairchild, Craig R.; Aalbersberg, William; Hay, Mark E.; Kubanek, Julia

    2010-01-01

    Bioactivity-guided fractionation of the extract from a Fijian red alga Peyssonnelia sp. led to the isolation of two novel sterol glycosides 19-O-β-d-glucopyranosyl-19-hydroxy-cholest-4-en-3-one (1) and 19-O-β-d-N-acetyl-2-aminoglucopyranosyl-19-hydroxy-cholest-4-en-3-one (2), and two known alkaloids indole-3-carboxaldehyde (3) and 3-(hydroxyacetyl)indole (4). Their structures were characterized by 1D and 2D NMR and mass spectral analysis. The sterol glycosides inhibited cancer cell growth with mean IC50 values (for 11 human cancer cell lines) of 1.63 and 1.41 µM for 1 and 2, respectively. The most sensitive cancer cell lines were MDA-MB-468 (breast) and A549 (lung), with IC50s in of 0.71–0.97 µM for 1 and 2. Modification of the sterol glycoside structures revealed that the α,β-unsaturated ketone at C-3 and oxygenation at C-19 of 1 and 2 are crucial for anticancer activity, whereas the glucosidic group was not essential but contributed to enhanced activity against the most sensitive cell lines. PMID:21036050

  1. Prosthecobacter algae sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Lee, Jangho; Park, Banghyo; Woo, Sung-Geun; Lee, Juyoun; Park, Joonhong

    2014-02-01

    A Gram-stain-negative, fusiform-shaped, facultatively anaerobic bacterial strain, designated EBTL04(T), was isolated from activated sludge using algal metabolites and taxonomically characterized through polyphasic investigation. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain EBTL04(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is closely related to Prosthecobacter dejongeii DSM 12251(T) (98.6 % sequence similarity), Prosthecobacter fusiformis ATCC 25309(T) (97.9 %), Prosthecobacter debontii DSM 14044(T) (97.5%), Prosthecobacter vanneervenii DSM 12252(T) (94.7%) and Prosthecobacter fluviatilis KCTC 22182(T) (93.7%). The G+C content of the genomic DNA of strain EBTL04(T) was 62.7 mol%. The menaquinone MK-6 was detected as the predominant quinone. Strain EBTL04(T) contained phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine as major polar lipids. A fatty acid profile with C(16 : 1)ω5c, iso-C(14 : 0), C(16 : 0), anteiso-C(15 : 0) and C(14 : 0) as the major components supported the classification of strain EBTL04(T) in the genus Prosthecobacter. Based on several phenotypic, genotypic and chemotaxonomic features, strain EBTL04(T) was clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL04(T) should be considered to represent a novel species of the genus Prosthecobacter, for which the name Prosthecobacter algae sp. nov. is proposed. The type strain is EBTL04(T) ( = KCTC 23681(T) = JCM 18053(T)).

  2. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  3. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp.

    PubMed

    Lee, Young-Ki; Ahn, Chi-Yong; Kim, Hee-Sik; Oh, Hee-Mock

    2010-11-01

    A bacterium, which was observed in all cultivations of Microcystis sp., was isolated and designated as Rhodococcus sp. KWR2. The growth of bloom-forming cyanobacteria, including four strains of Microcystis aeruginosa and Anabaena variabilis, was suppressed by up to 75-88% by 2% (v/v) culture broth of KWR2 after 5 days. But KWR2 did not inhibit eukaryotic algae, Chlorella vulgaris and Scenedesmus sp. An extracellular algicidal substance produced by KWR2 showed a cyanobactericidal activity of 94% and was water-soluble with a molecular weight of lower than 8 kDa.

  4. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols.

    PubMed

    Mansfeldt, Cresten B; Richter, Lubna V; Ahner, Beth A; Cochlan, William P; Richardson, Ruth E

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. "SAG-211-18" including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes-a galactoglycerolipid lipase and a diacylglyceride acyltransferase-were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.

  5. Use of De Novo transcriptome libraries to characterize a novel oleaginous marine Chlorella species during the accumulation of triacylglycerols

    DOE PAGES

    Mansfeldt, Cresten B.; Richter, Lubna V.; Ahner, Beth A.; ...

    2016-02-03

    Here, marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt.We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark.We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioningmore » from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.« less

  6. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols

    PubMed Central

    Ahner, Beth A.; Cochlan, William P.; Richardson, Ruth E.

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems. PMID:26840425

  7. The Green Tetrahymena utriculariae n. sp. (Ciliophora, Oligohymenophorea) with Its Endosymbiotic Algae (Micractinium sp.), Living in Traps of a Carnivorous Aquatic Plant.

    PubMed

    Pitsch, Gianna; Adamec, Lubomír; Dirren, Sebastian; Nitsche, Frank; Šimek, Karel; Sirová, Dagmara; Posch, Thomas

    2016-09-10

    The genus Tetrahymena (Ciliophora, Oligohymenophorea) probably represents the best studied ciliate genus. At present, more than forty species have been described. All are colorless, i.e. they do not harbor symbiotic algae, and as aerobes they need at least microaerobic habitats. Here, we present the morphological and molecular description of the first green representative, Tetrahymena utriculariae n. sp., living in symbiosis with endosymbiotic algae identified as Micractinium sp. (Chlorophyta). The full life cycle of the ciliate species is documented, including trophonts and theronts, conjugating cells, resting cysts and dividers. This species has been discovered in an exotic habitat, namely in traps of the carnivorous aquatic plant Utricularia reflexa (originating from Okavango Delta, Botswana). Green ciliates live as commensals of the plant in this anoxic habitat. Ciliates are bacterivorous, however, symbiosis with algae is needed to satisfy cell metabolism but also to gain oxygen from symbionts. When ciliates are cultivated outside their natural habitat under aerobic conditions and fed with saturating bacterial food, they gradually become aposymbiotic. Based on phylogenetic analyses of 18S rRNA and mitochondrial cox1 genes T. utriculariae forms a sister group to Tetrahymena thermophila.

  8. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T).

  9. Algibacter wandonensis sp. nov., isolated from sediment around a brown algae (Undaria pinnatifida) reservoir.

    PubMed

    Yoon, Jung-Hoon; Park, Sooyeon

    2013-12-01

    A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY22(T), was isolated from sediment around a brown algae reservoir located on Wando in South Korea. It grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY22(T) clustered coherently with the type strains of Algibacter lectus and Algibacter undariae. It exhibited sequence similarity of 99.4 and 98.9 % to the type strains of A. lectus and A. undariae, respectively, and of 95.1-96.6 % to those of the other species of the genus Algibacter. Strain WS-MY22(T) contained MK-6 as the predominant menaquinone and iso-C15 : 1 G and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids of strain WS-MY22(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY22(T) was 35.8 mol% and its DNA-DNA relatedness with A. lectus KCTC 12103(T) and A. undariae WS-MY9(T) was 31 and 19 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY22(T) is separate from other species of the genus Algibacter. On the basis of the data presented, strain WS-MY22(T) is considered to represent a novel species of the genus Algibacter, for which the name Algibacter wandonensis sp. nov. is proposed. The type strain is WS-MY22(T) ( = KCTC 32381(T) = CECT 8301(T)).

  10. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava.

    PubMed

    Kim, Ji-Young; Park, So-Hyun; Seo, Ga-Young; Kim, Young-Ju; Oh, Duck-Chul

    2015-09-01

    A novel bacterial strain, designated EC29(T), was isolated from the brown alga Ecklonia cava collected on Jeju Island, Republic of Korea. Cells of strain EC29(T) were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10-30 °C (optimum, 20-25 °C), at pH 6.0-9.5 (optimum, pH 7.5) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus Winogradskyella. Strain EC29(T) exhibited the highest 16S rRNA gene sequence similarities, of 96.5-97.8%, to the type strains of Winogradskyella pulchriflava EM106(T), Winogradskyella echinorum KMM 6211(T) and Winogradskyella ulvae KMM 6390(T). Strain EC29(T) exhibited < 27% DNA-DNA relatedness with Winogradskyella pulchriflava EM106(T) and Winogradskyella echinorum KMM 6211(T). The predominant fatty acids of strain EC29(T) were iso-C15 : 0, iso-C15 : 1 G, C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella eckloniae sp. nov. is proposed. The type strain is EC29(T) ( = KCTC 32172(T) = JCM 18703(T)).

  11. Sulfitobacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis.

    PubMed

    Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Shimada, Yushi; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2014-02-01

    Gram-stain-negative, aerobic, halophilic bacteria, designated SCM-1(T), LCM10-1 and CTBL-B-147, were isolated from modified half-strength SWM-III medium, PES medium and thalli after laboratory cultivation of a red alga, Porphyra yezoensis. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were affiliated to the genus Sulfitobacter of the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the new isolates with the closest related species, Sulfitobacter mediterraneus CH-B427(T), was 98.8%. The DNA G+C contents of the new isolates were in the range of 61.4-62.3 mol%. DNA-DNA relatedness values of strain SCM-1(T) with other type strains of the genus Sulfitobacter were less than 15.9%. The new isolates contained Q-10 as the predominant ubiquinone, phosphatidylcholine, phosphatidylglycerol, an unidentified amino lipid and an unidentified lipid as the main polar lipids, and C(18 : 1)ω7c, C(19 : 1)ω7c and C(16 : 0) as the major fatty acids (>10% of the total). Strain SCM-1(T) could be differentiated from Sulfitobacter mediterraneus JCM 21792(T) by 35 morphological and phenotypic characteristics. On the basis of the phylogenetic, genetic and phenotypic properties of the new isolates, the name Sulfitobacter porphyrae sp. nov. is proposed, with strain SCM-1(T) ( = LMG 27110(T) = NBRC 109054(T)) as the type strain.

  12. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava.

    PubMed

    Park, So-Hyun; Kim, Ji-Young; Kim, Young-Ju; Heo, Moon-Soo

    2015-11-01

    A bacterial strain, designated EC11(T) was isolated from brown alga Ecklonia cava collected from Jeju Island, Korea. EC11(T) was identified as a Gram-negative, rod-shaped and yellow-pigmented bacterial strain. The strain EC11(T) grew over a temperature range of 10 °C to 30 °C (optimally at 25 °C), and a pH range of 6.0-10.5 (optimally at pH 7.5). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EC11(T) belongs to the genus Flavobacterium. Strain EC11(T) shared close similarity with Flavobacterium jumunjinense HME7102(T) (96.4%), Flavobacterium dongtanense LW30(T) (95.8%), Flavobacterium haoranii LQY-7(T) (95.3%), and Flavobacterium urocaniciphilum (95.1%). The major fatty acids (> 5%) were iso-C17:0 3-OH (22.4%), iso-C15:0 3-OH (19.0%), C15:0 (12.4%), summed feature 3 (comprising C16:1 ω7c/ C16:1 ω6c; 9.78%), iso-C15:1 G (9.6%), and iso-C16:0 3-OH (9.0%). The DNA G+C content was 28.1 mol% and the strain contained MK-6 as the predominant menaquinone. The major polar lipids were phosphatidylethanolamine, two unknown aminolipids and three unknown polar lipids. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain EC11T represents a novel species of the Flavobacterium genus, for which the name Flavobacterium jejuensis sp. nov. is proposed. The type strain of F. jejuensis is EC11(T) (=KCTC 42149(T) = JCM 30735(T)).

  13. Tetraflagellochloris mauritanica gen. et sp. nov. (Chlorophyceae), a New Flagellated Alga from the Mauritanian Desert: Morphology, Ultrastructure, and Phylogenetic Framing.

    PubMed

    Barsanti, Laura; Frassanito, Anna Maria; Passarelli, Vincenzo; Evangelista, Valtere; Etebari, Maryam; Paccagnini, Eugenio; Lupetti, Pietro; Lenzi, Paola; Verni, Franco; Gualtieri, Paolo

    2013-02-01

    Morphological, ultrastructural, and molecular-sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non-coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion. Lipid vacuoles are present in the cytoplasm. Microspectroscopy indicated the presence of chlorophylls a and b, with lutein as the major carotenoid in the chloroplast, while the eyespot spectrum has a shape typical of green-algal eyespots. The cell has four flagella, two of them long and two considerably shorter. Sequence data from the 18S rRNA gene and ITS2 were obtained and compared with published sequences for green algae. Results from morphological and ultrastructural examinations and sequence analysis support the placement of this alga in the Chlorophyceae, as Tetraflagellochloris mauritanica L. Barsanti et A. Barsanti, gen. et sp. nov.

  14. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs.

    PubMed

    Hirooka, Shunsuke; Miyagishima, Shin-Ya

    2016-01-01

    Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4(+), NO3(-) or urea, while G. sulphuraria grew only when NH4(+) was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4(+) was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the

  15. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs

    PubMed Central

    Hirooka, Shunsuke; Miyagishima, Shin-ya

    2016-01-01

    Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4+, NO3- or urea, while G. sulphuraria grew only when NH4+ was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4+ was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the Tamagawa

  16. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana.

    PubMed

    Yang, Zhenhua; Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng; Hou, Yuyong

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  17. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    PubMed Central

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  18. Optimization of flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluation of its composition in different cultivation modes.

    PubMed

    Mandik, Yohanis Irenius; Cheirsilp, Benjamas; Boonsawang, Piyarat; Prasertsan, Poonsuk

    2015-04-01

    This study aimed to optimize flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluate its composition in different cultivation modes. Among three flocculants including Al(3+), Mg(2+) and Ca(2+) tested, Al(3+) was most effective for harvesting microalgal biomass. Four important parameters for flocculation were optimized through response surface methodology. The maximum flocculation efficiency in photoautotrophic culture was achieved at pH 10, flocculation time of 15 min, Al(3+) concentration of 2.22 mM and microalgal cells of 0.47 g/L. The flocculation in mixotrophic culture required lower amount of Al(3+) (0.74 mM) than that in photoautotrophic and heterotrophic cultures (2.22 mM). The biomass harvested from mixotrophic culture contained lipid at the highest content of 42.08 ± 0.58% followed by photoautotrophic (32.08 ± 3.88%) and heterotrophic (30.42 ± 1.13%) cultures. The lipid-extracted microalgal biomass residues (LMBRs) contained protein as high as 38-44% and several minerals showing their potential use as animal feed and their carbohydrate content were 16-29%.

  19. Continuous cultivation of lipid rich microalga Chlorella sp. FC2 IITG for improved biodiesel productivity via control variable optimization and substrate driven pH control.

    PubMed

    Palabhanvi, Basavaraj; Muthuraj, Muthusivaramapandian; Kumar, Vikram; Mukherjee, Mayurketan; Ahlawat, Saumya; Das, Debasish

    2017-01-01

    A novel two-stage continuous heterotrophic cultivation of Chlorella sp. FC2 IITG was demonstrated for enhanced lipid productivity. Initially, effect of control variable e.g. dilution rate and feed stream substrate concentrations on biomass productivity was evaluated. This showed significant variation in biomass productivity from 2.4gL(-1)day(-1) to 11.2gL(-1)day(-1). Further, these control variables were optimized by using multi-nutrient mechanistic model for maximizing the biomass productivity. Finally, continuous production of lipid rich algal biomass was demonstrated in two sequential bioreactors for enhanced lipid productivity. The biomass productivity of 92.7gL(-1)day(-1) was observed in the first reactor which was operated at model predicted optimal substrate concentrations of feed stream. The intracellular neutral lipid enrichment by acetate addition resulted in lipid productivity of 9.76gL(-1)day(-1) in the second reactor. Both the biomass and lipid productivities obtained from current study are significantly high amongst similarly reported literatures.

  20. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  1. Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure

    SciTech Connect

    Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion; Hughes, Lindsey G.; Mondy, Lisa A.

    2013-07-26

    Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made for a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.

  2. Biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. in fixed-bed column.

    PubMed

    Esmaeili, Akbar; Soufi, Samira; Rustaiyan, Abdolhossein; Safaiyan, Shila; Mirian, Simin; Fallahe, Gila; Moazami, Nasrin

    2007-11-01

    The biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. were investigated in a fixed-bed column (temperature = 30 degrees C; different pH). Langmuir and Freundlich sorption models were used to represent the equilibrium data. The maximum Cu2+ uptake was obtained at pH 4 and the optimum Co2+ and Ni2+ uptake were at pH 7. Different dosage of biosorbent did not have an effect on the results, but the 3.5 and 5 g of biosorbent were shown higher uptake. The metal removal rates were rapid, with about 80% of the total adsorption tacking place within 40 min.

  3. Winogradskyella undariae sp. nov., a member of the family Flavobacteriaceae isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Yoon, Jung-Hoon

    2013-11-01

    A novel bacterial strain, designated WS-MY5(T), capable of degrading a variety of polysaccharides was isolated from a brown algae (Undaria pinnatifida) reservoir at Wando in the South Sea, South Korea. Strain WS-MY5(T) was found to grow optimally at 30 °C, at pH 7.0-7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY5(T) falls within the clade comprising Winogradskyella species, clustering with the type strains of Winogradskyella pacifica, Winogradskyella arenosi, Winogradskyella rapida and Winogradskyella thalassocola, with which it exhibited 16S rRNA gene sequence similarity values of 97.3-98.8 %. It exhibited sequence similarity values of 93.0-96.2 % to the type strains of the other recognized Winogradskyella species. Strain WS-MY5(T) was found to contain MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH and iso-C15:1 G as the major fatty acids. The major polar lipids of strain WS-MY5(T) were identified as phosphatidylethanolamine, two unidentified lipids and two unidentified aminolipids. The DNA G+C content of strain WS-MY5(T) was determined to be 33.2 mol% and its DNA-DNA relatedness values with the type strains of W. pacifica, W. arenosi, W. rapida and W. thalassocola were in the range 16-28 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enabled strain WS-MY5(T) to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain WS-MY5(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella undariae sp. nov. is proposed. The type strain is WS-MY5(T) (=KCTC 32261(T)=CCUG 63832(T)).

  4. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi.

    PubMed

    Lee, Seung Hyeon; Park, Moon Su; Jung, Ji Young; Jeon, Che Ok

    2012-05-01

    A Gram-staining-positive, non-motile and non-spore-forming lactic acid bacterium, designated strain M2(T), was isolated from fermented brown algae (Undaria pinnatifida) kimchi in South Korea. Cells of the isolate were facultatively anaerobic ovoids and showed catalase- and oxidase-negative reactions. Growth of strain M2(T) was observed at 4-35 °C and at pH 5.0-9.0. The G+C content of the genomic DNA was 42.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M2(T) belonged to the genus Leuconostoc and was most closely related to Leuconostoc inhae IH003(T), Leuconostoc kimchii IH25(T), Leuconostoc gasicomitatum LMG 18811(T), Leuconostoc gelidum DSM 5578(T), Leuconostoc palmae TMW2.694(T) and Leuconostoc holzapfelii BFE 7000(T) with 98.9 %, 98.8 %, 98.8 %, 98.7 %, 98.5 % and 98.2 % sequence similarity, respectively. DNA-DNA hybridization values between strain M2(T) and Leuconostoc inhae KACC 12281(T), Leuconostoc kimchii IH25(T), Leuconostoc gelidum KACC 12256(T), Leuconostoc gasicomitatum KACC 13854(T), Leuconostoc palmae DSM 21144(T) and Leuconostoc holzapfelii DSM 21478(T) were 13.8±3.2 %, 14.3±3.4 %, 9.9±1.0 %, 13.2±0.8 %, 22.4±4.9 % and 16.2±4.6 %, respectively, which allowed differentiation of strain M2(T) from the closely related species of the genus Leuconostoc. On the basis of phenotypic and molecular properties, strain M2(T) represents a novel species in the genus Leuconostoc, for which the name Leuconostoc miyukkimchii sp. nov. is proposed. The type strain is M2(T) ( = KACC 15353(T)  = JCM 17445(T)).

  5. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation.

  6. Outdoor Growth Characterization of an Unknown Microalga Screened from Contaminated Chlorella Culture

    PubMed Central

    Zhou, Weizheng; Zhu, Feifei

    2017-01-01

    Outdoor microalgae cultivation process is threatened by many issues, such as pest pollution and complex, changeable weather. Therefore, it is difficult to have identical growth rate for the microalgae cells and to keep their continuous growth. Outdoor cultivation requires the algae strains not only to have a strong ability to accumulate oil, but also to adapt to the complicated external environment. Using 18S rRNA technology, one wild strain Scenedesmus sp. FS was isolated and identified from the culture of Chlorella zofingiensis. Upon contamination by Scenedesmus sp., the species could quickly replace Chlorella zofingiensis G1 and occupy ecological niche in the outdoor column photobioreactors. The results indicated that Scenedesmus sp. FS showed high alkali resistance. It also showed that even under the condition of a low inoculum rate (OD680, 0.08), Scenedesmus sp. FS could still grow in the outdoor raceway pond under a high alkaline environment. Even under unoptimized conditions, the oil content of Scenedesmus sp. FS could reach more than 22% and C16–C18 content could reach up to 79.68%, showing that this species has the potential for the biodiesel production in the near future. PMID:28357405

  7. Outdoor Growth Characterization of an Unknown Microalga Screened from Contaminated Chlorella Culture.

    PubMed

    Huo, Shuhao; Shang, Changhua; Wang, Zhongming; Zhou, Weizheng; Cui, Fengjie; Zhu, Feifei; Yuan, Zhenhong; Dong, Renjie

    2017-01-01

    Outdoor microalgae cultivation process is threatened by many issues, such as pest pollution and complex, changeable weather. Therefore, it is difficult to have identical growth rate for the microalgae cells and to keep their continuous growth. Outdoor cultivation requires the algae strains not only to have a strong ability to accumulate oil, but also to adapt to the complicated external environment. Using 18S rRNA technology, one wild strain Scenedesmus sp. FS was isolated and identified from the culture of Chlorella zofingiensis. Upon contamination by Scenedesmus sp., the species could quickly replace Chlorella zofingiensis G1 and occupy ecological niche in the outdoor column photobioreactors. The results indicated that Scenedesmus sp. FS showed high alkali resistance. It also showed that even under the condition of a low inoculum rate (OD680, 0.08), Scenedesmus sp. FS could still grow in the outdoor raceway pond under a high alkaline environment. Even under unoptimized conditions, the oil content of Scenedesmus sp. FS could reach more than 22% and C16-C18 content could reach up to 79.68%, showing that this species has the potential for the biodiesel production in the near future.

  8. Substitution of stable isotopes in Chlorella

    NASA Technical Reports Server (NTRS)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  9. First record of the insect pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) infection in larvae and pupae of Rhizophagusgrandis Gyll. (Coleoptera, Rhizophaginae) from Turkey.

    PubMed

    Yaman, Mustafa; Radek, Renate; Aydin, Ciçek; Tosun, Onur; Ertürk, Omer

    2009-10-01

    The predator beetle Rhizophagus grandis Gyll. (Coleoptera, Rhizophaginae) is one of the most important biological control agents, mass-bred and used to suppress populations of an important pest: the great spruce bark beetle, Dendroctonus micans. The achlorophyllous alga Helicosporidium sp. was first discovered in the pest. Later it was also found in the predator, but only in the adults. In this study, the pathogenic alga Helicosporidium sp. was discovered in larvae and early pupae of R. grandis for the first time. The morphological characteristics of the pathogenic alga were revealed by light and electron microscopy. Infection rates of Helicosporidium sp. in the larvae and pupae of R. grandis were 23.5% and 6.25%, respectively.

  10. Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment

    SciTech Connect

    Maeda, S.; Nakashima, S.; Takeshita, T.; Higashi, S.

    1985-01-01

    Green algae, Chlorella vulgaris Beijerinck var. vulgaris, isolated from an arsenic-polluted environment, was examined for the effects of arsenic levels, arsenic valence, temperature illumination intensity, phosphate levels, metabolism inhibitors, heat treatment on the growth, and arsenic bioaccumulation. The following conclusions were reached from the experimental results: (a) The growth of the cell increased with an increase of arsenic(V) levels of the medium up to 1000 ppm, and the cell survived even at 10,000 ppm; (b) The arsenic bioaccumulation increased with an increase of the arsenic level. The maximum accumulation of arsenic was about 50,000 ..mu..g As/g dry cell; (c) The growth decreased with an increase of the arsenic(III) level and the cell was cytolyzed at levels higher than 40 ppm; (d) No arsenic(V) was bioaccumulated by a cell which had been pretreated with dinitrophenol (respiratory inhibitor) or with heat. Little effect of NaN/sub 3/ (photosynthesis inhibitor) on the bioaccumulation was observed. 8 references, 2 figures, 6 tables.

  11. Use of De Novo transcriptome libraries to characterize a novel oleaginous marine Chlorella species during the accumulation of triacylglycerols

    SciTech Connect

    Mansfeldt, Cresten B.; Richter, Lubna V.; Ahner, Beth A.; Cochlan, William P.; Richardson, Ruth E.; Chen, Shilin

    2016-02-03

    Here, marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt.We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark.We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.

  12. Uptake and bioaccumulation of three PCBs by Chlorella fusca

    SciTech Connect

    Wang, K.; Rott, B.; Korte, F.

    1982-01-01

    This paper reports the bioaccumulation of three PCBs (2,4'-dichlorobiphenyl, 2,4,6,2'-tetrachlorobiphenyl and 2,4,6,2',4'-pentachlorobiphenyl) by the green alga Chlorella fusca under various conditions. A probable pattern of the bioconcentration mechanism is suggested. No metabolites were extracted from algae or water 6 days after incubation with PCBs.

  13. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.

    PubMed

    Zhou, Lin; Cheng, Dujia; Wang, Liang; Gao, Juan; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2017-03-01

    The growth of microalgae is inhibited by high concentration phenol due to reactive oxygen species. An evolved strain tolerated to 500mg/L phenol, Chlorella sp. L5, was obtained in previous study. In this study, comparative transcriptomic analysis was performed for Chlorella sp. L5 and its original strain (Chlorella sp. L3). The tolerance mechanism of Chlorella sp. L5 for high concentration phenol was explored on genome scale. It was identified that the up-regulations of the related genes according to antioxidant enzymes (SOD, APX, CAT and GR) and carotenoids (astaxanthin, lutein and lycopene) biosynthesis had critical roles to tolerate high concentration phenol. In addition, most of genes of PS I, PS II, photosynthetic electron transport chain and starch biosynthesis were also up-regulated. It was consistent to the experimental results of total carbohydrate contents of Chlorella sp. L3 and Chlorella sp. L5 under 0mg/L and 500mg/L phenol.

  14. Preliminary development and evaluation of an algae-based air regeneration system

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.

    2000-01-01

    The potential of air regeneration system based on the growth of microalgae on the surface of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786), Stichococcus sp., and Gloeocapsa sp. Under standard test conditions (photosynthetic photon flux approximately 66 micromoles m-2 s-1, initial CO2 concentration approximately 450 micromoles mol-1), mature tubes remove up to 0.2 micromoles of CO2 per tube per minute. The rate of removal increases with photon flux up to at least 225 micromoles m-2 s-1 (PPF); peak rates of 0.35 micromoles of CO2 per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to between 120 and 210 micromoles of CO2 removed per square meter of projected area per minute.

  15. Chlorella viruses isolated in China

    SciTech Connect

    Zhang, Y.; Burbank, D.E.; Van Etten, J.L. )

    1988-09-01

    Plaque-forming viruses of the unicellular, eukaryotic, exsymbiotic, Chlorella-like green algae strain NC64A, which are common in the United States, were also present in fresh water collected in the People's Republic of China. Seven of the Chinese viruses were examined in detail and compared with the Chlorella viruses previously isolated in the United States. Like the American viruses, the Chinese viruses were large polyhedra and sensitive to chloroform. They contained numerous structural proteins and large double-stranded DNA genomes of at least 300 kilobase pairs. Each of the DNAs from the Chinese viruses contained 5-methyldeoxycytosine, which varied from 12.6 to 46.7% of the deoxycytosine, and N{sup 6}-methyldeoxyadenosine, which varied from 2.2 to 28.3% of the deoxyadenosine. Four of the Chinese virus DNAs hybridized extensively with {sup 32}P-labeled DNA from the American virus PBCV-1, and three hybridized poorly.

  16. Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738.

    PubMed

    Kanaga, Kamaraj; Pandey, Ashutosh; Kumar, Sanjay; Geetanjali

    2016-01-01

    This study aimed to optimize significant medium nutrient parameters for maximization of algal lipid and biomass production by using multi objective optimization strategy. Nutrients (nitrate, phosphate and carbohydrate) were investigated to improve the lipid accumulation, biomass production and carbohydrate consumption individually and cumulative manner using a central composite design for the Chlorella pyrenoidosa NCIM 2738 cultivation. Maximum lipid, algal biomass and carbohydrate utilization for individual response optimization were found 34.8% (w/w), 1464.3mgL(-1) and 93.4%, respectively at different optimum level of selected parameters. Whereas, maximum lipid accumulation, biomass production and glucose consumption values in multi-response optimization were observed 28.9%, 1271.2mgL(-1) and 89.2%, respectively at optimum level of 16.8mM NaNO3, 300.9μM K2HPO4 and 2.6% (w/v) glucose. The overall enhancements in lipid productivities by single and multi-response optimization in comparison with control medium conditions were found 2.35 and 2.90-fold with productivity level of 24.8 and 30.6mgL(-1)day(-1), respectively.

  17. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P).

    PubMed

    Li, Yuqin; Han, Fangxin; Xu, Hua; Mu, Jinxiu; Chen, Di; Feng, Bo; Zeng, Hongyan

    2014-12-01

    This study aimed to evaluate the potential lipid accumulation of an oleaginous Chlorella protothecoides by combination cultivation mode of nitrogen (N) and phosphorus (P). Under co-deficiency of N and P, the largest lipid content (55.8%) was accomplished in C. protothecoides, which was higher than either sole P-deficiency (32.77%) or N-deficiency (52.5%), or co-repletion of N and P (control) (22.17%). However, the highest lipid productivity (224.14mg/L/day) with combination mode of N-deficiency and P-repletion represented 1.19-3.70-fold more than that of control, P-deficiency/limitation, and co-deficiency of N and P, respectively. This indicating N-deficiency plus P-repletion was a promising lipid trigger to motivate lipid accumulation in C. protothecoides cells. Further, difference gel electrophoresis (DIGE)-based proteomics was employed to reveal the molecular pathways associated with lipid biosynthesis. These results provide the foundation to develop engineering strategies targeting lipid productivity for industrial production of microalgae-based biodiesel.

  18. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  19. Formosa haliotis sp. nov., a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea.

    PubMed

    Tanaka, Reiji; Cleenwerck, Ilse; Mizutani, Yukino; Iehata, Shunpei; Shibata, Toshiyuki; Miyake, Hideo; Mori, Tetsushi; Tamaru, Yutaka; Ueda, Mitsuyoshi; Bossier, Peter; Vandamme, Peter

    2015-12-01

    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).

  20. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga.

    PubMed

    Nedashkovskaya, Olga I; Balabanova, Larissa A; Zhukova, Natalia V; Kim, So-Jeong; Bakunina, Irina Y; Rhee, Sung-Keun

    2014-10-01

    A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130(T), that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618(T) and Flavobacterium ponti CCUG 58402(T), and 95.3-92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130(T) were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130(T) (=KCTC 32467(T) = KMM 6686(T)).

  1. Host age and pathogen dosage impact cyst morphogenesis in the invertebrate pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae).

    PubMed

    Denton, John S S; Lietze, Verena-Ulrike; Boucias, Drion G

    2009-09-01

    Helicosporidium sp. is a pathogenic alga that replicates in the hemolymph of various invertebrate hosts. Morphogenesis of the infectious life stage, the cyst, occurs in the infected host, but to date cannot be induced in vitro. Using larvae of the heterologous host Helicoverpa zea, we examined potential factors influencing pathogenicity and in vivo cyst production of the alga and the impact of infection on host survival. Factors tested were cyst dosage administered per os (ranging from 10(2) to 10(5) cysts per larva) and host age at exposure (third, fourth, and fifth larval instar). Cyst production occurred between 7 and 13days after treatment, regardless of host age at treatment. Increasing dosage increased both percent infection and mortality, but cyst production did not track the total infection response. Increasing host age at exposure mitigated dosage effects on infection and mortality and also elevated cyst production in later-treated larvae. Only the highest dosage produced a significant decrease in the overall time to death. Moderate cyst dosages and later host ages were most effective at regenerating Helicosporidium cysts.

  2. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    PubMed

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  3. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    PubMed

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO3(S); however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca(2+) onto the cell surface which provides nucleation sites for CaCO3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO3(S). Removal of algae in the presence of Ca(2+) and Mg(2+) required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca(2+) concentration can be optimized for algae removal via coagulation-sedimentation.

  4. Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System.

    PubMed

    Ismail, Asmida; Marzuki, Sarah Diyana; Mohd Yusof, Nordiana Bakti; Buyong, Faeiza; Mohd Said, Mohd Nizam; Sigh, Harinder Rai; Zulkifli, Amyrul Rafiq

    2017-03-07

    The increasing concentration of CO₂ in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO₂ in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO₂ was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO₂ without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO₂ on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO₂-enriched environment, at 408.5 ± 38.5 × 10⁴ cells/cm², compared to the control site at 176.5 ± 6.9 × 10⁴ cells/cm² (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO₂ injector. Quadrat 16, which was nearing the end of the CO₂ valve injector, showed an exceptionally high algal density-2-fold higher

  5. Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System

    PubMed Central

    Ismail, Asmida; Marzuki, Sarah Diyana; Mohd Yusof, Nordiana Bakti; Buyong, Faeiza; Mohd Said, Mohd Nizam; Sigh, Harinder Rai; Zulkifli, Amyrul Rafiq

    2017-01-01

    The increasing concentration of CO2 in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO2 in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO2 was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO2 without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO2 on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO2-enriched environment, at 408.5 ± 38.5 × 104 cells/cm2, compared to the control site at 176.5 ± 6.9 × 104 cells/cm2 (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO2 injector. Quadrat 16, which was nearing the end of the CO2 valve injector, showed an exceptionally high algal density—2-fold higher than the average

  6. Bromophycoic acids: Bioactive natural products from a Fijian red alga Callophycus sp

    PubMed Central

    Teasdale, Margaret E.; Shearer, Tonya L.; Engel, Sebastian; Alexander, Troy S.; Fairchild, Craig R.; Prudhomme, Jacques; Torres, Manuel; Le Roch, Karine; Aalbersberg, William; Hay, Mark E.

    2012-01-01

    Bioassay-guided fractionation of extracts from a Fijian red alga in the genus Callophycus resulted in the isolation of five new compounds of the diterpene-benzoate class. Bromophycoic acids A-E (1–5) were characterized by NMR and mass spectroscopic analyses and represent two novel carbon skeletons, one with an unusual proposed biosynthesis. These compounds display a range of activities against human tumor cell lines, malarial parasite, and bacterial pathogens including low micromolar suppression of MRSA and VREF. PMID:22920243

  7. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  8. Distribution and occurrence of the insect pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) in the predator beetle Rhizophagus grandis G: yll. (Coleoptera: Rhizophagidae)-rearing laboratories.

    PubMed

    Yaman, M; Tosun, O; Aydın, C; Ertürk, O

    2011-01-01

    The distribution and occurrence of the insect pathogenic algae Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) in the predator beetle Rhizophagus grandis (Coleoptera: Rhizophagidae)-rearing laboratories were studied and reported here for the first time. The insect pathogenic alga Helicosporidium sp. infection was observed in all R. grandis-rearing laboratories. The infection rate reached more than 20% which is significant among the samples in some R. grandis-rearing laboratories. The infection rates of the examined beetles showed noticeable differences between localities and years. There was no significant difference in the infection levels of male and female beetles. These results showed that Helicosporidium sp. is one of the factors that decrease efficiency of the R. grandis-rearing laboratories.

  9. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass.

    PubMed

    Subramaniyam, Vidhyasri; Subashchandrabose, Suresh Ramraj; Ganeshkumar, Vimalkumar; Thavamani, Palanisami; Chen, Zuliang; Naidu, Ravi; Megharaj, Mallavarapu

    2016-07-01

    This study investigated an integrated and sustainable approach for iron nanoparticles synthesis using Chlorella sp. MM3 biomass produced from the remediation of brewery wastewater. The algal growth characteristics, biomass production, nutrient removal, and nanoparticle synthesis including its characterisation were studied to prove the above approach. The growth curve of Chlorella depicted lag and exponential phase characteristics during the first 4days in a brewery wastewater collected from a single batch of brewing process (single water sample) indicating the growth of algae in brewery wastewater. The pollutants such as total nitrogen, total phosphorus and total organic carbon in single water sample were completely utilised by Chlorella for its growth. The X-ray photoelectron spectroscopy spectra showed peaks at 706.56eV, 727.02eV, 289.84eV and 535.73eV which corresponded to the zero-valent iron, iron oxides, carbon and oxygen respectively, confirming the formation of iron nanoparticle capped with algal biomolecules. Scanning electron microscopy and particle size analysis confirmed the presence of spherical shaped iron nanoparticles of size ranging from 5 to 50nm. To our knowledge, this is the first report on nanoparticle synthesis using the biomass generated from phycoremediation of brewery wastewater.

  10. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881

    PubMed Central

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction. PMID:26849226

  11. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881.

    PubMed

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction.

  12. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  13. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  14. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.

    PubMed

    Dao, Ly H T; Beardall, John

    2016-03-01

    In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae.

  15. Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica.

    PubMed

    Tschermak-Woess, E; Friedmann, E I

    1984-01-01

    Hemichloris antarctica gen. et sp. nov. (Oocystaceae, Chlorococcales) is characterized by a single, articulated, pyrenoid-less, thick saucer-shaped chloroplast, which generally fills less than half of the cell periphery. Multiplication is only by autospores. The species is psychrophilic and is damaged at temperatures above 20 degree C. Hemichloris antarctica is a member of the cryptoendolithic microbial community living in porous sandstone rocks of the Antarctica cold desert. It inhabits the zone below that of cryptoendolithic lichens and survives at extremely low light intensities. In the natural habitat, morphology is somewhat different from that in culture, as chloroplasts are smaller and without articulation, and the cells develop a gelatinous sheath.

  16. Effect of aniline on Chlorella vulgaris

    SciTech Connect

    Amman, H.M.; Terry, b.

    1985-08-01

    A direct correlation between concentration of waste effluent, including aniline, released by a dye company into a waterway in Eastern North Carolina, and the rise and fall of populations of Chlorella, was demonstrated previously. The present study establishes threshold concentrations of aniline which affect growth of these algae, but also shows that physiologic parameters within the organism, such as the rate of photosynthesis, were decreased as sub-threshold concentrations of toxicant.

  17. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)).

  18. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis.

    PubMed

    Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-01-01

    Three Gram-negative, stalked, motile bacteria, designated 0C-2-2(T), 0C-17 and LNM-3, were isolated from the red alga Porphyra yezoensis. 16S rRNA gene sequence analysis revealed that the three novel strains belonged to the family Hyphomonadaceae, and were closely related to Litorimonas taeanensis G5(T) (96.5 % 16S rRNA gene sequence similarity) and Hellea balneolensis 26III/A02/215(T) (94.3 %). The DNA G+C contents of the novel isolates (58.5-60.2 mol%) were clearly distinguished from those of L. taeanensis G5(T) (47.1 mol%) and H. balneolensis DSM 19091(T) (47.9 mol%). The G+C content of L. taeanensis G5(T) obtained in this study was quite different from a previous report (63.6 mol%). DNA-DNA hybridization experiments showed that the novel strains constituted a single species. Eleven phenotypic features of the three isolates differed from those of both related genera. The predominant respiratory quinone was ubiquinone-10 and the major fatty acid was C(18 : 1)ω7c. On the basis of this polyphasic taxonomic analysis, the novel strains represent a novel genus and species, for which the name Algimonas porphyrae gen. nov., sp. nov. is proposed. The type strain of Algimonas porphyrae is 0C-2-2(T) (= LMG 26424(T) = NBRC 108216(T)).

  19. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum 'Verrucomicrobia', and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae.

    PubMed

    Yoon, Jaewoo; Matsuo, Yoshihide; Adachi, Kyoko; Nozawa, Midori; Matsuda, Satoru; Kasai, Hiroaki; Yokota, Akira

    2008-04-01

    Ten pale-pink- and pale-yellow-pigmented, Gram-negative, non-motile, rod-shaped, chemoheterotrophic bacteria designated strains YM20-087T, YM21-151, MN1-741T, YM27-120T, YM26-010T, YM24-184, YM20-122, A4T-83T, A5J-41-2T and A5J-40 were isolated from various marine environments and were subjected to a polyphasic taxonomic investigation. Phylogenetic analyses based on 16S rRNA gene sequences indicated that these isolates belonged to the phylum 'Verrucomicrobia' (subdivision 1) and represented three independent lineages that were distinct from species of genera of the family Verrucomicrobiaceae with validly published names. The cell-wall peptidoglycan of these strains contained muramic acid and meso-diaminopimelic acid. Strains MN1-741T, YM27-120T, YM26-010T, YM24-184 and YM20-122 produced pinkish carotenoid pigments. On the basis of polyphasic taxonomic evidence, it was concluded that these strains should be classified within three new genera, Persicirhabdus gen. nov. (with one species, the type species Persicirhabdus sediminis sp. nov.), Roseibacillus gen. nov. (with three species; type species Roseibacillus ishigakijimensis sp. nov.) and Luteolibacter gen. nov. (with two species; type species Luteolibacter pohnpeiensis sp. nov.), of the family Verrucomicrobiaceae within the phylum 'Verrucomicrobia'. The names Persicirhabdus sediminis gen. nov., sp. nov. (type strain YM20-087T =MBIC08313T =KCTC 22039T), Roseibacillus ishigakijimensis gen. nov., sp. nov. (type strain MN1-741T =MBIC08315T =KCTC 12986T), Roseibacillus ponti sp. nov. (type strain YM27-120T =MBIC08316T =KCTC 12987T), Roseibacillus persicicus sp. nov. (type strain YM26-010T =MBIC08317T =KCTC 12988T), Luteolibacter pohnpeiensis gen. nov., sp. nov. (type strain A4T-83T =MBIC08322T =KCTC 22041T) and Luteolibacter algae sp. nov. (type strain A5J-41-2T =MBIC08320T =KCTC 22040T) are therefore proposed. Emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family

  20. [Carotenogenesis of five strains of the algae Dunaliella sp. (Chlorophyceae) isolated from Venezuelan hypersaline lagoons].

    PubMed

    Guevara, Miguel; Lodeiros, César; Gómez, Olga; Lemus, Nathalie; Núñez, Paulino; Romero, Lolymar; Vásquez, Aléikar; Rosales, Néstor

    2005-01-01

    We evaluated discontinuous cultures (Algal medium at 0.5 mM of NaNO3, and 27% NaCI) of five strains of Dunaliella sp. isolated from Venezuelan hypersaline lagoons (Araya, Coche, Peonia, Cumaraguas. and Boca Chica) and one strain from a reference collection (Dunaliella salina, LB1644). Cultures were maintained to 25+/-1 degrees C, with constant aeration, photoperiod 12:12, and two light intensities (195 and 390 microE.m(-2).s(-1)) during 30 days. Cell count was recorded on a daily basis using a Neubaüer camera. Totals of chlorophyll a and carotenoids were measured at the end of the experiment. The largest cellular densities were measured during the smallest light intensities. The strain with the largest cellular density was isolated from Boca Chica (8 xl0(6) and 2.5 xl0(6) cel.ml(-1) a 390 and 195microE.m(-2).s(-1), respectively). The increment of light intensity produced a significant reduction of growth rates in all strains. Totals of carotenoids by volume were as large as 390 microE.m(-2).s(-1). Strains LB 1644, from Coche and Araya were those that produced the largest amount of carotenoids (38.4; 32.8 and 21.0 microg.ml(-1), respectively). Differences total carotenoids by cell between treatments were significant. The largest concentration was 390 microE.m(-2).s(-1). The strains LB 1644 and Coche produced the highest values of carotenes (137.14 and 106.06 pg.cel(-1), respectively). Differences in the relation carotenoid:chlorophyll a between the strains at various light intensities was significant. Strains LB1644 presented the largest value of the relation carotenoids:chlorophyll a (20:1) at 195 microE.m(-2).s(-1). No significant differences were detected in the strain Coche (15:1). All the other strains showed relations lower than one. Our results suggest that the strains of Coche and Araya show potential to be used in the biotechnology of carotenoids production.

  1. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis.

    PubMed

    Mishima, T; Murata, J; Toyoshima, M; Fujii, H; Nakajima, M; Hayashi, T; Kato, T; Saiki, I

    1998-08-01

    We have investigated the effect of calcium spirulan (Ca-SP) isolated from a blue-green alga, Spirulina platensis, which is a sulfated polysaccharide chelating calcium and mainly composed of rhamnose, on invasion of B16-BL6 melanoma, Colon 26 M3.1 carcinoma and HT-1080 fibrosarcoma cells through reconstituted basement membrane (Matrigel). Ca-SP significantly inhibited the invasion of these tumor cells through Matrigel/fibronectin-coated filters. Ca-SP also inhibited the haptotactic migration of tumor cells to laminin, but it had no effect on that to fibronectin. Ca-SP prevented the adhesion of B16-BL6 cells to Matrigel and laminin substrates but did not affect the adhesion to fibronectin. The pretreatment of tumor cells with Ca-SP inhibited the adhesion to laminin, while the pretreatment of laminin substrates did not. Ca-SP had no effect on the production and activation of type IV collagenase in gelatin zymography. In contrast, Ca-SP significantly inhibited degradation of heparan sulfate by purified heparanase. The experimental lung metastasis was significantly reduced by co-injection of B16-BL6 cells with Ca-SP. Seven intermittent i.v. injections of 100 microg of Ca-SP caused a marked decrease of lung tumor colonization of B16-BL6 cells in a spontaneous lung metastasis model. These results suggest that Ca-SP, a novel sulfated polysaccharide, could reduce the lung metastasis of B16-BL6 melanoma cells, by inhibiting the tumor invasion of basement membrane probably through the prevention of the adhesion and migration of tumor cells to laminin substrate and of the heparanase activity.

  2. Utilization of papaya waste and oil production by Chlorella protothecoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae derived oils have outstanding potential for use in biodiesel production. Chlorella protothecoides has been shown to accumulate lipid up to 60% of its cellular dry weight with glucose supplementation under heterotrophic growth conditions. To reduce production costs, alternative carbon feedstock...

  3. The anti-allergic activity of polyphenol extracted from five marine algae

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui

    2015-08-01

    Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.

  4. Toxic potential of iron oxide, CdS/Ag₂S composite, CdS and Ag₂S NPs on a fresh water alga Mougeotia sp.

    PubMed

    Jagadeesh, E; Khan, Behlol; Chandran, Preethy; Khan, S Sudheer

    2015-01-01

    Nanoparticles (NPs) are being used in many industries ranging from medical, textile, automobile, consumer products, etc. This may increase the probability of their (NPs) release into the environment and fresh water ecosystems. The present study focuses on testing the potential effect of iron oxide, nanocomposite of cadmium sulfide and silver sulfide, cadmium sulfide and silver sulfide nanoparticles (NPs) on a fresh water alga Mougeotia sp. as the model organism. The alga was treated with different concentrations of NPs (0.1-25 mg/L). The NPs exposure caused lipid peroxidation and ROS production, and suppressed the antioxidant defense system such as catalase, glutathione reductase, and superoxide dismutase. Adsorption of NPs on algal surface and membrane damage were confirmed through microscopic evaluation and increase in protein content in extracellular medium. The present investigation pointed out the ecological implications of NPs. The study warrants the need for regulatory agencies to monitor and regulate the use of NPs.

  5. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment.

    PubMed

    Zhou, Wenguang; Cheng, Yanling; Li, Yun; Wan, Yiqin; Liu, Yuhuan; Lin, Xiangyang; Ruan, Roger

    2012-05-01

    A novel fungi pelletization-assisted bioflocculation technology was developed for efficient algae harvesting and wastewater treatment. Microalga Chlorella vulgaris UMN235 and two locally isolated fungal species Aspergillus sp. UMN F01 and UMN F02 were used to study the effect of various cultural conditions on pelletization process for fungi-algae complex. The results showed that pH was the key factor affecting formation of fungi-algae pellet, and pH could be controlled by adjusting glucose concentration and fungal spore number added. The best pelletization happened when adding 20 g/L glucose and approximately 1.2E8/L spores in BG-11 medium, under which almost 100% of algal cells were captured onto the pellets with shorter retention time. The fungi-algae pellets can be easily harvested by simple filtration due to its large size (2-5 mm). The filtered fungi-algae pellets were reused as immobilized cells for treatment wastewaters and the nutrient removal rates of 100, 58.85, 89.83, and 62.53 % (for centrate) and 23.23, 44.68, 84.70, and 70.34% (for diluted swine manure wastewater) for ammonium, total nitrogen, total phosphorus, and chemical oxygen demand, respectively, under both 1- and 2-day cultivations. The novel technology developed is highly promising compared with current algae harvesting and biological wastewater treatment technologies in the literature.

  6. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  7. Vitmin A, nutrition, and health values of algea: spirulina, chlorella, and dunaliella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spirulina, chlorella, and dunalliella are unicellular algae that are commercially produced worldwide. These algae are concentrated sources of carotenoids (especially provitamin A carotenoids) and other nutrients, such as vitamin B12. Their health benefits as a complementary dietary source for macro ...

  8. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.).

    PubMed

    Weller, D; Doemel, W; Brock, T D

    1975-06-20

    Photosynthesis in a Phormidium species which forms dense conical-shaped structures in thermal springs is strongly inhibited by aeration but is stimulated by sulfide and other agents (cysteine, thioglycolate, sulfite) which lower the oxidation-reduction potential. The compact structures which this alga forms in nature may restrict oxygen penetration from the enviroment so that the anaerobic or microaerophilic conditions necessary ofr photosynthesis can develop. The alga may be defective in a regulatory mechanism that controls the reoxidation of reduced pyridine nucleotides formed during photosynthesis. It is suggested that other mat-forming and benthic blue-green algae may also prefer anaerobib conditions for growth and photosynthesis.

  9. Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii.

    PubMed

    Jones, Katy J; Moore, Karen; Sambles, Christine; Love, John; Studholme, David J; Aves, Stephen J

    2016-01-14

    A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe.

  10. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  11. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  12. Algibacter miyuki sp. nov., a member of the family Flavobacteriaceae isolated from leachate of a brown algae reservoir.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Yoon, Jung-Hoon

    2013-08-01

    A Gram-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacterial strain, designated WS-MY6(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY6(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY6(T) clustered with the type strains of Algibacter lectus and 'Algibacter undariae', showing 16S rRNA gene sequence similarity values of 98.1 and 98.4 %, respectively. It exhibited sequence similarities of 95.4-96.7 % to the type strains of the other Algibacter species, Pontirhabdus pectinovorans and Marinivirga aestuarii, whose reclassification into the genus Algibacter has been recently proposed. Strain WS-MY6(T) contained MK-6 as the predominant menaquinone and iso-C15:1 G, anteiso-C15:0 and iso-C17:0 3-OH as the major fatty acids. It contained phosphatidylethanolamine and two unidentified lipids as the major polar lipids. The DNA G + C content of strain WS-MY6(T) was 35.3 mol% and its DNA-DNA relatedness values with A. lectus KCTC 12103(T) and 'A. undariae' WS-MY9(T) was 21 and 13 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY6(T) is separate from existing Algibacter species. On the basis of the data presented, strain WS-MY6(T) is considered to represent a novel species of the genus Algibacter, for which the name Algibacter miyuki sp. nov. is proposed. The type strain is WS-MY6(T) (=KCTC 32382(T) =CECT 8300(T)).

  13. Algimonas ampicilliniresistens sp. nov., isolated from the red alga Porphyra yezoensis, and emended description of the genus Algimonas.

    PubMed

    Fukui, Youhei; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-12-01

    Three strains (14A-2-7(T), 14A-3-1 and 14A-3) of Gram-stain-negative, prosthecate, motile bacteria were isolated from an algal medium supplemented with 10 mg ampicillin l(-1) (w/v), in which the red alga Porphyra yezoensis had been cultured. Based on the 16S rRNA gene sequence analysis, the three isolates formed a cluster with the genus Algimonas of the family Hyphomonadaceae. The sequences of the three isolates had high similarity with those of Algimonas porphyrae 0C-2-2(T) (97.6 % similarity) and Litorimonas taeanensis G5(T) (95.6 % similarity). The DNA G+C contents of the three isolates ranged from 54.3 to 55.0 mol%, which were more similar to that of A. porphyrae 0C-2-2(T) (58.5 mol%) than to that of L. taeanensis G5(T) (47.1 mol%). The DNA-DNA relatedness showed that the three isolates were representatives of the same species (88.1-94.0 % relatedness) and that strain 14A-2-7(T) was a representative of a different species from A. porphyrae 0C-2-2(T) and L. taeanensis G5(T) (1.2-8.6 % relatedness). The phenotypic characteristics of strain 14A-2-7(T) differed by 20 results and 30 results from A. porphyrae 0C-2-2(T) and L. taeanensis G5(T), respectively. The three isolates contained ubiquinone-10 as the predominant quinone and C18 : 1ω7c as the major fatty acid. Based on the polyphasic taxonomic analysis, the three isolates represent a novel species of the genus Algimonas, for which the name Algimonas ampicilliniresistens sp. nov. is proposed. The type strain is 14A-2-7(T) ( = LMG 26421(T) = NBRC 108219(T)). An emended description of the genus Algimonas is also proposed.

  14. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  15. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation.

    PubMed

    Agbakpe, Michael; Ge, Shijian; Zhang, Wen; Zhang, Xuezhi; Kobylarz, Patricia

    2014-08-01

    There is a pressing need to develop efficient and sustainable separation technologies to harvest algae for biofuel production. In this work, two bacterial species (Escherichia coli and Rhodococus sp.) were used as biocoagulants to harvest Chlorella zofingiensis and Scenedesmus dimorphus. The influences of UV irradiation and polyethylenimine (PEI)-coating on the algal harvesting efficiency were investigated. Results showed that the UV irradiation could slightly enhance bacteria-algae biocoagulation and algal harvesting efficiency. In contrast, the PEI-coated E. coli cells noticeably increased the harvesting efficiencies from 23% to 83% for S. dimorphus when compared to uncoated E. coli cells. Based on the soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, an energy barrier existed between uncoated E. coli cells and algal cells, whereas the PEI coating on E. coli cells eliminated the energy barrier, thereby the biocoagulation was significantly improved. Overall, this work presented groundwork toward the potential use of bacterial biomass for algal harvesting from water.

  16. Responses of marine unicellular algae to brominated organic compounds in six growth media

    SciTech Connect

    Walsh, G.E.; Yoder, M.J.; McLaughlin, L.L.; Lores, E.M.

    1987-12-01

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp. were exposed to the industrial brominated compounds tetrabromobisphenol A, decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromoethylbenzene (PBEB), and the herbicide bromoxynil (BROM), in six algal growth media. High concentrations of DBBO (1 mg liter-1), PBMB (1 mg liter-1), and PBEB (0.5 mg liter-1) reduced growth by less than 50%. EC50s of the other compounds varied with growth medium, with high EC50/low EC50 ratios between 1.3 and 9.9. Lowest EC50s, 9.3 to 12.0 micrograms liter-1, were obtained with S. costatum and HBCD. It is concluded that responses to toxicants in different media are the results of interactions among algae, growth medium, toxicant, and solvent carrier.

  17. Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii

    PubMed Central

    Jones, Katy J.; Moore, Karen; Love, John

    2016-01-01

    A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe. PMID:26769927

  18. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process.

  19. Acute and chronic toxic effects of chloramphenicol on Scenedesmus obliquus and Chlorella pyrenoidosa.

    PubMed

    Zhang, Wei; Sun, Wenfang; An, Shuai; Xiong, Bang; Lin, Kuangfei; Cui, Xinhong; Guo, Meijin

    2013-08-01

    The acute and chronic toxicological effects of Chloramphenicol (CAP) on Scenedesmus obliquus and Chlorella pyrenoidosa are not well understood. The indoor experiments were carried to observe and analyze the CAP induced changes. Results of the observations have showed that CAP exposure could significantly inhibit the growth of Scenedesmus obliquus in almost all the treated groups, while Chlorella pyrenoidosa exhibited less sensitivity. Chlorophyll-a syntheses of Scenedesmus obliquus were all inhibited by CAP exposure, while Chlorella pyrenoidosa displayed obvious stimulation effect. Catalase (CAT) and Superoxide dismutase (SOD) activities of both algae were promoted in all the treatments. The experimental results indicated that the growth and Chlorophyll-a syntheses of Scenedesmus obliquus were more sensitive in response to CAP exposure than that of Chlorella pyrenoidosa. While for CAT and SOD activities, Chlorella pyrenoidosa showed more susceptible. This research provides a basic understanding of CAP toxicity to aquatic organisms.

  20. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark.

    PubMed

    Lüttge, U; Büdel, B

    2010-05-01

    The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple-brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and 'Chlorella' trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, F(v)/F(m), recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (F(v)/F(m) = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30-40 days of desiccation (F(v)/F(m) = ca. 20-55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.

  1. Effect of phosphorus fluctuation caused by river water dilution in eutrophic lake on competition between blue-green alga Microcystis aeruginosa and diatom Cyclotella sp.

    PubMed

    Amano, Yoshimasa; Sakai, Yusuke; Sekiya, Takumi; Takeya, Kimitaka; Taki, Kazuo; Machida, Motoi

    2010-01-01

    Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North-chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.

  2. Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production.

    PubMed

    Wileman, Angel; Ozkan, Altan; Berberoglu, Halil

    2012-01-01

    Rheological properties of microalgae slurries were measured as a function of biomass concentration from 0.5 to 80 kg/m(3) for Nannochloris sp., Chlorella vulgaris, and Phaeodactylum tricornutum. At biomass concentrations smaller than 20 kg/m(3), all slurries displayed a Newtonian fluid behavior with less than 30% increase in the effective viscosity from that of the nutrient medium. However, at biomass concentrations larger than 60 kg/m(3), the slurries of the green algae, Nannochloris sp. and C. vulgaris, displayed a shear thinning non-Newtonian behavior with varying degrees of sensitivity to shear rate while that of the diatom, P. tricornutum, was still a Newtonian fluid up to 80 kg/m(3). Moreover, bioenergy pumping effectiveness showed significant deviation among different species in the non-Newtonian regime. Finally, dewatering the slurries to concentration factors larger than 80 did not further increase the total bioenergy harvest effectiveness.

  3. Evaluation of oil-producing algae as potential biodiesel feedstock.

    PubMed

    Zhou, XuPing; Ge, HongMei; Xia, Ling; Zhang, Delu; Hu, ChunXiang

    2013-04-01

    This study attempted to connect the dots between laboratory research and the outdoors. Chlorella sp. NJ-18 was selected among seven oil-producing algae cultivated in this study because it had the highest lipid productivity. The nitrogen and phosphorus concentrations for cultivating this Chlorella strain were optimized indoors. This strain was incubated outdoors in a 70 L photobioreactor, containing the favorable nitrogen (8.32 mM urea) and phosphorus (0.18 mM monopotassium phosphate) concentrations. Semi-continuous cultivation was performed by harvesting 30 L biomass and replacing it with fresh medium. The maximum biomass and lipid productivity acquired outdoors were 91.84 and 24.05 mg L(-1) d(-1), respectively. Furthermore, biomass productivity could be maintained at a high level throughout the cultivation process when using the semi-continuous mode, whereas it decreased dramatically in batch cultures. More than 95% of the total fatty acids obtained were C16 and C18, which are the main components for biofuel.

  4. Dispersed ozone flotation of Chlorella vulgaris.

    PubMed

    Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Lee, Duu-Jong

    2010-12-01

    Flotation separation of Chlorella vulgaris, a species with excellent potential for CO(2) capture and lipid production, was studied using dispersed ozone gas. Pure oxygen aeration did not yield flotation. Conversely, applying ozone effectively separation algae from broth through flotation. The ozone dose applied for sufficient algal flotation is <0.05 mg/g biomass, much lower than those used in practical drinking waterworks (0.1-0.3 mg/g suspended solids). Main products, lipid C16:0, was effectively collected in the flotage phase. The algae removal rate, surface charge, and hydrophobicity of algal cells, and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined. Certain quantities of proteins were present in the cultivated algal suspension, hence, minimal quantity of ozone was required to release intracellular proteins as surfactants to lead to effective flotation.

  5. Acidophilic Green Alga Pseudochlorella sp. YKT1 Accumulates High Amount of Lipid Droplets under a Nitrogen-Depleted Condition at a Low-pH

    PubMed Central

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0–5.0 and a temperature 20–25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  6. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions.

  7. The effects of irradiance levels and spectral composition on mating strategies in the snow alga, Chloromonas sp.-D, from the Tughill Plateau, New York State

    NASA Astrophysics Data System (ADS)

    Hoham, Ronald W.; Schlag, Erin M.; Kang, Jennifer Y.; Hasselwander, Andrew J.; Behrstock, Alissa F.; Blackburn, Ian R.; Johnson, Rurik C.; Roemer, Stephen C.

    1998-07-01

    Studies have related changes in snow albedo to snow crystal structure and to the presence of surface debris (i.e. pine needles), but there has been less attention given to the existence of algae in snow. An increase in the number of snow algae could also decrease albedo and increase snowmelt rates. The primary purpose of this paper is to document how solar irradiance serves to control the developing stages of algae in snow. Snow algae do not appear near the surface until there is meltwater in the snowpack. Low levels of solar irradiance penetrate through the snowpack and germinate snow algal resting stages that lie underneath, and snow algal growth is enhanced by available gases and nutrients. Flagellate cells swim through the snowpack in the meltwater around the snow crystals, and cells are positioned according to irradiance and spectral differences. In this study, Chloromonas sp.-D strains 582C and 582D, isolated from the upper 20 cm of snowpacks in the Tughill Plateau, Whetstone Gulf State Park, NY, were used to investigate mating strategies under different irradiance levels and spectral compositions in the laboratory, and the irradiance levels used in the experiments correlated with those recorded from the upper 20 cm of snow. Using similar irradiance levels, blue light regimes produced more matings than green and red light regimes. There were no trends in mating when comparing green and red light regimes. When red light regimes of higher photon irradiance (85 mol m-2 s-1) were compared with those of blue light regimes of lower irradiance (30 mol m-2 s-1), more mating occurred under red light. A photon irradiance of 95 mol m-2 s-1 [photosynthetically active radiation (PAR) of 400-700 nm] produced the most mating under both wide-spectrum (WS) and cool-white (CW) regimes, but more mating occurred under CW in all irradiances tested. Mating pairs of three types were observed: oblong-oblong (o-o), oblong-sphere (o-s) and sphere-sphere (s-s). Cell packs that produced

  8. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse.

  9. Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal by-product meals from the Hawaiian biofuels industry were evaluated as protein ingredients in diets for juveniles of Nile tilapia (Oreochromis niloticus). Four experimental diets were formulated to contain 40% protein and were made with fish meal, soybean meal, whole diatom (Nanofrustulum sp.)...

  10. [Generalized behavior study on the growth dynamics for dominant algae species forming algal bloom in the three Gorges reservoir region].

    PubMed

    Liu, Xin-an; Feng, Li; Jia, Charles Q

    2008-08-01

    From the blue-green algae species a representative algae, namely, ChloreUlla vulgaris (CV)to belong to Chlorophyta is selected as one of algae species studied in order to investigate the effect of TN, TP on the growth behavior of CV with the Monod equation, and calculate the semi-saturation constants of CV to TP(K(SP)) and TN(K(SN)). K(SN) > K(SP) showed that the effect of TP on growth of CV is obvious significant than that of TN. The growth rate of Chlorella vulgaris is very sensitive to the concentration of phosphorus: Compares with the blank value, the special growth rate (mu) has been enhanced under the low concentration of 0.002 mg x L(-1), then the concentration turned to 0.2 mg x L(-1) the special growth rate (mu) has been enhanced obviously; but there was hardly any change under the concentration of nitrogen from 0.000 to 0.050 mg x L(-1). At the same time, in order to reveal whether there was a generalized character associating the growth dynamics of CV with that of dominant blue-green algae species, the dynamic models including CV constructed from our experimental data, dominant blue-green algae and sea algae from literature information have been compared and analyzed systemically, and the results showed that their growth dynamics behavior and ecological characteristic were extremely similar and common. According to extrapolation of the intercommunity of all growth dynamics we could describe and show availably there is a common behavior to the growth of dominant blue-green algae in the Three Gorges reservoir region. This conclusion would have some important theoretical and applied significance.

  11. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

    PubMed

    Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng

    2014-07-15

    Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes.

  12. Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032.

    PubMed

    Villa, Juan A; Ray, Erin E; Barney, Brett M

    2014-02-01

    Microalgae are viewed as a potential future agricultural and biofuel feedstock and also provide an ideal biological means of carbon sequestration based on rapid growth rates and high biomass yields. Any potential improvement using high-yield microalgae to fix carbon will require additional fertilizer inputs to provide the necessary nitrogen required for protein and nucleotide biosynthesis. The free-living diazotroph Azotobacter vinelandii can fix nitrogen under aerobic conditions in the presence of reduced carbon sources such as sucrose or glycerol and is also known to produce a variety of siderophores to scavenge different metals from the environment. In this study, we identified two strains of green algae, Neochloris oleoabundans and Scenedesmus sp. BA032, that are able to utilize the A. vinelandii siderophore azotobactin as a source of nitrogen to support growth. When grown in a co-culture, S. sp. BA032 and N. oleoabundans obtained the nitrogen required for growth through the association with A. vinelandii. These results, indicating a commensalistic relationship, provide a proof of concept for developing a mutualistic or symbiotic relationship between these two species using siderophores as a nitrogen shuttle and might further indicate an additional fate of siderophores in the environment.

  13. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  14. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation.

    PubMed

    Laliberté, G; Hellebust, J A

    1989-11-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent K(m) values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments.

  15. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  16. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.

    PubMed

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-04-04

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used "dynamic" metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel.

  17. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf.

    PubMed

    Hume, B C C; D'Angelo, C; Smith, E G; Stevens, J R; Burt, J; Wiedenmann, J

    2015-02-27

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf.

  18. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  19. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

    PubMed Central

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-01-01

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used “dynamic” metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel. PMID:28374798

  20. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf

    PubMed Central

    Hume, B. C. C.; D'Angelo, C.; Smith, E. G.; Stevens, J. R.; Burt, J.; Wiedenmann, J.

    2015-01-01

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf. PMID:25720577

  1. [Research status and prospect on hot water extract of Chlorella: the high value-added bioactive substance from Chlorella].

    PubMed

    Zhuang, Xiuyuan; Huang, Yingming; Zhang, Daojing; Tao, Liming; Li, Yuanguang

    2015-01-01

    Chlorella is nutritious and has been used as a functional food much earlier than the other microalgae. C. pyrenoidosa, the potential microalgae which is currently cultured and developed for the new strategic industry of biofuels production and biological CO2 fixation, is a new resource food announced by the Ministry of Health of the People's Republic of China late 2012. Accumulation of high value-added substances in C. pyrenoidosa during the cultivation for lipid makes it possible to reduce the costs for C. pyrenoidosa-based biofuels production. Among these potential substances, hot water extract of Chlorella (CE), commercially known as "Chlorella growth factor", is the unique one that makes Chlorella more precious than the other algae, and the market price of CE is high. It is believed that CE is effective in growth promotion and immunoregulation. However, there is no systematic analysis on the research status of CE and its bioactivity. The present report summarized recent research progress of CE and its bioactivity. Generally, besides the main effect on immunoregulation and tumor inhibition, CE was efficient in improving metabolic syndrome, scavenging for free radicals, protecting against ultraviolet damage, chelating heavy metals, and protecting liver and bowel. Several major challenges in CE research as well as its prospects were also analysed in the present report.

  2. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  3. Study of ecotoxicity of silver nanoparticles using algae

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-11-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  4. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species.

    PubMed

    Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-05-01

    Three Gram-negative, non-motile, strictly aerobic strains, designated LNM-20(T), LCM-1 and LAM-13, were isolated from thalli of the marine red alga Porphyra yezoensis. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates were associated with the genus Polaribacter in the family Flavobacteriaceae and were most closely related to Polaribacter dokdonensis DSW-5(T) (96.2 % 16S rRNA gene sequence similarity) and Polaribacter gangjinensis K17-16(T) (95.0 %). The DNA G+C content of the isolates was 28.6-29.2 mol%. DNA-DNA hybridization analysis showed that the isolates belonged to a single species distinct from both of their closest relatives. The only isoprenoid quinone detected was menaquinone-6. The main polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. The major fatty acids were iso-C15 : 0, iso-C15 : 1ω10c and iso-C15 : 0 3-OH. The phenotypic features of strain LNM-20(T) differed from those of their closest relatives in several regards (colony colour, growth with 1 % NaCl and on TSA plus 2.5 % NaCl, hydrolysis of Tweens 40 and 80, and oxidization of five carbon compounds). On the basis of phylogenetic, chemotaxonomic and phenotypic analysis, the isolates represent a novel species in the genus Polaribacter, for which the name Polaribacter porphyrae sp. nov. is proposed. The type strain is LNM-20(T) ( = LMG 26671(T)  = NBRC 108759(T)). Emended descriptions of the genus Polaribacter and P. dokdonensis and P. gangjinensis are also proposed.

  5. Increase in Chlorella strains calorific values when grown in low nitrogen medium.

    PubMed

    Illman; Scragg; Shales

    2000-11-01

    The calorific value of five strains of Chlorella grown in Watanabe and low-nitrogen medium was determined. The algae were grown in small (2L) stirred tank bioreactors and the best growth was obtained with Chlorella vulgaris with a growth rate of 0.99 d(-1) and the highest calorific value (29 KJ/g) was obtained with C. emersonii. The cellular components were assayed at the end of the growth period and the calorific value appears to be linked to the lipid content rather than any other component.

  6. Chlorella-derived multicomponent supplementation increases aerobic endurance capacity in young individuals

    PubMed Central

    Umemoto, Sachiro; Otsuki, Takeshi

    2014-01-01

    Chlorella, a unicellular green alga, contains a variety of nutrients including amino acids, carbohydrates, vitamins, and minerals. A previous animal study found that maximal swimming time in mice increased after 14 days on a diet including Chlorella powder compared to no change in swimming performance on a normal diet. However, it is currently unknown whether Chlorella-derived multicomponent supplementation increases aerobic endurance capacity in humans. We investigated the effects of Chlorella-derived supplementation on peak oxygen uptake during incremental maximal cycling in young individuals using a double-blinded, placebo-controlled, crossover study design. Seven men and three women (mean age, 21.3 year) were allocated to placebo or Chlorella tablets (15 tablets × twice per day) for 4 weeks, with at least a 6-week washout period between trials, in a randomized order. Peak oxygen uptake significantly increased after Chlorella supplementation (before vs after, 37.9 ± 1.9 vs 41.4 ± 1.9 ml/kg/min, p = 0.003), but not with placebo (39.4 ± 2.2 vs 40.1 ± 2.1 ml/kg/min, p = 0.38). The change in peak oxygen uptake over the 4-week trial was significantly greater in the Chlorella trial than in the placebo trial (3.5 ± 0.9 vs 0.7 ± 0.8 ml/kg/min, p = 0.03). These results suggest that Chlorella-derived multicomponent supplementation increases aerobic endurance capacity in young individuals. PMID:25320462

  7. Viruses of eukaryotic green algae. Progress report, August 1, 1982-July 1, 1984

    SciTech Connect

    Van Etten, J.L.

    1984-01-01

    The virus, PBCV-1, which infects the eukaryotic, green alga, Chlorella-NC64A has been characterized and we have begun to look at detailed events associated with its growth cycle. In addition, we have recently discovered other dsDNA viruses from natural sources which replicate in Chlorella NC64A. These viruses can be distinguished from PBCV-1 and from each other by plaque morphology, DNA restriction patterns, and by their resistance to certain restriction endonucleases.

  8. Roseitalea porphyridii gen. nov., sp. nov., isolated from a red alga and reclassification of Hoeflea suaedae (Chung et al., 2013) as Pseudohoeflea suaedae gen. nov., comb. nov.

    PubMed

    Hyeon, Jong Woo; Jeong, Sang Eun; Baek, Kyunghwa; Jeon, Che Ok

    2016-11-02

    A Gram-staining-negative, strictly aerobic bacterial strain, designated MA7-20T, was isolated from a marine alga, Porphyridium marinum, in Korea. Cells showing oxidase-positive and catalase-positive activities were motile rods with bipolar flagella. Growth of strain MA7-20T was observed at 15-45 C (optimum, 30-37 C), at pH 6.0-10.5 (optimum, pH 7.0-8.0) and in the presence of 0-7 % (w/v) NaCl (optimum, 2-3 %). Strain MA7-20T contained summed feature 8 (comprising C18:1 ω7c/C18:1 ω6c) and 11-methyl-C18:1 ω7c and C18:0 as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyl-N-methylethanolamine. The G+C content of the genomic DNA was 61.5 mol%. Strain MA7-20T was most closely related to Hoeflea suaedae YC6898T, Oricola cellulosilytica CC-AMH-OT and Nitratireductor basaltis J3T with 96.0 %, 95.8 % and 95.8 % 16S rRNA gene sequence similarities, respectively, but the strain formed a distinct phylogenetic lineage from them within the family Phyllobacteriaceae with a low bootstrap value. H. suaedae also formed a clearly distinct phylogenetic lineage from other members of the genus Hoeflea and closely related genera. On the basis of phenotypic, chemotaxonomic and molecular properties, strain MA7-20T represents a novel genus of the family Phyllobacteriaceae, for which the name Roseitalea porphyridii gen. nov., sp. nov. is proposed. The type strain is MA7-20T (=KACC 18807T =JCM 31538T). In addition, H. suaedae is also reclassified as Pseudohoeflea suaedae gen. nov., comb. nov. (type strain YC6898T =KACC 14911T =NBRC 107700T).

  9. Granulosicoccus undariae sp. nov., a member of the family Granulosicoccaceae isolated from a brown algae reservoir and emended description of the genus Granulosicoccus.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Won, Sung-Min; Park, Ja-Min; Yoon, Jung-Hoon

    2014-11-01

    A Gram-stain-negative, aerobic, non-flagellated and coccoid bacterial strain, W-BA3(T), which was isolated from a brown algae reservoir in Wando of South Korea, was characterized taxonomically. Strain W-BA3(T) was found to grow optimally at 30 °C, at pH 7.0-8.0 and in presence of 2.0 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain W-BA3(T) clustered with the type strains of Granulosicoccus antarcticus and Granulosicoccus coccoides, with which it exhibited sequence similarity values of 98.4-99.3 %. Sequence similarity values of strain W-BA3(T) to the type strains of the other recognized species were less than 90.2 %. Strain W-BA3(T) was found to contain Q-8 as the predominant ubiquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C18:1 ω7c and C16:0 as the major fatty acids. The major polar lipids of strain W-BA3(T), which were identified as phosphatidylethanolamine and phosphatidylglycerol, were similar to those of the type strains of G. antarcticus and G. coccoides. The DNA G+C content of strain W-BA3(T) was 56.0 mol % and its mean DNA-DNA relatedness values with the type strains of G. coccoides and G. antarcticus were 27 and 17 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain W-BA3(T) is separated from the two Granulosicoccus species. On the basis of the data presented, strain W-BA3(T) is considered to represent a novel species of the genus Granulosicoccus, for which the name Granulosicoccus undariae sp. nov. is proposed. The type strain is W-BA3(T) (=KCTC 42134(T) = NBRC 110411(T)). An emended description of the genus Granulosicoccus is also proposed.

  10. Catenovulum maritimus sp. nov., a novel agarolytic gammaproteobacterium isolated from the marine alga Porphyra yezoensis Ueda (AST58-103), and emended description of the genus Catenovulum.

    PubMed

    Li, Dong-Qi; Zhou, Yan-Xia; Liu, Tao; Chen, Guan-Jun; Du, Zong-Jun

    2015-08-01

    A novel agarolytic, Gram-stain negative, heterotrophic, facultatively anaerobic and pale-white pigmented bacterial strain, designated Q1(T), was isolated from the marine alga Porphyra yezoensis Ueda (AST58-103) collected from the coastal area of Weihai, China. The cells are motile by means of peritrichous flagella. The isolate requires NaCl for growth, while seawater is not necessary, and growth occurs optimally at about 30-33 °C, in 1-3 % (w/v) NaCl and at pH 7-7.5. Strain Q1(T) shows oxidase-positive and catalase-negative activities, and possesses the ability to hydrolyse starch and alginate, but not cellulose, gelatin, urea or Tween-80. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain Q1(T) is affiliated with the family Alteromonadaceae within the class Gammaproteobacteria. The isolate, strain Q1(T), is most closely related to Catenovulum agarivorans YM01(T) (94.85 %), with less than 91.2 % sequence similarity to other close relatives with validly published names. The draft genome sequence of strain Q1(T) consists of 62 contigs (>200 bp) of 4,548,270 bp. The genomes of Q1(T) and YM01(T) have an ANI value of 70.7 %, and the POCP value between the two genomes is 64.4 %. The genomic DNA G+C content of strain Q1(T) is 37.9 mol% as calculated from the draft genome sequence. The main isoprenoid quinone is ubiquinone-8. The predominant cellular fatty acids are summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), C16:0 and C18:1 ω7c. The major polar lipids are phosphatidylethanolamine and phosphatidylglycerol. Based on data from a polyphasic chemotaxonomic, physiological and biochemical study, strain Q1(T) should be classified as a novel species of the genus Catenovulum, for which the name Catenovulum maritimus sp. nov. is proposed. The type strain is Q1(T) (=CICC 10836(T)=DSM 28813(T)).

  11. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities.

    PubMed

    Bell, Tisza A S; Prithiviraj, Bharath; Wahlen, Brad D; Fields, Matthew W; Peyton, Brent M

    2015-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal "crop." In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open

  12. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE PAGES

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; ...

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  13. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities

    PubMed Central

    Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an

  14. Effects of nickel and pH on the growth of Chlorella vulgaris

    SciTech Connect

    Lustigman, B.; Lee, L.H.; Khalil, A.

    1995-07-01

    Chlorella is a spherical, unicellular, eukaryotic green algae. It is an obligate photoautotrophy containing chlorophylls a and b. It is a frequent symbiont of many other organisms such as paramecium, hydra and sponges and is important in fresh and marine environments, as well as in the soil. For these reasons, it has been suggested that Chlorella be used for metabolic studies as an indicator of environmental pollution. Ability of microorganisms to grow in environments containing high levels of toxic metals is frequently due to the organisms` capacity for adsorption of these ions and the role that they may play as essential cofactors in metalloenzymes as is the case for nickel. The purpose of this study was to determine the effect of nickel on the growth of Chlorella vulgaris. 19 refs., 4 figs., 1 tab.

  15. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  16. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  17. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  18. Microfiltration for separation of green algae from water.

    PubMed

    Hung, M T; Liu, J C

    2006-08-15

    Cross-flow microfiltration was used for separation of green algae, Chlorella sp., from freshwater. The transmembrane pressure (TMP) was adjusted at 40, 50 and 60 kPa, respectively. The cross-flow velocity was set at 0.43 m/s for laminar flow and 0.84 m/s for turbulent flow, respectively. The results showed that flux increased as TMP increased from 40 to 50 kPa. But drastic flux decline was observed when operating at TMP of 60 kPa. Raising cross-flow velocity increased the initial flux of MF under TMP of 60 kPa. Nevertheless, implementing turbulent cross-flow did not improve the drastic flux decline under the highest TMP. Preozonation increased the dissolved organic carbon, decreased algal viability and made the size of algal cells smaller. It also increased dissolved polysaccharide that derived from extracellular organic matter (EOM). Different effects of preozonation on flux behavior of MF were observed when utilizing hydrophobic and hydrophilic membrane. Generally speaking, preozonation improved performance of microfiltration by reducing cake compressibility and the biomass loading when both membranes were used. However, dissolved polysaccharide released during preozonation was adsorbed onto the hydrophobic membrane. Consequently, fouling resistance of the hydrophobic membrane became higher. These arguments were verified by classification of hydrodynamic resistances.

  19. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review.

    PubMed

    Doucha, Jirí; Lívanský, Karel; Kotrbácek, Václav; Zachleder, Vilém

    2009-07-01

    Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70-100 g Chlorella dry mass l(-1)) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.

  20. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    PubMed

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur.

  1. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  2. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  3. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  4. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  5. Growth kinetics and yield study on Chlorella pyrenoidosa in chemically defined media

    SciTech Connect

    Joung, J.J.; Akin, C.

    1983-01-01

    A Chlorella culture free from heterotrophic bacteria was obtained by eliminating the bacteria with successive use of antibiotics and agar plants. The purified Chlorella was cultured in chemically defined media. Under a photon flux (16.7 mw/cmS) similar to insolation, both heterotrophic and mixotrophic cultures were luxurious but the growth rates of autotrophic cultures were reduced substantially. The Chlorella culture grew most rapidly at 30 C in the absence of heterotrophic bacteria, and the highest specific growth rates were 1.43 x 10 h and 0.46 x 10 h for mixotrophic and autotrophic cultures, respectively. The highest photosynthetic efficiency over its growth period was 2.9% for autotrophic cultures. Elimination of heterotrophic bacteria from Chlorella cultures improved the algal growth rate as well as biomass yield significantly. A parasite of 0.1- m size was identified. The motile microorganism played an important role in the growth of the Chlorella and appeared to be common to green algae. 16 references, 2 tables.

  6. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system.

    PubMed

    Chi, Zhanyou; Elloy, Farah; Xie, Yuxiao; Hu, Yucai; Chen, Shulin

    2014-01-01

    Using microalgae to capture CO2 from flue gas is an ideal way to reduce CO2 emission, but this is challenged by the high cost of carbon capture and transportation. To address this problem, a bicarbonate-based integrated carbon capture and algae production system (BICCAPS) has been proposed, in which bicarbonate is used for algae culture, and the regenerated carbonate from this process can be used to capture more CO2. High-concentration bicarbonate is obligate for the BICCAPS. Thus, different strains of microalgae and cyanobacteria were tested in this study for their capability to grow in high-concentration NaHCO3. The highest NaHCO3 concentrations they are tolerant to were determined as 0.30 M for Synechocystis sp. PCC6803, 0.60 M for Cyanothece sp., 0.10 M for Chlorella sorokiniana, 0.60 M for Dunaliella salina, and 0.30 M for Dunaliella viridis and Dunaliella primolecta. In further study, biomass production from culture of D. primolecta in an Erlenmeyer flask with either 0.30 M NaHCO3 or 2 % CO2 bubbling was compared, and no significant difference was detected. This indicates BICCAPS can reach the same biomass productivity as regular CO2 bubbling culture, and it is promising for future application.

  7. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  8. [Study of the growth and development of Chlorella on "Kosmos-1887"].

    PubMed

    Sychev, V N; Levinskikh, M A; Livanskaia, O G

    1989-01-01

    The growth, development and population characteristics of Chlorella cells flown for 13 days in space were investigated during their postflight cultivation. The growth rate of flown algae did not differ from that of ground-based controls in terms of increases in the cell number and biomass. All basic parameters of the specimens (generation time, number of developing autospores, time ratio of developmental phases) were ontogentically normal. Exposure of the algae to space flight as a component of the algobacterial cenosis--fish autotrophic-heterotrophic system produced no significant effect of the population or individual specimens during their postflight cultivation.

  9. Ammonium nitrogen removal in batch cultures treating digested piggery wastewater with microalgae Oedogonium sp.

    PubMed

    Wang, Haiping; Hu, Zhiquan; Xiao, Bo; Cheng, Qunpeng; Li, Fanghua

    2013-01-01

    Due to the nutrient characteristics of the high concentration of available ammonium in digested piggery wastewater (DPW), microalgae can be used to treat DPW before its final discharge. Four green microalgae (Hydrodictyaceae reticulatum Lag, Scenedesmus obliquus, Oedogonium sp. and Chlorella pyrenoidosa) and three blue-green algae (Anabaena flos-aquae, Oscillatoria amoena Gom and Spirulina platensis) were used to remove the nutrients (N, P, C), especially ammonium nitrogen (NH4(+)-N), from diluted DPW with 300 mg/L algae density in batch tests. The microalgae with the best NH4(+)-N nutrient removal was then selected for further optimization of the variables to improve NH4(+)-N removal efficiency using a central composite design (CCD) experiment. Taking into account the nutrient removal efficiency, Oedogonium sp. showed the best performance (reduction of 95.9% NH4(+)-N, 92.9% total phosphorus (TP) and 62.5% chemical oxygen demand (COD)) based on the results of the batch tests. The CCD results suggested that the optimal values of variables were initial Oedogonium sp. density of 399.2 mg/L and DPW diluted by 16.3, while the predicted value of NH4(+)-N removal efficiency obtained was 97.0%.

  10. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater.

    PubMed

    Li, Yecong; Zhou, Wenguang; Hu, Bing; Min, Min; Chen, Paul; Ruan, Roger R

    2012-09-01

    In this research, the effect of light intensity on biomass accumulation, wastewater nutrient removal through algae cultivation, and biodiesel productivity was investigated with algae species Chlorella kessleri and Chlorella protothecoide. The light intensities studied were 0, 15, 30, 60, 120, and 200 µmol m(-2) s(-1). The results showed that light intensity had profound impact on tested responses for both strains, and the dependence of these responses on light intensity varied with different algae strains. For C. kessleri, the optimum light intensity was 120 µmol m(-2) S(-1) for all responses except for COD removal. For C. protothecoide, the optimum light intensity was 30 µmol m(-2) S(-1). The major components of the biodiesel produced from algae biomass were 16-C and 18-C FAME, and the highest biodiesel contents were 24.19% and 19.48% of dried biomass for C. kessleri and C. protothecoide, respectively. Both species were capable of wastewater nutrients removal under all lighting conditions with high removal efficiencies.

  11. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  12. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  13. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  14. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  15. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  16. Investigating the feasibility of growing algae for fuel in Southern nevada

    NASA Astrophysics Data System (ADS)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  17. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae.

  18. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers.

    PubMed

    Schuurmans, R Milou; van Alphen, Pascal; Schuurmans, J Merijn; Matthijs, Hans C P; Hellingwerf, Klaas J

    2015-01-01

    The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively.

  19. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers

    PubMed Central

    Schuurmans, R. Milou; van Alphen, Pascal; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Hellingwerf, Klaas J.

    2015-01-01

    The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively. PMID:26394153

  20. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    PubMed Central

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  1. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  2. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.

    PubMed

    Nancucheo, Ivan; Barrie Johnson, D

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30°C, with a corresponding culture doubling time of 9 h. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12-14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within 3 days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolized by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilized by the more fastidious heterotroph "Acidocella aromatica." The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters (MIWs) is discussed.

  3. The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate.

    PubMed

    Hou, Qingjie; Nie, Changliang; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yang, Zhigang

    2016-10-01

    Five strains algae (Golenkinia sp. SDEC-16, Chlorella vulgaris, Selenastrum capricornutum, Scenedesmus SDEC-8 and Scenedesmus SDEC-13) were screened as an effective way to promote recover electricity from MFC for kitchen waste anaerobically digested effluent (KWADE) treatment. The highest OCV, power density, biomass concentration and total lipid content were obtained with Golenkinia sp. SDEC-16 as the co-inoculum, which were 170mV, 6255mWm(-3), 325mgL(-1) and 38%, respectively. Characteristics of the organics in KWADE were analyzed, and the result showed that the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions during the operation. Maximum COD and TN removal efficiency were 43.59% and 37.39% when inoculated with Golenkinia sp. SDEC-16, which were roughly 3.22 and 3.04 times higher than that of S. capricornutum. This study demonstrated that Golenkinia sp. SDEC-16 was a promising species for bioelectricity generation, lipid production and KWADE treatment.

  4. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W

    PubMed Central

    Blanc, Guillaume; Duncan, Garry; Agarkova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Van Etten, James L.

    2010-01-01

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes. PMID:20852019

  5. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    SciTech Connect

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangailinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Etten, James L. Van

    2010-05-06

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

  6. Comparative toxicity and structure-activity in Chlorella and Tetrahymena: Monosubstituted phenols

    SciTech Connect

    Jaworska, J.S.; Schultz, T.W. )

    1991-07-01

    The relative toxicity of selected monosubstituted phenols has been assessed by Kramer and Truemper in the Chlorella vulgaris assay. The authors examined population growth inhibition of this simple green algae under short-term static conditions for 33 derivatives. However, efforts to develop a strong predictive quantitative structure-activity relationship (QSAR) met with limited success because they modeled across modes of toxic action or segregated derivatives such as positional isomers (i.e., ortho-, meta-, para-). In an effort to further their understanding of the relationships of ecotoxic effects of phenols, the authors have evaluated the same derivatives reported by Kramer and Truemper in the Tetrahymena pyriformis population growth assay, compared the responses in both systems and developed QSARs for the Chlorella vulgaris data based on mechanisms of action.

  7. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    PubMed

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  8. Critical conditions for ferric chloride-induced flocculation of freshwater algae.

    PubMed

    Wyatt, Nicholas B; Gloe, Lindsey M; Brady, Patrick V; Hewson, John C; Grillet, Anne M; Hankins, Matthew G; Pohl, Phillip I

    2012-02-01

    The effects of algae concentration, ferric chloride dose, and pH on the flocculation efficiency of the freshwater algae Chlorella zofingiensis can be understood by considering the nature of the electrostatic charges on the algae and precipitate surfaces. Two critical conditions are identified which, when met, result in flocculation efficiencies in excess of 90% for freshwater algae. First, a minimum concentration of ferric chloride is required to overcome the electrostatic stabilization of the algae and promote bridging of algae cells by hydroxide precipitates. At low algae concentrations, the minimum amount of ferric chloride required increases linearly with algae concentration, characteristic of flocculation primarily through electrostatic bridging by hydroxide precipitates. At higher algae concentrations, the minimum required concentration of ferric chloride for flocculation is independent of algae concentration, suggesting a change in the primary flocculation mechanism from bridging to sweep flocculation. Second, the algae must have a negative surface charge. Experiments and surface complexation modeling show that the surface charge of C. zofingiensis is negative above a pH of 4.0 ± 0.3 which agrees well with the minimum pH required for effective flocculation. These critical flocculation criteria can be extended to other freshwater algae to design effective flocculation systems.

  9. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  10. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples.

    PubMed

    LeBlanc, Kelly L; Smith, Matthew S; Wallschläger, Dirk

    2012-06-05

    In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species.

  11. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    SciTech Connect

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to

  12. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (p<0.1) and a positive association between chlorella-induced changes in global hypermethylation and urinary 1-OHP (p<0.01). Therefore, our study suggests chlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms.

  13. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    PubMed Central

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  14. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    PubMed

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  15. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  16. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    PubMed

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain.

  17. [Study on the sorption of 4-octylphenol by freshwater algae].

    PubMed

    Peng, Zhang-e; Yang, Hai-zhen; Wang, Bei-bei; Deng, Nan-sheng

    2009-12-01

    The sorption of 4-octylphenol (4-OP) by two freshwater algae was investigated. Results showed that the sorption of 4-octylphenol by algae was obvious and quick, where 20% of initial 4-OP (2 mg/L) was accumulated by Chlorella vulgaris (CV) and 46% initial 4-OP (2 mg/L) was accumulated by Anabaena cylindrical (AC) after 5 min incubation. The sorption got equilibrium at 1 h after incubation. Langmuir sorption model was good appropriate type for this sorption. The effect of pH value on CV sorption was obvious than that on AC sorption. The sorption capacity of the biomass of two algae increased with the decrease of pH value. The analyzing of interaction between algae and 4-octylphenol was performed by fluorescence spectrum. Results showed that the algae could weaker the fluorescence spectrum intensity of 4-octylphenol and result in red shift of the maximum absorbance wavelength of mixture solution. Based on the results, it was speculated that algae bound with the contamination could use the near UV region of solar radiation and induced the contamination degradation.

  18. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  19. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth).

  20. Effects of Pb(Ⅱ) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription.

    PubMed

    Xiong, Bang; Zhang, Wei; Chen, Lin; Lin, Kuang-Fei; Guo, Mei-Jin; Wang, Wei-Liang; Cui, Xin-Hong; Bi, Hua-Song; Wang, Bin

    2014-11-01

    Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms.

  1. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    PubMed Central

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  2. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

    PubMed

    Cerff, Martin; Morweiser, Michael; Dillschneider, Robert; Michel, Aymeé; Menzel, Katharina; Posten, Clemens

    2012-08-01

    In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements.

  3. Potential use of duckweed based anaerobic digester effluent as a feed source for heterotrophic growth of micro-algae

    NASA Astrophysics Data System (ADS)

    Ahmadi, L.; Dupont, R.

    2013-12-01

    Finding an alternative source of energy for the growing world's demand is a challenging task being considered by many scientists. Various types of renewable energy alternatives are being investigated by researchers around the world. The abundance of duckweed (i.e., Lemna and Wolfia sp.) in wetlands and wastewater lagoons, their rapid growth, and their capacity for nutrient, metal and other contaminant removal from wastewater suggests their potential as an inexpensive source of biomass for biofuel production. Another source of biomass for biofuel and energy production is micro-algae. The large-scale growth of micro-algae can potentially be achieved in a smaller footprint and at a higher rate and lower cost via heterotrophic growth compared to autotrophic growth for specific species that can grow under both conditions. Here we describe two types of research. First, two lab-scale, 5 L anaerobic digesters containing municipal raw wastewater that were set up, maintained and monitored over the course of 6 months using duckweed as the feed source. The pH, salinity, amount of gas production and gas composition were measured on a daily basis. The results from these measurements show that duckweed can be used as a good source of biofuel production in the form of methane gas. The second set of reactors consisted of two 1 L batch fed reactors containing algae (Chlorella vulgaris) grown in the lab environment heterotrophically. The pH and DO were monitored on a daily basis in order to investigate their effect on algae growth. Lipid analysis of the harvested algal biomass was done to investigate the efficiency of harvestable biofuel products. A nutrient solution containing glucose as an energy source was used as the initial feed solution, and the potential substitution of the glucose solution with the organic carbon residue from the duckweed digester effluent was investigated. Methane production, carbon stabilization, and gas composition results from the duckweed fed anaerobic

  4. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products.

    PubMed

    Salati, Silvia; D'Imporzano, Giuliana; Menin, Barbara; Veronesi, Davide; Scaglia, Barbara; Abbruscato, Pamela; Mariani, Paola; Adani, Fabrizio

    2017-04-01

    A local strain of Chlorella vulgaris was cultivated by using cheese whey (CW), white wine lees (WL) and glycerol (Gly), coming from local agro-industrial activities, as C sources (2.2gCL(-1)) to support algae production under mixotrophic conditions in Lombardy. In continuous mode, Chlorella increased biomass production compared with autotrophic conditions by 1.5-2 times, with the best results obtained for the CW substrate, i.e. 0.52gL(-1)d(-1) of algal biomass vs. 0.24gL(-1)d(-1) of algal biomass for autotrophic conditions, and protein content for both conditions adopted close to 500gkg(-1) DM. Mixotrophic conditions gave a much higher energy recovery efficiency (EF) than autotrophic conditions, i.e. organic carbon energy efficiency (EFoc) of 32% and total energy efficiency (Eft) of 8%, respectively, suggesting the potential for the culture of algae as a sustainable practice to recover efficiently waste-C and a means of local protein production.

  5. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  6. SEQUENCE AND ANNOTATION OF THE 369-KB NY-2A AND THE 345-KB AR158 VIRUSES THAT INFECT CHLORELLA NC64A

    PubMed Central

    Fitzgerald, Lisa A.; Graves, Michael V.; Li, Xiao; Feldblyum, Tamara; Nierman, William C.; Van Etten, James L.

    2007-01-01

    Viruses NY-2A and AR158, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A contains 404 putative protein-encoding and 7 tRNA-encoding genes and AR158 contains 360 putative protein-encoding and 6 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Two of the NY-2A genes encode inteins, the large subunit of ribonucleotide reductase and a superfamily II helicase. These are the first inteins to be detected in the chlorella viruses. Approximately 40% of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. These include GDP-D-mannose dehydratase, fucose synthase, aspartate transcarbamylase, Ca++ transporting ATPase and ubiquitin. Comparison of NY-2A and AR158 protein-encoding genes with the prototype chlorella virus PBCV-1 indicate that 85% of the genes are present in all three viruses. PMID:17027058

  7. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    SciTech Connect

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  8. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis.

    PubMed

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89mgg(-1) dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3mgL(-1)day(-1), respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  9. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    SciTech Connect

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T.

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  10. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  11. Viruses of eukaryotic green algae. Final technical report, June 1, 1989--February 1, 1992

    SciTech Connect

    Van Etten, J.L.

    1992-12-31

    We have isolated and partially characterized many large, polyhedral, DNA containing, plaque forming viruses which infect certain unicellular, eukaryotic, chlorella-like green algae. These viruses have several unique features, including the fact that they code for DNA site-specific endonucleases and DNA methyltransferases. The primary objectives of this study were to identify, clone, and characterize some of the virus-encoded DNA methyltransferases and DNA restriction endonucleases in order to understand their biological function.

  12. Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis.

    PubMed

    Shimakawa, Ginga; Akimoto, Seiji; Ueno, Yoshifumi; Wada, Ayumi; Shaku, Keiichiro; Takahashi, Yuichiro; Miyake, Chikahiro

    2016-12-01

    Some cyanobacteria, but not all, experience an induction of alternative electron flow (AEF) during CO2-limited photosynthesis. For example, Synechocystis sp. PCC 6803 (S. 6803) exhibits AEF, but Synechococcus elongatus sp. PCC 7942 does not. This difference is due to the presence of flavodiiron 2 and 4 proteins (FLV2/4) in S. 6803, which catalyze electron donation to O2. In this study, we observed a low-[CO2] induced AEF in the marine cyanobacterium Synechococcus sp. PCC 7002 that lacks FLV2/4. The AEF shows high affinity for O2, compared with AEF mediated by FLV2/4 in S. 6803, and can proceed under extreme low [O2] (about a few µM O2). Further, the transition from CO2-saturated to CO2-limited photosynthesis leads a preferential excitation of PSI to PSII and increased non-photochemical quenching of chlorophyll fluorescence. We found that the model green alga Chlamydomonas reinhardtii also has an O2-dependent AEF showing the same affinity for O2 as that in S. 7002. These data represent the diverse molecular mechanisms to drive AEF in cyanobacteria and green algae. In this paper, we further discuss the diversity, the evolution, and the physiological function of strategy to CO2-limitation in cyanobacterial and green algal photosynthesis.

  13. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  14. Effect of Chlorella sorokiniana on the biological denitrification of drinking water.

    PubMed

    Petrovič, Aleksandra; Simonič, Marjana

    2015-04-01

    The influence of Chlorella sorokiniana on drinking water's biological denitrification was studied at two different initial nitrate concentrations, 50 and 100 mg/L, respectively. Sucrose and grape juice were used as carbon sources. The experiments showed that the denitrification process in the presence of algae was, even at low concentrations, i.e. 50 mg/L of nitrate, slower than without them, but yet still more than 95% of nitrate was removed in 24 h. It was also discovered that, with the addition of ammonium and urea, the urea interfered much more with the denitrification process, as less than 50% of the initial nitrate was removed. However, algae did not contribute to the nitrate and ammonium removals, as the final concentrations of both in the presence of algae were higher by approx 5%. At 100 mg/L of initial nitrate, the denitrification kinetics in the presence of algae was apparently slower regarding those experiments at lower levels of nitrate and only 65-70% of nitrate was removed over 24 h. Using grape juice instead of sucrose improved the nitrate removal slightly.

  15. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process.

    PubMed

    Du, Zhenyi; Hu, Bing; Shi, Aimin; Ma, Xiaochen; Cheng, Yanling; Chen, Paul; Liu, Yuhuan; Lin, Xiangyang; Ruan, Roger

    2012-12-01

    This study investigated the feasibility of using recovered nutrients from hydrothermal carbonization (HTC) for cultivation of microalga Chlorella vulgaris. Different dilution multiples of 50, 100 and 200 were applied to the recycled process water from HTC and algal growth was compared among these media and a standard growth medium BG-11. Algae achieved a biomass concentration of 0.79 g/L on 50 × process water after 4 days. Algae removed total nitrogen, total phosphorus and chemical oxygen demand by 45.5-59.9%, 85.8-94.6% and 50.0-60.9%, respectively, on differently diluted process water. The fatty acid methyl ester yields for algae grown on the process water were 11.2% (50 ×), 11.2% (100 ×) and 9.7% (200 ×), which were significantly higher than 4.5% for BG-11. In addition, algae cultivated on process water had 18.9% higher carbon and 7.8% lower nitrogen contents than those on BG-11, indicating that they are very suitable as biofuel feedstocks.

  16. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-01-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor.

  17. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa.

    PubMed

    Wang, Shujuan; Wang, Xian; Poon, Karen; Wang, Yini; Li, Shangfu; Liu, Hongxia; Lin, Shuhai; Cai, Zongwei

    2013-09-01

    Triclosan that is widely used as antimicrobial agent has been detected as contaminant in various aquatic environments. In this work, removal and biodegradation of triclosan in water by using a ubiquitous green alga, Chlorella pyrenoidosa was investigated. When C. pyrenoidosa was exposed to a series concentration of triclosan from 100 to 800ngmL(-1), more than 50% of triclosan was eliminated by algal uptake from the culture medium during the first 1h exposure and reached equilibrium after the 6h treatment. In the biodegradation experiments, a removal percentage of 77.2% was obtained after C. pyrenoidosa was cultivated with 800ngmL(-1) triclosan for 96h. A major metabolite from the reductive dechlorination of triclosan was identified by using liquid chromatography coupled with electrospray ionization-mass spectrometry. The ultrastructural morphology of algal cells grown in the presence of triclosan was observed by using transmission electron microscopy and the growth of algal cells was detected. It was found that the trilcosan treatment resulted in the disruption of the chloroplast and the release of organic material into aquatic environment, which indicated that triclosan may affect membrane metabolism.

  18. Growth of Chlorella vulgaris and associated bacteria in photobioreactors.

    PubMed

    Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A

    2012-01-01

    The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non-axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water-based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture-independent molecular tools based on denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l(-1) and 2.0 day(-1) respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR-DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non-photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions.

  19. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    PubMed Central

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  20. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles.

    PubMed

    Fakhrullin, Rawil F; Shlykova, Lubov V; Zamaleeva, Alsu I; Nurgaliev, Danis K; Osin, Yuri N; García-Alonso, Javier; Paunov, Vesselin N

    2010-10-08

    Green algae are a promising platform for the development of biosensors and bioelectronic devices. Here we report a reliable single-step technique for the functionalisation of living unicellular green algae Chlorella pyrenoidosa with biocompatible 15 nm superparamagnetic nanoparticles stabilised with poly(allylamine hydrochloride). The magnetised algae cells can be manipulated and immobilised using external permanent magnets. The distribution of the nanoparticles on the cell walls of C. pyrenoidosa was studied by optical and fluorescence microscopy, TEM, SEM and EDX spectroscopy. The viability and the magnetic properties of the magnetised algae are studied in comparison with the native cells. The technique may find a number of potential applications in biotechnology and bioelectronics.

  1. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  2. High iron content and bioavailability in humans from four species of marine algae.

    PubMed

    García-Casal, Maria N; Pereira, Ana C; Leets, Irene; Ramírez, José; Quiroga, Maria F

    2007-12-01

    Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.

  3. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  4. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors.

    PubMed

    Li, Xiufeng; Xu, Han; Wu, Qingyu

    2007-11-01

    An integrated approach of biodiesel production from heterotrophic Chlorella protothecoides focused on scaling up fermentation in bioreactors was reported in this study. Through substrate feeding and fermentation process controls, the cell density of C. protothecoides achieved 15.5 g L(-1) in 5 L, 12.8 g L(-1) in 750 L, and 14.2 g L(-1) in 11,000 L bioreactors, respectively. Resulted from heterotrophic metabolism, the lipid content reached 46.1%, 48.7%, and 44.3% of cell dry weight in samples from 5 L, 750 L, and 11,000 L bioreactors, respectively. Transesterification of the microalgal oil was catalyzed by immobilized lipase from Candidia sp. 99-125. With 75% lipase (12,000 U g(-1), based on lipid quantity) and 3:1 molar ratio of methanol to oil batch-fed at three times, 98.15% of the oil was converted to monoalkyl esters of fatty acids in 12 h. The expanded biodiesel production rates were 7.02 g L(-1), 6.12 g L(-1), and 6.24 g L(-1) in 5 L, 750 L, and 11,000 L bioreactors, respectively. The properties of biodiesel from Chlorella were comparable to conventional diesel fuel and comply with the US Standard for Biodiesel (ASTM 6751). These results suggest that it is feasible to expand heterotrophic Chlorella fermentation for biodiesel production at the industry level.

  5. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors.

    PubMed

    Li, Yecong; Zhou, Wenguang; Hu, Bing; Min, Min; Chen, Paul; Ruan, Roger R

    2011-12-01

    The objectives of this study are to find the robust strains for the centrate cultivation system and to evaluate the effect of environmental factors including light intensity, light-dark cycle, and exogenous CO2 concentration on biomass accumulation, wastewater nutrient removal and biodiesel production. The results showed that all 14 algae strains from the genus of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were able to grow on centrate. The highest net biomass accumulation (2.01 g/L) was observed with Chlorella kessleri followed by Chlorella protothecoides (1.31 g/L), and both of them were proved to be capable of mixotrophic growth when cultivated on centrate. Environmental factors had significant effect on algal biomass accumulation, wastewater nutrients removal and biodiesel production. Higher light intensity and exogenous CO2 concentration with longer lighting period promote biomass accumulation, biodiesel production, as well as the removal of chemical oxygen demand and nitrogen, while, lower exogenous CO2 concentration promotes phosphorus removal.

  6. Heterotrophic Growth and Production of Xanthophylls by Chlorella pyrenoidosa

    PubMed Central

    Theriault, Robert J.

    1965-01-01

    The growth and level of xanthophylls of several representative species of green algae were investigated as a possible source of pigmentation for the egg yolk and broiler markets. Chlorella pyrenoidosa 7-11-05 was selected for fermentation studies because of its high level of xanthophylls and wide temperature range for growth. The heterotrophic metabolism was preferred because of the ease of adaptability to present fermentation equipment. When used as the sole carbon source, glucose was the only sugar, among many tested, that gave appreciable growth in illuminated shaken flasks. A dry cell weight of 90 g per liter and total xanthophylls of 450 mg per liter were obtained from 190 g per liter of glucose monohydrate in 168-hr illuminated shaken flasks. Higher levels of glucose decreased yields. In combination with glucose, monosaccharides, such as fructose and galactose, were readily assimilated. The 7-11-05 strain was adapted to galactose as the sole carbon source after six vegetative passages. Light of the proper intensity and duration stimulated total xanthophylls approximately 35%. The effect on dry cell weight and total xanthophylls of seven antibiotics added at various levels in shaken flasks was studied. Erythromycin was essentially stable throughout the fermentation and nontoxic up to 25 μg/ml, with only slight toxicity at higher levels. Both erythromycin and ristocetin were effective in controlling a high incidence of bacterial contamination in 30-liter fermentors. With the higher agitation and aeration rates possible in 30-liter fermentors, dry cell weights in excess of 100 g per liter and total xanthophylls of 467 to 512 mg per liter were readily obtained from 230 to 260 g per liter of glucose in 162-hr illuminated batch-type fermentations. Continuous-feed runs yielded a dry cell weight of 302 g per liter and total xanthophylls of 650 mg per liter from 520 g per liter of glucose. The type of Chlorella cell produced was an important consideration with

  7. Uptake and accumulation of exogenous docosahexaenoic acid by Chlorella.

    PubMed

    Hayashi, M; Yukino, T; Maruyama, I; Kido, S; Kitaoka, S

    2001-01-01

    Tuna oil or its hydrolysate was added to a culture of Chlorella for its nutritional fortification as a feed for rotifer. Exogenous docosahexaenoic acid (DHA) in its free form was taken up by the cells of Chlorella vulgaris strain K-22 and by other strains, but tuna oil was not taken up by the cells. Accumulated DHA was found by electron microscopy in the cells in oil droplets. All strains of Chlorella used in these experiments took up exogenous DHA into the cells. It seems that the structure of the cell wall did not affect the uptake of DHA into the Chlorella cells.

  8. Modelling and Optimization of Nannochloropsis and Chlorella Growth for Various Locations and Seasons

    NASA Astrophysics Data System (ADS)

    Gharagozloo, P. E.

    2014-12-01

    Efficient production of algal biofuels could reduce dependence on foreign oil providing domestic renewable energy. Algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural-resource requirements compared to terrestrial energy crops. Important factors controlling algal-lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae-growth kinetics for various bioreactor sizes and geometries without multiple, expensive measurement systems. In this work, we parameterize our physics-based computational algae growth model for the marine Nannochloropsis oceanica and freshwater Chlorella species. We then compare modelling results with experiments conducted in identical raceway ponds at six geographical locations in the United States (Hawaii, California, Arizona, Ohio, Georgia, and Florida) and three seasons through the Algae Testbed Public Private Partnership - Unified Field Studies. Results show that the computational model effectively predicts algae growth in systems across varying environments and identifies the causes for reductions in algal productivities. The model is then used to identify improvements to the cultivation system to produce higher biomass yields. This model could be used to study the effects of scale-up including the effects of predation, depth-decay of light (light extinction), and optimized nutrient and CO2 delivery. As more multifactorial data are accumulated for a variety of algal strains, the model could be used to select appropriate algal species for various geographic and climatic locations and seasons. Applying the model facilitates optimization of pond designs based on location and season.

  9. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  10. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  11. The Bioconcentration and Degradation of Nonylphenol and Nonylphenol Polyethoxylates by Chlorella vulgaris

    PubMed Central

    Sun, Hong-Wen; Hu, Hong-Wei; Wang, Lei; Yang, Ying; Huang, Guo-Lan

    2014-01-01

    Nonylphenol polyethoxylates (NPnEOs), a major class of nonionic surfactants, can easily enter into aquatic environments through various pathways due to their wide applications, which leads to the extensive existence of their relative stable metabolites, namely nonylphenol (NP) and mono- to tri-ethoxylates. This study investigated the bioconcentration and degradation of NP and NPnEO oligomers (n = 1–12) by a green algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP from water phase efficiently, and bioconcentration and degradation accounted for approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor) of 2.42 × 103. Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution profiles of the series homologues of the NPnEOs in algae and water phase were quite different from the initial homologue profile. The 48 h BCF of the NPnEO homologues increased with the length of the EO chain. Degradation extent of total NPnEOs by C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% remained in the algal cells. The algae removed the NPnEOs mainly through degradation. Due to rapid degradation, concentrations of the long chain NPnEO homologous in both water (n ≥ 2) and the algal phase (n ≥ 5) was quite low at the end of a 48 h experiment. PMID:24445260

  12. Suppression Subtractive Hybridization Reveals Transcript Profiling of Chlorella under Heterotrophy to Photoautotrophy Transition

    PubMed Central

    Huang, Jianke; Wang, Weiliang; Yin, Weibo; Hu, Zanmin; Li, Yuanguang

    2012-01-01

    Background Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. Methodology/Principal Findings In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. Conclusions/Significance The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds

  13. Basis for the Resistance of Several Algae to Microbial Decomposition

    PubMed Central

    Gunnison, Douglas; Alexander, Martin

    1975-01-01

    The basis for the resistance of certain algae to microbial decomposition in natural waters was investigated using Pediastrum duplex, Staurastrum sp., and Fischerella muscicola as test organisms. Enzyme preparations previously found to convert susceptible algae into spheroplasts had no such effect on the resistant species, although glucose and galacturonic acid were released from P. duplex walls. Little protein or lipid but considerable carbohydrate was found in the walls of the refractory organisms, but resistance was not correlated with the presence of a unique sugar monomer. A substance present in Staurastrum sp. walls was characterized as lignin or lignin-like on the basis of its extraction characteristics, infrared spectrum, pyrolysis pattern, and content of an aromatic building block. Sporopollenin was found in P. duplex, and cellulose in Staurastrum sp. Cell walls of the algae were fractionated, and the fractions least susceptible to microbial degradation were the sporopollenin of P. duplex, the polyaromatic component of Staurastrum sp., and two F. muscicola fractions containing several sugar monomers. The sporopollenin content of P. duplex, the content of lignin or a related constituent of Staurastrum sp., and the resistance of the algae to microbial attack increased with age. It is suggested that resistance results from the presence of sporopollenin in P. duplex, a lignin-like material in Staurastrum sp., and possibly heteropolysaccharides in F. muscicola. PMID:808166

  14. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    PubMed

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH.

  15. Landfill leachate--a water and nutrient resource for algae-based biofuels.

    PubMed

    Edmundson, Scott J; Wilkie, Ann C

    2013-01-01

    There is a pressing need for sustainable renewable fuels that do not negatively impact food and water resources. Algae have great potential for the production of renewable biofuels but require significant water and fertilizer resources for large-scale production. Municipal solid waste (MSW) landfill leachate (LL) was evaluated as a cultivation medium to reduce both water and elemental fertilizer demands of algae cultivation. Daily growth rate and cell yield of two isolated species of algae (Scenedesmus cf. rubescens and Chlorella cf. ellipsoidea) were cultivated in MSW LL and compared with Bold's Basal Medium (BBM). Results suggest that LL can be used as a nutrient resource and medium for the cultivation of algae biomass. S. cf. rubescens grew well in 100% LL, when pH was regulated, with a mean growth rate and cell yield 91.2% and 92.8% of those observed in BBM, respectively. S. cf. rubescens was more adaptable than C. cf. ellipsoidea to the LL tested. The LL used in this study supported a maximum volumetric productivity of 0.55 g/L/day of S. cf. rubescens biomass. The leachate had sufficient nitrogen to supply 17.8 g/L of algae biomass, but was limited by total phosphorus. Cultivation of algae on LL offsets both water and fertilizer consumption, reducing the environmental footprint and increasing the potential sustainability of algae-based biofuels.

  16. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh.

  17. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides.

    PubMed

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2015-02-01

    Integrated and genome-based flux balance analysis, metabolomics, and (13)C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary (13)C metabolic flux analysis as a complementing strategy to flux balance analysis. The result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Taken together, the metabolic network modeling assisted by experimental metabolomics and (13)C

  18. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides

    DOE PAGES

    Wu, Chao; Xiong, Wei; Dai, Junbiao; ...

    2014-12-15

    We report that integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass andmore » corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. We found that the result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Lastly, taken together, the metabolic network modeling assisted

  19. Gases generated from simulated thermal degradation of autotrophic and heterotrophic chlorella

    SciTech Connect

    Qingyu Wu )

    1992-01-01

    The content of crude lipid in the cells of heterotrophic Chlorella protothecoides is 4.4 times as high as in the autotrophic algal cells. The gases thermally degraded from autotrophic cells at 200-300[degrees]C contain mainly CO[sub 2], while the heterotrophic algal cells produce hydrocarbon gas at a much higher rate than autotraophic algal cells. With the rise in temperature, both kinds of cells display a rapid drop in the acid/alkane ratio of the gas components and the ratio of ethane to ethylene increases regularly. Their ratio of normal and isomeric alkanes are all above 1. The study reveals that the actual potential of microplanktonic algae in producing oil and natural gas should be much greater than what people have recognized before.

  20. Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides

    PubMed Central

    He, Xi; Dai, Junbiao; Wu, Qingyu

    2016-01-01

    Chlorella protothecoides has been put forth as a promising candidate for commercial biodiesel production. However, the cost of biodiesel remains much higher than diesel from fossil fuel sources, partially due to the high costs of oil extraction from algae. Here, we identified the presence of a sporopollenin layer outside the polysaccharide cell wall; this was evaluated using transmission electron microscopy, 2-aminoethanol treatment, acetolysis, and Fourier Transform Infrared Spectroscopy. We also performed bioinformatics analysis of the genes of the C. protothecoides genome that are likely involved in sporopollenin synthesis, secretion, and translocation, and evaluated the expression of these genes via real-time PCR. We also found that that removal of this sporopollenin layer greatly improved the efficiency of oil extraction. PMID:27446068

  1. Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels.

    PubMed

    Juneja, Ankita; Chaplen, Frank W R; Murthy, Ganti S

    2016-08-01

    A compartmentalized genome scale metabolic network was reconstructed for Chlorella variabilis to offer insight into various metabolic potentials from this alga. The model, iAJ526, was reconstructed with 1455 reactions, 1236 metabolites and 526 genes. 21% of the reactions were transport reactions and about 81% of the total reactions were associated with enzymes. Along with gap filling reactions, 2 major sub-pathways were added to the model, chitosan synthesis and rhamnose metabolism. The reconstructed model had reaction participation of 4.3 metabolites per reaction and average lethality fraction of 0.21. The model was effective in capturing the growth of C. variabilis under three light conditions (white, red and red+blue light) with fair agreement. This reconstructed metabolic network will serve an important role in systems biology for further exploration of metabolism for specific target metabolites and enable improved characteristics in the strain through metabolic engineering.

  2. Mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite

    SciTech Connect

    Rabinowitch, H.D.; Rosen, G.M.; Fridovich, I.

    1989-01-01

    The spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been used to demonstrate the light-dependent production of O/sub 2/- by Chlorella sorokiniana. In the presence of SO/sub 3/= a light-dependent production of the sulfur trioxy anion radical (SO/sub 3/-.) could also be seen. A complex prepared by reacting desferrioxamine with MnO/sub 2/, which catalyzes the dismutation of O/sub 2/-, protected the alga against the toxicity of sulfite. The data suggest that SO/sub 2/ toxicity is at least partially due to the effects of sulfoxy-free radicals generated by the oxidation of SO3= by O/sub 2/-.

  3. The Chlorella killed by pulsed electrical discharge in liquid with two different reactors

    NASA Astrophysics Data System (ADS)

    Gao, Z. Y.; Sun, B.; Yan, Z. Y.; Zhu, X. M.; Liu, H.; Song, Y. J.; Sato, M.

    2013-03-01

    The application of pulsed high-voltage discharge in liquid has attracted wide attention as an effective water treatment. In this paper, two different liquid high-voltage discharge systems were constructed with plate-hole-plate and needle-plate electrode structures, and the inactivation behaviors of Chlorella were studied in the two reactors. The results show that the killing rates of algae in both reactors all increased significantly with increasing discharge voltage and the killing rates were intensely related to discharge power, instantaneous power and single pulse input energy. Furthermore, the inactivation effect in needle-plate reactor was superior to that in plate-hole-plate reactor under the same experimental conditions.

  4. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells.

    PubMed

    Jeon, Hyeon Jin; Seo, Kyu-won; Lee, Sang Hyun; Yang, Yung-Hun; Kumaran, Rangarajulu Senthil; Kim, Sunghyun; Hong, Seok Won; Choi, Yong Su; Kim, Hyung Joo

    2012-04-01

    In this study, a novel algal biomass production method using a sediment microbial fuel cell (SMFC) system was assessed. Under the experimental conditions, CO(2) generation from the SMFC and its rate of increase were found to be dependent on the current generated from the SMFC. However, the CH(4) production rate from the SMFC was inhibited by the generation of current. When Chlorella vulgaris was inoculated into the cathode compartment of the SMFC and current was generated under 10 Ω resistance, biomass production from the anode compartment was observed to be closely associated with the rate of current generation from the SMFC. The experimental results demonstrate that 420 mg/L of algae (dry cell weight) was produced when the current from the SMFC reached 48.5 mA/m(2). Therefore, SMFC could provide a means for producing algal biomass via CO(2) generated by the oxidation of organics upon current generation.

  5. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.

    PubMed

    González-Garcinuño, Álvaro; Tabernero, Antonio; Sánchez-Álvarez, José Ma; Martin del Valle, Eva M; Galán, Miguel A

    2014-12-01

    Discovering microalgae strains containing a high lipid yield and adequate fatty acid composition is becoming a crucial fact in algae-oil factories. In this study, two unknown strains, named Scenedesmus abundans and Chlorella ellipsoidea, have been tested for their response to different nitrogen sources, in order to determine its influence in the production of lipids. For S. abundans, autotrophic culture with ammonium nitrate offers the maximum lipid yield, obtaining up to 3.55 mg L(-1) d(-1). For C. ellipsoidea, heterotrophic culture with ammonium nitrate has been shown to be the best condition, reaching a lipid production of 9.27 mg L(-1) d(-1). Moreover, fatty acid composition obtained from these cultures meets international biodiesel standards with an important amount of C18:1, achieving 70% of total fatty acids and thus representing a potential use of these two strains at an industrial scale.

  6. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  7. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    SciTech Connect

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe/sup 3 +/-DFOB) and ferric-rhodotorulate (Fe/sup 3 +/-RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe/sup 3 +/-EDTA and Fe/sup 3 +/-EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 ..mu..M CCCP or 1 mM vanadate. Cyanide (100 ..mu..M KCN) or 25 ..mu..M antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron (/sup 55/Fe) was taken up while labeled ligands ((/sup 14/C) citrate or RA) were not accumulated. Cation competition from Ni/sup 2 +/ and Co/sup 2 +/ observed using Fe/sup 3 +/-DFOB and Fe/sup 3 +/-RA while iron uptake from Fe/sup 3 +/-citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe/sup 3 +/-DFOB indicated that a receptor may be involved in this mechanism.

  8. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa

    PubMed Central

    2013-01-01

    Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Results Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. Conclusions We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer. PMID:24355316

  9. Development of algae-bacteria granular consortia in photo-sequencing batch reactor.

    PubMed

    Liu, Lin; Fan, Hongyong; Liu, Yuhong; Liu, Chaoxiang; Huang, Xu

    2017-05-01

    The development and properties of algae-bacteria granular consortia, which cultivated with the algae (Chlorella and Scenedesmus) and aerobic granules, was investigated in this experiment. The results indicated that the granular consortia could be successfully developed by selection pressure control, and the algal biomass and extracellular polymeric substances (EPS) concentration in the consortia showed notable correlation with the operating parameters of reactor. The maximum specific removal rates of total nitrogen and phosphate were obtained from the granular consortia with the highest algal biomass, yet the correlation between the fatty acid methyl esters yield and the algal biomass in the consortia was not markedly observed. The seed algae maintained dominance in the phototroph community, whereas the cyanobacteria only occupied a small proportion (5.2-6.5%). Although the bacterial communities with different operational strategies showed significant difference, the dominated bacteria (Comamonadaceae, 18.79-36.25%) in the mature granular consortia were similar.

  10. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.

    PubMed

    Roy, Rajdeep; Parashar, Abhinav; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2016-07-01

    P25 TiO2 nanoparticles majorly used in cosmetic products have well known detrimental effects towards the aquatic environment. In a freshwater ecosystem, Chlorella and Scenedesmus are among the most commonly found algal species frequently used to study the effects of metal oxide nanoparticles. A comparative study has been conducted herein to investigate differences in the toxic effects caused by these nanoparticles towards the two algae species. The three different concentrations of P25 TiO2 NPs (0.01, 0.1 & 1μg/mL, i.e., 0.12, 1.25 and 12.52μM) were selected to correlate surface water concentrations of the nanoparticles, and filtered and sterilized fresh water medium was used throughout this study. There was significant increase (p<0.001) in hydrodynamic diameter of nanoparticles with respect to both, time (0, 24, 48 and 72h) as well as concentration under all the exposure conditions. Although, significant dose-dependent morphological (surface area & biovolume) interspecies variations were not observed, it was evident at the highest concentration of exposure within individuals. At 1μg/mL exposure concentration, a significant difference in toxicity was noted between Chlorella and Scenedesmus under only visible light (p<0.001) and UVA (p<0.01) irradiation conditions. The viability data were well supported by the results obtained for oxidative stress induced by NPs on the cells. At the highest exposure concentration, superoxide dismutase and reduced glutathione activities were assessed for both the algae under all the irradiation conditions. Increased catalase activity and LPO release complemented the cytotoxic effects observed. Significant interspecies variations were noted for these parameters under UVA and visible light exposed cells of Chlorella and Scenedesmus species, which could easily be correlated with the uptake of the NPs.

  11. Is annual metabolic cycling in the unicellular microalgae Chlorella and textit{Isochrysis} coupled to the annual earth gravity cycle?

    NASA Astrophysics Data System (ADS)

    Knutsen, G.; Amundsen, M.; Pettersen, R.

    Uptake rates of 14C-labelled guanine by autospores of the unicellular green alga Chlorella fusca Shihira et Krauss were measured at different times over 21 months. The autospores were derived from synchronous cultures produced from stock cultures that had not been exposed to natural light the last six years before the experiments, nor during the 21 month long experimental period. The experiments were performed in Bergen, Norway (60°,23' N; 5°,20' E). Uptake rates showed distinct annual variations over the year, with lowest values during the winter and highest during the summer. The August : December : February ratios for the rates were 1.0, 0.70 and 0.43, respectively. Half saturating guanine concentration for the uptake was the same over the year, namely 0.24 μM. Growth rates of the unicellular marine flagellate Isochrysis sp. were measured in March, August and December, and the rates were distinctly different, with August : December : March ratios of 1.0, 0.41 and 0.64. The number of cells reached in the stationary phases of Isochrysis cultures showed similar time-of-the-year dependency with ratios of 1.0, 0.44 and 0.58 for August : December : March, respectively. These cells had not experienced day light for the two last years before the experiments. Our results show the existence of annual rhythms in two microalgae that had not been exposed to natural light for a long time. A persistent endogenous clock that was set when the cells lived under natural light conditions long ago may be one explanation for their behaviour; another one is a coupling to the sinusoidal and minute variation over the year of earth gravity. Hence the cells display maximal activity when gravity is at its lowest value during the summer in the Northern hemisphere, and lowest activity when the gravity is at is highest in the winter. To our knowledge our results are the first experimental work that points to the possibility that cells may be influenced by the annual cycle of earth gravity.

  12. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp.

    PubMed

    Praveenkumar, Ramasamy; Kim, Bohwa; Lee, Jiye; Vijayan, Durairaj; Lee, Kyubock; Nam, Bora; Jeon, Sang Goo; Kim, Dong-Myung; Oh, You-Kwan

    2016-11-01

    Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG.

  13. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae

  14. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium.

    PubMed

    Chen, Biao; Li, Feng; Liu, Na; Ge, Fei; Xiao, Huaixian; Yang, Yixuan

    2015-08-01

    The interactions between the soluble extracellular polymeric substances (S-EPS), bound EPS (B-EPS) of algae and heavy metal, would affect the removal of ammonium (NH4(+)-N) and orthophosphate (PO4(3-)-P) from wastewater by algae-based techniques. This study investigated the role of Cd(2+)-mediated EPS from Chlorella vulgaris on NH4(+)-N and PO4(3-)-P removal. The results showed that the removal efficiencies of NH4(+)-N and PO4(3-)-P still separately remained 62.6% and 64.9% under 1.0mg/L Cd(2+), compared to those without Cd(2+), mainly attributing to enhanced S-EPS and B-EPS contents of the algae. The increased of PS (polysaccharides) and PN (proteins, e.g., tryptophan-like and tyrosine-like components) led to accelerated interactions of Cd(2+) with PS and PN in EPS fractions, especially for B-EPS, due to a higher detected distribution of Cd(2+) (e.g., about 55.4% in B-EPS). Thus, algae-based techniques are stable treatment methods for wastewater in which NH4(+)-N and PO4(3-)-P coexist with heavy metals.

  15. Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

    SciTech Connect

    Kastner, James; Mani, Sudhagar; Das, K. C.; Hilten, Roger; Jena, Umakanta

    2014-11-30

    A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortium is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and

  16. [Bacterial communities of brown and red algae from Peter the Great Bay, the Sea of Japan].

    PubMed

    Beleneva, I A; Zhukova, N V

    2006-01-01

    The structure of microbial communities of brown algae, red algae, and of the red alga Gracilaria verrucosa, healthy and affected with rotten thallus, were comparatively investigated; 61 strains of heterotrophic bacteria were isolated and characterized. Most of them were identified to the genus level, some Vibrio spp., to the species level according to their phenotypic properties and the fatty acid composition of cellular lipids. The composition of the microflora of two species of brown algae was different. In Chordaria flagelliformis, Pseudomonas spp. prevailed, and in Desmarestia viridis, Bacillus spp. The composition of the microflora of two red algae, G. verrucosa and Camphylaephora hyphaeoides, differed mainly in the ratio of prevailing groups of bacteria. The most abundant were bacteria of the CFB cluster and pseudoalteromonads. In addition, the following bacteria were found on the surface of the algae: Sulfitobacter spp., Halomonas spp., Acinetobacter sp., Planococcus sp., Arthrobacter sp., and Agromyces sp. From tissues of the affected G. verrucosa, only vibrios were isolated, both agarolytic and nonagarolytic. The existence of specific bacterial communities characteristic of different species of algae is suggested and the relation of Vibrio sp. to the pathological process in the tissues of G. verrucosa is supposed.

  17. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae).

    PubMed

    Luo, Wei; Pflugmacher, Stephan; Pröschold, Thomas; Walz, Norbert; Krienitz, Lothar

    2006-08-01

    The most recent revision of the genus Chlorella, based on biochemical and SSU rDNA analyses, suggested a reduction to a set of four "true" spherical Chlorella species, while a growing number of morphologically different species such as Micractinium (formerly Micractiniaceae) were found to cluster within the clade of "true"Chlorella. In this study, the generic concept in Chlorellaceae to Chlorella and Micractinium was evaluated by means of combined SSU and ITS-2 rDNA sequence analyses and biotests to induce development of bristles on the cell wall. Molecular phylogenetic analyses of Chlorella and Micractinium strains confirmed their separation into two different genera. In addition, non-homoplasious synapomorphies (NHS) and compensatory base changes (CBC) in the secondary structures of SSU and ITS-2 rDNA sequences were found for both genera using this approach. The Micractinium clade can be differentiated into three different genotypes. Using culture medium of the rotifer Brachionus calyciflorus, phenotypic plasticity in Chlorella and Micractinium was studied. Non-bristled Micractinium cells developed bristles during incubation with Brachionus culture medium, whereas Chlorella did not produce bristles. Grazing experiments with Brachionus showed the rotifer preferred to feed on non-bristled cells. The dominance of colonies versus solitary cells in the Micractinium culture was not correlated with the "Brachionus factor". These results suggest that morphological characteristics like formation of bristles represent phenotypic adaptations to the conditions in the ecosystem.

  18. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae.

  19. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    PubMed

    2015-09-21

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC50 for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC50 for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes. Water Environ. Res., 87 (2015).

  20. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    PubMed

    Park, Sichoon; Van Ginkel, Steven W; Pradeep, Priya; Igou, Thomas; Yi, Christine; Snell, Terry; Chen, Yongsheng

    2016-01-01

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC(50) for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC(50) for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes.

  1. Sludge-grown algae for culturing aquatic organisms: Part II. Sludge-grown algae as feeds for aquatic organisms

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Hung, K. M.; Chiu, S. T.

    1996-05-01

    This project investigated the feasibility of using sewage sludge to culture microalgae ( Chlorella-HKBU) and their subsequent usage as feeds for rearing different organisms. Part II of the project evaluated the results of applying the sludge-grown algae to feed Oreochromis mossambicus (fish), Macrobrachium hainenese (shrimp), and Moina macrocopa (cladocera). In general, the yields of the cultivated organisms were unsatisfactory when they were fed the sludge-grown algae directly. The body weights of O. mossambicus and M. macrocopa dropped 21% and 37%, respectively, although there was a slight increase (4.4%) in M. hainenese. However, when feeding the algal-fed cladocerans to fish and shrimp, the body weights of the fish and shrimp were increased 7% and 11% accordingly. Protein contents of the cultivated organisms were comparable to the control diet, although they contained a rather high amount of heavy metals. When comparing absolute heavy metal contents in the cultivated organisms, the following order was observed: alga > cladocera > shrimp, fish > sludge extracts. Bioelimination of heavy metals may account for the decreasing heavy metal concentrations in higher trophic organisms.

  2. Structural Organization of DNA in Chlorella Viruses

    PubMed Central

    Wulfmeyer, Timo; Polzer, Christian; Hiepler, Gregor; Hamacher, Kay; Shoeman, Robert; Dunigan, David D.; Van Etten, James L.; Lolicato, Marco; Moroni, Anna; Thiel, Gerhard; Meckel, Tobias

    2012-01-01

    Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm−3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes. PMID:22359540

  3. Effects of fluoride and chloride on the growth of Chlorella pyrenoidosa.

    PubMed

    Li, Q; Wu, Y Y; Wu, Y D

    2013-01-01

    To compare the toxic action of fluoride (F(-)) and chloride (Cl(-)) on freshwater algae, effects of F(-) and Cl(-) on Chlorella pyrenoidosa growth were investigated by determination of the algal biomass and model analysis. Results showed that the exponential growth equation (D = D0 + ae(bT)) may be used to fit the relationship between cell density (D) of C. pyrenoidosa and exposure time (T), but F(-) and Cl(-) have significantly different effects on parameters a (initial quantity of algae at the exponential growth stage) and b (growth constant). In the range of experimental concentrations, F(-) inhibited C. pyrenoidosa growth, and percent inhibition increased with increasing exposure time and F(-) concentration. By contrast, Cl(-) either inhibited or enhanced C. pyrenoidosa growth depending on Cl(-) concentration and exposure time, and percent inhibition increased with increasing Cl(-) concentration but decreased with increasing exposure time. The dose-response equation: I = min + (max - min)/(1 + 10(lgEC50-lgC)) may be used to fit the relationship between percent inhibition (I) and F(-) or Cl(-) concentration (C); however, F(-) was distinct from Cl(-) in terms of effects on parameter 'min'. The EC50 values of F(-) and Cl(-) ranged from 118 to 170 mg/L and 19.73 to 36.33 g/L, respectively; the latter is much higher than the former. Thus F(-) has higher toxicity than Cl(-).

  4. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    PubMed

    Kim, Sangwoo; Kim, Hanul; Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  5. Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa

    SciTech Connect

    Sijm, D.T.H.M.; Broersen, K.W.; Roode, D.F. de; Mayer, P.

    1998-09-01

    Algal density-dependent bioconcentration factors and rate constants were determined for a series of hydrophobic compounds in Chlorella pyrenoidosa. The apparent uptake rate constants of the hydrophobic compounds in algae varied between 200 and 710,000 L/kg/d, slightly increased with hydrophobicity within an experiment, were relatively constant for each algal density, and fitted fairly within existing allometric relationships. The bioavailability of the hydrophobic test compounds was significantly reduced by sorption by algal exudates. The sorption coefficients of the hydrophobic compounds to the algal exudates were between 80 and 1,200 L/kg, and were for most algal densities in the same order of magnitude as the apparent bioconcentration factors to the algae, that is, between 80 and 60,200 L/kg. In typical field situations, however, no significant reduction in bioavailability due to exudates is expected. The apparent elimination rate constants of the hydrophobic compounds were high and fairly constant for each algal density and varied between 2 and 190/d. Because the apparent elimination rate constants were higher than the growth rate constant, and were independent of hydrophobicity, the authors speculated that other factors dominate excretion, such as exudate excretion-enhanced elimination. Bioconcentration factors increased less than proportional with hydrophobicity, i.e., the octanol-water partition coefficient [K{sub ow}]. The role of algal composition in bioconcentration is evaluated. Bioconcentrations (kinetics) of hydrophobic compounds that are determined at high algal densities should be applied with caution to field situations.

  6. Alleviating CTAC and Flu combined pollution damage in Chlorella vulgaris by exogenous nitric oxide.

    PubMed

    Li, Qi; Liang, Zhijie; Ge, Fei; Xu, Yin; Yang, Liang; Zeng, Hui

    2014-02-01

    This study investigates the effect of sodium nitroprussiate (SNP), an exogenous NO-donor, on the joint toxicity of binary mixtures of cetyltrimethylammonium chloride (CTAC) and fluoranthene (Flu) (CTAC/Flu), which are representatives for surfactants and polycyclic aromatic hydrocarbons (PAHs) respectively, in a unicellular green alga Chlorella vulgaris (C. vulgaris). The results showed that the addition of low SNP (20μM) alleviated the CTAC/Flu combined pollution damage in C. vulgaris. Supplement of low SNP significantly increased the algae biomass, chlorophyll content, soluble protein content and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as compared to CTAC/Flu treatment alone. SNP also reduced the content of malondialdehyde (MDA) and the reactive oxygen species (ROS), as compared with CTAC/Flu treated alone. On the contrary, the above phenomena were reversed when high concentration of SNP (100μM) was added. Our study indicated that the damage of the joint action of surfactants and PAHs on hydrobios can be alleviated through protecting against oxidant substances and increasing the activity of antioxidant enzymes with an exogenous supply of NO in certain concentration range.

  7. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  8. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater.

    PubMed

    Pathak, Vinayak V; Kothari, Richa; Chopra, A K; Singh, D P

    2015-11-01

    Potential of Chlorella pyrenoidosa was experimentally investigated for phycoremediation and dye removal from textile wastewater (TWW) in batch cultures. Growth of alga was observed at various concentration of textile wastewater (25%, 50%, 75% and 100%) and was found in a range of 8.1-14 μg ml(-1) day(-1). Growth study revealed that alga potentially grows up to 75% concentrated textile wastewater and reduces phosphate, nitrate and BOD by 87%, 82% and 63% respectively. Methylene blue dye (MB) removal was also observed by using dry and wet algal biomass harvested after phycoremediation. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo first and second order) were applied on adsorption process. Dry algal biomass (DAB) was found more efficient biosorbent with large surface area and showed high binding affinity for MB dye in compare to wet algal biomass (WAB). The RL value for both biosorbent showed feasible adsorption process as the obtained value was between 0 and 1. Pseudo second order kinetic model with high degree of correlation coefficient and low sum of error squares (SSE %) value was found more suitable for representation of adsorption process in case of both biosorbents, however pseudo first order also showed high degree of correlation for both biosorbents.

  9. Metabolic control of urea catabolism in Chlamydomonas reinhardi and Chlorella pyrenoidosa.

    PubMed Central

    Hodson, R C; Williams, S K; Davidson, W R

    1975-01-01

    In the unicellular green alga Chlamydomonas reinhardi (strain y-1), synthesis of the enzymes required for urea hydrolysis is under substrate induction control by urea and under end product repression control by ammonia. Hydrolysis of urea if effected by the sequential action of the discrete enzymes urea carboxylase and allophanate lyase, collectively called urea amidolyase. The carboxylase converts urea to allophanate in a reaction requiring biotin, adenosine 5'-triphosphate, and Mg2+. The lyase hydrolzyes allophanate to ammonium ions and bicarbonate. Neither activity is present in more than trace amounts when cultures are grown with ammonia or urea plus ammonia, or when they are starved for nitrogen for 8 h. Urea in the absence of ammonia induces both activities 10 to 100 times the basal levels. Addition of ammonia to an induced culture causes complete cessation of carboxylase accumulation and an 80% depression of lyase accumulation. Ammonia does not reduce urea uptake by repressed cells, so it does not prevent induction by the mechanism of inducer exclusion. The unicellular green alga Chlorella pyrenoidosa (strain 3 Emerson) also has discrete carboxylase and lyase enzymes, but only the carboxylase exhibits metabolic control. PMID:1116994

  10. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  11. Influence of ultraviolet irradiation on nutrient-gleaning capacity of two unicellular algae.

    PubMed

    Kumar, H D; Sharma, V; Bisaria, G P

    1975-01-01

    Two unicellular algae, viz., Anacystis nidulans and Chlorella vulgaris, growing in polluted effluents, were isolated in unialgal and bacteria free culture. They were mutagenically exposed to ultraviolet radiation and variant strains endowed with differing capacities for growth and nutrient-gleaning were successfully isolated as distinct clones on agar plates. One such clone each of the two species was tested further and found stable. While these variant strains grew more slowly than untreated controls, statistically significant differences with respect to phosphate and nitrate uptake were found between treated and control strains of the two species.

  12. Viruses of eukaryotic green algae. Progress report, August 1, 1984-March 1, 1986

    SciTech Connect

    Van Etten, J.L.

    1986-01-01

    PBCV-1 is a large dsDNA-containing, plaque forming virus that replicates in a unicellular, eukaryotic Chlorella-like green alga strain NC64A. We have discovered that PBCV-1 infection results in the appearance of a restriction and modification system in the host. Furthermore, we have isolated and partially characterized 30 additional large, dsDNA-containing viruses which replicate in the same host. Some, if not all, of these viruses probably induce the synthesis of modification and restriction systems which are different from that induced by PBCV-1. 16 refs.

  13. Inhibitory effects and mechanisms of Hydrilla verticillata (Linn.f.) Royle extracts on freshwater algae.

    PubMed

    Zhang, T-T; He, M; Wu, A-P; Nie, L-W

    2012-03-01

    To pursue an effective way to control freshwater algae, four extracts from a submerged macrophyte Hydrilla verticillata (Linn.f.) Royle were tested to study its inhibitory effects on Anabaena flos-aquae FACHB-245 and Chlorella pyrenoidosa Chick FACHB-9. Extract with the highest inhibiting ability was further studied in order to reveal the inhibitory mechanism. The results demonstrated that H. verticillata extracts inhibited the growth of A. flos-aquae and C. pyrenoidosa, and methanol extract had the highest inhibiting ability. The mechanism underlying the algal growth inhibition involves the superoxide anion radical generation that induces the damage of cell wall and release of intracellular components.

  14. Characterisation Of Polysacharides And Lipids From Selected Green Algae Species By FTIR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Gerulová, Kristína

    2015-06-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chromochloris zofingiensis (Dönz) Fucíková et L.A. Lewis (SAG 211-14, Gottingen, Germany), Acutodesmus obliguus (Turpin) Hegewald (SAG 276-1, Gottingen, Germany) and Chlorella sorokiniana (K. Brandt) Pröschold et Darienko (SAG 211-40c, Gottingen, Germany). Polysaccharides and lipids from these three algae species were determined using Fourier Transformed Infrared Spectroscopy (FTIR) with ATR accessory with diamante crystal in spectral range from 400 - 4000 cm-1 and resolution 4.

  15. Chlorella sorokiniana Extract Improves Short-Term Memory in Rats.

    PubMed

    Morgese, Maria Grazia; Mhillaj, Emanuela; Francavilla, Matteo; Bove, Maria; Morgano, Lucia; Tucci, Paolo; Trabace, Luigia; Schiavone, Stefania

    2016-09-29

    Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.

  16. New mono- and dimeric members of the secalonic acid family: blennolides A-G isolated from the fungus Blennoria sp.

    PubMed

    Zhang, Wen; Krohn, Karsten; Flörke, Ulrich; Pescitelli, Gennaro; Di Bari, Lorenzo; Antus, Sándor; Kurtán, Tibor; Rheinheimer, Joachim; Draeger, Siegfried; Schulz, Barbara

    2008-01-01

    Blennolides A-G (2-8), seven unusual chromanones, were isolated together with secalonic acid B (1) from Blennoria sp., an endophytic fungus from Carpobrotus edulis. This is the first reported isolation of the blennolides 2 and 3 (hemisecalonic acids B and E), the existence of which as the monomeric units of the dimeric secalonic acids had long been postulated. A compound of the proposed structure 4 (beta-diversonolic ester) will need to be revised, as its reported data do not fit those of the established structure of blennolide C (4). Other monomers, the blennolides D-F (5-7) seem to be derived from blennolides A (2) and B (3) by rearrangement of the hydroaromatic ring. The heterodimer 8, composed of the monomeric blennolide A (2) and the rearranged 11-dehydroxy derivative of blennolide E (6), extends the ergochrome family with an ergoxanthin type of skeleton. The structures of the new compounds were elucidated by detailed spectroscopic analysis and further confirmed by an X-ray diffraction study of a single crystal of 2. The absolute configurations were determined by TDDFT calculations of CD spectra, including the solid-state CD/TDDFT approach. Preliminary studies showed strong antifungal and antibacterial activities of these compounds against Microbotryum violaceum and Bacillus megaterium, respectively. They were also active against the alga Chlorella fusca and the bacterium Escherichia coli.

  17. Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation.

    PubMed

    Tajes-Martínez, P; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2006-02-28

    A method has been developed for mercury speciation in water by using columns packed with Chlorella vulgaris immobilised on silica gel. The method involves the retention of CH(3)Hg(+) and Hg(2+) in micro-columns prepared by packing immobilised algae in polypropylene tubes, followed by selective and sequential elution with 0.03 and 1.5M HCl for CH(3)Hg(+) and Hg(2+), respectively. The adsorption capacity of the micro-algae for Hg(2+) and CH(3)Hg(+) has been evaluated using free and immobilised C. vulgaris. The efficiency uptake for both species at pH 3 was higher than 97%. Studies were carried out on the effect of retention and elution conditions for both species. Furthermore, the stability of mercury species retained on algae-silica gel micro-columns and lifetime of the columns were also investigated. Hg(2+) showed a higher stability than CH(3)Hg(+) at 0 degrees C (21 and 3 days, respectively) and a better lifetime than for the organic species. The developed method was applied to the analysis of spiked tap, sea and wastewater samples. Recovery studies on tap and filtered seawater provided results between 96+/-3 and 106+/-2 for Hg(2+) and from 98+/-5 to 107+/-5 for CH(3)Hg(+), for samples spiked with single species. For samples spiked with both CH(3)Hg(+) and Hg(2+), the average recoveries varied from 96+/-5 to 99+/-3 and from 103+/-6 to 115+/-5 for Hg(2+) and CH(3)Hg(+), respectively. However, the percentages of retention and elution on wastewater and unfiltered seawater were only adequate for the inorganic species.

  18. Coagulation-membrane filtration of Chlorella vulgaris.

    PubMed

    Lee, Duu-Jong; Liao, Guan-Yu; Chang, Yin-Ru; Chang, Jo-Shu

    2012-03-01

    Filtration-based separation of Chlorella vulgaris, a species with excellent potential for CO(2) capture and lipid production, was investigated using a surface-modified hydrophilic polytetrafluoroethylene (PTFE) membrane. Coagulation using polyaluminum chloride (PACl) attained maximum turbidity removal at 200 mg L(-1) as Al(2)O(3). The membrane filtration flux at 1 bar increased as the PACl dose increased, regardless of overdosing in the coagulation stage. The filtered cake at the end of filtration tests peaked in solid content at 10 mg L(-1) as Al(2)O(3), reaching 34% w/w, roughly two times that of the original suspension. Differential scanning calorimetry (DSC) tests demonstrate that the cake with minimum water-solid binding strength produced the driest filter cake. Coagulation using 10 mg L(-1) PACl as Al(2)O(3), followed by PTFE membrane filtration at 1 bar, is an effective process for harvesting C. vulgaris from algal froth.

  19. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry.

  20. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater.

    PubMed

    Tarlan, Esra; Dilek, Filiz B; Yetis, Ulku

    2002-08-01

    In this study, the ability of algae to treat a wood-based pulp and paper industry wastewater was investigated. Tests were performed in batch reactors seeded with a mixed culture of algae. Under different lighting and initial wastewater strength conditions, changes in COD, AOX and color contents of reactors were followed with time. Algae were found to remove up to 58% of COD, 84% of color and 80% of AOX from pulp and paper industry wastewaters. No remarkable differences were observed in COD and color when light intensity and wastewater strength were changed, while AOX removals were strongly affected. Algal species identification studies revealed that some green algae (Chlorella) and diatom species were dominant in the treatment. The study also showed that algae grew mixotrophically, while the main mechanism of color and organics removal from pulping effluents was partly metabolism and partly metabolic conversion of colored and chlorinated molecules to non-colored and non-chlorinated molecules. Adsorption onto algal biomass was not so effective.

  1. Visualization of oxygen distribution patterns caused by coral and algae.

    PubMed

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  2. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    SciTech Connect

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO/sub 2/ fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress.

  3. Nitrous Oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    NASA Astrophysics Data System (ADS)

    Guieysse, B.; Plouviez, M.; Coilhac, M.; Cazali, L.

    2013-10-01

    Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O) is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR) activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO) acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO), the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38-10.1 kg N2O-N ha-1 yr-1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions). These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  4. The reduction of Chlorella vulgaris concentrations through UV-C radiation treatments: A nature-based solution (NBS).

    PubMed

    Chen, Erika S; Bridgeman, Thomas B

    2017-03-25

    Algal blooms have become a pressing issue in inland freshwater systems on local and global scales. A plausible approach to reducing algae without the use of chemical/biological agents is through the use of UV-C radiation from lamps potentially powered by in situ solar panels to eliminate algae. Yet, the quantitative scientific base has not been established. Our objective is to conduct a controlled experiment to quantify the effectiveness of UV-C radiation on the reduction of Chlorella vulgaris, a common algal species in the Great Lakes region. A full factorial design of three intensities of UV-C radiation (0, 15, and 30W) and three sources of C. vulgaris was constructed to test the corresponding hypotheses. Empirical models were constructed to predict the reductions. UV-C radiation effectively reduced the algal concentration with clear differences by radiation level and source of algal water. Algal concentration decreased exponentially over time, with distinct decreasing trends among the radiation intensities and the samples. With 15W UV-C radiation, algal concentration of three samples were reduced to 75.3%, 51.5%, and 70.0% of the initial level within an hour, respectively. We also found a clear density-dependent reduction rate by UV radiation. Using this information, more efficient treatment systems could be constructed and implemented for cleaning algae-contaminated water.

  5. [An experimental study and a mathematical model of interactions in mixed culture of invertebrates and algae in the "producer-consumer" aquatic biotic cycle].

    PubMed

    Pis'man, T I; Bogdanova, O N

    2004-01-01

    An experimental investigation was carried out, and a mathematical model of interaction between invertebrates (infusoria Paramecium caudatum and rotifera Brachionus plicatilis) and algae (Chlorella vulgaris and Scenedesmus quadricauda) in the "producer-consumer" aquatic biotic cycle with spatially divided links was constructed. The model describes the dynamics of a mixed culture of infusoria and rotifera in the "consumer" link, when they consume a mixed culture of algae coming from the "producer" link. A negative influence of products of algae Scenedesmus metabolism upon the reproduction of infusoria P. caudatum was revealed. Taking this into account, a qualitative coincidence of the results of mathematical modeling with experimental data was obtained. It was shown that the co-existence of mixed algae culture in the "producer" link with invertebrates in the "consumer" link in the "producer-consumer" aquatic biotic cycle is impossible because of the displacement of infusoria P. caudatum by rotifera Brachionus plicatilis.

  6. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains.

    PubMed

    Lee, Soojin; Oh, Younghoon; Kim, Donghyun; Kwon, Doyeon; Lee, Choulgyun; Lee, Jinwon

    2011-07-01

    Marine algae, which make up about 80% of the world's living organisms, contain many energy sources, such as sugars and lipids. Therefore, the possibility of utilizing structural carbohydrates from marine algae for bioethanol production has been studied. In order to obtain monosaccharides, Undaria pinnatifida, Chlorella vulgaris, and Chlamydomonas reinhardtii were used for the saccharification experiments. The pretreatment was carried out by dilute acid hydrolysis and enzymatic treatment. To find the optimal conditions, experiments were performed at several temperatures, acid concentrations, pH conditions and durations. To test bioethanol production, several ethanolic E. coli W3110 strains, which were developed previously, were used. The maximum yield of bioethanol, 0.4 g ethanol/g biomass, was achieved with pretreated C. vulgaris and E. coli SJL2526, derived from wild-type E. coli W3110 and which includes the adhB, pdc, galP, and glk genes.

  7. [Ecological characteristic of benthic epipelic algae and the characteristic of water environment quality in heavily polluted river in city].

    PubMed

    Zhao, Zhen-hua; Ruan, Xiao-hong; Xing, Ya-nan; Ni, Li-xiao; Gao, Li-cun

    2009-12-01

    The water quality and algae community of Nanyuan Water System in the old city area of Suzhou were monitored for a year. Results showed that the water pollution in the studied area was mainly related to nitrogen (NH4+ -N and TN). Sometimes, they even exceeded the Environmental Quality Standards for Surface Water (GB 3838-2002, PRC) more than 5 times. 34 species of benthic epipelic algae were observed by microscope, and the species amount of diatom algae, green algae and blue algae are more than others. Their abundance and biomass are far higher than that of the pelagic algae in the same sites,and reach 2 145.5 x 10(4) cells/mL and 3.524 mg/mL,respectively. The dominant species of benthic epipelic algae in Nanyuan's water system are diatom algae and blue algae, most of which belong to the heterotrophic type or bi-trophic type algae, the typical genera include: Oscillaria amphibian (affiliated to Cyanophyta), Cyclotella sp., Melosira sp., Stephanodiscus hantzschii, Navicula sp., Nitzschia sp., Gomphonema (affiliated to Bacillariophyta) and so on. And their distribution of species and abundance are very nonuniform in different reach of heavily polluted city river, which relates to the pollutant characteristics of the river. The seasonal variety trend of the abundance for benthic algae showed that:summer > autumn > spring > winter, and that of biomass for benthic algae showed that: the biomass in winter is the most of four seasons and change extent of the biomass is not obvious in spring, summer and autumn. The research results can provide reference for the ecology restoration of city heavily polluted river.

  8. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  9. Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis.

    PubMed

    Liu, Jin; Sun, Zheng; Zhong, Yujuan; Huang, Junchao; Hu, Qiang; Chen, Feng

    2012-12-01

    The green alga Chlorella zofingiensis can accumulate high level of oleic acid (OA, C18:1△(9)) rich oils in response to stress conditions. To understand the regulation of biosynthesis of fatty acid in particular OA at the molecular level, we cloned and characterized the stearoyl acyl carrier protein (ACP) desaturase (SAD) responsible for OA formation through desaturation of stearic acid (C18:0) from C. zofingiensis. Southern blot indicated that the C. zofingiensis genome contained a single copy of SAD, from which the deduced amino acid sequence shared high identity to the corresponding homologs from other microalgae and higher plants. The desaturation activity of SAD was demonstrated in vitro using C18:0-ACP as a substrate. Stress conditions such as high light (HL), nitrogen deficiency (N(-)), or combination of HL and N(-) (HL + N(-)) drastically up-regulated the transcripts of biotin carboxylase (BC, a subunit of ACCase) and SAD, and therefore induced considerably the cellular accumulation of total fatty acids including OA. Glucose (50 mM) gave rise to the similar up-regulation of the two genes and induction of fatty acid accumulation. The accumulation of intracellular reactive oxygen species was found to be associated with the up-regulation of genes. This is the first report of characterization of Chlorella-derived SAD and the results may contribute to understanding of the mechanisms involved in fatty acid/lipid biosynthesis in microalgae.

  10. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice.

    PubMed

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-09-02

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD.

  11. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice

    PubMed Central

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-01-01

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252

  12. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides1[OPEN

    PubMed Central

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. The result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Taken together, the metabolic network modeling assisted by experimental metabolomics and 13C labeling

  13. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides

    SciTech Connect

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2014-12-15

    We report that integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. We found that the result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Lastly, taken together, the

  14. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production.

    PubMed

    Liu, Jin; Huang, Junchao; Sun, Zheng; Zhong, Yujuan; Jiang, Yue; Chen, Feng

    2011-01-01

    The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L(-1) of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.

  15. Unlocking nature's treasure-chest: screening for oleaginous algae.

    PubMed

    Slocombe, Stephen P; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N; Black, Kenneth D; Stanley, Michele S; Day, John G

    2015-07-23

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for "health-foods" and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation.

  16. Cellular response of freshwater green algae to perfluorooctanoic acid toxicity.

    PubMed

    Xu, Dongmei; Li, Chandan; Chen, Hong; Shao, Bo

    2013-02-01

    Perfluorooctanoic acid (PFOA) is a kind of persistent organic pollutants and its aquatic eco-toxicity has attracted wide attention; however, the mechanism involved in its toxicity as well as the cell response against PFOA have not been well established. Herein, using single-celled green algae Chlorella pyrenoidosa and Selenastrum capricornutum at the logarithmic growth stage as test organisms, we studied the toxic effects of PFOA on the cell permeability, The 96 h-EC(50) values of PFOA for C. pyrenoidosa and S. capricornutum were 207.46 mg L(-1) and 190.99 mg L(-1), respectively, lower than the 96 h-EC(50) values reported in the literatures. After 96 h of PFOA exposure, the permeability of the cell membranes of both algae was significantly decreased, and the chlorophyll concentration mirrored the trends of algal growth. In both algal species, after a 192-h exposure to a low concentration of PFOA, the activities of superoxide dismutase and catalase were greater than those of the control. At higher concentrations of PFOA, activities of superoxide dismutase and catalase were strongly inhibited. These results indicate that long-term exposure to low levels of PFOA may induce excessive generation of reactive oxygen species in algal cells, causing oxidative damage to cells.

  17. Glycolate metabolism in low and high CO sub 2 -grown chlorella pyrenoidosa and Pavlova lutheri as determined by sup 18 O-labeling

    SciTech Connect

    de Veau, E.J.; Burris, J.E. )

    1989-11-01

    Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring {sup 18}O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from {sup 18}O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO{sub 2}-grown cells than in air-grown cells when both were assayed under the same O{sub 2} and CO{sub 2} concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O{sub 2} levels and inhibited by high CO{sub 2} levels. Glycolate synthesis in 1.5% CO{sub 2}-grown Chlorella, when exposed to a 0.035% CO{sub 2} atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O{sub 2} concentration was increased from 21 to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O{sub 2} concentration was lowered to 2% or the CO{sub 2}-concentration was raised to 1.5%. Glycolate excretion was also sensitive to O{sub 2} and CO{sub 2} concentrations in 1.5% CO{sub 2}-grown cells and the glycolate that was excreted was {sup 18}O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory {sup 18}O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.

  18. SOME FACTORS IN THE COMPETITION OR ANTAGONISM AMONG BACTERIA, ALGAE, AND AQUATIC WEEDS.

    PubMed

    Filzgerald, G P

    1969-12-01

    Field observations of changes in the populations of aquatic weeds and phytoplankton have confirmed that aquatic weeds have antagonistic activity toward phytoplankton. Nutritional studies in the laboratory indicate that cultures of the aquatic weeds, Myriophyllum sp., Ceratophyllum sp., and duckweed (Lemma minor L.); liquid cultures of barley (Hordeum vulgare L., Dickson variety); and cultures of the filamentous green algae, Cladophora sp. and Pithophora oedogonium (Mont.) Withrock, will remain relatively free of epiphytes or competing phytoplankton if the cultures are nitrogen-limited. Field observations of Cladophora sp. have confirmed that the growth of epiphytes on the Cladophora is related to conditions of surplus available nitrogen compounds. It is proposed that this antagonistic activity may be due to a "nitrogen sink" effect in which the aquatic weeds or filamentous green algae prevent the growth of contaminating algae by competition for the limited nitrogen compounds available. However, the presence of bacteria-sized organisms which have selective toxicity to certain algae indicates that perhaps multiple factors exist. Discussed are the ecological implications of associations of certain algae with bacteria that have selective toxicities for other species of algae under certain environmental conditions such as nitrogen-limited growth.

  19. In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri.

    PubMed

    Juarez, Angela Beatriz; Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valter; Vesentini, Nicoletta; Conforti, Visitacion; Gualtieri, Paolo

    2008-11-01

    In microorganisms and plants, chromium (Cr) is not essential for any metabolic process, and can ultimately prove highly deleterious. Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The presence of Cr leads to the selection of specific algal populations able to tolerate high levels of Cr compounds. The varying Cr-resistance mechanisms displayed by microorganisms include biosorption, diminished accumulation, precipitation, reduction of Cr(6+) to Cr(3+), and chromate efflux. In this paper we describe the effects of Cr(6+) (the most toxic species) on the photosynthetic and photoreceptive apparatus of two fresh water microalgae, Eudorina unicocca and Chlorella kessleri. We measured the effect of this heavy metal by means of in vivo absorption microspectroscopy of both the thylakoid compartments and the eyespot. The decomposition of the overall absorption spectra in pigment constituents indicates that Cr(6+) effects are very different in the two algae. In E. unicocca the metal induced a complete pheophinitization of the chlorophylls and a modification of the carotenoids present in the eyespot after only 120 h of exposition at a concentration equal or greater than 40 microM, which is the limit for total Cr discharge established by US EPA regulations. In C. kessleri, chromium concentrations a hundred times higher than this limit had no effect on the photosynthetic machinery. The different tolerance level of the two algae is suggested to be due to the different properties of the mucilaginous envelope and cell wall covering, respectively, the colonies of Eudorina and the single cells of Chlorella, which binds chromium cations to a different extent.

  20. Screening high oleaginous Chlorella strains from different climate zones.

    PubMed

    Xu, Jin; Hu, Hanhua

    2013-09-01

    In outdoor cultivation, screening strains adapted to a wide temperature range or suitable strains for different environmental temperatures is of great importance. In this study, triacylglycerol (TAG) content of 23 oil-producing Chlorella strains from different climate zones were analyzed by thin layer chromatography. Four selected Chlorella strains (NJ-18, NJ-7, NMX35N and NMX139N) with rather high TAG content had higher total lipid content compared with Chlorella vulgaris SAG 211-11b. In particular, NJ-18 displayed the highest TAG productivity among the four high oil-producing Chlorella strains. Accumulation of TAGs in strain NMX35N changed a little from 30 to 40°C, showing a desirable characteristic of accumulating TAGs at high temperatures. Our results demonstrated that NJ-18 and NMX35N had suitable fatty acid profiles and good adaption to low and high temperatures respectively. Therefore, cultivation of the two Chlorella strains together might be a good option for economic biodiesel production during the whole seasons of the year.

  1. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris

    SciTech Connect

    Greene, B.; Henzl, M.T.; Hosea, J.M.; Darnall, D.W.

    1986-01-01

    Freeze-dried preparations of Chlorella vulgaris will accumulate U(Vl) from alkaline, bicarbonate-containing waters collected from uranium mill process streams, provided that the pH is pre-adjusted to between 4.0 and 6.0. Bicarbonate ion complexes the uranyl ion in these waters and seriously interferes with the binding of U(Vl) to the algal cells at pH values above 6.0. No binding of U(Vl) to the algae occurred at the natural pH of 8.0 when Chlorella vulgaris was suspended in untreated mull-waters containing up to 2.5 x 10/sup -4/M U(Vl). However, when the pH of these waters was lowered from 8.0 to near 5.0, with nitric acid, nearly quantitative binding of U(Vl) to the alga was achieved. Binding is rapid and largely unaffected by ions including Na/sup +/, Cl/sup -/, NO/sub 3//sup -/, /sup -/OAc, and SO/sub 4//sup 2 -/. Our results indicate that provided steps are taken to eliminate bicarbonate interference, such as adjustment of the pH to near 5.0, dried algal biomass could prove useful for the removal and recovery of U(Vl) from high carbonate-containing waters.

  2. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  3. Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling.

    PubMed

    Onwudili, Jude A; Lea-Langton, Amanda R; Ross, Andrew B; Williams, Paul T

    2013-01-01

    Chlorella vulgaris, Spirulina platensis and Saccharina latissima were processed under supercritical water gasification conditions at 500 °C, 36 MPa in an Inconel batch reactor for 30 min in the presence/absence of NaOH and/or Ni-Al(2)O(3). Hydrogen gas yields were more than two times higher in the presence of NaOH than in its absence and tar yields were reduced by up to 71%. Saccharina, a carbohydrate-rich macro-alga, gave the highest hydrogen gas yields of 15.1 mol/kg. The tars from all three algae contained aromatic compounds, including phenols, alkyl benzenes and polycyclic aromatic hydrocarbons as well as heterocyclic nitrogen compounds. Tars from Chlorella and Spirulina contained high yields of pyridines, pyrroles, indoles and pyrimidines. Up to 97% TOC removal were achieved in the process waters from the gasification of the algae. Analyses for specific nutrients in the process waters indicated that the process waters from Saccharina could potentially be used for microalgae cultivation.

  4. Salt stimulated respiration of Chlorella fusca.

    PubMed

    Löppert, H G

    1976-01-01

    ATP contents have been measured before and after addition of KCl (5 mM final concentration) to suspensions of Chlorella in distilled water under different conditions of energy supply. The levels decreased immediately after salt addition and returned to the original values under conditions both of oxidative phosphorylation and of cyclic photophosphorylation, but not under conditions of fermentation. It appears that this decrease in the ATP level is the cause for salt stimulated respiration (S.S.R.). Furthermore, it is shown that cycloheximide and EDTA, which interact with Rb+ uptake (active and ATP-driven) at low salt concentration, also reduce S.S.R. From this parallelism it is concluded that the ATPase involved in Rb+ uptake at low salt concentration is also responsible for S.S.R. at high salt concentration. As S.S.R. provides far more energy than is required for the small influx of ions it is suggested that the ATPase is decoupled by the salt from ion transport.

  5. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  6. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.

    PubMed

    Tang, Haiying; Chen, Meng; Garcia, M E D; Abunasser, Nadia; Ng, K Y Simon; Salley, Steven O

    2011-10-01

    Microalgae are among the most promising of non-food based biomass fuel feedstock alternatives. Algal biofuels production is challenged by limited oil content, growth rate, and economical cultivation. To develop the optimum cultivation conditions for increasing biofuels feedstock production, the effect of light source, light intensity, photoperiod, and nitrogen starvation on the growth rate, cell density, and lipid content of Chlorella minutissima were studied. The fatty acid content and composition of Chlorella minutissima were also investigated under the above conditions. Fluorescent lights were more effective than red or white light-emitting diodes for algal growth. Increasing light intensity resulted in more rapid algal growth, while increasing the period of light also significantly increased biomass productivity. Our results showed that the lipid and triacylglycerol content were increased under N starvation conditions. Thus, a two-phase strategy with an initial nutrient-sufficient reactor followed by a nutrient deprivation strategy could likely balance the desire for rapid and high biomass generation (124 mg/L) with a high oil content (50%) of Chlorella minutissima to maximize the total amount of oil produced for biodiesel production. Moreover, methyl palmitate (C16:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3) are the major components of Chlorella minutissima derived FAME, and choice of light source, intensity, and N starvation impacted the FAME composition of Chlorella minutissima. The optimized cultivation conditions resulted in higher growth rate, cell density, and oil content, making Chlorella minutissima a potentially suitable organism for biodiesel feedstock production.

  7. Impact of Summer Cattle Grazing on the Sierra Nevada Watershed: Aquatic Algae and Bacteria

    PubMed Central

    Derlet, Robert W.; Richards, John R.; Tanaka, Lidia L.; Hayden, Curtis; Ger, K. Ali; Goldman, Charles R.

    2012-01-01

    Introduction. We evaluated periphytic algal and microbial communities to assess the influence of human and cattle impact on Sierra water quality. Methods. 64 sites (lakes and streams from Lake Tahoe to Sequoia National Park, California) were sampled for suspended indicator bacteria and algae following standardized procedures. The potential for nonpoint pollution was divided into three categories: cattle-grazing areas (C), recreation use areas (R), or remote wildlife areas (W). Results. Periphyton was found at 100% of C sites, 89% of R sites, but only 25% of W sites. Eleven species of periphytic algae were identified, including Zygnema, Ulothrix, Chlorella, Spirogyra, mixed Diatoms, and Cladophoria. Mean benthic algae coverage was 66% at C sites compared to 2% at W sites (P < 0.05). The prevalence of E. coli associated with periphyton was 100% at C sites, 25% of R sites, and 0% of W sites. Mean E. coli CFU/gm of algae detected was: C = 173,000, R = 700, W = 0. (P < 0.05). Analysis of neighboring water for E. coli bacteria >100 CFU/100 mL: C = 91%, R = 8%, W = 0 (P < 0.05). Conclusion. Higher periphytic algal biomass and uniform presence of periphyton-attached E. coli corresponded to watersheds exposed to summer cattle grazing. These differences suggest cattle grazing compromises water quality. PMID:22505950

  8. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  9. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources.

    PubMed

    Birungi, Z S; Chirwa, E M N

    2015-12-15

    Thallium (Tl) is a highly volatile and toxic heavy metal regarded to cause pollution even at very low concentrations of several parts per million. Despite the extremely high risk of Tl in the environment, limited information on removal/recovery exists. The study focussed on the use of green algae to determine the sorption potential and recovery of Tl. From the study, removal efficiency was achieved at 100% for lower concentrations of ≥150 mg/L of Tl. At higher concentrations in a range of 250-500 mg/L, the performance of algae was still higher with sorption capacity (qmax) between 830 and 1000 mg/g. Generally, Chlorella vulgaris was the best adsorbent with a high qmax and lower affinity of 1000 mg/g and 1.11 L/g, respectively. When compared to other studies on Tl adsorption, the tested algae showed a better qmax than most adsorbents. The kinetic studies showed better correlation co-efficient of ≤0.99 for Pseudo-second order model than the first order model. Recovery was achieved highest for C. vulgaris using nitric acid at 93.3%. The strongest functional groups responsible for Tl binding on the algal cell wall were carboxyl and phenols. Green algae from freshwater bodies showed significant potential for Tl removal/recovery from industrial wastewater.

  10. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  11. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    PubMed

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-05

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96 h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM.

  12. Bioregeneration with maltose excreting Chlorella: system concept, technological development, and experiments.

    PubMed

    Wolf, L

    1997-01-01

    ESA has been studying a small-scale bioregenerative system to support long-term biological experiments on-board spacecraft with oxygen, water and food. Core component of this system is a special photo-bioreactor in which a maltose-producing strain of the green micro alga Chlorella is cultivated. A number of auxiliary system components have been developed and are functioning on the ground according to the design specifications, among them a gas/liquid phase separator operating at the same time as a low shear-stress pneumatic pump, a dehumidifier, a maltose separator, and a liquid transfer system. All components have been designed so that--in principle--they will operate in weightlessness, though this has so far only been verified for the gas/liquid separator. The bioreactor and some of the auxiliary components have been integrated in a prototype system, which has been subjected to preliminary testing. The prototype has been sterilized successfully by autoclaving, except for the liquid transfer unit which is disinfected with isopropyl alcohol. Chlorella 241.80 has been cultured several times under controlled conditions for up to 8 weeks. Algal growth to a biomass concentration of 9 g.l-1 dry weight and maltose production to a concentration of 17 g.l-1 have been achieved. The low shear-stress pneumatic pump works reliably without the mechanical cell damage produced by other types of pumps. Contamination of the algal cultures by other micro-organisms has been avoided in most of the experiment runs. The maximum oxygen production rate observed was 2 ml.min-1, when the culture was aerated with air +0.5% CO2. This production rate is well below the CO2 gas transfer rate of 5 ml.min-1 under these conditions. It can probably be doubled by increasing the maximum light intensity of the illumination unit (currently 300 micro E.m-2S-1). In a preliminary closed gas loop experiment with Periplaneta as consumer, the possibility of controlling the Chlorella culture so as to match the

  13. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.

  14. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima.

    PubMed

    Oh, Sung Ho; Kwon, Min Chul; Choi, Woon Yong; Seo, Yong Chang; Kim, Ga Bin; Kang, Do Hyung; Lee, Shin Young; Lee, Hyeon Yong

    2010-08-01

    A unique perfusion process was developed to maintain high concentrations of marine alga, Chlorella minutissima. This method is based on recycling cells by continuous feeding with warm spent sea water from nuclear power plants, which has very similar properties as sea water. A temperature of at least 30 degrees C in a 200 L photo-bioreactor was maintained in this system by perfusion of the thermal plume for 80 days in the coldest season. The maximum cell concentration and total lipid content was 8.3 g-dry wt./L and 23.2 %, w/w, respectively, under mixotrophic conditions. Lipid production was found to be due to a partially or non-growth related process, which implies that large amounts of biomass are needed for a high accumulation of lipids within the cells. At perfusion rates greater than 1.5 L/h, the temperature of the medium inside the reactor was around 30 degrees C, which was optimal for cell growth. For this system, a perfusion rate of 2.8 L/h was determined to be optimal for maintaining rapid cell growth and lipid production during outdoor cultivation. It was absolutely necessary to maintain the appropriate perfusion rate so that the medium temperature was optimal for cell growth. In addition, the lipids produced using this process were shown to be feasible for biodiesel production since the lipid composition of C. minutissima grown under these conditions consisted of 17 % (w/w) of C(16) and 47% (w/w) of C(18). The combined results of this study clearly demonstrated that the discharged energy of the thermal plume could be reused to cultivate marine alga by maintaining a relatively constant temperature in an outdoor photo-bioreactor without the need for supplying any extra energy, which could allow for cheap production of biodiesel from waste energy.

  15. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media.

    PubMed

    Morales-Ventura, Jesús; Nandini, S; Sarma, S S S; Castellanos-Páez, Maria Elena

    2012-09-01

    Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold's basal) medium or the commercial liquid fertilizer (Bayfolan). Experiments were conducted at one algal concentration 1.0 x 10(6) cells/mL of C. vulgaris or its equivalent dry weight of 0.5 x 10(6) cells/mL of S. acutus. The population dynamics were tested at 23 +/- 1 degrees C in 100 mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates). For the life table experiments with M. macrocopa, we introduced 10 neonates (<24h old) into each test jar containing the specific algal type and concentration. For the rotifer experiments, we set 5mL tubes with one neonate each and 10 replicates for each algal species and culture medium. We found that the average rotifer life span was not influenced by the diet, but for M. macrocopa fed S. acutus cultured in Bold's medium, the average lifespan was significantly lower than with the other diets. The gross and net reproductive rates of A. fissa (ranging from 18-36 offspring per female) were significantly higher for C vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens

  16. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    PubMed

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment.

  17. Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations.

    PubMed

    Sun, Xue; Shen, Jia; Bai, Fengwei; Xu, Nianjun

    2016-10-01

    To enrich our knowledge of carbon dioxide (CO2)-concentrating mechanism (CCM) in eukaryotic algae, we used high-throughput sequencing to investigate the transcriptome profiling of the microalga Chlorella pyrenoidosa (Chlorophyta) response to different CO2 levels. Altogether, 53.86 million (M) and 62.10M clean short reads of 100 nucleotides (nt) were generated from this microalga cultured at 4-fold air CO2 (control) and air CO2 concentrations by Illumina sequencing. A total of 32,662 unigenes were assembled from the two pooled samples. With an E-value cut-off of 1e-5, 9590, 6782, 5954, and 9092 unigenes were annotated in NR, Gene Ontology (GO), Eukaryotic Cluster of Orthologous Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. After screening, 51 differentially expressed unigenes were up-regulated and 8 were down-regulated in the air CO2 group, relative to the control. The transcript levels of eight differentially expressed unigenes were validated by real-time quantitative PCR, which manifested that thioredoxin-like protein, laminin subunit beta-1, and chlorophyll a/b binding protein might be associated with the utilization of inorganic carbon at low CO2 levels.

  18. Metal distributions in complexes with Chlorella vulgaris in seawater and wastewater

    SciTech Connect

    Pascucci, P.R.; Kowalak, A.D.

    1999-10-01

    Divalent cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) simultaneous complexes with an algal biomass Chlorella vulgaris were studied for bioremediation purposes in various aqueous media: distilled-deionized water (DDIW), seawater, nuclear-reactor pool water, and process wastewater. Reactions were monitored using various dry masses of algae at constant temperature and constant metal concentrations for reaction times ranging from 0 to 150 minutes. Complexes occurred within 30 minutes and reached a steady state after 80 to 120 minutes. Distribution constants (K{prime}{sub d}) were calculated for the complexes and relative orders of K{prime}{sub d} were reported. The K{prime}{sub d} are used to evaluate relative efficiency of metal remediation from waters. Lead, Cu, and Ni complexes had the greatest K{prime}{sub d} values and those metals were most efficiently removed from these waters. Zinc and Fe formed the most labile complexes. The order of K{prime}{sub d} values for complexes in DDIW was Pb > Cu > Cd > Zn, then Cu > Cd > Zn in seawater, Cd > Cu > Zn in reactor pool water, and Ni > Cd > Cu > Zn > Fe in wastewater. C. vulgaris biomass may potentially be used as an alternative to traditional water treatment methods for simultaneous extraction of metals from seawater, process wastewater, or drinking water.

  19. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light.

    PubMed

    Xie, Xiujun; Huang, Aiyou; Gu, Wenhui; Zang, Zhengrong; Pan, Guanghua; Gao, Shan; He, Linwen; Zhang, Baoyu; Niu, Jianfeng; Lin, Apeng; Wang, Guangce

    2016-02-01

    The development of microalgae on an industrial scale largely depends on the economic feasibility of mass production. High light induces productive suspensions during cultivation in a tubular photobioreactor. Herein, we report that high light, which inhibited the growth of Chlorella sorokiniana under autotrophic conditions, enhanced the growth of this alga in the presence of acetate. We compared pigments, proteomics and the metabolic flux ratio in C. sorokiniana cultivated under high light (HL) and under low light (LL) in the presence of acetate. Our results showed that high light induced the synthesis of xanthophyll and suppressed the synthesis of chlorophylls. Acetate in the medium was exhausted much more rapidly in HL than in LL. The data obtained from LC-MS/MS indicated that high light enhanced photorespiration, the Calvin cycle and the glyoxylate cycle of mixotrophic C. sorokiniana. The results of metabolic flux ratio analysis showed that the majority of the assimilated carbon derived from supplemented acetate, and photorespiratory glyoxylate could enter the glyoxylate cycle. Based on these data, we conclude that photorespiration provides glyoxylate to speed up the glyoxylate cycle, and releases acetate-derived CO2 for the Calvin cycle. Thus, photorespiration connects the glyoxylate cycle and the Calvin cycle, and participates in the assimilation of supplemented acetate in C. sorokiniana under high light.

  20. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.

    PubMed

    Feng, Pingzhong; Deng, Zhongyang; Hu, Zhengyu; Fan, Lu

    2011-11-01

    Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock.

  1. Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa.

    PubMed

    Zhang, Jinhua; Wang, Jie; Feng, Jia; Lv, Junping; Cai, Jin; Liu, Qi; Xie, Shulian

    2016-09-01

    1,4-Dichlorobenzene (1,4-DCB) is a common organic contaminant in water. To determine the effects of this contaminant on photosynthesis in the freshwater alga Chlorella pyrenoidosa, algal cells were treated with 1,4-DCB at different concentrations for various times, and their photosynthetic pigment contents and chlorophyll fluorescence traits were analyzed. The results showed that 1,4-DCB exerted toxic effects on photosynthesis in C. pyrenoidosa, especially at concentrations exceeding 10 mg/L. The inhibitory effects of 1,4-DCB were time- and concentration-dependent. After treatment with 1,4-DCB (≥10 mg/L), the contents of photosynthetic pigments decreased significantly, the photosystem II reaction center was irreversibly damaged, and the quantum yield of photosystem II decreased significantly. Also, there were sharp decreases in the efficiency of photosynthetic electron transport and energy conversion. Photosystem II became overloaded as the amount of excitation energy distributed to it increased. All of these events weakened the photochemical reaction, and ultimately led to serious inhibition of photosynthesis.

  2. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts.

    PubMed

    Zhang, Jixiang; Chen, Wan-Ting; Zhang, Peng; Luo, Zhongyang; Zhang, Yuanhui

    2013-04-01

    Hydrothermal liquefaction (HTL) of low lipid content microalgae Chlorella pyrenoidosa with heterogeneous catalysts was processed under sub- and supercritical conditions of ethanol (200-300°C, 2.8-9.0 MPa, 30 min). The HTL products were separated into bio-crude, gas, solid residue and volatile components, and then characterized. The highest mass and energy recovery ratios of bio-crude on the dry basis of alga were 71.3% and 101.8% respectively, obtained at 240°C, while the highest higher heating value of bio-crude was 36.19 MJ/kg, obtained at 300°C. Temperature was found to be the most dominant parameter. H2 as a processing gas at an initial pressure of 1.03 MPa slightly improved the bio-crude yield and quality. Raney-Ni and HZSM-5 type zeolite catalysts had no significant effect on the presented HTL process. The results indicated that HTL with ethanol as the solvent was able to produce 50-70 wt.% of bio-crude directly from C. pyrenoidosa.

  3. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters.

    PubMed

    Xu, Han; Miao, Xiaoling; Wu, Qingyu

    2006-12-01

    The aim of the study was to obtain high quality biodiesel production from a microalga Chlorella protothecoids through the technology of transesterification. The technique of metabolic controlling through heterotrophic growth of C. protothecoides was applied, and the heterotrophic C. protothecoides contained the crude lipid content of 55.2%. To increase the biomass and reduce the cost of alga, corn powder hydrolysate instead of glucose was used as organic carbon source in heterotrophic culture medium in fermenters. The result showed that cell density significantly increased under the heterotrophic condition, and the highest cell concentration reached 15.5 g L(-1). Large amount of microalgal oil was efficiently extracted from the heterotrophic cells by using n-hexane, and then transmuted into biodiesel by acidic transesterification. The biodiesel was characterized by a high heating value of 41 MJ kg(-1), a density of 0.864 kg L(-1), and a viscosity of 5.2 x 10(-4) Pa s (at 40 degrees C). The method has great potential in the industrial production of liquid fuel from microalga.

  4. Viruses of eukaryotice green algae

    SciTech Connect

    Van Etten, J.L.

    1989-01-01

    The primary objective of our research was to develop the Chlorella-PBCV-1 virus system so that it can be used as a model system for studying gene expression in a photosynthetic eukaryote. We have made considerable progress and have learned much about PBCV-1 and its replication cycle. In addition, several significant discoveries were made in the last 3 to 4 years. These discoveries include: (i) the finding that morphologically similar, plaque forming, dsDNA containing viruses are common in nature and can be isolated readily from fresh water, (ii) the finding that all of these Chlorella viruses contain methylated bases which range in concentration from 0.1% to 47.5% m{sup 5}dC and 0 to 37% m{sup 6}dA and (iii) the discovery that infection with at least some of these viruses induces the appearance of DNA modification/restriction systems. 26 refs.

  5. Brown algae (Phaeophyta) for monitoring heavy metals at the Sudanese Red Sea coast

    NASA Astrophysics Data System (ADS)

    Ali, Abuagla Y. A.; Idris, Abubakr M.; Ebrahim, Ammar M.; Eltayeb, Mohmaed A. H.

    2017-02-01

    This study aimed at monitoring some heavy metals at the Sudanese Red Sea coast using Brown algae (Phaeophyta) as biomonitor. The total contents of heavy metals in four species (Turbinaria sp., Sargassum sp., Cystoseira sp. and Padina sp.) as well as seawater were examined. Twenty-six algae samples were collected from seven locations. The ranges of concentrations (µg/g, dry wt.) of heavy metals in algae were 4.95-16.95 for Cr, 2.93-257.32 for Mn, 1.35-7.43 for Ni, 0.83-14.10 for Cu, 4.13-19.13 for Zn, 0.03-0.15 for Cd and 0.45-2.18 for Pb. The ranges of the pH and the salinity of seawater from the same locations were 8.11-8.82 and 38.00-41.00 PSU, respectively. The ranges of concentrations (µg/L) of heavy metals in seawater were 7.00-11.00 for Cr, 2.90-10.20 for Mn, 6.70-10.10 for Ni, 1.70-5.00 for Cu, 0.94-5.70 for Zn, 0.09-0.14 for Cd and 0.93-1.80 for Pb. No significant correlations between metal concentrations in algae and seawater were observed. Some locations in the study area recorded relatively high levels of heavy metals in algae indicating possible contribution from manmade activities. Cr recorded higher levels in the study area than those in other coastal areas in the word. Padina sp. and Cystoseira sp. were better bioindicator than Turbinaria sp., Sargassum sp. for their high metal uptake.

  6. Freshwater algae competition and correlation between their growth and microcystin production.

    PubMed

    Álvarez, Xana; Valero, Enrique; Cancela, Ángeles; Sánchez, Ángel

    2016-11-01

    There are some different freshwater algae in Eutrophic reservoirs which bloom with specific environmental conditions, and some of them are cyanobacteria. In this investigation, we have cultivated microalgae present in natural water samples from a eutrophic reservoir. Variations in temperature and light were evaluated, as well as the competition among different green algae and cyanobacteria. There were three different freshwater algae growing together, Scenedesmus sp., Kirchneriella sp. and Microcystis aeruginosa, this cyanobacterium was the algae that reached the highest development and growth during the culture. While the algae grew, the concentration of toxin (microcystin-LR) increased until it reached the highest levels at 570 μg g(-1). Blooms occurred at temperatures of 28 ± 1.5 °C and light cycles of longer hours of light than dark. This took place during the summer months, from June to September (in the study area). At temperatures below 18 °C, algae did not grow. Blooms were reproduced to a laboratory scale in different conditions in order to understand the development of freshwater algae, as well as to help decision-making about water supply from that reservoir.

  7. Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production.

    PubMed

    Sun, Zheng; Zhou, Zhi-gang; Gerken, Henri; Chen, Feng; Liu, Jin

    2015-05-01

    The growth and oil production of nine Chlorella strains were comparatively assessed and Chlorellaprotothecoides CS-41 demonstrated the greatest lipid production potential. The effects of different nitrogen forms and concentrations, phosphorus concentrations and light intensities on growth and oil production were studied in laboratory columns. C. protothecoides CS-41 accumulated lipids up to 55% of dry weight, with triacylglycerol and oleic acid being 71% of total lipids and 59% of total fatty acids, respectively. High biomass and lipid productivities were achieved in outdoor panel PBRs, up to 1.25 and 0.59 g L(-1) day(-1), or 44. 1 and 16.1 g m(-2) day(-1), respectively. A two-stage cultivation strategy was proposed to enhance the algal biomass and lipid production. This is the first comprehensive investigation of both indoor and outdoor photoautotrophic C. protothecoides cultures for oil production, and C. protothecoides CS-41 represents a promising biofuel feedstock worthy of further exploration.

  8. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    PubMed

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  9. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    PubMed

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.

  10. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  11. Vitreoscilla hemoglobin gene ( vgb) improves lutein production in Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Ma, Ruijuan; Lin, Xiangzhi

    2014-03-01

    Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the efficiency of cell respiration and metabolism. In this study, we introduced a Vitreoscilla hemoglobin gene ( vgb) into Chlorella vulgaris by Agrobacterium tumefaciens -mediated transformation (ATMT). PCR analysis confirmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome. Analysis of biomass obtained in shake flasks revealed transformant biomass concentrations as high as 3.28 g/L, which was 38.81% higher than that of the wild-type strain. Lutein content of transformants also increased slightly. Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants, which was 36.77% higher than that of the wild-type strain. The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris, with applications to lutein production from Chlorella during fermentation.

  12. Evaluation of Chlorella as a Decorporation Agent to Enhance the Elimination of Radioactive Strontium from Body

    PubMed Central

    Ogawa, Kazuma; Fukuda, Tadahisa; Han, Jaegab; Kitamura, Yoji; Shiba, Kazuhiro; Odani, Akira

    2016-01-01

    Background Release of radionuclides, such as 137Cs and 90Sr, into the atmosphere and the ocean presents an important problem because internal exposure to 137Cs and 90Sr could be very harmful to humans. Chlorella has been reported to be effective in enhancing the excretion of heavy metals; thus, we hypothesized that Chlorella could also enhance the elimination of 137Cs or 90Sr from the body. We evaluated the potential of Chlorella as a decorporation agent in vitro and in vivo, using 85Sr instead of 90Sr. Methods In vitro experiments of adsorption of 137Cs and 85Sr to Chlorella were performed under wide pH conditions. The maximum sorption capacity of Chlorella to strontium was estimated using the Langmuir model. A 85Sr solution was orally administrated to mice pretreated with Chlorella. At 48 h after 85Sr administration, the biodistribution of radioactivity was determined. Results In the in vitro experiments, although 85Sr barely adsorbed to Chlorella at low pH, the 85Sr adsorption ratio to Chlorella increased with increasing pH. The maximum sorption capacity of Chlorella to strontium was 9.06 mg / g. 137Cs barely adsorbed to Chlorella under any pH conditions. In the biodistribution experiments, bone accumulation of radioactivity after 85Sr administration was significantly decreased in the Chlorella pretreatment group compared with the non-treatment control group. Conclusions In conclusion, these results indicated that Chlorella could inhibit the absorption of 90Sr into the blood and enhance the elimination of 90Sr from the body through adsorption in intestine. Further studies are required to elucidate the mechanism and the components of Chlorella needed for adsorption to strontium and could promote the development of more effective decorporation agents. PMID:26828430

  13. Effect of lycopene from Chlorella marina on high cholesterol-induced oxidative damage and inflammation in rats.

    PubMed

    Renju, G L; Kurup, G Muraleedhara; Saritha Kumari, C H

    2014-02-01

    Even though the role of all-trans lycopene from tomato in controlling atherosclerosis was reported, but no report is available on the cis-isomer of lycopene obtained from an easily available source green algae Chlorella marina. So in this study, Sprague Dawley rats fed with high-cholesterol diet were given standard drug lovastatin; algal lycopene (AL) (cis/all-trans 40:60) and tomato all-trans lycopene (TL) and the following parameters were studied. Total cholesterol, low-density lipoprotein, triglycerides were decreased significantly and the high-density lipoprotein levels were increased on treatment with AL. The activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase were found to be increased, whereas thiobarbituric acid reactive substances levels were decreased in AL when compared to the drug and TL-treated rats. The activities of inflammatory marker enzymes like cyclooxygenase, 15-lipoxygenase in monocytes and myeloperoxidase, C-reactive protein and ceruloplasmin levels in serum were found to be decreased on treatment with AL. Histopathological studies revealed that lycopene from this alga could reduce fatty liver and aortic plaque when compared to the drug and TL. Algal lycopene showed very significant antioxidant and anti-inflammatory effect in high-cholesterol fed rats. Therefore, AL from C. marina would be recommended for the treatment of hyperlipidemia.

  14. The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity.

    PubMed

    Rachlin, J W; Grosso, A

    1991-05-01

    The effects of pH alone, and in combination with exposure to 0.89 microM cadmium, on the growth response of the green alga Chlorella vulgaris were evaluated. Acidic (3.0-6.2) and alkaline (8.3-9.0) pH values retarded the growth of this alga. Optimal growth occurred when the pH of the medium was adjusted to values of 7.5 and 8.0. When the cells were exposed to pH adjusted medium plus the presence of 0.89 microM Cd, a value known to reduce population growth by 50% at the control pH of 6.9, the affects were additive at the acidic (3.0-5.0) pH ranges. At alkaline pH values of 8.3-9.0 all toxicity responses could be explained by pH adjustment alone, indicating that additional cadmium toxicity was absent. At pH values of 7.5 and 8.0, cadmium toxicity was mitigated against, and resultant growth at pH 8.0 was at the same enhanced rate as this pH without cadmium.

  15. Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg-phytochelatins.

    PubMed

    Gómez-Jacinto, Verónica; García-Barrera, Tamara; Gómez-Ariza, José Luis; Garbayo-Nores, Inés; Vílchez-Lobato, Carlos

    2015-08-05

    Algae and aquatic macrophytes are capable of accumulating heavy metals up to concentrations several orders of magnitude higher than those existing in their surrounding environment. Investigation of mercury toxicology in microalgae is of great interest from ecological point of view, since they could be used as bioindicator to evaluate aquatic ecosystems affected by Hg pollution. In this study, we have performed an exposure experiment focused on the biological response of microalgae Chlorella sorokiniana, a unicellular model organism, to Hg-induced toxicity. The culture was exposed to different concentrations of this element for nine days, namely 0.5, 1, 5 and 10mg L(-1) of HgCl2 (as Hg). To achieve a better understanding of the biological mechanisms triggered by Hg-induced toxicity in this alga a metallomic approach based on SEC-ICP-ORS-MS was applied to survey biomarkers of biological response to mercury contamination in surface water. In addition, the combination of RP-HPLC-ICP-ORS-MS and RP-HPLC-ESI-QqQ-TOF-MS was applied to identify, for the first time, two Hg-binding phytochelatins in this aquatic organism, using cell extracts from microalgae exposed to inorganic mercury.

  16. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. [Chlamydomonas reinhardii; Chlorella pyrenoidosa; Chlorococcum minutum

    SciTech Connect

    Ohta, S.; Miyamoto, K.; Miura, Y.

    1987-04-01

    Dark anaerobic fermentation in the green algae Chlamydomonas MGA 161, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Chlorococcum minutum was studied. Their isolate, Chlamydomonas MGA 161, was unusual in having high H/sub 2/ but almost no formate. The fermentation pattern in Chlamydomonas MGA 161 was altered by changes in the NaCl or NH/sub 4/Cl concentration. Glycerol formation increased at low (0.1%) and high (7%) NaCl concentrations starch degradation, and formation of ethanol, H/sub 2/, and CO/sub 2/ increased with the addition of NH/sub 4/Cl to above 5 millimolar in N-deficient cells. C. reinhardtii and C.pyrenoidosa exhibited a very similar anaerobic metabolism, forming formate, acetate and ethanol in a ratio of about 2:2:1. C. minimum was also unusual in forming acetate, glycerol, and CO/sub 2/ as its main products, with H/sub 2/, formate, and ethanol being formed in negligible amounts. In the presence of CO, ethanol formation increased twofold in Chlamydomonas MGA 161 and C. reinhardtii, but the fermentation pattern in C. minimum did not change. An experiment with hypophosphite addition showed that dark H/sub 2/ evolution of the Escherichia coli type could be ruled out in Chlamydomonas MGA 161 and C. reinhardtii. Among the green algae investigated, three fermentation types were identified by the distribution pattern of the end products, which reflected the consumption model of reducing equivalents in the cells.

  17. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC).

    PubMed

    Ma, Jinxing; Wang, Zhiwei; Zhang, Junyao; Waite, T David; Wu, Zhichao

    2017-01-01

    While microalgae have been suggested as a promising substitute to conventional fossil fuels, their cost effective cultivation and harvesting constitutes a major challenge. In the work described here, a novel photosynthetic microbial fuel cell (PMFC) in which a stainless steel mesh with biofilm formed on it serves as both the cathode and filtration material has been developed. Results of this study reveal that, in addition to inducing oxygen reduction reactions under illumination, the biocathode is effective in preventing the washout of algae during continuous operation, resulting in retained biomass concentrations reaching 3.5-6.5 g L(-1). The maximum output current density reached ∼200 mA m(-2) under irradiation, which is comparable with recent PMFC studies. Microbial diversity analyses targeting 16S and 18S rRNA genes indicated that the eukaryotic species belonging to the genus Chlorella was able to sustain its community dominance (>96%) over other competing species over the course of the studies. In the absence of catalysts such as Pt, a consortium of photosynthetic organisms including plant growth-promoting bacteria such as Azospirillum and Rhizobium were overrepresented in the biofilm, with these organisms most likely contributing to cathodic electron transfer. Energy flow analysis suggested that the PMFC system held the potential to achieve theoretical energy balance in simultaneous algae production and wastewater treatment.

  18. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  19. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon.

    PubMed Central

    Thies, F; Backhaus, T; Bossmann, B; Grimme, L H

    1996-01-01

    The N-demethylation of the pyridazinone pro-herbicide metflurazon into norflurazon implies a toxification in photosynthetic organisms. This is confirmed by quantitative structure activity relationships determined for two unicellular green algae, Chlorella sorokiniana and Chlorella fusca; however, the latter is 25 to 80 times more sensitive to metflurazon. This sensitivity is linked to differences in the N-demethylase activity of both algae, as determined by an optimized in vivo biotransformation assay. Apparent K(m) values of the metflurazon-N-demethylase indicate a 10-fold higher affinity for this xenobiotic substrate for Chlorella fusca. Furthermore, algal metflurazon-N-demethylation is characterized by distinct variations in activity, depending on the stage of cell development within the cell cycle. Several well-established inhibitors of cytochrome P450-mediated reactions, including piperonylbutoxide, 1-aminobenzotriazole, 1-phenoxy-3-(1H-1,2,4-triol-1yl)-4-hydroxy-5,5-dimethylhexane++ +, and tetcyclacis, as well as cinnamic acid, a potential endogenous substrate, inhibited the N-demethylation of metflurazon. The results suggest that the N-demethylation of metflurazon by both algae is mediated by a cytochrome P450 monooxygenase. The determination of antigenic cross-reactivity of algal proteins with heterologous polyclonal antibodies originally raised against plant P450s, anti-cinnamic acid 4-hydroxylase (CYP73A1), anti-ethoxycoumarin-O-dealkylase, anti-tulip allene oxidase (CYP74), and an avocado P450 (CYP71A1) or those of bacterial origin, CYP105A1 and CYP105B1, suggests the presence of distinct P450 isoforms in both algae. PMID:8819332

  20. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture.

    PubMed

    Ometto, Francesco; Pozza, Carlo; Whitton, Rachel; Smyth, Beatrice; Gonzalez Torres, Andrea; Henderson, Rita K; Jarvis, Peter; Jefferson, Bruce; Villa, Raffaella

    2014-04-15

    Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions.

  1. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  2. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  3. Comparative study of the trophic transfer of two mercury compounds--HgCl/sub 2/ and CH/sub 3/HgCl--between Chlorella vulgaris and Daphnia magna. Influence of temperature

    SciTech Connect

    Baudou, A.; Ribeyre, F.

    1981-12-01

    A comparative study is presented of the transfer of HgCl/sub 2/ and CH/sub 3/HgCl between a species representative of the ''producer'' level -- Chlorella vulgaris -- and a primary consumer -- Daphnia magna. The experiment was carried out at two temperatures, 10 and 18/sup 0/C, and the concentration of metal in the environment was 1 ..mu..g.l/sup -1/ (1 ppb). Results seem to indicate that the two contaminants, which are first introduced into the environment and then fixed by the unicellular algae, retain their specific property of crossing the digestive barrier of the consumer link.

  4. Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area).

    PubMed

    Kim, Gwang Hoon; Klochkova, Tatyana A; Kang, Sung Ho

    2008-07-01

    Field survey of algae and cyanobacteria from terrestrial and freshwater habitats in the vicinity of arctic Ny-Alesund, Svalbard (790N) (high Arctic sea area) was performed in June 2006. Species diversity and abundance were evaluated by using epifluorescence microscopy and culturing methods. In total, 29 taxa in 25 genera were identified, of which Leptolyngbya spp., Trichormus sp. and Chlamydomonas nivalis were abundantly present in almost every sample. In several locations, blooms were formed by species C. nivalis, Scotiellopsis sp., Klebsormidium flaccidum, Zygnema sp., Meridion circulare, Tabellaria fenestrata and Fragilaria sp. Eleven new species from this locality are described.

  5. Assessment of a tannin-based organic polymer to harvest Chlorella vulgaris biomass from swine wastewater digestate phycoremediation.

    PubMed

    Mezzari, M P; da Silva, M L B; Pirolli, M; Perazzoli, S; Steinmetz, R L R; Nunes, E O; Soares, H M

    2014-01-01

    This study investigated the efficiency of an organic tannin polymer alone or amended with polyacrylamide to harvest Chlorella vulgaris biomass grown in a laboratory-scale photobioreactor treating swine wastewater digestate. The effect of biomass concentration, tannin (TAN) dosages and changes in pH were evaluated in jar test experiments. Among the TAN concentrations tested (11, 22, 44, 89, 178 mg L(-1)), 11 mg L(-1) showed the highest biomass recovery (97%). The highest coagulation/ flocculation efficiencies were obtained at pH 5 to 7. Flocculation efficiency improved from 50 to 97% concomitant with the increasing biomass concentrations from 45 to 165 mg L(-1), respectively. Recovery efficiencies above 95% were achieved with the same TAN dosage (11 mg L(-1)) irrespective of the concentration of organic carbon present (75 to 300 mg TOC L(-1)). Overall, the results suggest that TAN could become an interesting alternative choice of non-toxic organic polymer for harvesting Chlorella sp. from organic-rich wastewater.

  6. STUDIES ON THE CHANGE OF THE CONCENTRATIONS OF INTERMEDIATES DURING PHOTOSYNTHESIS OF CHLORELLA AND ISOLATED CHLOROPLASTS.

    DTIC Science & Technology

    The chages in the concentrations of intermediates and the distribution of C(14) after photosynthesis in C(14)02 by Chlorella and isolated...changes in the concentrations of intermediates in Chlorella during the transition from light to dark and vice versa are independent of CO2, but...dependent on anaerobiosis. (2) In Chlorella photosynthesis is inhibited even by a concentration of monoiodoacetic acid which is 100 times lower than that

  7. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    SciTech Connect

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A.

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  8. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  9. Heme inhibition of [delta]-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella

    SciTech Connect

    Weinstein, J.D.; Howell, R.W.; Grooms, S.Y.; Brignola, P.S. ); Mayer, S.M.; Beale, S.I. )

    1993-02-01

    In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADAPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition. 48 refs., 7 figs., 4 tabs.

  10. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances.

  11. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  12. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  13. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  14. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    PubMed Central

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  15. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  16. Assimilation efficiency of organic contaminants from algae by the zebra mussel, Dreissena polymorpha

    SciTech Connect

    Goldenstein, T.A.; Bruner, K.A.; Fisher, S.W.; Landrum, P.F.

    1995-12-31

    A high percent of hydrophobic contaminants in the Great Lakes are particulate bound. Due to large populations and its high filtering capacity, the zebra mussel, Dreissena polymorpha, has the potential to re-direct contaminants from the water column by removal of contaminated particles, including algae. Throughout a season, zebra mussels feed on a variety of algal species. To determine if there are algal species differences in assimilation efficiency of contaminants, the percent assimilation efficiency (%AE) of three PCB congeners and DDE from three algae species were investigated using pulse-chase methodology. Results suggest no species difference in %AE for hexachlorobiphenyl (HCBP) from the algae Chlorella vulgaris and Chlamydomonas rheinhardtii. The mean %AE of HCBP from C. vulgaris was 60.9 (SE = {+-} 4.1), as compared to 68.6 (SE = {+-} 2.9) from C. rheinhardtii. Results from additional compounds and algal species will be discussed. The results of this study will allow them to refine the mechanism of contaminant uptake in aquatic filter feeders and assess the effect of zebra mussels on contaminant cycling in the Great lakes.

  17. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment

    NASA Astrophysics Data System (ADS)

    González del Campo, Araceli; Cañizares, Pablo; Rodrigo, Manuel A.; Fernández, Francisco J.; Lobato, Justo

    2013-11-01

    A microbial fuel cell (MFC) with an algae-assisted cathode, i.e., a system where the oxygen required by the cathode is not provided by aeration but by the photosynthetic process of the algae (Chlorella vulgaris), has been studied. The cathode was illuminated for 12 h each day (from 8:00 h to 20:00 h). 25 days was necessary to achieve steady state conditions. The time evolution of dissolved oxygen and cell voltage were assessed over the course of each day. As expected, the dissolved oxygen values were not constant throughout the day, reaching maximum values between 14:00 h and 20:00 h when dark phase reactions began and the algae started to consume oxygen. Cell voltage (Rext 120 Ω) followed the same trend as the oxygen profile. The supply of CO2 in the cathode was also studied, and half an hour was enough time to get the system working properly. During the acclimation stage, power density increased up to 13.5 mW m-2 at steady state conditions. However, impedance analysis showed that polarization resistance was higher at the cathode than at the anode. Nevertheless, it can be concluded that the studied system is a feasible method to treat wastewater in a self-sustainable way.

  18. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-12

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  19. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae.

    PubMed

    Zhao, Jian; Cao, Xuesong; Wang, Zhenyu; Dai, Yanhui; Xing, Baoshan

    2017-03-15

    We systematically investigated the toxicity mechanism of three graphene-family materials (GFMs), graphene oxide (GO), reduced graphene oxide (rGO) and multi-layer graphene (MG), to algae (Chlorella pyrenoidosa). GFMs exhibited much higher toxicity than other carbon materials (carbon nanotube and graphite), with the 96 h median effective concentration (EC50) values of 37.3 (GO), 34.0 (rGO), and 62.2 (MG) mg/L. Shading effect contributed approximately 16.4% of growth inhibition by GO due to its higher dispersibility and transformation while the other GFMs did not show any shading effect. Hydrophobic rGO and MG more readily heteroagglomerated with algae than GO, thus likely leading to more direct contacts with algae. Flow cytometry results showed significant decrease of membrane integrity after GFM exposure, and rGO caused the highest membrane damage, which was confirmed by the increased DNA and K(+) efflux. The observed membrane damage was caused by a combination of oxidative stress and physical penetration/extraction. Moreover, all the three GFMs could adsorb macronutrients (N, P, Mg, and Ca) from the algal medium, thus leading to nutrient depletion-induced indirect toxicity. GO showed the highest nutrient depletion (53% of total toxicity) due to its abundant functional groups. The information provided in this work will be useful for understanding toxicity mechanism and environmental risk of different GFMs in aquatic environments.

  20. Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae.

    PubMed

    Wen, Yuezhong; Chen, Hui; Yuan, Yuli; Xu, Dongmei; Kang, Xiaodong

    2011-04-01

    To reduce the leaching potential, to prevent groundwater contamination and to maintain the efficacy of a pesticide, natural polysaccharides have received increasing attention due to their biocompatibility and useful biological reactivity for controlled release formulations (CRFs) of pesticides. In this paper, the toxicities of the chiral herbicide dichlorprop (DCPP) and its complexes with chitosan molecules (DCPP-CS) and chitosan nanoparticles (DCPP-NP) to two different green algae were determined and compared. The inhibition rates of DCPP, DCPP-CS and DCPP-NP were determined at 24, 48, 72, 96, 120, 144, 168 h, and the results show that (S)-DCPP was more toxic to Chlorella vulgaris than (R)-DCPP, while the (R)-DCPP was more toxic to Scenedesmus obliquus than (S)-DCPP. The study also found that the chiral selectivity of DCPP to Chlorella vulgaris and Scenedesmus obliquus could be changed when DCPP was complexed with chitosan molecules (CS) or chitosan nanoparticles (NP). For Chlorella vulgaris, the order of inhibition was (R)-DCPP-CS > (S)-DCPP-CS and (R)-DCPP-NP > (S)-DCPP-NP; for Scenedesmus obliquus, the order was (S)-DCPP-CS > (R)-DCPP-CS and (S)-DCPP-NP > (R)-DCPP-NP. This phenomenon suggests that the enantioselective behaviors of chiral compounds might shift when interactions with other chiral receptors coexist in different biological environments. Additionally, chitosan molecules and chitosan nanoparticles also showed different toxicities, which could be ascribed to the difference in the physicochemical properties between CS and NP or the differences in the cell walls of the two fresh water green algae.

  1. Rapid Evolution of microRNA Loci in the Brown Algae.

    PubMed

    Cock, J Mark; Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P; Coelho, Susana M; Tarver, James E

    2017-03-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function.

  2. Rapid Evolution of microRNA Loci in the Brown Algae

    PubMed Central

    Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P.; Coelho, Susana M.; Tarver, James E.

    2017-01-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function. PMID:28338896

  3. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress.

    PubMed

    Cheng, Jun; Lu, Hongxiang; Huang, Yun; Li, Ke; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2016-03-01

    In order to produce biodiesel from microalgae cultured with abundant seawater, Chlorella sp. was mutated with (137)Se-γ ray irradiation and domesticated with f/2 seawater culture medium (s