Science.gov

Sample records for algae scenedesmus quadricauda

  1. Physiology and methodology of chromium toxicity using alga Scenedesmus quadricauda as model object.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Kryštofová, Olga; Provaznik, Ivo

    2015-02-01

    Physiological responses of Scenedesmus quadricauda to Cr(VI) and Cr(III) excess were studied in buffer with circumneutral pH (6.5). Total Cr content was similar in low (1 μM of both oxidation states) but higher in 10 μM Cr(VI) treatment and high accumulation potential was detected (80-82% and 41-65% in 1 and 10 μM treatments, respectively). Specific fluorescence indicator (6-((anthracen-9-yl) methyleneamino)-2H-chromen-2-one) confirmed partial reduction of Cr(VI) to Cr(III) under exposure conditions. Viability and chlorophyll autofluorescence were more depleted by Cr(VI) while Cr(III) stimulated increase in ROS and lipid peroxidation. Antioxidative enzyme activities showed significantly higher values in 10 μM treatments of both Cr oxidation states. Depletion of mitochondrial proteins was not reflected in alteration of total soluble proteins indicating sensitivity of this organelle to Cr and TTC test showed no clear oxidation state-related effect. In this view, "Cr(VI) is not more toxic than Cr(III)" at least for some parameters. Subsequent study with the application of 10 μM Cr(VI) confirmed that HEPES buffer is more suitable exposure solution for toxicological studied than water or inorganic salts (higher chlorophyll autofluorescence was observed) and pH 6.5 is more suitable than low or high pH (4.5 or 8.5) in terms of Cr uptake. Another known Cr(III) fluorescence indicator (naphthalimide-rhodamine) also confirmed partial reduction of Cr(VI) to Cr(III) at acidic pH but only traces were seen at alkaline pH. PMID:24972306

  2. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    PubMed

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  3. Characterization of Photosystem II Activity and Heterogeneity during the Cell Cycle of the Green Alga Scenedesmus quadricauda1

    PubMed Central

    Kaftan, David; Meszaros, Tibor; Whitmarsh, John; Nedbal, Ladislav

    1999-01-01

    The photosynthetic activity of the green alga Scenedesmus quadricauda was investigated during synchronous growth in light/dark cycles. The rate of O2 evolution increased 2-fold during the first 3 to 4 h of the light period, remained high for the next 3 to 4 h, and then declined during the last half of the light period. During cell division, which occurred at the beginning of the dark period, the ability of the cells to evolve O2 was at a minimum. To determine if photosystem II (PSII) controls the photosynthetic capacity of the cells during the cell cycle we measured PSII activity and heterogeneity. Measurements of electron-transport activity revealed two populations of PSII, active centers that contribute to carbon reduction and inactive centers that do not. Measurements of PSII antenna sizes also revealed two populations, PSIIα and PSIIβ, which differ from one another by their antenna size. During the early light period the photosynthetic capacity of the cells doubled, the O2-evolving capacity of PSII was nearly constant, the proportion of PSIIβ centers decreased to nearly zero, and the proportion of inactive PSII centers remained constant. During the period of minimum photosynthetic activity 30% of the PSII centers were insensitive to the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which may be related to reorganization of the thylakoid membrane. We conclude from these results that PSII does not limit the photosynthetic activity of the cells during the first half of the light period. However, the decline in photosynthetic activity observed during the last half of the light period can be accounted for by limited PSII activity. PMID:10364394

  4. Cadmium induced potassium efflux from Scenedesmus quadricauda

    SciTech Connect

    Reddy, G.N.; Prasad, M.N.V.

    1992-10-01

    Plants, algae and bacteria respond to heavy metal toxicity by inducing different enzymes, ion influx/efflux for ionic balance and synthesize small peptides such as poly({gamma}-glutamyl cysteinyl) glycines called phytochelatins (PCs) mainly consisting of glutamate, cysteine and glycine. These peptides bind metal ions and reduce toxicity. The uptake of metal ions comprises two phases. The first phase consists of a quick and nonspecific binding of the cations to negatively-charged membrane components located at the cell surface. The second phase consists of energy-dependent intracellular uptake of the metal ions. During uptake of Co{sup 2+} by yeast cells, an electroneutral 2:1 exchange with K{sup +} was found. Cd{sup 2+} uptake by yeast also caused loss of cell K{sup +}, however, there was no electroneutral exchange of K{sup +}. The molar ratio of K{sup +} released and Cd{sup 2+} accumulated by yeast in the initial stage of incubation is 22 and seems to be independent of the Cd concentration. Disruption of the cell membrane of part of the cells, according to an all-or-none process, by Cd{sup 2+} may explain the disproportional loss of cell K{sup +} during Cd{sup 2+} uptake. This paper examines the exchange of K{sup +} with Cd{sup 2+} uptake in Scenedesmus quadricauda, and whether it follows an electroneutral 2:1 exchange or an all-or-none process. 11 refs., 2 figs.

  5. [The effect of phenols on the parameters of chlorophyll fluorescence and reaction of P700 in the green algae Scenedesmus quadricauda].

    PubMed

    Matorin, D N; Plekhanov, S E; Bratkovskaia, L B; Iakovleva, O V; Alekseev, A A

    2014-01-01

    The effect of phenols, present in drains of the tsellyulozo-paper industry, on photosynthesis of the microalgae Scenedesmus quadricauda has been studied. The analysis of induction curves of the slowed-down fluorescence and light curves of non-photochemical quenching of chlorophyll fluorescence of microalgae Scenedesmus quadricauda is carried out. It was observed that energization of photosynthetic membranes was inhibited at low concentration of phenol and pyrocatechin (0.1 mM). At higher concentrations phenol and pyrocatechin inhibited electron transport in FSII and increased a share of QB not restoring centers. As a result of it the rate of P700 pigment regeneration slowed down. The results obtained indicate that parameters of induction curves of the fast and slowed-down fluorescence can be used for detecting phenol and pyrocatechin in the environment at early stages of toxic effects. PMID:25715586

  6. Effects of acid stress on Scenedesmus quadricauda (chlorophyta) and Anabaena sp. (cyanophyta)

    SciTech Connect

    Hadden-Carter, P.J.

    1984-01-01

    The effects of pH in conjunction with light and temperature on growth of Scenedesmus quadricauda (Chlorophyta) and Anabaena sp. (Cyanophyta) were examined in culture. Decreasing pH from 7 to 3 inhibited growth, more so in the blue-green alga. Effects were greatly influenced by light and temperature. Above a critical level (pH4 with the blue-green, pH 3 with the green) both algae recovered when acid stress was removed; post-acidification growth rates varied inversely with pH for the green alga and directly for the blue-green. Two sheathed blue-green algae (Lyngbya and Gleocapsa) grew below pH 6, while two unsheathed blue-green algae (Anabaena and Oscillatoria) did not. Cell dimensions of both S. quadricaude and Anabaena sp. generally increased as pH declined; the green alga was the more plastic of the two. Acid stress significantly decreased photosynthetic rate in S. quadricauda but did not for Anabaena sp. Respiratory rates were not significantly related to pH for either alga. Chlorophyll a per cell was higher than controls (pH 7) at pH 5 and 6 in Anabaena sp. and at pH 4 through 6 for S. quadricauda. Both cell division and total culture biomass declined with pH. When grown in mixed culture, the green alga usually predominated at pH 4 and often at pH 5; the blue-green was favored at lower light intensities and higher temperatures. In no instance did one alga stimulate growth of the other, although mutual inhibition occurred in several instances.

  7. Scenedesmus quadricauda for Nutrient Removal and Lipid Production in Wastewater.

    PubMed

    Wong, Y K; Yung, K K L; Tsang, Y F; Xia, Y; Wang, L; Ho, K C

    2015-12-01

    Scenedesmus quadricauda, a local freshwater microalga, was used to treat primary settled and filtrate wastewater and to produce algal lipid. For the primary settled wastewater, the maximum biomass concentrations of acclimated and unacclimated microalgae were 0.995 g/L and 0.940 g/L, respectively. Over 90% orthophosphate and 95% ammonia nitrogen in the acclimated and unacclimated cultures, respectively, were removed after five days. The lipid contents of the microalgae were higher than 13% in all cultures. The highest growth rate occurred in the 25% filtrate culture. Over 80% phosphate was removed under the 25% and 50% filtrate cultures within six days, while over 90% ammonia nitrogen was removed within five days under both conditions. The lipid content was the highest (18.1%) under the 50% filtrate condition. C16:0, C18:2n6, and C18:3n3 were dominant fatty acids. In conclusion, S. quadricauda is a viable candidate for wastewater treatment and lipid production. PMID:26652116

  8. [Individual and joint stress of lead and mercury on growth, glutathione and glutathione-related enzymes of Scenedesmus quadricauda].

    PubMed

    Li, Yan; Zhu, Lin; Liu, Shuo

    2009-01-01

    To understand the toxicity mechanisms of mixed heavy metals on aquatic plant, indicators of algea growth rate,content of reduced glutathione (GSH), activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) of green algae, Scenedesmus quadricauda were measured to analyze the individual and joint toxic effects of lead and mercury. The results show that the 96h EC50 of algae growth inhibition by lead [Pb(NO3)2] and mercury (HgCl2) are 0.6789 mg/L and 0.1401 mg/L respectively. After 12 h individual and joint lead and mercury exposure, the content of GSH in alga cells is decreased to about 70% of the level of the control, and keeps a steady level with the increase of the exposure concentration. The GST activities are increased to a peak in lower concentration groups and then decrease with the increase of the exposure concentration. Indeed,the higher concentration of lead and mercury combined-poisoning can inhibit the activities of GST significantly, with 13.04% inhibitory rate. The activity of GPx is almost suppressed continuously with the increase of the exposure concentration, and the lowest activity is only 38.77% of the control. The toxic action of the mixture of Pb and Hg on growth inhibition,GSH content,activities of GST and activities of GPx for Scenedesmus quadricauda are addition. PMID:19353889

  9. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Babula, Petr; Hedbavny, Josef

    2016-04-01

    Responses of Scenedesmus quadricauda grown in vitro and differing in age (old culture-13 months, young culture-1 month) to short-term cadmium (Cd) or nickel (Ni) excess (24h) were compared. Higher age of the culture led to lower amount of chlorophylls, ascorbic acid and glutathione but higher signal of ROS. Surprisingly, sucrose was detected using DART-Orbitrap MS in both old and young culture and subsequent quantification confirmed its higher amount (ca. 3-times) in the old culture. Cd affected viability and ROS amount more negatively than Ni that could arise from excessive Cd uptake which was also higher in all treatments than in respective Ni counterparts. Surprisingly, nitric oxide was not extensively different in response to age or metals. Strong induction of phytochelatin 2 is certainly Cd-specific response while Ni also elevated ascorbate content. Krebs cycle acids were more accumulated in the young culture but they were rather elevated in the old culture (citric acid under Ni excess). We conclude that organic solid 'Milieu Bristol' medium we tested is suitable for long-term storage of unicellular green algae (also successfully tested for Coccomyxa sp. and Parachlorella sp.) and the impact of age on metal uptake may be useful for bioremediation purposes. PMID:26687303

  10. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. PMID:26949054

  11. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    PubMed

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing. PMID:24676177

  12. Uptake of caprolactam and its influence on growth and oxygen production of Desmodesmus quadricauda algae.

    PubMed

    Kalinová, Jana Pexová; Tříska, Jan; Vrchotová, Naděžda; Novák, Jan

    2016-06-01

    The consumption of polyamides produced from caprolactam is increasing continuously, and for that reason the danger of environmental contamination by this lactam is also rising. This study's aim was to evaluate the influence of caprolactam on the growth and oxygen production of the green alga Desmodesmus quadricauda and on caprolactam uptake by this alga. The presence of caprolactam in water was observed to cause the algae significantly to increase its oxygen production. Caprolactam concentration of 5,000 mg/L stopped algae growth after 6 days and influenced coenobia structure (seen as disappearance of pyrenoids, deformation of cells) but did not decrease the number of cells in the coenobia. Caprolactam uptake is probably passive but relatively rapid. Maximum concentration in the algae was reached after 18-24 h. PMID:26985739

  13. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  14. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  15. Occurrence of non-hydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: Origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens

    NASA Astrophysics Data System (ADS)

    Derenne, S.; Largeau, C.; Taulelle, F.

    1993-02-01

    New structures, termed ultralaminae, were recently shown to occur in kerogens from numerous oil shales and source rocks. Morphological and chemical studies revealed that ultralaminae originate from the selective preservation of the non-hydrolysable biomacromolecules (algaenans) building up the thin outer walls of several Chlorophyceae (green microalgae) including the cosmopolitan genera Scenedesmus and Chlorella. The chemical correlation between such algaenans and fossil ultralaminae was mainly based on the production, on pyrolysis, of nitrogen compounds, n-alkylnitriles, with specific distributions depending on the lacustrine or marine origin of the considered samples. In addition, these bioand geopolymers were characterized by quite high N levels. Solid-state 15N NMR was carried out on 15N-enriched algaenan (isolated from Scenesdesmus quadricauda grown with 15NO 3- as sole nitrogen source) and revealed that amides are the most abundant nitrogen groups in this material. Minor amounts of two other nitrogen groups, amines and probably Nalkyl substituted pyrroles (indoles, carbazoles), are also observed. Amines are unlikely to contribute to the macromolecular structure but could simply correspond to trapped compounds. A part of the tentatively identified N-alkyl substituted pyrroles is released during pyrolysis, but a large fraction of these moieties is retained in the insoluble residue while their N-alkyl substituents are eliminated. The predominant amide groups associated with long polymethylenic chains, occurring in S. quadricauda algaenan, are eliminated during pyrolysis and lead, after a fast dehydration, to the formation of n-alkylnitriles. This study provides, to our knowledge, the first example of non-hydrolysable amide moieties in a biomacromolecule. This unusual resistance is probably due to steric protection within the macromolecular network. Such a protection also allows amide groups in chlorophycean algaenans to survive diagenesis and accounts for the

  16. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  17. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.

    PubMed

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-04-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  18. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Assimakopoulos, Konstantinos; Kotzabasis, Kiriakos

    2012-01-01

    Cultures from the unicellular green alga Scenedesmus obliquus biodegrade the toxic p-cresol (4-methylphenol) and use it as alternative carbon/energy source. The biodegradation procedure of p-cresol seems to be a two-step process. HPLC analyses indicate that the split of the methyl group (first step) that is possibly converted to methanol (increased methanol concentration in the growth medium), leading, according to our previous work, to changes in the molecular structure and function of the photosynthetic apparatus and therefore to microalgal biomass increase. The second step is the fission of the intermediately produced phenol. A higher p-cresol concentration results in a higher p-cresol biodegradation rate and a lower total p-cresol biodegradability. The first biodegradation step seems to be the most decisive for the effectiveness of the process, because methanol offers energy for the further biodegradation reactions. The absence of LHCII from the Scenedesmus mutant wt-lhc stopped the methanol effect and significantly reduced the p-cresol biodegradation (only 9%). The present contribution deals with an energy distribution between microalgal growth and p-cresol biodegradation, activated by p-cresol concentration. The simultaneous biomass increase with the detoxification of a toxic phenolic compound (p-cresol) could be a significant biotechnological aspect for further applications. PMID:23251641

  19. Accumulation of dieldrin in an alga (Scenedesmus obliquus), Daphnia magna, and the guppy (Poecilia reticulata)

    USGS Publications Warehouse

    Reinert, Robert E.

    1972-01-01

    Scenedesmus obliquus, Daphnia magna, and Poecilia reticulata accumulated dieldrin directly from water; average concentration factors (concentration in organism, dry weight, divided by concentration in water) were 1282 for the alga, 13,954 for D. magna, and 49,307 (estimated) for the guppy. The amount accumulated by each species at equilibrium (after about 1.5, 3-4, and 18 days, respectively) was directly proportional to the concentration of dieldrin in the water. Daphnia magna and guppies accumulated more dieldrin from water than from food that had been exposed to similar concentrations in water. When guppies were fed equal daily rations of D. magna containing different concentrations of insecticide, the amounts of dieldrin accumulated by the fish were directly proportional to the concentration in D. magna; when two lots of guppies were fed different quantities of D. magna (10 and 20 organisms per day) containing identical concentrations of dieldrin, however, the amounts accumulated did not differ substantially.

  20. Cultivation of Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae in Batch culture using Nile tilapia effluent.

    PubMed

    Guerrero-Cabrera, Luis; Rueda, José A; García-Lozano, Hiram; Navarro, A Karin

    2014-06-01

    Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae were cultured in three volumes of Tilapia Effluent Medium (TEM) in comparison with the Bold Basal Medium (BBM) (Nichols and Bold, 1965). Specific growth rate (μ'), biomass dry productivity (Q), volumetric productivity (Qv) as well as lipid and protein content were measured. Then, volumetric productivities for both lipids and proteins were calculated (QVL and QVP). In Scenedesmus sp., BBM produced higher μ' and Qv than TEM in 1.5L volume. Chlorella sp. showed a higher QVL for BBM than TEM. Any observed difference in protein or lipid productivities among volumes was in favor of a greater productivity for 1.5L volume. Even when TEM had a larger protein content in Chlorella sp. than BBM, QVP was not different. Current results imply that TEM can be used as an alternative growth medium for algae when using Batch cultures, yet productivity is reduced. PMID:24736090

  1. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    PubMed

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. PMID:26915590

  2. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri.

    PubMed

    Yu, Xin; Zuo, Jiane; Tang, Xinyao; Li, Ruixia; Li, Zaixing; Zhang, Fei

    2014-02-15

    The toxicity of pharmaceutical wastewaters has recently been the focus of the public in China. This study aimed to evaluate the conventional pollution parameters and toxicities of different raw and treated pharmaceutical wastewaters to algae Scenedesmus obliquus and bacteria Vibrio fischeri. Wastewater samples were collected from 16 pharmaceutical wastewater treatment plants in China. The results of the conventional parameters analysis indicated that the total suspended solids, chemical oxygen demand (COD), ammonia (NH3-N), and total phosphorus (TP) were largely removed after treatment. Pharmaceutical effluents were mainly polluted with organics and phosphorus as indicated by the average COD (388 mg/L) and TP (3.16 mg/L) concentrations. The toxicity test results indicated that the influent samples were toxic to both test species. Although the toxicities could be remarkably reduced after treatment, 10 out of the 16 effluent samples exceeded the acute toxicity discharge limit of the Chinese national standards. Spearman rank correlation coefficients indicated a significantly positive correlation between the toxicity values of S. obliquus and V. fischeri. Compared with S. obliquus, V. fischeri detected more pharmaceutical effluent samples with toxicities. Meanwhile, the toxicity indicators were significantly and positively correlated with the COD and NH3-N concentrations based on a Spearman rank correlation analysis. PMID:24374566

  3. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  4. Effect propagation in a toxicokinetic/toxicodynamic model explains delayed effects on the growth of unicellular green algae Scenedesmus vacuolatus.

    PubMed

    Vogs, Carolina; Bandow, Nicole; Altenburger, Rolf

    2013-04-01

    Ecotoxicological standard tests assess toxic effects by exposing an organism to high concentrations over defined periods of time. To evaluate toxicity under field conditions such as fluctuating and pulsed exposures, process-based toxicokinetic/toxicodynamic (TK/TD) models may be used for extrapolation from the existing evidence. A TK/TD model was developed that simulates the effect on growth of the green algae Scenedesmus vacuolatus continuously exposed to the model chemicals norflurazon, triclosan, and N-phenyl-2-naphthylamine. A pharmacological time-response model describing the effects of anticancer treatments on cancer cell growth was adapted and modified to model the affected growth of synchronized algae cells. The TK/TD model simulates the temporal effect course by linking the ambient concentration of a chemical to the observable adverse effect via an internal concentration and a sequence of biological events in the organism. The parameters of the toxicodynamic model are related to the growth characteristics of algae cells, a no effect concentration, the chemical efficacy as well as the ability of recovery and repair, and the delay during damage propagation. The TK/TD model fits well to the observed algae growth. The effect propagation through cumulative cell damage explained the observed delayed responses better than just the toxicokinetics. The TK/TD model could facilitate the link between several effect levels within damage propagation, which prospectively may be helpful to model adverse outcome pathways and time-dependent mixture effects. PMID:23359135

  5. Indirect aluminum toxicity to the green alga Scenedesmus through increased cupric ion activity

    SciTech Connect

    Rueter, J.G. Jr.; O'Reilly, K.T.; Petersen, R.R.

    1987-05-01

    Additions of aluminum and copper to chemically defined media resulted in inhibition of growth of Scenedesmus and of alkaline phosphatase activity. The alkaline phosphatase activity was assayed both on commercially available purified enzyme from bacteria and on the enzyme present in whole Scenedesmus cells. The effect of metal additions was compared to the total aluminum added and to the computed free ion activities for both copper and aluminum. In all three systems (algal growth, purified enzyme, and algal enzyme) the observed toxicity with increased total aluminum was mostly due to an increase in cupric ion activity. The algal growth response was affected for the range of cupric ion activities from 10/sup -6/ to 10/sup -12/. The toxic dose response of aluminum was largely due to indirect competitive effects of Al in the medium that displaced copper from the chelator. 33 references, 4 figures.

  6. Algae (Microcystis and Scenedesmus) absorption spectra and its application on Chlorophyll a retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei

    2013-12-01

    Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.

  7. N/sub 2/O evolution by green algae. [Chlorella; Scenedesmus; Coelastrum; Chlorococcum

    SciTech Connect

    Weathers, P.J.

    1984-12-01

    Nitrous oxide (N/sub 2/O) is an intermediate in denitrification and a by-product of both nitrification and dissimilatory nitrogen oxide reduction. The extent of the global source and pool of N/sub 2/O is uncertain and especially controversial in aquatic systems. Recognition of new, widespread biological sources of N/sub 2/O affects current theories of the global N/sub 2/O balance. Evidence is presented here that axenic cultures of Chlorella, Scenedesmus, Coelastrum, and Chlorococcum spp. evolve N/sub 2/O when grown on NO/sub 2//sup -/, showing that the Chlorophyceae are a source of N/sub 2/O in aquatic systems. 18 references, 2 tables.

  8. Photosynthetic responses and accumulation of mesotrione in two freshwater algae.

    PubMed

    Ni, Yan; Lai, Jinhu; Wan, Jinbao; Chen, Lianshui

    2014-01-01

    Mesotrione is a herbicide used for killing annual grasses and broad-leaved weeds in maize. A recent investigation has shown that mesotrione has been detected as an organic contaminant in aquatic environments and may have a negative impact on aquatic organisms. To evaluate the eco-toxicity of mesotrione to algae, experiments focusing on photosynthetic responses and mesotrione accumulation in Microcystis sp. and Scenedesmus quadricauda were carried out. Both algae treated with mesotrione at 0.05-10 mg L(-1) for 7 days reduced the photosynthetic capacity. The fluorescence of chlorophyll a, the maximal PSII activity (Fv/Fm), and the parameters (Ik, α and ETRmax) of rapid light curves (RLCs) in both algae were decreased under mesotrione exposure. The 96 h EC50 values for mesotrione on S. quadricauda and Microcystis sp. were 4.41 and 6.19 mg L(-1), respectively. The latter shows more tolerance to mesotrione. Mesotrione was shown to be readily accumulated by both species. Such uptake of mesotrione led to the rapid removal of mesotrione from the medium. Overall, this study represents the initial comprehensive analyses of Microcystis sp. and S. quadricauda in adaptation to the mesotrione contaminated aquatic ecosystems. PMID:25059419

  9. Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Böjti, Tamás; Maróti, Gergely; Bagi, Zoltán; Kis, Mihály; Kovács, Attila; Ács, Norbert; Rákhely, Gábor; Kovács, Kornél L

    2015-12-10

    A microalgal biomass offers a potential alternative to the maize silage commonly used in biogas technology. In this study, photoautotrophically grown Scenedesmus obliquus was used as biogas substrate. This microalga has a low C/N ratio of 8.5 relative to the optimum 20-30. A significant increase in the ammonium ion content was not observed. The methane content of the biogas generated from Sc. obliquus proved to be higher than that from maize silage, but the specific biogas yield was lower. Semi-continuous steady biogas production lasted for 2 months. Because of the thick cell wall of Sc. obliquus, the biomass-degrading microorganisms require additional time to digest its biomass. The methane concentration in the biogas was also high, in co-digestion (i.e., 52-56%) as in alga-fed anaerobic digestion (i.e., 55-62%). These results may be related to the relative predominance of the order Clostridiales in co-digestion and to the more balanced C/N ratio of the mixed algal-maize biomass. Predominance of the order Methanosarcinales was observed in the domain Archaea, which supported the diversity of metabolic pathways in the process. PMID:26087313

  10. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  11. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    PubMed

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China. PMID:25996525

  12. Toxicity and accumulation of copper and cadmium in the alga Scenedesmus obliquus LH

    SciTech Connect

    Drbal, K.; Veber, K.; Zahradnik, J.

    1985-06-01

    The techniques of determination of toxic and inhibitory effects, and of measuring the kinetics of metal sorption, used by individual authors differ widely in basic parameters, especially in the experimental concentrations of algal suspensions and in methods of separation of algae. Some authors assume that the drop in the concentration of the metal in the solution, or its concentration in the biomass, are a measure of sorption of the metals by the algae. This is not entirely correct; our study led to this conclusion on the basis of measurement of inhibition of growth and sorption of copper and cadmium ions in dense algal suspensions in a photoautotrophic regime of an intensive culture, and comparison of disappearance of these ions from the solution in the absence of the algae.

  13. Influence of barley straw (Hordeum vulgare L.) extract on phytoplankton dominated by Scenedesmus species in laboratory conditions: the importance of the extraction duration.

    PubMed

    Pęczuła, Wojciech

    2013-04-01

    The response of a natural phytoplankton assemblage dominated by algae of the genus Scenedesmus to the addition of barley straw extract was studied in a laboratory experiment. The aim of the study was to compare the inhibiting effect of water extracts obtained by soaking the straw for 1, 2 and 3 months. We analysed the response of four species, Scenedesmus subspicatus, Scenedesmus ecornis, Scenedesmus quadricauda and Scenedesmus acuminatus, during 14 days of their exposure to different types of barley straw extract. S. subspicatus and S. ecornis responded with decreasing numbers only to the addition of the 3-month solution (ANOVA; F = 290.1, p <0.001; and F = 11.8, p <0.01, respectively); the two other species were inhibited by all types of extracts. The results indicate the need for more research on the importance of extraction duration to the inhibitory abilities of barley straw which can be applied in the management of water quality in water bodies. PMID:23482372

  14. Occurrence of non-hydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by [sup 15]N NMR: Origin of n-alkylnitriles in pyrolysates of ultralaminai-containing kerogens

    SciTech Connect

    Derenne, S.; Largeau, C. ); Taulelle, F. )

    1993-02-01

    New structures, termed ultralaminae, were recently shown to occur in kerogens from numerous oil shales and source rocks. Morphological and chemical studies revealed that ultralaminae originate from the selective preservation of the non-hydrolysable biomacromolecules (algaenans) building up the thin outer walls of several Chlorophyceae (green microalgae) including the cosmopolitan general Scenedesmus and Chlorella. The chemical correlation between such algaenans and fossil ultralaminae was mainly based on the production, on pyrolysis, of nitrogen compounds, n-alkylnitriles, with specific distributions depending on the lacustrine of marine origin of the considered samples. In addition, these bio-and geopolymers were characterized by quite high N levels.

  15. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse. PMID:23982061

  16. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  17. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  18. The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae.

    PubMed

    Ferrier, M D; Butler, B R; Terlizzi, D E; Lacouture, R V

    2005-11-01

    Bioassays were conducted to determine the efficacy of barley straw liquor in controlling algal growth of 12 freshwater species of algae representing three divisions. Barley straw liquor inhibited the growth of three nuisance algae common in freshwater: Synura petersenii, Dinobyron sp., and Microcystis aeruginosa. However, Selenastrum capricornutum, Spirogyra sp., Oscillatoria lutea var. contorta, and Navicula sp. had significantly increased growth in the presence of straw liquor. The growth of the remainder, Ulothrix fimbriata, Scenedesmus quadricauda, Chlorella vulgaris, Anabaena flos-aquae, and Synedra sp. showed no significant difference from controls. In a related field study, we treated four of six ponds with barley straw and monitored their chlorophyll a levels for one growing season. While phytoplankton populations in all ponds decreased in midsummer, the phytoplankton biomass in treated ponds did not differ significantly from that of control ponds, suggesting that the application of barley straw had no effect on algal growth in these systems. PMID:16051085

  19. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  20. The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus.

    PubMed

    Cepák, V; Pribyl, P; Vítová, M

    2006-01-01

    The color of light (white, red, blue, and green) had a significant effect on the growth and reproductive processes (both in the nucleocytoplasmic and chloroplast compartment of the cells) in synchronous cultures of Scenedesmus obliquus. This effect decreased in the order red > white > blue > green. In the same order, the light phase of the cell cycle (time when first autospores started to be released) was prolonged. The length of dark phase (time when 100 % of daughters were allowed to release from mothers) was not influenced and was the same for all colors. Critical cell size for cell division in green light was shifted to a smaller size (compared with cells grown in other lights) and so was the size of released daughters. The nuclear cycle was slowed in blue and even in green light, contrary to cells grown in red and white light. At the beginning of the cell cycle, one-nucleus daughters possess approximately 10 nucleoids; during the cell cycle their number doubled in all variants before the division of nuclei. Both events were delayed in cultures grown more slowly most markedly in green light. Smaller daughters in the green variant possessed a lower number of nucleoids. Motile cells released in continuous green or blue lights but not in red one were rarely observed. PMID:17007440

  1. Effect of tetramethyl lead on freshwater green algae.

    PubMed

    Silverberg, B A; Wong, P T; Chau, Y K

    1977-01-01

    The toxicity of tetramethyl lead (Me4Pb) towards freshwater algae was studied by bubbling biologically generated Me4Pb from one flask containing 5 mg of Pb 1-1 as Me3PbOAc into the culture medium in another flask where a test alga Scenedesmus quadricauda was grown. As Me4Pb is not soluble in water and is volatile, the exposure of an alga to this lead compound was only momentary. It was estimated that less than 0.5 mg of Pb(Me4Pb) had passed through the culture medium. The primary productivity and cell growth (determined by dry weight), however, decreased by 85% and 32% respectively, as compared with the controls without exposure to Me4Pb. Furthermore, cells exposed to Me4Pb tended to clump together and striking alterations in cell fine-structure were observed. An electron microscopic analysis by an energy dispersive spectrometer revealed that Pb ions had penetrated the cell and were deposited within concretion bodies. Similar results were obtained with the green algae Ankistrodesmus falcatus and Chlorella pyrenoidosa. PMID:869587

  2. Anaerobic Co-Digestion of Microalgae Scenedesmus sp. and TWAS for Biomethane Production.

    PubMed

    Garoma, Temesgen; Nguyen, Don

    2016-01-01

    The paper investigated the feasibility of biomethane (bio-CH4) production from the anaerobic co-digestion of the microalgae Scenedesmus quadricauda (S. quadricauda) and thickened waste activated sludge (TWAS). The concept was tested in bench-scale anaerobic digesters by varying the proportions of volatile solids (VS) loading from S. quadricauda and TWAS and two critical operational parameters, temperature and alkalinity. The CH(4) production for the various S. quadricauda and TWAS proportions ranged from 234 to 318 mL/g of chemical oxygen demand (COD) digested and 329 to 530 mL/g of VS digested at 35 °C. The reductions in total solids (TS), COD, and VS ranged from 25 to 44%, 46 to 53%, and 40 to 53%, respectively. Temperature had a significant effect on CH(4) production, lower temperatures greatly reduced CH(4) production. No significant difference in CH(4) production was observed for experiments conducted at alkalinity levels of 70, 1630, and 3200 mg/L as CaCO(3). PMID:26803022

  3. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-01

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. PMID:25004359

  4. Fossil Scenedesmus (Chlorococcales) from the Raton Formation, Colorado and New Mexico, U.S.A.

    USGS Publications Warehouse

    Farley, Fleming R.

    1989-01-01

    Fossilized coenobia of the alga Scenedesmus (Chlorococcales) were recovered in palynomorph assemblages from a lower Paleocene mudstone in the Upper Cretaceous and Paleocene Raton Formation of Colorado and New Mexico. This is the first description of fossil Scenedesmus from Tertiary rocks. Two species, Scenedesmus tschudyi sp. nov. and Scenedesmus hanleyi sp. nov., are present in the assemblages. Coenobia of S. tschudyi sp. nov. are characterized by lunate terminal cells and fusiform median cells. As in species of modern Scenedesmus, coenobia of S. tschudyi sp. nov. occur with four or eight cells. Coenobia of S. hanleyi sp. nov. have four oval cells and are smaller than coenobia of S. tschudyi sp. nov. Fossil coenobia of Scenedesmus co-occur with the fossil alga Pediastrum in Raton Formation mudstones. Because these genera co-occur in modern lakes and ponds, the co-occurrence of fossil Scenedesmus and Pediastrum in ancient nonmarine rocks is interpreted to indicate deposition of sediment in freshwater lakes and ponds. ?? 1989.

  5. Distinctive origins of group I introns found in the COXI genes of three gree algae.

    PubMed

    Watanabe, K I; Ehara, M; Inagaki, Y; Ohama, T

    1998-06-15

    Upon surveying the cytochrome c oxidase subunit I (COXI) gene of green algae, we found group I introns in three species of algae, Chlorella vulgaris (Cv), Scenedesmus quadricauda (Sq) and Protosiphon botryoides (Pb). The comparative analysis of these nucleotide sequences and their secondary structures revealed that the introns of Cv, Sq, and Pb belong to groups IB1, ID, and IB2, respectively. Each of the three introns contained an open reading frame (ORF) that showed a similarity to the sequence of the LAGLIDADG endonuclease family. However, each of the intronic ORFs in Sq and Pb had a discontinuity in the middle of' the sequences coding for the LAGLIDADG endonuclease. Either of the two ORFs could be restored to a sequence homologous to the LAGLIDADG endonuclease by the insertion of a nucleotide in the appropriate position. In Sq, a putative pseudo-knot structure was detected in the intronic ORF This suggests the occurrence of a ribosomal frameshift in the translation of the ORF. because such pseudo-knot structures are common in viral ORFs employing a (-1) ribosomal frameshift. In the phylogenetic tree that was inferred from the amino acid sequences of algal and non-algal intronic ORFs, the three algal ORFs did not make a cluster, but were scattered throughout the tree. In addition. each of the three algal ORFs showed a close relationship to the ORFs of non-algal introns that were inserted at the corresponding site of the COX] gene, suggesting distinctive origins of the three algal introns via independent horizontal transfers. PMID:9714606

  6. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  7. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.

    PubMed

    Ajayan, Kayil Veedu; Selvaraju, Muthusamy; Unnikannan, Pachikaran; Sruthi, Palliyath

    2015-01-01

    A number of microalgae species are efficient in removing toxicants from wastewater. Many of these potential species are a promising, eco-friendly, and sustainable option for tertiary wastewater treatment with a possible advantage of improving the economics of microalgae cultivation for biofuel production. The present study deals with the phycoremediation of tannery wastewater (TWW) using Scenedesmus sp. isolated from a local habitat. The test species was grown in TWW under laboratory conditions and harvested on the 12th day. The results revealed that the algal biomass during the growth period not only reduced the pollution load of heavy metals (Cr-81.2-96%, Cu-73.2-98%, Pb-75-98% and Zn-65-98%) but also the nutrients (NO3 >44.3% and PO4 >95%). Fourier Transform Infrared (FTIR) spectrums of Scenedesmus sp. biomass revealed the involvement of hydroxyl amino, carboxylic and carbonyl groups. The scanning electron micrograph (SEM) and Energy Dispersive X-ray Spectroscopic analysis (EDS) revealed the surface texture, morphology and element distribution of the biosorbent. Furthermore, the wastewater generated during wet-blue tanning process can support dense population of Scenedesmus sp., making it a potential growth medium for biomass production of the test alga for phycoremediation of toxicants in tannery wastewaters. PMID:25580934

  8. Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa

    PubMed Central

    Zhu, Xuexia; Wang, Jun; Lu, Yichun; Chen, Qinwen; Yang, Zhou

    2015-01-01

    The green alga Scenedesmus is known for its phenotypic plasticity in response to grazing risk. However, the benefits of colony formation induced by infochemicals from zooplankton should come with costs. That is, a tradeoff in benefit-to-cost ratios is likely under complex environmental conditions. In this study, we hypothesized that the coexistence of Scenedesmus and its competitors decreases the formation of anti-grazer colonies in Scenedesmus. Results demonstrated that the presence of a competitor Microcystis aeruginosa inhibited inducible defensive colony formation of Scenedesmus obliquus, and the established defensive colonies negatively affected the competitive ability of S. obliquus. The proportion of induced defensive colonies in cultures was dependent on the relative abundance of competitors. Under low competition intensity, large amount of eight-celled colonies were formed but at the cost of decreased competitive inhibition on M. aeruginosa. By contrast, defensive colony formation of S. obliquus slacked in the presence of high competition intensity to maintain a high displacement rate (competitive ability). In conclusion, S. obliquus exhibited different responses to potential grazing pressure under different intensities of competition, i.e., Scenedesmus morphological response to grazing infochemicals was affected by competition against Microcystis. PMID:26224387

  9. Ozonation of piggery wastewater for enhanced removal of contaminants by S. quadricauda and the impact on organic characteristics.

    PubMed

    Kim, Hyun-Chul; Choi, Wook Jin; Maeng, Sung Kyu; Kim, Hyung Joo; Kim, Han Soo; Song, Kyung Guen

    2014-05-01

    The feasibility of using ozonation pretreatment was investigated for a better performance of post microalgae-based wastewater remediation when treating piggery effluent which was anaerobically digested and subsequently micro-filtered. Ozonation pretreatment at a dose of 1.1mg-O3 mg-C(-1) or higher significantly improved the transmittance of light illumination through the mixed liquor by decolorizing the piggery effluent as culture media, which resulted in increasing both the productivity of algal biomass and the associated removal of inorganic nutrients from the effluent. Ozonation also converted refractory organic constituents in the piggery effluent to a large number of biodegradable fractions via both partial-mineralization and low-molecularization. These fractions were facilely removed through biological assimilation during the mixotrophic cultivation of a microalga S. quadricauda. The results revealed that ozonation could be one of the most promising strategies for the pretreatment of highly-colored piggery effluent prior to algae-based wastewater treatment. PMID:24632635

  10. Identification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production.

    PubMed

    Song, Mingming; Pei, Haiyan; Hu, Wenrong; Zhang, Shuo; Ma, Guixia; Han, Lin; Ji, Yan

    2014-06-01

    The selection of the right strains is of fundamental important to the success of the algae-based oil industry. From the six newly isolated microalgae strains tested for growth, fatty acid methyl ester (FAME) profiles and biodiesel properties, Scenedesmus SDEC-8, with favorable C16:0 fatty acids (73.43%), showed the best combined results. Then, morphological and molecular identification were examined. From the three wastewaters samples, Scenedesmus SDEC-8 showed good ability to yield oil and remove nutrients, which were comparable with other reports. In b artificial wastewater (TN 40 mg L(-1), TP 8 mg L(-1)), Scenedesmus SDEC-8 achieved the highest value of lipid productivity (53.84 mg L(-1) d(-1)), MUFA content (35.35%) and total FAME content (59.57±0.02 mg g(-1) DW), besides higher removal efficiencies of TN (99.18%) and TP (98.86%) helped effluent directly discharge and smaller dilution factor of N, P (3.3 and 9) which was good for lessening water utilization. PMID:24747391

  11. Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus.

    PubMed

    Vigeolas, Hélène; Duby, Francéline; Kaymak, Esra; Niessen, Guillaume; Motte, Patrick; Franck, Fabrice; Remacle, Claire

    2012-11-30

    This paper describes the isolation and partial biomass characterization of high triacylglycerol (TAG) mutants of Chlorella sorokiniana and Scenedesmus obliquus, two algal species considered as potential source of biodiesel. Following UV mutagenesis, 2000 Chlorella and 2800 Scenedesmus colonies were screened with a method based on Nile Red fluorescence. Several mutants with high Nile Red fluorescence were selected by this high-throughput method in both species. Growth and biomass parameters of the strongest mutants were analyzed in detail. All of the four Chlorella mutants showed no significant changes in growth rate, cell weight, cell size, protein and chlorophyll contents on a per cell basis. Whereas all contained elevated total lipid and TAG content per unit of dry weight, two of them were also affected for starch metabolism, suggesting a change in biomass/storage carbohydrate composition. Two Scenedesmus mutants showed a 1.5 and 2-fold increased cell weight and larger cells compared to the wild type, which led to a general increase of biomass including total lipid and TAG content on a per cell basis. Such mutants could subsequently be used as commercial oleaginous algae and serve as an alternative to conventional petrol. PMID:22480533

  12. Morpho-physiological effects of ibuprofen on Scenedesmus rubescens.

    PubMed

    Moro, Isabella; Matozzo, Valerio; Piovan, Anna; Moschin, Emanuela; Vecchia, Francesca Dalla

    2014-09-01

    The pollution of aquatic bodies by drugs is an emerging environmental problem, because of their extensive use in animal and human context. Ibuprofen, 2-[4-(2-methylpropyl)phenyl]propanoic acid, is the non-steroidal anti-inflammatory drug mainly present both in wastewater and in rivers and lakes in Europe. Since in literature there is little information about the effects of ibuprofen on microalgae, in this paper we presented the results on the effects of this molecule at different concentrations (62.5μgL(-1), 250μgL(-1) and 1000μgL(-1)) on cultures of the freshwater microalga Scenedesmus rubescens (P.J.L. Dangeard) E. Kesslet et al. Ibuprofen effects on the alga were assayed at first through analyses of the growth curve. Moreover, analyses of cell morphology, ultrastructure, and photosynthetic pigments were additionally performed. The first negative effect of the drug was on the microalga growth, suggesting a drug action dose-dependent mechanism type, more evident at the concentration of 1000μgL(-1) ibuprofen and in the last phase of the growth curve. In support of this, following ibuprofen exposure, the cells exhibited morphological and ultrastructural alterations, mainly consisting in large cytoplasmic inclusions, probably of lipids and/or carotenoids. The decrease of chlorophyll amounts and, on the contrary, the increase of carotenoids were correlated with a stressful condition induced by drug. PMID:25128768

  13. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-01-01

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel. PMID:25535720

  14. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. PMID:25539998

  15. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Chen, Caidong; Du, Shaoting; Dong, Ying

    2015-12-01

    The low volatility of ionic liquids effectively eliminates a major pathway for environmental release and contamination; however, the good solubility, low degree of environmental degradation and biodegradation of ILs may pose a potential threat to the aquatic environment. The growth inhibition of the green alga Scenedesmus obliquus by five 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) ([Cnmim]Cl, n=6, 8, 10, 12, 16) was investigated, and the effect on cellular membrane permeability and the ultrastructural morphology by ILs ([Cnmim]Cl, n=8, 12, 16) were studied. The results showed that the growth inhibition rate increased with increasing IL concentration and increasing alkyl chain lengths. The relative toxicity was determined to be [C6mim]Cl<[C8mim]Cl<[C10mim]Cl<[C12mim]Cl<[C16mim]Cl. The algae were most sensitive to imidazolium chloride ILs at 48 h according to the results from the growth inhibition rate and cellular membrane permeability tests. The ultrastructural morphology showed that the ILs had negative effects on the cellular morphology and structure of the algae. The cell wall of treated algae became wavy and separated from the cell membrane. Chloroplast grana lamellae became obscure and loose, osmiophilic material was deposited in the chloroplast, and mitochondria and their cristae swelled. Additionally, electron-dense deposits were observed in the vacuoles. PMID:26218552

  16. Studies on the hormonal relationships of algae in pure culture : I. The effect of indole-3-acetic acid on the growth of blue-green and green algae.

    PubMed

    Ahmad, M R; Winter, A

    1968-09-01

    Indole-3-acetic acid (IAA) stimulated the growth (increase in dry weight) of the blue-green algae Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum, Anabaena cylindrica, and Tolypothrix tenuis and the green algae Chlorella pyrenoidosa, Ankistrodesmus falcatus and Scenedesmus obliquus growing under as sterile conditions as possible. The optimum concentration varied from species to species; in the blue-green algae it ranged from 10(-5) to 10(-9) M and in the green algae it was 10(-3) M. These results are discussed in the light of present studies in this field. PMID:24522736

  17. Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production.

    PubMed

    Kim, Ga-Yeong; Yun, Yeo-Myeong; Shin, Hang-Sik; Kim, Hee-Sik; Han, Jong-In

    2015-11-01

    In this study, a microalgae-based technology was employed to treat wastewater and produce biodiesel at the same time. A local isolate Scenedesmus sp. was found to be a well suited species, particularly for an effluent from anaerobic digester (AD) containing low carbon but high nutrients (NH3-N=273mgL(-1), total P=58.75mgL(-1)). This algae-based treatment was quite effective: nutrient removal efficiencies were over 99.19% for nitrogen and 98.01% for phosphorus. Regarding the biodiesel production, FAME contents of Scenedesmus sp. were found to be relatively low (8.74% (w/w)), but overall FAME productivity was comparatively high (0.03gL(-1)d(-1)) due to its high biomass productivity (0.37gL(-1)d(-1)). FAMEs were satisfactory to the several standards for the biodiesel quality. The Scenedesmus-based technology may serve as a promising option for the treatment of nutrient-rich wastewater and especially so for the AD effluent. PMID:26247974

  18. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    PubMed

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered. PMID:27501311

  19. The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water

    NASA Astrophysics Data System (ADS)

    Yu, Zhuanni; Chen, Xiaolin; Xia, Shuwei

    2016-06-01

    In this paper, the total sugar concentration, protein concentration, lipid yield and morphology characteristics of the algae residue were determined to explain the mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. The results showed similar variation for the sugar, protein and lipid. However, the total sugar was more similar to lipids yield, so the results showed that the reaction between ionic liquid and cellulose and hemicellulose in cell wall was the most important step which determined the lipids extration directly. And the total sugar variation may be representing the lipids yield. For later lipids extraction, we can determine the total sugar concentration to predict the extraction end product.

  20. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.

    PubMed

    González-Garcinuño, Álvaro; Tabernero, Antonio; Sánchez-Álvarez, José Ma; Martin del Valle, Eva M; Galán, Miguel A

    2014-12-01

    Discovering microalgae strains containing a high lipid yield and adequate fatty acid composition is becoming a crucial fact in algae-oil factories. In this study, two unknown strains, named Scenedesmus abundans and Chlorella ellipsoidea, have been tested for their response to different nitrogen sources, in order to determine its influence in the production of lipids. For S. abundans, autotrophic culture with ammonium nitrate offers the maximum lipid yield, obtaining up to 3.55 mg L(-1) d(-1). For C. ellipsoidea, heterotrophic culture with ammonium nitrate has been shown to be the best condition, reaching a lipid production of 9.27 mg L(-1) d(-1). Moreover, fatty acid composition obtained from these cultures meets international biodiesel standards with an important amount of C18:1, achieving 70% of total fatty acids and thus representing a potential use of these two strains at an industrial scale. PMID:25310870

  1. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  2. Host cell pigmentation in Scenedesmus dimorphus as a beacon for nascent parasite infection.

    PubMed

    Collins, Aaron M; Jones, Howland D T; McBride, Robert C; Behnke, Craig; Timlin, Jerilyn A

    2014-09-01

    Biofuels derived from the mass cultivation of algae represent an emerging industry that aims to partially displace petroleum based fuels. Outdoor, open-pond, and raceway production facilities are attractive options for the mass culture of algae however, this mode of cultivation leaves the algae susceptible to epidemics from a variety of environmental challenges. Infestations can result in complete collapse of the algal populations and destruction of their valuable products making it paramount to understand the host-pathogen relationships of known algal pests in order to develop mitigation strategies. In the present work, we characterize the spatial-temporal response of photosynthetic pigments in Scenedesmus dimorphus to infection from Amoeboaphelidium protococcarum, a destructive endoparasite, with the goal of understanding the potential for early detection of infection via host pigment changes. We employed a hyperspectral confocal fluorescence microscope to quantify these changes in pigmentation with high spatial and spectral resolution during early parasite infection. Carotenoid abundance and autofluorescence increased within the first 24 h of infection while chlorophyll emission remained constant. Changes in host cell photosynthesis and bulk chlorophyll content were found to lag behind parasite replication. The results herein raise the possibility of using host-cell pigment changes as indicators of nascent parasite infection. PMID:24931928

  3. Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus.

    PubMed

    Zhang, Wei; Xiong, Bang; Sun, Wen-Fang; An, Shuai; Lin, Kuang-Fei; Guo, Mei-Jin; Cui, Xin-Hong

    2014-06-01

    The acute and chronic toxic effects of Bisphenol A (BPA) on Chlorella pyrenoidosa (C. pyrenoidosa) and Scenedesmus obliquus (S. obliquus) were not well understood. The indoor experiments were carried out to observe and analyze the BPA-induced changes. Results of the observations showed that in acute tests BPA could significantly inhibit the growth of both algae, whereas chronic exposure hardly displayed similar trend. Superoxide dismutase (SOD) and Catalase (CAT) activities of both algae were promoted in all the treatments. Chlorophyll a synthesis of the two algae exhibited similar inhibitory trend in short-term treatments, and in chronic tests C. pyrenoidosa hardly resulted in visible influence, whereas in contrast, dose-dependent inhibitory effects of S. obliquus could be clearly observed. The experimental results indicated that the growth and Chlorophyll a syntheses of S.obliquus were more sensitive in response to BPA than that of C. pyrenoidosa, whereas for SOD andCAT activities, C. pyrenoidosa was more susceptible. This research provides a basic understanding of BPA toxicity to aquatic organisms. PMID:22887798

  4. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  5. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.

    PubMed

    Roy, Rajdeep; Parashar, Abhinav; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2016-07-01

    P25 TiO2 nanoparticles majorly used in cosmetic products have well known detrimental effects towards the aquatic environment. In a freshwater ecosystem, Chlorella and Scenedesmus are among the most commonly found algal species frequently used to study the effects of metal oxide nanoparticles. A comparative study has been conducted herein to investigate differences in the toxic effects caused by these nanoparticles towards the two algae species. The three different concentrations of P25 TiO2 NPs (0.01, 0.1 & 1μg/mL, i.e., 0.12, 1.25 and 12.52μM) were selected to correlate surface water concentrations of the nanoparticles, and filtered and sterilized fresh water medium was used throughout this study. There was significant increase (p<0.001) in hydrodynamic diameter of nanoparticles with respect to both, time (0, 24, 48 and 72h) as well as concentration under all the exposure conditions. Although, significant dose-dependent morphological (surface area & biovolume) interspecies variations were not observed, it was evident at the highest concentration of exposure within individuals. At 1μg/mL exposure concentration, a significant difference in toxicity was noted between Chlorella and Scenedesmus under only visible light (p<0.001) and UVA (p<0.01) irradiation conditions. The viability data were well supported by the results obtained for oxidative stress induced by NPs on the cells. At the highest exposure concentration, superoxide dismutase and reduced glutathione activities were assessed for both the algae under all the irradiation conditions. Increased catalase activity and LPO release complemented the cytotoxic effects observed. Significant interspecies variations were noted for these parameters under UVA and visible light exposed cells of Chlorella and Scenedesmus species, which could easily be correlated with the uptake of the NPs. PMID:27137676

  6. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    PubMed

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. PMID:27023120

  7. Biomass production and fatty acid profile of a Scenedesmus rubescens-like microalga.

    PubMed

    Tan, Yixin; Lin, Junda

    2011-11-01

    This investigation examined the effects of nitrogen-phosphate combined deficiency on the biomass yield, fatty acid methyl esters (FAME) production and composition from Scenedesmus rubescens-like microalga. A 15-day indoor culture was performed as a 3 × 3 factorial design (NaNO(3) levels: 3, 10 and 20mM; KH(2)PO(4) levels: 20, 50 and 150 μM). The algae grown under medium nitrogen concentration (10mM) and high phosphate concentration (150 μM) reached the highest biomass (1223.5 ± 152.5mg/L). Both nitrogen and phosphate had a significant influence on the FAME yield (P<0.05 and P<0.0001, respectively). The FAME yield from algae grown under low nitrogen (3mM) and phosphate concentration (20 μM) increased throughout the experiment and the highest FAME yield (42.2 ± 2.5% of AFDW) as well as C16 and C18 content (95.8 ± 1.6% of AFDW) was achieved under these conditions. Algae grown under medium nitrogen concentration (10mM) and low phosphate concentration (20 μM) had the highest FAME productivity (426.0mg/L ± 135.0mg/L). Thus, the lower nitrogen concentration (3mM-10mM) and low phosphate concentration (20 μM) would be an optimal combination tested to produce the most FAME from S. rubescens-like algae. PMID:21903386

  8. Effect of cadmium on cellular viability in two species of microalgae (Scenedesmus sp. and Dunaliella viridis).

    PubMed

    Marcano, Letty Beatriz C; Carruyo, Ingrid M; Montiel, Xiomara M; Morales, Carolina B; de Soto, Patricia Moreno

    2009-07-01

    We determined the effect of several concentrations of cadmium (0, 5, 10, and 20 microg/l) on cellular viability in the microalgae Scenedesmus sp. and Dunaliella viridis, by measuring growth at 0, 24, 48, 72, and 96 h and pigment production at 10 days. Algae were obtained from the Nonvascular Plant Laboratory collection, in the Facultad Experimental de Ciencias, Universidad del Zulia, Venezuela. Growth was measured by cellular counting, while pigment content was evaluated using conventional spectrophotometric techniques. Growth of both species decreased in the exposed cultures comparing with the control, but its behavior was similar, because in both control and exposed cultures, its was observed an adaptive phase in the first hours, as well as a growth phase after 72 h. Cadmium concentrations above 10 microg/l produced an adverse effect on pigment production, depending on the concentration and/or exhibition time. However, even though cadmium inhibited growth and pigment production, levels of both parameters indicated cellular viability, demonstrating the adaptability of the algae cultures when they were exposed to the metal. PMID:19172231

  9. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource

    PubMed Central

    Zhu, Xuexia; Wang, Jun; Chen, Qinwen; Chen, Ge; Huang, Yuan; Yang, Zhou

    2016-01-01

    The green alga Scenedesmus obliquus can form inducible defensive morphs under grazing threat. Costs and trade-offs of inducible defense are expected to accompany the benefits of defensive morphs, but are hard to detect under nutrient-sufficient experimental conditions. To test the existence of costs associated with inducible defense, we cultured S. obliquus along resource availability gradients in the presence or absence of infochemical cues from Daphnia, and measured the strength of defensive colony formation and fitness characters. Under the lowest phosphorous concentration, the expression of inducible defensive colony resulted in decreased growth rate, which provides direct evidence for physiological costs. Along the gradient reduction of phosphorous concentration or light intensity, inducible defense in S. obliquus showed a decreasing trend. However, the photosynthetic efficiency of S. obliquus was barely affected by its defense responses, suggesting that the negative correlations between resource availability and colony formation of this alga may be due to resource-based trade-offs in the allocation of limited resources. Thus, our results indicated that expression of inducible defense of S. obliquus was impaired under insufficient phosphorus or light. Furthermore, under severe phosphate deficiency, obvious physiological costs of inducible defense could be detected even though defensive colony formation also decreased significantly. PMID:26932369

  10. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment.

    PubMed

    Peng, Shanshan; Colosi, Lisa M

    2016-01-01

    Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality. PMID:26803024

  11. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  12. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae).

    PubMed

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanità; Corradi, Maria Grazia

    2004-07-14

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 microM). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one. PMID:15177949

  13. Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture.

    PubMed

    Mofeed, Jelan; Mosleh, Yahia Y

    2013-09-01

    Laboratory studies were conducted to determine the effects of different concentrations of fenhexamid and atrazine (25, 50 and 100 µg L(-1)) on growth and oxidative stress on Scenedesmus obliquus (microalgae) after exposure for 24, 48, and 96 h. In addition, residues of fenhexamid and atrazine were determined in the culture medium after 96 h; 52%, 44% and 43% of fenhexamid remained in the medium for the lowest, middle and highest concentrations, respectively. Atrazine concentration decreased significantly in the medium with time. The reduction was faster with the lowest concentration (-53%), than in the highest concentration (-46%), while it was intermediate with 50 µg L(-1) (-47%). The antioxidative enzyme activities were used as biomarkers to evaluate the toxic effects of fenhexamid and atrazine on the microalgae. Enzymatic activities were measured in the presence of each compound alone after 24, 48 and 96 h and also in mixture after 24h exposure. The results showed that fenhexamid and atrazine induced antioxidative enzyme activities (GST, CAT and GR) at different concentrations. Catalase activities (CAT) in both pesticides treated-algae were significantly increased. Additionally, an increase in gulathione-S-transferase (GST) was observed in algae after 24, 48 and 96 h of exposure to both fenhexamid and atrazine. Antioxidative enzymes in fenhexamid and atrazine mixture treatment showed an antagonistic interaction after 24h of exposure in algae. PMID:23796667

  14. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Kamarei, A. R.; Nakhost, Z.

    1985-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.

  15. Effect of temperature on ammonium removal in Scenedesmus sp.

    PubMed

    Ruiz-Martínez, A; Serralta, J; Seco, A; Ferrer, J

    2015-09-01

    The effect of temperature on microalgal ammonium uptake was investigated by carrying out four batch experiments in which a mixed culture of microalgae, composed mainly of Scenedesmus sp., was cultivated under different temperatures within the usual temperature working range in Mediterranean climate (15-34 °C). Ammonium removal rates increased with temperature up to 26 °C and stabilized thereafter. Ratkowsky and Cardinal temperatures models successfully reproduced the experimental data. Optimum (31.3 °C), minimum (8.8 °C) and maximum (46.1 °C) temperatures for ammonium removal by Scenedesmus sp. under the studied conditions were obtained as model parameters. These temperature-related parameters constitute very useful information for designing and operating wastewater treatment systems using these microalgae. PMID:26027902

  16. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    PubMed

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. PMID:26253865

  17. Modelling the effect of fluctuating herbicide concentrations on algae growth.

    PubMed

    Copin, Pierre-Jean; Coutu, Sylvain; Chèvre, Nathalie

    2015-03-01

    Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers. PMID:25499055

  18. Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: adsorption and bioaccumulation processes and models.

    PubMed

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-06-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately 10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  19. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    PubMed Central

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  20. Effects of linear alkylbenzene sulfonate (LAS) on the interspecific competition between Microcystis and Scenedesmus.

    PubMed

    Zhu, Wei; Chen, Huaimin; Guo, Lili; Li, Ming

    2016-08-01

    The widespread use of detergents increases the concentration of surfactant in lakes and reservoirs. High surfactant loads produces toxicity to algae; however, the influence of the increasing surfactant on the competition between algae is not clear. In this paper, different amounts of linear alkylbenzene sulfonate (LAS) were added to test the effects of LAS on the competition between Microcystis aeruginosa and Scenedesmus obliquus under eutrophic condition. In single culture, the growth of S. obliquus was promoted under lower LAS concentrations (1 and 20 mg L(-1)), but cell density of S. obliquus reduced when treated with higher LAS concentration (100 mg L(-1)). The growth of M. aeruginosa was inhibited markedly with 20 and 100 mg L(-1) LAS. Compared with single culture, the result was opposite in co-cultures and the cell density of S. obliquus increased significantly when treated with LAS of 1, 20, and 100 mg L(-1). The specific growth rates of S. obliquus and M. aeruginosa in both cultures were 0.4-0.5 day(-1) and 0.6-0.7 day(-1), respectively, except that the specific growth rate of M. aeruginosa in both cultures treated with 100 mg L(-1) LAS was about 0.2 day(-1). M. aeruginosa dominated over S. obliquus in the co-culture without LAS, while the competition was completely opposite with the addition of 20 mg L(-1) LAS. The growth of S. obliquus treated with 20 mg L(-1) LAS was not affected significantly in single culture but was promoted by 75 % in co-culture. Moreover, the growth of S. obliquus in co-culture treated with 100 mg L(-1) LAS was promoted by more than 97 %. These results suggested that the increasing LAS would overturn the competition of algae in freshwater ecosystems. PMID:27154838

  1. Chromium toxicity on two linked trophic levels. I. Effects of contaminated algae on Daphnia magna.

    PubMed

    Gorbi, G; Corradi, M G

    1993-02-01

    The effects of feeding Daphnia magna on algae (Scenedesmus acutus) pretreated with different concentrations of Cr(VI) were studied. A positive effect on growth and newborn production rate was observed in the daphnids fed on algae exposed to 1 mg/liter Cr(VI). Fecundity and growth were drastically reduced in daphnids fed on algae exposed to 10 mg/liter Cr(VI). Since the algae, cultured in the presence of these two Cr(VI) concentrations, supplied daphnids with similar amounts of chromium, the observed effects on the population dynamics of D. magna were attributed more to alterations of the nutritional value of the algal food, due to the Cr treatment, than to a toxic effect of the metal. PMID:7682919

  2. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. PMID:26554523

  3. Cultivation of Scenedesmus dimorphus with domestic secondary effluent and energy evaluation for biodiesel production.

    PubMed

    Zhang, S S; Liu, H; Fan, J F; Yu, H

    2015-01-01

    Microalgae cultivation in wastewater has gained significant attention as a cost-saving means for algae-based biofuel production. To evaluate the performance of Scenedesmus dimorphus cultivated in a 100-L continuously operated photobioreactor using domestic secondary effluent (DSE), algal growth, nutrients removal and energy evaluation were conducted in four scenarios. Prior to the application of continuous cultivation, S. dimorphus was grown in a batch operated 1.5-L bubble column photobioreactor to test the growth feasibility and lipids accumulation of S. dimorphus in DSE. The highest biomass achieved in DSE was 244 mg L(-1)with lipid content at 26.06%. Simultaneously, 98.72% of total phosphorus (TP) and 98.04% of total nitrogen (TN) in DSE were removed. Then, S. dimorphus were inoculated in the 100-L continuously operated photobioreactor using BG11, unsterilized DSE, N, P-added DSE and UV-sterilized DSE as the medium, respectively. Results showed that the highest biomass gained were 567, 174, 276 and 198 mg L(-1), respectively. TP removal rates in four scenarios were all above 90%. With adjustment to DSE, the overall TN removal rates increased up to 80%. Finally, energy evaluation demonstrated that although the case of BG11 as the medium provided the most energy production, the case using DSE with N and P supplementation was of the highest net energy rate, suggesting that microalgae cultivation for biodiesel production by DSE is of obvious potential and advantage over the synthesis medium like BG11. PMID:25253291

  4. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion.

    PubMed

    Chen, Lin; Liu, Tianzhong; Zhang, Wei; Chen, Xiaolin; Wang, Junfeng

    2012-05-01

    The effect of storage temperature and time on lipid composition of Scenedesmus sp. was studied. When stored at 4°C or higher, the free fatty acid content in the wet biomass increased from a trace to 62.0% by day 4. Using two-step catalytic conversion, algae oil with a high free fatty acid content was converted to biodiesel by pre-esterification and transesterification. The conversion rate of triacylglycerols reached 100% under the methanol to oil molar ratio of 12:1 during catalysis with 2% potassium hydroxide at 65°C for 30 min. This process was scaled up to produce biodiesel from Scenedesmus sp. and Nannochloropsis sp. oil. The crude biodiesel was purified using bleaching earth. Except for moisture content, the biodiesel conformed to Chinese National Standards. PMID:22401712

  5. Effects of algae on the efficacy of Bacillus thuringiensis var. israelensis against larval black flies.

    PubMed

    Stephens, Marianne S; Overmyer, Jay P; Gray, Elmer W; Noblet, Ray

    2004-06-01

    Personnel from several black fly control programs have reported that the efficacy of Bacillus thuringiensis var. israelesis (Bti) is reduced during periods when algal concentrations are high in the waterways. Although the reduction in Bti-induced mortality in black fly larvae is presumed to be related to the presence of algae, no scientific data support this theory. In this study, 4 genera of algae (Microcytis, Scenedesmus, Dictrosphaerium, and Chlorella) commonly detected in Pennsylvania rivers where Bti-induced mortality in black fly larvae has been reduced were assessed to determine their respective effects on Bti-induced mortality by using an orbital shaker bioassay with laboratory-reared black fly larvae (Simulium vittatum cytospecies IS-7). A significant reduction in Bti-induced mortality was observed when Scenedesmus was present in the flasks at concentrations > or = 16,000 cells/ml. The Bti-induced mortality of larvae was not significantly reduced when Chlorella, Dictyosphaerium, or Microcytis was present in the flasks, even at concentrations > or = 250,000 cells/ml. These results indicate that the presence of certain types of algae can reduce the mortality of black flies exposed to Bti. Although not clearly defined, the mechanisms involved may be related to algal morphology due to overall size and structures associated with certain types of algae, and possible interference with feeding. PMID:15264627

  6. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting

    PubMed Central

    Toninelli, Andrea Efrem; Wang, Junfeng; Liu, Mingshen; Wu, Hong; Liu, Tianzhong

    2016-01-01

    This study investigated the effect of intermittent lighting on the growth performances of a Scenedesmus dimorphus biofilm. Flashing light effect (FLE) is common in traditional suspended cultures of microalgae; yet, publications about this phenomenon, in the context of biofilm cultivation, are scarce. In this work we demonstrate that, thanks to intermittent illumination, it is possible for attached cultivations to fulfill FLE, improve photoefficiency and productivity as well as providing protection from photoinhibition using much lower flashing light frequencies than those usually required with suspended cultures. Medium frequency intermittent lighting (0.1 Hz) guaranteed excellent light integration resulting in 9.13 g m−2 d−1 biomass productivity, which was 8.9% higher than with continuous lighting. Results showed that a light fraction value of 0.5 always improved photoefficiency values as related to continuous light with a 118.8% maximum increase. PMID:27561323

  7. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting.

    PubMed

    Toninelli, Andrea Efrem; Wang, Junfeng; Liu, Mingshen; Wu, Hong; Liu, Tianzhong

    2016-01-01

    This study investigated the effect of intermittent lighting on the growth performances of a Scenedesmus dimorphus biofilm. Flashing light effect (FLE) is common in traditional suspended cultures of microalgae; yet, publications about this phenomenon, in the context of biofilm cultivation, are scarce. In this work we demonstrate that, thanks to intermittent illumination, it is possible for attached cultivations to fulfill FLE, improve photoefficiency and productivity as well as providing protection from photoinhibition using much lower flashing light frequencies than those usually required with suspended cultures. Medium frequency intermittent lighting (0.1 Hz) guaranteed excellent light integration resulting in 9.13 g m(-2) d(-1) biomass productivity, which was 8.9% higher than with continuous lighting. Results showed that a light fraction value of 0.5 always improved photoefficiency values as related to continuous light with a 118.8% maximum increase. PMID:27561323

  8. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems. PMID:26314112

  9. Preparation protocols for high-activity photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy.

    PubMed

    Schiller, H; Dau, H

    2000-01-01

    Photosystem II (PS II) membrane particles are particularly well suited for various types of spectroscopic investigations on the PS II manganese complex. Here we present: (1) a preparation protocol for PS II membrane particles of higher plants, which yields exceptionally high oxygen-evolution activity due to the use of glycinebetaine as a PS II-stabilizing agent; (2) preparation protocols for highly active PS II membrane particles for the green algae Scenedesmus obliquus and Chlamydomonas reinhardtii; (3) a determination of pH dependence of oxygen evolution for spinach and Scenedesmus; (4) a comparison of the EPR multiline signal observed in the S2-state of green algae and higher plants of PS II membrane particles. A clearly broader type of multiline EPR signal is observed in green algae. PMID:10942078

  10. Transmission and Accumulation of Nano-TiO2 in a 2-Step Food Chain (Scenedesmus obliquus to Daphnia magna).

    PubMed

    Chen, Jinyuan; Li, Herong; Han, Xiaoqian; Wei, Xiuzhen

    2015-08-01

    The recent increase in nanomaterial usage has led to concerns surrounding its health risks and environmental impact. The food chain is an important pathway for high-trophic-level organisms absorbing and enriching nanomaterials. Our study therefore simulated nanometer titanium dioxide (nano-TiO2) transfer along a 2-step food chain, from the unicellular alga Scenedesmus obliquus to the water flea Daphnia magna. We also explored the effect of sodium dodecyl benzene sulfonate (SDBS) on nano-TiO2 bioavailability. A suspension of 10 mg/L nano-TiO2 was optimally dispersed in aqueous solutions by 5 mg/L SDBS. After 72 h, S. obliquus growth was not significantly affected by 10 mg/L nano-TiO2, 5 mg/L SDBS and their mixed suspension. SDBS not only improved nano-TiO2 stability in water, but also increased its uptake in S. obliquus and enhanced its accumulation in D. magna. Our study suggests that nano-TiO2 is mildly toxic to S. obliquus, and can be transferred along the aquatic food chain with a biomagnification effect. PMID:26091814

  11. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    PubMed Central

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  12. A toxicokinetic study of specifically acting and reactive organic chemicals for the prediction of internal effect concentrations in Scenedesmus vacuolatus.

    PubMed

    Vogs, Carolina; Kühnert, Agnes; Hug, Christine; Küster, Eberhard; Altenburger, Rolf

    2015-01-01

    The toxic potency of chemicals is determined by using the internal effect concentration by accounting for differences in toxicokinetic processes and mechanisms of toxic action. The present study examines toxicokinetics of specifically acting and reactive chemicals in the green algae Scenedesmus vacuolatus by using an indirect method. Concentration depletion in the exposure medium was measured for chemicals of lower (log KOW  < 3: isoproturon, metazachlor, paraquat) and moderate (log KOW 4-5: irgarol, triclosan, N-phenyl-2-naphthylamine) hydrophobicity at 7 to 8 time points over 240 min or 360 min. Uptake and overall elimination rates were estimated by fitting a toxicokinetic model to the observed concentration depletions. The equilibrium of exposure concentrations was reached within minutes to hours or was even not observed within the exposure time. The kinetics of bioconcentration cannot be explained by the chemical's hydrophobicity only, but influential factors such as ionization of chemicals, the ion trapping mechanism, or the potential susceptibility for biotransformation are discussed. Internal effect concentrations associated with 50% inhibition of S. vacuolatus reproduction were predicted by linking the bioconcentration kinetics to the effect concentrations and ranged from 0.0480 mmol/kg wet weight to 7.61 mmol/kg wet weight for specifically acting and reactive chemicals. Knowing the time-course of the internal effect concentration may promote an understanding of toxicity processes such as delayed toxicity, carry-over toxicity, or mixture toxicity in future studies. PMID:25263251

  13. Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium.

    PubMed

    de Marchin, Thomas; Erpicum, Michel; Franck, Fabrice

    2015-12-10

    Two outdoor open thin-layer cascade systems operated as batch cultures with the alga Scenedesmus obliquus were used to compare the productivity and photosynthetic acclimations in control and CO2 supplemented cultures in relation with the outdoor light irradiance. We found that the culture productivity was limited by CO2 availability. In the CO2 supplemented culture, we obtained a productivity of up to 24gdwm(-2)day(-1) and found a photosynthetic efficiency (value based on the PAR solar radiation energy) of up to 5%. In the CO2 limited culture, we obtained a productivity of up to 10gdwm(-2)day(-1) while the photosynthetic efficiency was up to 3.3% and decreased to 2.1% when the integrated daily PAR increased. Fluorescence and oxygen evolution measurements showed that ETR and oxygen evolution light saturation curves, as well as light-dependent O2 uptake were similar in algal samples from both cultures when the CO2 limitation was removed. In contrast, we found that CO2 limitation conducted to a decreased PSII photochemical efficiency and an increased light-induced heat-dissipation in the control culture compared to the CO2 supplemented culture. These features are in line with a lower light use efficiency and may therefore contribute to the lower productivity observed in absence of CO2 supplementation in outdoor mass cultures of S. obliquus. PMID:26232563

  14. Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.

    PubMed

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  15. Landfill leachate--a water and nutrient resource for algae-based biofuels.

    PubMed

    Edmundson, Scott J; Wilkie, Ann C

    2013-01-01

    There is a pressing need for sustainable renewable fuels that do not negatively impact food and water resources. Algae have great potential for the production of renewable biofuels but require significant water and fertilizer resources for large-scale production. Municipal solid waste (MSW) landfill leachate (LL) was evaluated as a cultivation medium to reduce both water and elemental fertilizer demands of algae cultivation. Daily growth rate and cell yield of two isolated species of algae (Scenedesmus cf. rubescens and Chlorella cf. ellipsoidea) were cultivated in MSW LL and compared with Bold's Basal Medium (BBM). Results suggest that LL can be used as a nutrient resource and medium for the cultivation of algae biomass. S. cf. rubescens grew well in 100% LL, when pH was regulated, with a mean growth rate and cell yield 91.2% and 92.8% of those observed in BBM, respectively. S. cf. rubescens was more adaptable than C. cf. ellipsoidea to the LL tested. The LL used in this study supported a maximum volumetric productivity of 0.55 g/L/day of S. cf. rubescens biomass. The leachate had sufficient nitrogen to supply 17.8 g/L of algae biomass, but was limited by total phosphorus. Cultivation of algae on LL offsets both water and fertilizer consumption, reducing the environmental footprint and increasing the potential sustainability of algae-based biofuels. PMID:24350438

  16. Effect of subcellular distribution on nC₆₀ uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna.

    PubMed

    Chen, Qiqing; Hu, Xialin; Yin, Daqiang; Wang, Rui

    2016-06-01

    The potential uptake and trophic transfer ability of nanoparticles (NPs) in aquatic organisms have not been well understood yet. There has been an increasing awareness of the subcellular fate of NPs in organisms, but how the subcellular distribution of NPs subsequently affects the trophic transfer to predator remains to be answered. In the present study, the food chain from Scenedesmus obliquus to Daphnia magna was established to simulate the trophic transfer of fullerene aqueous suspension (nC60). The nC60 contaminated algae were separated into three fractions: cell wall (CW), cell organelle (CO), and cell membrane (CM) fractions, and we investigated the nC60 uptake amounts and trophic transfer efficiency to the predator through dietary exposure to algae or algal subcellular fractions. The nC60 distribution in CW fraction of S. obliquus was the highest, following by CO and CM fractions. nC60 uptake amounts in D. magna were found to be mainly relative to the NPs' distribution in CW fraction and daphnia uptake ability from CW fraction, whereas the nC60 trophic transfer efficiency (TE) were mainly in accordance with the transfer ability of NPs from the CO fraction. CW fed group possessed the highest uptake amount, followed by CO and CM fed groups, but the presence of humic acid (HA) significantly decreased the nC60 uptake from CW fed group. The CO fed groups acquired high TE values for nC60, while CM fed groups had low TE values. Moreover, even though CW fed group had a high TE value; it decreased significantly with the presence of HA. This study contributes to the understanding of fullerene NPs' dietary exposure to aquatic organisms, suggesting that NPs in different food forms are not necessarily equally trophically available to the predator. PMID:26946286

  17. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1989-04-01

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by {sup 14}C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO{sub 2}, in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO{sub 2} and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO{sub 3}{sup {minus}} were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO{sub 2} concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H{sup +} gradients or transporters associated with the DIC-pump.

  18. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.

    PubMed

    Dao, Ly H T; Beardall, John

    2016-03-01

    In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae. PMID:26774308

  19. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta)

    PubMed Central

    Goecke, Franz; Jerez, Celia G.; Zachleder, Vilém; Figueroa, Félix L.; Bišová, Kateřina; Řezanka, Tomáš; Vítová, Milada

    2015-01-01

    Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations. PMID:25674079

  20. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta).

    PubMed

    Goecke, Franz; Jerez, Celia G; Zachleder, Vilém; Figueroa, Félix L; Bišová, Kateřina; Řezanka, Tomáš; Vítová, Milada

    2015-01-01

    Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations. PMID:25674079

  1. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus.

    PubMed

    Toledo-Cervantes, Alma; Morales, Marcia; Novelo, Eberto; Revah, Sergio

    2013-02-01

    An indigenous microalga was isolated from the springs in Cuatro Ciénegas, México. It was morphologically identified as Scenedesmus obtusiusculus and cultivated in bubble-column photobioreactors in batch operation mode. This microalga grows at 10% of carbon dioxide (CO(2)) showing a maximum CO(2) fixation rate of 970gm(-3)d(-1). The microalga, without any nutrient limitation, contained 20% of nonpolar lipids with a biomass productivity of 500gm(-3)d(-1) and a maximum biomass concentration of around 6,000gm(-3) at 5% CO(2) and irradiance of 134μmolm(-2)s(-1). Furthermore, it was observed that the microalga stored 55.7% of nonpolar lipids when 5% CO(2) was fed at 0.8vvm and 54.7μmolm(-2)s(-1) under nitrogen starvation. The lipid profile included C16:0, C18:0, C18:1n9t, C18:1n9c, C18:3n6 with a productivity of 200g lipid m(-3)d(-1). Therefore, the microalga may have biotechnological potential producing lipids for biodiesel. PMID:23334023

  2. Blue-green algae

    MedlinePlus

    ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)Blue-green algae might slow blood clotting. Taking blue-green algae along with medications that ...

  3. Magnetic separation of algae

    DOEpatents

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  4. Toxicity of haloacetic acids to freshwater algae.

    PubMed

    Roberts, Jayne F; van Egmond, Roger; Price, Oliver R

    2010-01-01

    Haloacetic acids (HAA), such as trichloroacetic acid (TCA), are commonly occurring by-products from disinfection and bleaching processes using sodium hypochlorite. Currently, the lowest no observed effect concentration (NOEC) for TCA is reported to be 8.7microgL(-1), which was derived from a toxicity study conducted in 1981 on Chlorella pyrenoidosa. The purity of the test material was not documented and it is unknown if other halogenated impurities or co-formulants were present. However, this NOEC is used to derive a predicted no effect concentration, which is used in various regulatory risk assessments. We present a range of algal toxicity studies conducted on five different algal species and two HAAs and observed no toxicity of TCA to C. pyrenoidosa at 115mgL(-1). The most sensitive species to TCA (NOEC, 3mgL(-1)) were Pseudokirchneriella subcapitata and Scenedesmus subspicatus, demonstrating that the toxicity of TCA to algae is over two orders of magnitude less sensitive than previously reported. PMID:19828197

  5. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    PubMed

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium. PMID:26432265

  6. Inhibition of three algae species using chemicals released from barley straw.

    PubMed

    Murray, D; Jefferson, B; Jarvis, P; Parsons, S A

    2010-04-01

    Algal blooms are a significant problem in the UK, particularly in water sources that supply potable water treatment works. A wide range of methods to control algae have been tested and, whilst many are effective, they all have disadvantages. The use of barley straw to control algal growth in reservoirs is one option that is gaining popularity, but little is known about its mode of action. One suggested mechanism is that, as the straw is broken down, algastatic chemicals such as phenolics are released. Here we have used an algae inhibition test to evaluate the effect of chemicals reported to be released from straw on three common algal species: Chlorella vulgaris, Microcystis aeruginosa and Scenedesmus subspicatus. It was shown that, of the chemicals assessed, many produced an algastatic effect on the growth of the three algal species tested, with 2 phenyl-phenol being the most effective, whilst p-cresol and benzaldehyde were shown to be effective at concentrations similar to those that have been reported downstream of rotted straw. Scenedesmus subspicatus proved to be much more resistant to the chemicals tested than the other species. PMID:20450120

  7. Biodiesel Production by the Green Microalga Scenedesmus obliquus in a Recirculatory Aquaculture System

    PubMed Central

    Mandal, Shovon

    2012-01-01

    Biodiesel production was examined with Scenedesmus obliquus in a recirculatory aquaculture system with fish pond discharge and poultry litter to couple with waste treatment. Lipid productivity of 14,400 liter ha−1 year−1 was projected with 11 cultivation cycles per year. The fuel properties of the biodiesel produced adhered to Indian and international standards. PMID:22660702

  8. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors

    PubMed Central

    2014-01-01

    Background Many microalgae accumulate carbohydrates simultaneously with triacylglycerol (TAG) upon nitrogen starvation, and these products compete for photosynthetic products and metabolites from the central carbon metabolism. As shown for starchless mutants of the non-oleaginous model alga Chlamydomonas reinhardtii, reduced carbohydrate synthesis can enhance TAG production. However, these mutants still have a lower TAG productivity than wild-type oleaginous microalgae. Recently, several starchless mutants of the oleaginous microalga Scenedesmus obliquus were obtained which showed improved TAG content and productivity. Results The most promising mutant, slm1, is compared in detail to wild-type S. obliquus in controlled photobioreactors. In the slm1 mutant, the maximum TAG content increased to 57 ± 0.2% of dry weight versus 45 ± 1% in the wild type. In the wild type, TAG and starch were accumulated simultaneously during initial nitrogen starvation, and starch was subsequently degraded and likely converted into TAG. The starchless mutant did not produce starch and the liberated photosynthetic capacity was directed towards TAG synthesis. This increased the maximum yield of TAG on light by 51%, from 0.144 ± 0.004 in the wild type to 0.217 ± 0.011 g TAG/mol photon in the slm1 mutant. No differences in photosynthetic efficiency between the slm1 mutant and the wild type were observed, indicating that the mutation specifically altered carbon partitioning while leaving the photosynthetic capacity unaffected. Conclusions The yield of TAG on light can be improved by 51% by using the slm1 starchless mutant of S. obliquus, and a similar improvement seems realistic for the areal productivity in outdoor cultivation. The photosynthetic performance is not negatively affected in the slm1 and the main difference with the wild type is an improved carbon partitioning towards TAG. PMID:24883102

  9. Effect of ultraviolet radiation on photosynthesis, biomass, and fatty acid content and profile of a Scenedesmus rubescens-like microalga.

    PubMed

    Li, Ping; Lin, Junda

    2012-05-01

    The effects of ultraviolet radiation (UVR) and nitrogen (NaNO(3)) concentration on photosynthesis, biomass, and fatty acid content and profile of a Scenedesmus rubescens-like microalga were measured in an outdoor 8-day culture study. UV-induced photoinhibition decreased from 42.6% to 3.5%, in the presence of 75 mg/L NaNO(3) (HN) and from 52.9% to 22.6% in the presence of 7.5mg/L NaNO(3) (LN) nitrogen concentration, respectively. The concentrations of UV-absorbing compounds increased 4.3 and 4.9 times under HN and LN, respectively. Biomass accumulation was suppressed (10.7%) by UVR under HN, but not under LN conditions. Carotenoid content decreased from 1.05 ± 0.06 to 0.96 ± 0.15 (with UV radiation) and to 0.91 ± 0.07 (without UV radiation), respectively, under HN, while it decreased to 0.05 ± 0.04 (with UV radiation) and to 0.11 ± 0.08 (without UV radiation), respectively, under LN. The content of C18:1n9 fatty acids increased by about 430%, whereas that of C18:3n3 decreased by about 65% in both radiation treatments during nitrogen starvation. The results showed that the absence of UVR screening does not change the fatty acid content and profile of S. rubescens-like algae cultivated outdoors under HN and LN conditions. PMID:22365715

  10. Modelling the effects of pulse exposure of several PSII inhibitors on two algae.

    PubMed

    Copin, Pierre-Jean; Chèvre, Nathalie

    2015-10-01

    Subsequent to crop application and during precipitation events, herbicides can reach surface waters in pulses of high concentrations. These pulses can exceed the Annual Average Environmental Quality Standards (AA-EQS), defined in the EU Water Framework Directive, which aims to protect the aquatic environment. A model was developed in a previous study to evaluate the effects of pulse exposure for the herbicide isoproturon on the alga Scenedesmus vacuolatus. In this study, the model was extended to other substances acting as photosystem II inhibitors and to other algae. The measured and predicted effects were equivalent when pulse exposure of atrazine and diuron were tested on S. vacuolatus. The results were consistent for isoproturon on the alga Pseudokirchneriella subcapitata. The model is thus suitable for the effect prediction of phenylureas and triazines and for the algae used: S. vacuolatus and P. subcapitata. The toxicity classification obtained from the dose-response curves (diuron>atrazine>isoproturon) was conserved for the pulse exposure scenarios modelled for S. vacuolatus. Toxicity was identical for isoproturon on the two algae when the dose-response curves were compared and also for the pulse exposure scenarios. Modelling the effects of any pulse scenario of photosystem II inhibitors on algae is therefore feasible and only requires the determination of the dose-response curves of the substance and growth rate of unexposed algae. It is crucial to detect the longest pulses when measurements of herbicide concentrations are performed in streams because the model showed that they principally affect the cell density inhibition of algae. PMID:26011414

  11. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus).

    PubMed

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina

    2015-11-01

    The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference. PMID:26431807

  12. [Harmful algae and health].

    PubMed

    Kankaanpää, Harri T

    2011-01-01

    Harmful algae are a worldwide problem. Phycotoxins is a general term for toxic compounds produced by harmful species of the phytoplankton. This review deals with the occurrence of harmful algae and phycotoxins in the Baltic Sea and other domestic waters, the ways of getting exposed to them, and their effects. Advice on how to avoid the exposure is provided. PMID:21834336

  13. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  14. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species.

    PubMed

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram "fingerprints" were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  15. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    PubMed Central

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  16. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling.

    PubMed

    Barbera, Elena; Sforza, Eleonora; Kumar, Sandeep; Morosinotto, Tomas; Bertucco, Alberto

    2016-05-01

    The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients. PMID:26868157

  17. sup 1 H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    SciTech Connect

    Moore, J.M.; Chazin, W.J.; Wright, P.E. ); Powls, R. )

    1988-10-04

    Two-dimensional {sup 1}H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight {beta}-strands, one short segment of helix, five reverse turns, and five loops. The {beta}-strands may be arranged into two {beta}sheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key {beta}-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified.

  18. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    PubMed

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank. PMID:27195694

  19. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock

    PubMed Central

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank. PMID:27195694

  20. Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress.

    PubMed

    Peña-Castro, Julián Mario; Martínez-Jerónimo, Fernando; Esparza-García, Fernando; Cañizares-Villanueva, Rosa Olivia

    2004-12-01

    The microalgae genus Scenedesmus is commonly found in freshwater bodies, wastewater facilities and water polluted with heavy metals. Phenotypic plasticity in Scenedesmus has been documented in response to a wide variety of conditions; however, heavy metals have not been comprehensively documented as phenotypic plasticity inducers. In this study, we report the phenotypic plasticity of Scenedesmus incrassatulus (a non-spiny, four-cell coenobium forming species) in response to EC(50) value of copper, cadmium and hexavalent chromium. S. incrassatulus was grown in batch cultures in the presence of each metal. Chlorophyll-a content, cell size, parameters derived from the schematic energy-flux model for photosystem II, and morphotype expressions were recorded. Divalent cation metals induced unicellular forms, and hexavalent chromium produced out-of-shape coenobia corresponding to various stages of autospore formation. The changes induced by divalent metals were interpreted as phenotypic plasticity, because they were always associated to population doublings and were reversible when toxicant pressure was removed (only for Cu). Copper was the best inductor of unicellular forms and also affected significantly all the photosynthetic parameters measured. The developed morphotypes could confer ecological advantages to S. incrassatulus in metal stressed environments. PMID:15519408

  1. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project. PMID:25188453

  2. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants.

    PubMed

    Otto, Benjamin; Beuchel, Carl; Liers, Christiane; Reisser, Werner; Harms, Hauke; Schlosser, Dietmar

    2015-06-01

    In order to explore the abundance and potential environmental functions of green algal laccases, we screened various algae for extracellular laccase-like activities, characterized basic features of these activities in selected species and exemplarily studied the transformation of environmental pollutants and complex natural compounds by the laccase of Tetracystis aeria. Oxidation of the classical laccase substrate ABTS was found to be widespread in chlorophycean algae. The oxidation activity detected in members of the 'Scenedesmus' clade was caused by an unknown thermostable low-molecular-mass compound. In contrast, species of the Moewusinia, including Chlamydomonas moewusii and T. aeria, excreted putative 'true' laccases. Phenolic substrates were oxidized by these enzymes optimally at neutral to alkaline pH. The Tetracystis laccase efficiently transformed bisphenol A, 17α-ethinylestradiol, nonylphenol and triclosan in the presence of ABTS as redox mediator, while anthracene, veratrylalcohol and adlerol were not attacked. Lignosulfonate and humic acid underwent slight (de)polymerization reactions in the presence of the laccase and mediator(s), probably involving the oxidation of phenolic constituents. Possible natural functions of the enzymes, such as the synthesis of complex polymers or detoxification processes, may assist the survival of the algae in adverse environments. In contaminated surface waters, laccase-producing green algae might contribute to the environmental breakdown of phenolic pollutants. PMID:25926529

  3. Time-Dependent Effects in Algae for Chemicals with Different Adverse Outcome Pathways: A Novel Approach.

    PubMed

    Vogs, Carolina; Altenburger, Rolf

    2016-07-19

    Chemicals affect unicellular algae as a result of toxicokinetic and toxicodynamic processes. The internal concentration of chemicals in algae cells typically reaches equilibrium within minutes, while damage cumulatively increases over hours. The time gap between the steady state of internal exposure and damage development is thus suspected to span up to hours, mainly due to toxicodynamic processes. The quantification of rate-limited toxicodynamic processes, aggregated as a progressive effect from an initiating molecular event through biological key events toward the adverse outcome on algae growth inhibition, might discriminate between different adverse outcome pathways (AOPs). To support our hypothesis, we selected six chemicals according to different physicochemical properties and three distinctly dissimilar AOPs. The time courses of internal concentrations were linked to the observed affected Scenedesmus vacuolatus growth using toxicokinetic-toxicodynamic modeling. Effects on cell growth were explained by effect progression and not by the time to reach internal equilibrium concentration. Effect progression rates ranged over 6 orders of magnitude for all chemicals but varied by less than 1 order of magnitude within similar AOP (photosystem II inhibitors > reactive chemicals > lipid biosynthesis inhibitors), meaning that inhibitors of photosystem II advance an effect toward algae growth fastest compared to reactive chemicals and inhibitors of lipid biosynthesis. PMID:27149222

  4. Experimental and mathematical model of the interactions in the mixed culture of links in the "producer-consumer" cycle

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.

    The paper presents experimental and mathematical model of interactions between invertebrates the ciliates Paramecium caudatum and the rotifers Brachionus plicatilis and algae Chlorella vulgaris and Scenedesmus quadricauda in the producer -- consumer aquatic biotic cycle with spatially separated components The model describes the dynamics of the mixed culture of ciliates and rotifers in the consumer component feeding on the mixed algal culture of the producer component It has been found that metabolites of the algae Scenedesmus produce an adverse effect on the reproduction of the ciliates P caudatum Taking into account this effect the results of investigation of the mathematical model were in qualitative agreement with the experimental results In the producer -- consumer biotic cycle it was shown that coexistence is impossible in the mixed algal culture of the producer component and in the mixed culture of invertebrates of the consumer component The ciliates P caudatum are driven out by the rotifers Brachionus plicatilis

  5. Effect of Algal Inoculation on COD and Nitrogen Removal, and Indigenous Bacterial Dynamics in Municipal Wastewater.

    PubMed

    Lee, Jangho; Lee, Jaejin; Shukla, Sudheer Kumar; Park, Joonhong; Lee, Tae Kwon

    2016-05-28

    The effects of algal inoculation on chemical oxygen demand (COD) and total nitrogen (TN) removal, and indigenous bacterial dynamics were investigated in municipal wastewater. Experiments were conducted with municipal wastewater inoculated with either Chlorella vulgaris AG10032, Selenastrum gracile UTEX 325, or Scenedesmus quadricauda AG 10308. C. vulgaris and S. gracile as fast growing algae in municipal wastewater, performed high COD and TN removal in contrast to Sc. quadricauda. The indigenous bacterial dynamics revealed by 16S rRNA gene amplification showed different bacterial shifts in response to different algal inoculations. The dominant bacterial genera of either algal case were characterized as heterotrophic nitrifying bacteria. Our results suggest that selection of indigenous bacteria that symbiotically interact with algal species is important for better performance of wastewater treatment. PMID:26930350

  6. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, J.F.; Ruessler, D.S.; Carlson, A.R.

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  7. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture.

    PubMed

    Ometto, Francesco; Pozza, Carlo; Whitton, Rachel; Smyth, Beatrice; Gonzalez Torres, Andrea; Henderson, Rita K; Jarvis, Peter; Jefferson, Bruce; Villa, Raffaella

    2014-04-15

    Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions. PMID:24525066

  8. Plasmodesmata of brown algae.

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2015-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10-20 nm and they lack desmotubule in contrast to green plants. Moreover, branched PD could not be observed in brown algae. In the brown alga, Dictyota dichotoma, PD are produced during cytokinesis through the formation of their precursor structures (pre-plasmodesmata, PPD). Clustering of PD in a structure termed "pit field" was recognized in several species having a complex multicellular thallus structure but not in those having uniseriate filamentous or multiseriate one. The pit fields might control cell-to-cell communication and contribute to the establishment of the complex multicellular thallus. In this review, we discuss fundamental morphological aspects of brown algal PD and present questions that remain open. PMID:25516500

  9. Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; Ghosh, Tonmoy; Paliwal, Chetan; Maurya, Rahulkumar; Mishra, Sandhya

    2015-10-01

    The aim of the present study was to find out the optimum sodium bicarbonate concentration to produce higher biomass with higher lipid and carbohydrate contents in microalgae Scenedesmus sp. CCNM 1077. The role of bicarbonate supplementation under different nutritional starvation conditions was also evaluated. The results clearly indicate that 0.6 g/L sodium bicarbonate was optimum concentration resulting in 20.91% total lipid and 25.56% carbohydrate along with 23% increase in biomass production compared to normal growth condition. Addition of sodium bicarbonate increased the activity of nutrient assimilatory enzymes, biomass, lipid and carbohydrate contents under different nutritional starvation conditions. Nitrogen starvation with bicarbonate supplementation resulted in 54.03% carbohydrate and 34.44% total lipid content in microalgae Scenedesmus sp. CCNM 1077. These findings show application of bicarbonate grown microalgae Scenedesmus sp. CCNM 1077 as a promising feedstock for biodiesel and bioethanol production. PMID:26142998

  10. Clocks in algae.

    PubMed

    Noordally, Zeenat B; Millar, Andrew J

    2015-01-20

    As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods. PMID:25379817

  11. The Growth of Monoraphidium sp. and Scenedesmus sp. Cells in the Presence of Thorium

    PubMed Central

    de Queiroz, Juliana Cristina; Ferreira, Ana Cristina de Melo; da Costa, Antonio Carlos Augusto

    2012-01-01

    Toxicity of thorium by Monoraphidium sp. and Scenedesmus sp. was studied. Microalgal cultures were inoculated in ASM-1 medium in presence and absence of thorium. Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with software. The toxicity of thorium over the species was observed for concentrations over 50.0 mg/L. After 30 days, Monoraphidium cells decreased their concentration from 4.23 × 106 to 4.27 × 105 and 8.57 × 105 cells/mL, in the presence of 50.0 and 100.0 mg/L of thorium, respectively. Scenedesmus sp. cells were more resistant to thorium: for an initial cell concentration of 7.65 × 104 cells/mL it was observed a change to 5.25 × 105 and 5.12 × 105 cells/mL, in the presence of thorium at 50.0 and 100.0 mg/L, respectively. This is an indication that low concentrations of the radionuclide favored the growth, and that Scenedesmus cells are more resistant to thorium than Monoraphidium cells. The software used for comparison with direct count method proved to be useful for the improvement of accuracy of the results obtained, a decrease in the uncertainty and allowed recording of the data. The presence of thorium suggests that low concentrations have a positive effect on the growth, due to the presence of the nitrate, indicating its potential for ecotoxicological studies. PMID:22649297

  12. Prevent the degradation of algicidal ability in Scenedesmus-lysing bacteria using optimized cryopreservation.

    PubMed

    Liao, Chunli; Liu, Xiaobo

    2016-03-01

    With the anthropogenic nutrient loading increasing, the frequency and impacts of harmful algal blooms (HABs) have intensified in recent years. To biocontrol HABs, many corresponding algal-lysing bacteria have been exploited successively. However, there are few studies on an effective algal-lysing culture collection to prevent cells from death and particularly the degradation of algicidal ability to their hosts. An optimized cryopreservation was developed and experiments on the validation of this method on preventing algicidal degradation and effects of this optimized cryopreservation on the survival rate of Scenedesmus-lysing bacterium, Enterobacter NP23, isolated from Scenedesmus sp. community, China, on the algicidal dynamic of Scenedesmus wuhanensis was investigated. The optimized cryoprotectant composition consists of 30.0 g/L gelatin, 48.5 g/L sucrose, and 28.4 g/L glycerol, respectively. Using this approach, the survival rate of NP23 cells can still maintain above 90 % and the algal-lysing rate only decline 4 % after the 18-month cryoprotection. Moreover, the 16 generations' passage experiment showed a significant (p < 0.05) genetic stability of algicidal capacity after 18 months. The growth dynamic of S. wuhanensis was investigated in a 5-L bioreactor during 132 h in the absence or presence of NP23. As a result, NP23 has a significant (p < 0.05) inhibition to S. wuhanensis growth when injected into algal culture in the exponential phase at 60th hour. In addition, S. wuhanensis culture initially with NP23 exhibited a slow growth, performing a prolonged lag phase without a clear stationary phase and then rapidly decreased. Our findings, combined with the capacity of preventing the degradation of algicidal ability collectively suggest that the use of this opitimized cryopreservation may be a promising strategy for maintaining algicidal cells. PMID:26593730

  13. Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1990-03-01

    Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  14. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. PMID:22899495

  15. Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass.

    PubMed

    González-Fernández, C; Sialve, B; Bernet, N; Steyer, J P

    2013-02-01

    Biogas production is one of the means to produce a biofuel from microalgae. Biomass consisting mainly of Scenedesmus sp. was thermally pretreated and optimum pretreatment length (1 h) and temperature (90 °C) was selected. Different chemical composition among batches stored at 4 °C for different lengths of time resulted in organic matter hydrolysis percentages ranging from 3% to 7%. The lower percentages were attributed to cell wall thickening observed during storage for 45 days. The different hydrolysis percentages did not cause differences in anaerobic digestion. Pretreatment of Scenedesmus sp. at 90 °C for 1h increased methane production 2.9 and 3.4-fold at organic loading rates (OLR) of 1 and 2.5 kg COD m(-3) day(-1), respectively. Regardless the OLR, inhibition caused by organic overloading or ammonia toxicity were not detected. Despite enhanced methane production, anaerobic biodegradability of this biomass remained low (32%). Therefore, this microalga is not a suitable feedstock for biogas production unless a more suitable pretreatment can be found. PMID:23247149

  16. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp.

    PubMed Central

    Yang, Fangfang; Long, Lijuan; Sun, Xiumei; Wu, Hualian; Li, Tao; Xiang, Wenzhou

    2014-01-01

    Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production. PMID:24663113

  17. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    PubMed

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and

  18. Arsoniumphospholipid in algae*

    PubMed Central

    Cooney, Robert V.; Mumma, R. O.; Benson, A. A.

    1978-01-01

    A novel phospholipid containing arsenic was formed by all marine algae cultured in [74As]arsenate. Components of the labeled algal extracts readily separated by two-dimensional paper radiochromatography. Base-catalyzed deacylation of the major lipid yielded a phosphodiester identical to one of the two major water-soluble compounds. Acid or enzymic hydrolysis of the phosphodiester produced a product identified as trimethylarsoniumalactic acid. The structure of the phospholipid therefore is O-phosphatidyltrimethylarsoniumlactic acid. Detoxication of arsenate by marine algae leads to accumulation of the arsoniumphospholipid as a major reservoir for arsenic. Its degradation to trimethylarsoniumbetaine, dimethylarsinic acid, methanearsonic acid, and arsenate in marine food chains and its metabolism in human beings are of considerable interest. Images PMID:16592562

  19. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  20. Standardization of the juvenile mussel bioassay: Dietary requirements

    SciTech Connect

    Warren, L.W.; Klaine, S.J.

    1995-12-31

    Optimizing a feeding regime is essential for establishing juvenile mussels (Utterbackia imbecillus) as a standard toxicity test organism. Although very little is known about their dietary requirements, these juveniles appear to derive adequate nourishment for survival and growth in batch culture from a diet of the green alga Chlorella vulgaris and Ankistrodesmus falcatus. However, results of previous studies have suggested that mussel diet in culture prior to exposure influences the sensitivity of these organisms to aqueous copper and cadmium exposure. Dietary components included three species of live algae (A. falcatus, C. vulgaris, and Scenedesmus quadricauda) and a suspension of rehydrated, dried Spirulina sp. Less than 24-hr laboratory cultured juveniles were fed all four components or combinations of three algal species daily to determine which mixtures promoted maximal growth. Preliminary data showed growth of control mussels receiving no food was comparable to those organisms fed all four algal species in combination. The greatest increase in shell length of juvenile mussels over 6 days was obtained with the tri-algal combination of A. falcatus, C. vulgaris, and S. quadricauda. The mixture resulting in the least growth included A. falcatus, S. quadricauda, and dried Spirulina sp.

  1. Investigating the feasibility of growing algae for fuel in Southern nevada

    NASA Astrophysics Data System (ADS)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  2. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent.

    PubMed

    Shin, Dong Yun; Cho, Hyun Uk; Utomo, Joseph Christian; Choi, Yun-Nam; Xu, Xu; Park, Jong Moon

    2015-05-01

    Microalgae, Scenedesmus bijuga, was cultivated in anaerobically digested food wastewater effluent (FWE) to treat the wastewater and produce biodiesel simultaneously. Three different mixing ratios with municipal wastewater were compared for finding out proper dilution ratio in biodiesel production. Of these, 1/20 diluted FWE showed the highest biomass production (1.49 g/L). Lipid content was highest in 1/10 diluted FWE (35.06%), and the lipid productivity showed maximum value in 1/20 diluted FWE (15.59 mg/L/d). Nutrient removal was also measured in the cultivation. FAME compositions were mainly composed of C16-C18 (Over 98.94%) in S. bijuga. In addition, quality of FAMEs was evaluated by Cetane Number (CN) and Bis-allylic Position Equivalent (BAPE). PMID:25466996

  3. Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus.

    PubMed

    Hu, Changwei; Hu, Naitao; Li, Xiuling; Zhao, Yongjun

    2016-10-01

    The extensive industrial application of graphene oxide (GO), has increased its exposure risk to various aquatic organisms and its potential to affect the toxicity of other environmental pollutants. In this study, we investigated the combined toxicity of GO and copper on the freshwater microalga Scenedesmus obliquus, using the MIXTOX model. The effects of low concentration (1mg/L) exposure to GO were investigated with environmentally relevant concentrations of copper by using a 12-d subacute toxicity test, with pre- and post-GO treatment. Results showed that there were significant antagonistic effects between GO and copper on S. obliquus, and GO was found to reduce ecotoxicity of copper even at low and environmentally relevant concentrations (1mg/L). PMID:27376350

  4. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae).

    PubMed

    Perales-Vela, Hugo Virgilio; González-Moreno, Sergio; Montes-Horcasitas, Carmen; Cañizares-Villanueva, Rosa Olivia

    2007-05-01

    In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth>photosynthetic pigments content=photosynthetic O2 evolution>photosynthetic electron transport>respiration. The uncoupled relationship between growth and metabolism is discussed. PMID:17267014

  5. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  6. Elicitation of the most important structural properties of ionic liquids affecting ecotoxicity in limnic green algae; a QSAR approach.

    PubMed

    Izadiyan, Parisa; Fatemi, M H; Izadiyan, Mahsa

    2013-01-01

    Many ionic liquids are soluble in water and their impact on the aquatic environment has to be evaluated. However, due to the large number of ionic liquids and lack of experimental data, it is necessary to develop estimation procedures in order to reduce the materials and time consumption. In this study using multilayer perceptron neural network (MLP), ant colony optimization (ACO) and multiple linear regression (MLR) strategies, good predictive quantitative structure-activity relationships (QSAR) models were introduced and structural parameters affecting ecotoxicity of ionic liquids in limnic green algae (Scenedesmus vacuolatus) were revealed. Moreover, principal component analysis (PCA) and cluster analysis (CA) approaches were also applied to visualize any possible patterns or relationships among ionic liquids data. It was revealed that selected descriptors of the MLR model are also capable of clustering ionic liquids according to their four level of toxicity. PMID:23107477

  7. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Wu, Zhiyi; Kuang, Liyuan; Zhang, Wen; Wang, Xianqin

    2015-01-20

    Magnetophoretic separation is a promising and sustainable technology for rapid algal separation or removal from water. This work demonstrated the application of magnetic magnetite nanoparticles (MNPs) coated with a cationic polymer, polyethylenimine (PEI), toward the separation of Scenedesmus dimorphus from the medium broth. The influences of surface coating, UV irradiation, and magnetic field on the magnetophoretic separation were systematically examined. After PEI coating, zeta potential of MNPs shifted from −7.9 ± 2.0 to +39.0 ± 3.1 mV at a pH of 7.0, which improved MNPs-algae interaction and helped reduce the dose demand of MNPs (e.g., from 0.2 to 0.1 g·g(–1) while the harvesting efficiency (HE) of over 80% remained unchanged). The extended Derjaguin–Landau–Verwey–Overbeek theory predicted a strong attractive force between PEI-coated MNPs and algae, which supported the improved algal harvesting. Moreover, the HE was greater under the UV365 irradiation than that under the UV254, and increased with the irradiation intensity. Continuous application of the external magnetic field at high strength remarkably improved the algal harvesting. Finally, the reuse of MNPs for multiple cycles of algal harvesting was studied, which aimed at increasing the sustainability and lowering the cost. PMID:25486124

  8. A diverse assemblage of indole-3-acetic acid producing bacteria associate with unicellular green algae.

    PubMed

    Bagwell, Christopher E; Piskorska, Magdalena; Soule, Tanya; Petelos, Angela; Yeager, Chris M

    2014-08-01

    Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal-bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels. PMID:24879600

  9. Cellular Auxin Transport in Algae

    PubMed Central

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491

  10. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491

  11. Ecology of Harmful Algae

    NASA Astrophysics Data System (ADS)

    Roelke, Daniel L.

    2007-07-01

    Edna Graneli and Jefferson T. Turner, Editors;Ecological Studies Series, Vol. 189; Springer; ISBN 3540322094; 413 pp.; 2006; $195 Harmful algal blooms (HABs) affect commercially and recreationally important species, human health, and ecosystem functioning. Hallmark events are the visually stunning blooms where waters are discolored and filled with ichthyotoxin-producing algae that lead to large fish kills. Of most concern, however, are HABs that pose a threat to human health. For example, some phycotoxins bioaccumulate in the guts and tissues of commercially and recreationally important species that when consumed by humans, may result in nausea, paralysis, memory loss, and even death. In addition to the deleterious impacts of phycotoxins, HABs can be problematic in other ways. For example, the decay of blooms often leads to low dissolved oxygen in subsurface waters. Blooms also reduce light penetration into the water column. Both processes disrupt ecosystems and in some cases have completely destroyed benthic communities.

  12. Modelling the effect of exposing algae to pulses of S-metolachlor: How to include a delay to the onset of the effect and in the recovery.

    PubMed

    Copin, Pierre-Jean; Perronet, Léa; Chèvre, Nathalie

    2016-01-15

    In agriculture, herbicides are applied to improve crop productivity. During and after rain event, herbicides can be transported by surface runoff in streams and rivers. As a result, the exposure pattern in creeks is time-varying, i.e., a repeated pollution of aquatic system. In previous studies, we developed a model to assess the effects of pulse exposure patterns on algae. This model was validated for triazines and phenylureas, which are substances that induce effects directly after exposure with no delay in recovery. However, other herbicides display a mode of action characterized by a time-dependency effect and a delay in recovery. In this study, we therefore investigate whether this previous model could be used to assess the effects of pulse exposure by herbicides with time delay in effect and recovery. The current study focuses on the herbicide S-metolachlor. We showed that the effect of the herbicide begins only after 20 h of exposure for the alga Scenedesmus vacuolatus based on both the optical density and algal cells size measurements. Furthermore, the duration of delay of the recovery for algae previously exposed to S-metolachlor was 20 h and did not depend on the pulse exposure duration or the height of the peak concentration. By accounting for these specific effects, the measured and predicted effects were similar when pulse exposure of S-metolachlor is tested on the alga S. vacuolatus. However, the sensitivity of the alga is greatly modified after being previously exposed to a pulse of S-metolachlor. In the case of scenarios composed of several pulses, this sensitivity should be considered in the modelling. Therefore, modelling the effects of any pulse scenario of S-metolachlor on an alga is feasible but requires the determination of the effect trigger, the delay in recovery and the possible change in the sensitivity of the alga to the substance. PMID:26410701

  13. Toxicity of ammonia to algae in sewage oxidation ponds.

    PubMed Central

    Abeliovich, A; Azov, Y

    1976-01-01

    Ammonia, at concentrations over 2.0 mM and at pH values over 8.0, inhibits photosynthesis and growth of Scenedesmus obliquus, a dominant species in high-rate sewage oxidation ponds. Photosynthesis of Chlorella pyrenoidosa, Anacystis nidulans, and Plectonema boryanum is also susceptible to ammonia inhibition. Dark respiration and cell morphology were unaffected by any combination of pH and ammonia concentrations tested, thus limiting the apparent effect to inhibition of the normal function of the chloroplasts. Methylamine had the same effect as ammonia, and its penetration into the cells was found to be pH dependent. Therefore, the dependence of toxicity of amines to algae on pH apparently results from the inability to penetrate the cell membrane in the ionized form. When operated at 120-h detention time of raw wastewater, the high-rate oxidation pond maintained a steady state with respect to algal growth and oxygen concentration, and the concentration of ammonia did not exceed 1.0 mM. Shifting the pond to 48-h detention time caused an increase in ammonia concentration in the pond water to 2.5 mM, and the pond gradually turned anaerobic. Photosynthesis, which usually elevates the pH of the pond water to 9.0 to 10.0, could not proceed beyond pH 7.9 because of the high concentration of ammonia, and the algal population was washed out and reduced to a concentration that could maintain a doubling time of 48 h without photosynthesis bringing the pH to inhibitory levels. Under these conditions, the pH of the bond becomes a factor that limits the operational efficiency of the oxidation pond. PMID:7192

  14. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  15. [From algae to "functional foods"].

    PubMed

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development. PMID:26378764

  16. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  17. Photosynthesis and photorespiration in algae.

    PubMed

    Lloyd, N D; Canvin, D T; Culver, D A

    1977-05-01

    The CO(2) exchange of several species of fresh water and marine algae was measured in the laboratory to determine whether photorespiration occurs in these organisms. The algae were positioned as thin layers on filter paper and the CO(2) exchange determined in an open gas exchange system. In either 21 or 1% O(2) there was little difference between (14)CO(2) and (12)CO(2) uptake. Apparent photosynthesis was the same in 2, 21, or 50% O(2). The compensation points of all algae were less than 10 mul 1(-1). CO(2) or (14)CO(2) evolution into CO(2)-free air in the light was always less than the corresponding evolution in darkness. These observations are inconsistent with the proposal that photorespiration exists in these algae. PMID:16659972

  18. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  19. Effects of Room-Temperature Ionic Liquids on Freshwater Primary Producers

    NASA Astrophysics Data System (ADS)

    Kulacki, K. J.; Bernot, R. J.; Lamberti, G. A.; Lodge, D. M.

    2005-05-01

    Room-temperature ionic liquids (ILs) are non-volatile chemicals, which are presumed to be environmentally friendly because they pose no significant threat to air quality. However, the potential toxic effects of ILs on aquatic environments have not been studied, despite the likelihood of unintentional releases into streams and lakes during industrial applications. We studied the effects of ILs on the growth rates of the freshwater green algae Scenedesmus quadricauda and Chlamydomonas reinhardtii in 96-h bioassays. ILs with increasing alkyl chain lengths (from 1-butyl- to 1-hexyl- to 1-octyl-3-methylimidazolium bromide) were increasingly toxic to S. quadricauda (EC-50 values of 0.28 mg*L-1, 0.04 mg*L-1, and <0.005 mg*L-1 respectively). S. quadricauda growth rates decreased with increasing IL concentration across all treatments. Compared to controls, C. reinhardtii growth rates were higher at 200-800 mg*L-1 1-butyl-3-methylimidazolium bromide (bmimBr) treatments, but declined at 1600 mg*L-1 bmimBr. These results illustrate that different algal taxa can respond quite differently to potential chemical pollutants. Furthermore, by studying the effects of ILs on primary producers in concert with organisms from other trophic levels, we can develop hypotheses about how these effects may be felt throughout aquatic ecosystems.

  20. Cambrian calcareous algae and bacteria

    NASA Astrophysics Data System (ADS)

    Luchinina, Veronica A.; Terleev, A. A.

    2003-01-01

    Individual calcareous algae were known in Riphean. Their mass distribution is connected to the beginning of Cambrian. Despite of a long history of study, the nature of this group long time remained not clear. The new unique finds of algae from East Sayan region have shown, that primary carbonate thallus disappeared in the process of fossilization, and after it the calcareous cover formed by association of bacteria and cyanobacteria only.

  1. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production.

    PubMed

    Kandimalla, Pooja; Desi, Sreekanth; Vurimindi, Himabindu

    2016-05-01

    In the present study, an attempt has been made to grow microalgae Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii in mixotropic cultivation mode using two different substrates, i.e. sewage and glucose as organic carbon sources along with flue gas inputs as inorganic carbon source. The experiments were carried out in 500 ml flasks with sewage and glucose-enriched media along with flue gas inputs. The composition of the flue gas was 7 % CO2, 210 ppm of NO x and 120 ppm of SO x . The results showed that S. quadricauda grown in glucose-enriched medium yielded higher biomass, lipid and fatty acid methyl esters (FAME) (biodiesel) yields of 2.6, 0.63 and 0.3 g/L, respectively. Whereas with sewage, the biomass, lipid and FAME yields of S. quadricauda were 1.9, 0.46, and 0.21 g/L, respectively. The other two species showed closer results as well. The glucose utilization was measured in terms of Chemical Oxygen Demand (COD) reduction, which was up to 93.75 % by S. quadricauda in the glucose-flue gas medium. In the sewage-flue gas medium, the COD removal was achieved up to 92 % by S. quadricauda. The other nutrients and pollutants from the sewage were removed up to 75 % on an average by the same. Concerning the flue gas treatment studies, S. quadricauda could remove CO2 up to 85 % from the flue gas when grown in glucose medium and 81 % when grown in sewage. The SO x and NO x concentrations were reduced up to 50 and 62 %, respectively, by S. quadricauda in glucose-flue gas medium. Whereas, in the sewage-flue gas medium, the SO x and NO x concentrations were reduced up to 45 and 50 %, respectively, by the same. The other two species were equally efficient however with little less significant yields and removal percentages. This study laid emphasis on comparing the feasibility in utilization of readily available carbon sources like glucose and inexpensive leftover carbon sources like sewage by microalgae to generate energy coupled with economical

  2. Measurement of photorespiration in algae.

    PubMed

    Birmingham, B C; Coleman, J R; Colman, B

    1982-01-01

    The rates of true and apparent photosynthesis of two unicellular green algae, one diatom and four blue-green algae were measured in buffer at pH 8.0 at subsaturating concentrations of dissolved inorganic carbon (13-27 micromolar). Initial rates of depletion from the medium of inorganic carbon and (14)C activity caused by the algae in a closed system were measured by gas chromatography and by liquid scintillation counting, respectively. The rate of photorespiration was calculated as the difference between the rates of apparent and true photosynthesis. The three eucaryotic algae and two blue-green algae had photorespiratory rates of 10 to 28% that of true photosynthesis at air levels of O(2). Reduction of the O(2) level to 2% caused a 52 to 91% reduction in photorespiratory rate. Two other blue-green algae displayed low photorespiratory rates, 2.4 to 6.2% that of true photosynthesis at air levels of O(2), and reduction of the O(2) concentration had no effect on these rates. PMID:16662171

  3. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp.

    PubMed

    Prandini, Jean Michel; da Silva, Márcio Luís Busi; Mezzari, Melissa Paola; Pirolli, Mateus; Michelon, William; Soares, Hugo Moreira

    2016-02-01

    This work investigated the effects of swine wastewater-derived biogas on microalgae biomass production and nutrient removal rates from piggery wastewater concomitantly with biogas filtration. Photobioreactors with dominant Scenedesmus spp. were prepared using non-sterile digestate and exposed to different photoperiods. In the presence of biogas and autotrophic conditions microalgae yield of 1.1±0.2 g L(-1) (growth rate of 141.8±3.5 mg L(-1) d(-1)) was obtained leading to faster N-NH3 and P-PO4(3-) assimilation rate of 21.2±1.2 and 3.5±2.5 mg L(-1) d(-1), respectively. H2S up to 3000 ppmv was not inhibitory and completely removed. Maximum CO2 assimilation of 219±4.8 mg L(-1) d(-1) was achieved. Biological consumption of CH4 up to 18% v/v was verified. O2 up to 22% v/v was controlled by adding acetate to exacerbate oxygen demand by microorganisms. Microalgae-based wastewater treatment coupled to biogas purification accelerates nutrient removal concomitantly producing valuable biomass and biomethane. PMID:26700760

  4. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation.

    PubMed

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Sanghyun; Lee, Hongkyun; Park, Young-Tae; Bae, Sunyoung; Ham, Jungyeob; Choi, Jaeyoung

    2015-03-01

    Effect of food wastewater (FW) on the biomass, lipid and carbohydrate production by a green microalga Scenedesmus obliquus cultivated in Bold's Basal Medium (BBM) was investigated. Different dilution ratios (0.5-10%) of BBM either with FW or salt solution (NaCl) or sea water (SW) were evaluated. S. obliquus showed the highest growth (0.41 g L(-1)), lipid productivity (13.3 mg L(-1) day L(-1)), carbohydrate productivity (14.7 mg L(-1) day L(-1)) and nutrient removal (38.9 mg TN L(-1) and 12.1 mg TP L(-1)) with 1% FW after 6 days of cultivation. The FW promoted algal autoflocculation due to formation of inorganic precipitates at an alkali pH. Fatty acid methyl ester analysis revealed that the palmitic and oleic acid contents were increased up to 8% with FW. Application of FW improved the growth, lipid/carbohydrate productivity and biomass recovery efficiency of S. obliquus, which can be exploited for cost effective production of microalgae biomass. PMID:25553643

  5. Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N.

    PubMed

    Chen, Wei-Hsin; Wu, Zih-Ying; Chang, Jo-Shu

    2014-03-01

    Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus (S. obliquus) CNW-N are studied using thermogravimetric analysis. The pyrolysis of S. obliquus CNW-N with increasing temperature is characterized by four-stage decomposition. Depending on the torrefaction temperature, light, mild, and severe torrefaction from the weight loss and the maximum decomposition rate of the microalga can be classified. Under the same average temperature and torrefaction duration, non-isothermal torrefaction gives more severe pretreatment than the isothermal one. Increasing the heating rate of non-isothermal torrefaction also intensifies the pretreatment severity. Therefore, microalgae can be torrefied via non-isothermal torrefaction in a shorter time under the same pretreatment extent. The atomic H/C ratio in the microalga decreases with increasing torrefaction severity, whereas the atomic O/C ratio rises. The analysis suggests that the activation energy of isothermal torrefaction is 57.52×10(3)Jmol(-1), while it is between 40.14×10(3) and 88.41×10(3)Jmol(-1) for non-isothermal torrefaction. PMID:24457308

  6. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus.

    PubMed

    Lutzu, Giovanni Antonio; Zhang, Wei; Liu, Tianzhong

    2016-01-01

    This work investigates the potential use of a brewery wastewater as a medium for the cultivation of the oleaginous species Scenedesmus dimorphus with the double aim of removing nutrients and to produce biomass as feedstock for biodiesel. For this purpose, effects of nitrogen (61.8-247 mg L(-1)), phosphorous (1.4-5.5 mg L(-1)), and iron (1.5-6 mg L(-1)) concentrations on growth, nutrients uptake, lipid accumulation, and fatty acids profile of this microalga were investigated. Results showed that brewery wastewater can be used as a culture medium even if nitrogen and phosphorous concentrations should have been modified to improve both biomass (6.82 g L(-1)) and lipid accumulation (44.26%). The analysis revealed a C16-C18 composition of 93.47% fatty acids methyl esters with a relative high portion of unsaturated ones (67.24%). High removal efficiency (>99%) for total nitrogen and total phosphorous and a reduction of up to 65% in chemical oxygen demand were achieved, respectively. The final microalgae biomass, considering its high lipid content as well as its compliance with the standards for the quality of biodiesel, and considering also the high removal efficiencies obtained for macronutrients and organic carbon, makes the brewery wastewater a viable option as a priceless medium for the cultivation of microalgae. PMID:26714635

  7. Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater.

    PubMed

    Han, Song-Fang; Jin, Wenbiao; Tu, Renjie; Abomohra, Abd El-Fatah; Wang, Zhi-Han

    2016-07-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L(-1) day(-1)). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture. PMID:26969589

  8. Photobiotreatment: influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus.

    PubMed

    Arbib, Z; Ruiz, J; Alvarez-Díaz, Pablo; Garrido-Pérez, C; Barragan, J; Perales, J A

    2013-01-01

    Nitrogen and phosphorus concentration in the effluent of a wastewater treatment plant can vary significantly, which could affect the growth kinetic and chemical composition of microalgae when cultivated in this medium. The aim of this work was to study the rate of growth, nutrient removal and carbon dioxide biofixation as well as biomass composition of Scenedesmus obliquus (S. obliquus) when it is cultivated in wastewater at different nitrogen and phosphorus ratio, from 1:1 to 35:1. A more homogeneous method for calculating productivities in batch reactors was proposed. The proper N:P ratio for achieving optimum batch biomass productivity ranged between 9 and 13 (263 and 322 mg L(-1) d(-1) respectively). This was also the ratio range for achieving a total N and P removal. Above and below this range (9-13) the maximum biomass concentration changed, instead of the specific growth rate.The maximum carbon dioxide biofixation rate was achieved at N:P ratio between 13 and 22 (553 and 557 mg CO2 L(-1) d(-1) respectively). Lipid and crude protein content, both depend on the aging culture, reaching the maximum lipid content (34%) at the lowest N:P (1:1) and the maximum crude protein content (34.2%) at the highest N:P (35:1). PMID:23819274

  9. Maximizing the production of Scenedesmus obliquus in photobioreactors under different irradiation regimes: experiments and modeling.

    PubMed

    Barbera, Elena; Sforza, Eleonora; Bertucco, Alberto

    2015-11-01

    Maximizing biomass productivity and photosynthetic efficiency are key factors to develop large-scale microalgae cultivation for biodiesel production. If the photobioreactor (PBR) is not operated under proper conditions, productivity and efficiency values drop considerably. In this work, the growth of Scenedesmus obliquus in continuous flat-panel PBR is considered. Experimental data and simulations were used with the aim of determining suitable working conditions to achieve maximum productivity. Microalgae concentration and productivity have been measured in a continuous 250 mL flat-panel PBR as a function of the space-time τ. Simulations were performed at both low and high irradiance values, with different light regimes (constant light and day-night profiles). Model parameters were optimized based on laboratory-scale experimental data, and the importance of the maintenance energy requirement as a function of light intensity was outlined. The effect of different extent of axial mixing on PBR performances was investigated. Results obtained show how to determine optimum working conditions and how they could be used in the design of a large-scale PBR to achieve maximum microalgal productivity. PMID:26288951

  10. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  11. The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate.

    PubMed

    Hou, Qingjie; Nie, Changliang; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yang, Zhigang

    2016-10-01

    Five strains algae (Golenkinia sp. SDEC-16, Chlorella vulgaris, Selenastrum capricornutum, Scenedesmus SDEC-8 and Scenedesmus SDEC-13) were screened as an effective way to promote recover electricity from MFC for kitchen waste anaerobically digested effluent (KWADE) treatment. The highest OCV, power density, biomass concentration and total lipid content were obtained with Golenkinia sp. SDEC-16 as the co-inoculum, which were 170mV, 6255mWm(-3), 325mgL(-1) and 38%, respectively. Characteristics of the organics in KWADE were analyzed, and the result showed that the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions during the operation. Maximum COD and TN removal efficiency were 43.59% and 37.39% when inoculated with Golenkinia sp. SDEC-16, which were roughly 3.22 and 3.04 times higher than that of S. capricornutum. This study demonstrated that Golenkinia sp. SDEC-16 was a promising species for bioelectricity generation, lipid production and KWADE treatment. PMID:27441827

  12. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production

    PubMed Central

    2013-01-01

    Background Biodiesel production from oleaginous microalgae shows great potential as a promising alternative to conventional fossil fuels. Currently, most research focus on algal biomass production with autotrophic cultivation, but this cultivation strategy induces low biomass concentration and it is difficult to be used in large-scale algal biomass production. By contrast, heterotrophic algae allows higher growth rate and can accumulate higher lipid. However, the fast-growing and lipid-rich microalgae that can be cultivated in heterotrophic system for the industrial application of biodiesel production are still few. Traditional solvent extraction and gravimetric determination to detect the microalgal total lipid content is time-consuming and laborious, which has become a major limiting factor for selecting large number of algae specimens. Thus, it is critical to develop a rapid and efficient procedure for the screening of lipid-rich microalgae. Results A novel green microalga Scenedesmus sp. strain R-16 with high total lipid content was selected using the Nile red staining from eighty-eight isolates. Various carbon sources (fructose, glucose and acetate) and nitrogen sources (nitrate, urea, peptone and yeast extract) can be utilized for microalgal growth and lipid production, and the optimal carbon and nitrogen sources were glucose (10 g L-1) and nitrate (0.6 g L-1), respectively. Compared to autotrophic situation, the strain R-16 can grow well heterotrophically without light and the accumulated total lipid content and biomass reached 43.4% and 3.46 g L-1, respectively. In addition, nitrogen deficiency led to an accumulation of lipid and the total lipid content was as high as 52.6%, and it was worth noting that strain R-16 exhibited strong tolerance to high glucose (up to 100 g L-1) and a wide range of pH (4.0-11.0). Conclusions The newly developed ultrasonic-assisted Nile red method proved to be an efficient isolation procedure and was successfully used in

  13. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    SciTech Connect

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F. E-mail: higgs@andrew.cmu.edu; LeDuc, P. R. E-mail: higgs@andrew.cmu.edu

    2014-10-20

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  14. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Warren, K. M.; Mpagazehe, J. N.; LeDuc, P. R.; Higgs, C. F.

    2014-10-01

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  15. Minimizing the energy requirement of dewatering scenedesmus sp. by microfiltration: performance, costs, and feasibility.

    PubMed

    Gerardo, Michael L; Oatley-Radcliffe, Darren L; Lovitt, Robert W

    2014-01-01

    The harvesting of the microalgae Scenedesmus species using a 200 L pilot-scale microfiltration system was investigated and critically assessed. The energy requirement was determined and correlated to the different operating parameters, such as transmembrane pressure (ΔP), membrane area, temperature, and initial biomass concentration. A filtration model was developed and showed a strong correlation with experimental data up to 20.0 g of dry cell weight (DCW)/L. The non-optimized filtration system had an energy requirement of 2.23 kWh/m(3) with an associated cost of $0.282/kg of microalgae. The investigation into the influence of the operating parameters and scale-up effects showed that the energy requirement could be substantially reduced to 0.90 kWh/m(3) and $0.058/kg of microalgae harvested. Maintenance costs associated with cleaning were estimated to be 0.23 kWh or $0.029/batch of microalgae processed. Dependent upon the operating conditions, harvesting may represent 6-45% of the energy embedded in the microalgae with a carbon footprint of 0.74-1.67 kg of CO2/kg of microalgae. Microfiltration was demonstrated to be a feasible microalgae harvesting technology allowing for more than 99% volume reduction. The energy requirement and associated carbon footprint of microalgae harvesting reported here do not forfeit the need for an industrial-scale study; however, the information provided presents a more realistic approximation than the literature reported to date. PMID:24341825

  16. The effect of discontinuous airlift mixing in outdoor flat panel photobioreactors on growth of Scenedesmus obliquus.

    PubMed

    Leupold, Marco; Hindersin, Stefan; Kerner, Martin; Hanelt, Dieter

    2013-11-01

    Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4-30 s; valve opening time 800 ms) into outdoor flat panel photobioreactors ([Formula: see text]). This caused a flow velocity between 2 and 20 cm s(-1) of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175-1.340 L(gas volume) L(photobioreactor volume)(-1) min(-1) pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase of cell dry weight (CDW) during 3-5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0-1.5 g L(-1), airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L(-1), growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation. PMID:23494400

  17. Kinetics of the oxyhydrogen reaction in the presence and absence of carbon dioxide in Scenedesmus obliquus

    SciTech Connect

    Erbes, D.L.; Gibbs, M.

    1981-01-01

    The oxyhydrogen reaction in the presence and absence of CO/sub 2/ was studied in H/sub 2/-adapted Scenedesmus obliquus by monitoring the initial rates of H/sub 2/, O/sub 2/, and /sup 14/CO/sub 2/ uptake and the effect of inhibitors on these rates with gas-sensing electrodes and isotopic techniques. In the presence of 0.02 atmosphere O/sub 2/, the pH/sub 2/ was varied from 0 to 1 atmosphere. Whereas the rate of O/sub 2/ uptake increased by only 30%, the rate of H/sub 2/ uptake increased severalfold over the range of pH/sub 2/ values. At 0.1 atmosphere H/sub 2/ and 0.02 atmosphere O/sub 2/, rates for H/sub 2/ and O/sub 2/ uptake were between 15 and 25 micromoles per milligram chlorophyll per hour. As the pH/sub 2/ was changed from 0 to 1 atmosphere, the quotient H/sub 2/:O/sub 2/ changed from 0 to roughly 2. This change may reflect the competition between H/sub 2/ and the endogenous respiratory electron donors. Respiration in the presence of glucose and acetate was also competitive with H/sub 2/ uptake. KCN inhibited equally respiration (O/sub 2/ uptake in the absence of H/sub 2/) and the oxyhydrogen reaction in the presence and absence of CO/sub 2/. The uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone accelerated the rate of respiration and the oxyhydrogen reaction to a similar extent. It was concluded that the oxyhydrogen reaction both in the presence and absence of CO/sub 2/ has properties in common with components of respiration and photosynthesis. Participation of these two processes in the oxyhydrogen reaction would require a closely linked shuttle between mitochondrion and chloroplast.

  18. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  19. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  20. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  1. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  2. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  3. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  4. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  5. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  7. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  8. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  9. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  10. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  11. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  12. Role of Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 as Bioindicators and Immobilizers of Chromium in a Contaminated Natural Environment

    PubMed Central

    Millach, Laia; Solé, Antoni; Esteve, Isabel

    2015-01-01

    The aim of this work was to study the potential of the two phototrophic microorganisms, both isolated from Ebro Delta microbial mats, to be used as bioindicators and immobilizers of chromium. The results obtained indicated that (i) the Minimum Metal Concentration (MMC) significantly affecting Chlorophyll a intensity in Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 was 0.25 µM and 0.75 µM, respectively, these values being lower than those established by current legislation, and (ii) Scenedesmus sp. DE2009 was able to immobilize chromium externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Additionally, this microorganism maintained high viability, including at 500 µM. Based on these results, we postulate that Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 are good chromium-indicators of cytotoxicity and, further, that Scenedesmus sp. DE2009 plays an important role in immobilizing this metal in a contaminated natural environment. PMID:26167488

  13. The biological soil crusts of the San Nicolas Island: Enigmatic algae from a geographically isolated ecosystem

    USGS Publications Warehouse

    Flechtner, V.R.; Johansen, J.R.; Belnap, J.

    2008-01-01

    Composite soil samples from 7 sites on San Nicolas Island were evaluated quantitatively and qualitatively for the presence of cyanobacteria and eukaryotic microalgae. Combined data demonstrated a rich algal flora with 19 cyanobacterial and 19 eukaryotic microalgal genera being identified, for a total of 56 species. Nine new species were identified and described among the cyanobacteria and the eukaryotic microalgae that were isolated: Leibleinia edaphica, Aphanothece maritima, Chroococcidiopsis edaphica, Cyanosarcina atroveneta, Hassallia californica, Hassallia pseudoramosissima, Microchaete terrestre, Palmellopsis californiens, and Pseudotetracystis compactis. Distinct distributional patterns of algal taxa existed among sites on the island and among soil algal floras of western North America. Some algal taxa appeared to be widely distributed across many desert regions, including Microcoleus vaginatus, Nostoc punctiforme, Nostoc paludosum, and Tolypothrix distorta, Chlorella vulgaris, Diplosphaera cf. chodatii, Myrmecia astigmatica, Myrmecia biatorellae, Hantzschia amphioxys, and Luticola mutica. Some taxa share a distinctly southern distribution with soil algae from southern Arizona, southern California, and Baja California (e.g., Scenedesmus deserticola and Eustigmatos magnus). The data presented herein support the view that the cyanobacterial and microalgal floras of soil crusts possess significant biodiversity, much of it previously undescribed.

  14. Conversion of biogas to bioproducts by algae and methane oxidizing bacteria.

    PubMed

    van der Ha, David; Nachtergaele, Leen; Kerckhof, Frederiek-Maarten; Rameiyanti, Devi; Bossier, Peter; Verstraete, Willy; Boon, Nico

    2012-12-18

    Biogas produced by anaerobic digestion is typically converted into electricity and low value heat. In this study, biogas is microbially transformed into valuable bioproducts. As proof of principle, the production of feed additives, i.e. lipids and polyhydroxybutyrate, out of biogas was evaluated. In a first stage, the CO₂ in a synthetic biogas was photosynthetically fixed by an algae Scenedesmus sp. culture at an average rate of 192 ± 9 mg CO₂ L⁻¹ liquid d⁻¹, resulting in concomitant O₂ production. After N-depletion, more than 30% of the 220 ± 7 mg lipids g⁻¹ total organic carbon were unsaturated. In a second stage, the theoretical resulting gas mixture of 60% CH₄ and 40% O₂ was treated by a methane oxidizing Methylocystis parvus culture, with oxidation rates up to 452 ± 7 mg⁻¹ CH₄-C L⁻¹ liquid d⁻¹. By repeated N-limitation, concentrations of 295 ± 50 mg intracellular polyhydroxybutyrate g⁻¹ cell dry weight were achieved. Finally, a one-stage approach with controlled coculturing of both microbial groups resulted in harvestable bioflocs. This is the first time that a total microbial conversion of both greenhouse gases into biomass was achieved without external O₂ provision. Based on these results, a biotechnological approach is discussed whereby all kinds of biogas can be transformed into valuable bioproducts. PMID:23186036

  15. The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity.

    PubMed

    Heide, Heinrich; Kalisz, Henryk M; Follmann, Hartmut

    2004-02-01

    A thioredoxin-like chloroplast protein of the fructosebisphosphatase-stimulating f-type, but with an unusually high molecular mass of 28 kDa has previously been identified and purified to homogeneity in a fractionation scheme for resolution of the acid- and heat-stable, regular-size (12kDa) thioredoxins of the unicellular green algae, Scenedesmus obliquus. An apparently analogous protein of 26 kDa was described in a cyanobacterium, Anabaena sp., but no such large thioredoxin species f exists in the thioredoxin profiles of higher plants. The structure of the 28 kDa protein, which had been envisaged to represent a precursor, or fusion product of the two more specialized, common chloroplast thioredoxins f and m has now been determined by amino acid sequencing. Although it exhibits virtually all the properties and enzyme-modulating activities of a thioredoxin proper this algal protein, surprisingly, does not belong to the thioredoxin family of small redox proteins but is identical with OEE (oxygen evolving enhancer) protein 1, an auxiliary component of the photosystem II manganese cluster. Extracts of Chlorella vulgaris and Chlamydomonas reinhardtii also contain heat-stable protein fractions of 23-26 kDa capable of specifically stimulating chloroplast fructosebisphosphatase in vitro. In contrast, OEE protein 1 from spinach is not able to modulate FbPase or NADP malate dehydrogenase from spinach chloroplasts. A dual function of the OEE protein in algal photosynthesis is envisaged. PMID:15022827

  16. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  17. Measurements of photorespiration in some microscopic algae.

    PubMed

    Cheng, K H; Colman, B

    1974-09-01

    The rate of photorespiration in three green algae and four blue-green algae was determined by the measurement of the rate of loss of photosynthetically fixed (14)CO2 in light in CO2-free air at 25°. In all algae studied, CO2 evolution in light was considerably less than that in the dark, except for Chlamydomonas reinhardii which released slightly more CO2 in the light. Raising the temperature to 35° had little effect on the ratio of light to dark (14)CO2 release. Blue-green algae showed the lowest photorespiration rate of the algae studied. PMID:24458883

  18. Evaluation of toxicity data to green algae and relationship with hydrophobicity.

    PubMed

    Fu, Ling; Li, Jin J; Wang, Yu; Wang, Xiao H; Wen, Yang; Qun, Wei C; Su, Li M; Zhao, Yuan H

    2015-02-01

    The quality of the biological activity data is of great importance for the development of algal quantitative structure-activity relationship (QSAR) models. However, a number of algal QSAR models in the literature were developed based on toxicity data without considering the response endpoints, exposure periods and species sensitivity. In this paper, 2323 algal toxicity data (log 1/EC50) in different toxicity response endpoints for 1081 compounds to 26 algal species within different exposure periods (14 and 15 min; 24, 48, 72, 96, 168 and 192 h) were used to evaluate the quality of the toxicity data to green algae. Analysis of 72 h toxicity to algae showed that the closed test had the same sensitivity as the open test for most of the test compounds, but a significant difference was observed for a few compounds. The overall average difference for all compounds ranges from 0.15 to 0.43 log units between toxicity endpoints (yield–growth rate). The relationships between exposure periods of 24, 48, 72 and 96 h indicated that 48 h exposure period is the most sensitive for algal growth inhibition test, and its sensitivity is 0.25 log units greater than 72 and 96 h exposure periods, respectively. Interspecies relationships showed that some algal species have very close sensitivity (e.g. Pseudokirchneriella subcapitata and Chlorella pyrenoidosa or Chlorella vulgaris and Scenedesmus obliquus, respectively), whereas some species have significantly different sensitivity (e.g. P. subcapitata and S. obliquus). Relationships between toxicity and hydrophobicity demonstrated that no difference was observed for non-polar narcotics within different exposure periods (24, 48, 72, and 96 h) or response variables (yield and growth rate). For polar narcotics, in contrast, algal toxicity is dependent on algal species and is related to the response variables and exposure period. We cannot expect significant QSAR models between algal toxicity and descriptors without considering species

  19. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae.

    PubMed

    Chen, Hui; Zou, Yuqin; Zhang, Lijuan; Wen, Yuezhong; Liu, Weiping

    2014-09-01

    With the wide application of chiral ionic liquids (CILs) as green solvents, their threats to the aquatic environment cannot be ignored. Thus, risk assessment and the prospective design of inherently safe CILs have become more urgent. However, whether enantioselectivity is a feature of the aquatic toxicity of CILs is poorly understood. Herein, we describe the first investigation into the ecotoxicities of CILs toward green algae Scenedesmus obliquus and Euglena gracilis. A series of methylimidazolium lactic ionic liquids, which cation parts with different alkyl chains and anion part is enantiomers of lactate, are used as representative CILs. The results of S. obliquus showed that the EC50 value of L-(+)-1-ethyl-3-methylimidazolium lactate (L-(+)-EMIM L) was more than 5000 μM, while the EC50 value of D-(-)-1-ethyl-3-methylimidazolium lactate (D-(-)-EMIM L) was 2255.21 μM. Such a distinct difference indicates the enantioselective toxicity of CILs to algae. This enantioselectivity initially persisted with increasing carbon chain length, but no longer exhibited when with greater carbon chain lengths, due to changes in the toxicity weightings of the cation parts. Further research showed that the enantioselective effects of CILs resulted from the differences in the production of reactive oxygen species, the damage to cell membrane integrity and cell wall after exposure to CILs. Results from this study showed that monitoring for the racemate CILs will give an inadequate or misleading environmental risk assessment. Thus, we should improve our ability to predict their effects in natural environments. In the meantime, non-selective use of CILs will do harm to aquatic organisms. Therefore, to minimize their potential for environmental impact, the enantioselective toxicities of CILs with short alkyl chains should be taken into consideration. PMID:24880783

  20. [Effects of mercury concentration on life table demography of Moina macrocopa under different Scenedesmus obliquus densities].

    PubMed

    Huang, Ya; Wang, Ling; Mu, Wei-ping; Ren, Tong-tong; Pan, Ling; Xi, Yi-long

    2015-12-01

    In order to compare the chronic toxicity of pollutants to organisms in an aquatic environment under different food densities, the cladoceran Moina macrocopa was used as test animal to investigate the effects of Hg²⁺ concentrations (0, 0.4, 1.1, 1.8, 2.5, 3.2 and 3.9 µg · L⁻¹) on its life table demography under low (0.5 x 10⁶ cells · mL⁻¹), medium (1.0 x 10⁶ cells · mL⁻¹) and high (2.0 x 10⁶ cells · mL⁻¹) densities of Scenedesmus obliquus. The results showed that at low and high food levels, certain concentrations of Hg²⁺ had inhibitory effects on survival, reproduction and population growth of M. macrocopa. However, at the medium food level, the inhibitory effects disappeared. Compared with the control, at the low food level, Hg²⁺ at 0.4-2.5 and 3.9 µg · L⁻¹ significantly decreased the life expectancy at hatching, Hg²⁺ at 0.4, 1.1, 2.5 and 3.9 µg · L⁻¹ decreased the generation time, Hg²⁺ at 1.1, 2.5 and 3.9 µg · L⁻¹ decreased the net reproduction rate, and Hg²⁺ at 3.9 µg · L⁻¹ decreased the gross reproduction rate of M. macrocopa. At the high food level, Hg²⁺ at 1.1 µg · L⁻¹ decreased the intrinsic rate of population increase, and Hg²⁺ at 3.9 µg · L⁻¹ decreased the life expectancy at hatching and the net reproduction rate of M. macrocopa. However, at the medium food level, Hg²⁺ at 3.2 µg · L⁻¹ increased the life expectancy at hatching of M. macrocopa. When S. obliquus density was 0.5 x 10⁶ cells · mL⁻¹, there were significant dose-effect relationships between Hg²⁺ concentration and the life expectancy at hatching, the generation time as well as the cross reproduction rate of M. macrocopa. However, when S. obliquus density was 1.0 x 10⁶ or 2.0 x 10⁶ cells · mL⁻¹, there were no any significant dose-effect relationships between Hg²⁺ concentration and each of the life table demographic parameters of M. macrocopa. PMID:27112029

  1. “Rational” Management of Dichlorophenols Biodegradation by the Microalga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2013-01-01

    The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp – no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp – one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp – two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as “smart” bioenergetic “machines”, that have the ability to continuously “calculate” the energy reserves and

  2. Different types of interactions of links in artificial and natural ecosystems under anthropogenic pressure

    NASA Astrophysics Data System (ADS)

    Somova, Lydia; Pisman, Tamara; Mikheeva, Galina; Pechurkin, Nickolay

    The life of organisms in an ecosystem depends not only on abiotic factors, but also on the interaction of organisms in which they come with each other. The study of mechanisms of the bioregulation based on ecological - biochemical interactions of ecosystem links is necessary to know the ecosystem development, its stability, survival of ecosystem organisms. It is of high importance as for the creation of artificial ecosystems, and also for the study of natural ecosystems under anthropogenic pressure on them. To create well-functioning ecosystems is necessary to study and consider the basic types of relationships between organisms. The basic types of interactions between organisms have been studied with simple terrestrial and water ecosystems. 1. The interaction of microbiocenoses and plants were studied in experiments with agrocenoses. Microbiocenosis proposed for increase of productivity of plants and for obtaining ecologically pure production of plants has been created taking into account mutual relationships between species of microorganisms. 2. The experimental model of the atmosphere closed «autotroph - heterotroph» system in which heterotrophic link was the mixed population of yeasts (Candida utilis and Candida guilliermondii) was studied. The algae Chlorella vulgaris was used as an autotroph link. It was shown, that the competition result for heterotrophic link depended on strategy of populations of yeast in relation to a substrate and oxygen utilization. 3. As a result of experimental and theoretical modelling of a competition of algae Chlorella vulgaris and Scenedesmus quadricauda at continuous cultivation, the impossibility of their coexistence in the conditions of limitation on nitrogen was shown. 4. Pray-predator interactions between algae (Chlorella vulgaris, Scenedesmus quadricauda) and invertebrates (Paramecium caudatum, Brachionus plicatilis) were studied in experimental closed ecosystem. This work was partly supported by the Russian Foundation for

  3. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  4. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature. PMID:24845347

  5. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  6. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  7. Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3.

    PubMed

    Ho, Shih-Hsin; Xie, Youping; Chan, Ming-Chang; Liu, Chen-Chun; Chen, Chun-Yen; Lee, Duu-Jong; Huang, Chieh-Chen; Chang, Jo-Shu

    2015-05-01

    In this study, the effects of the type and concentration of nitrogen sources on the cell growth and lutein content of an isolated microalga Scenedesmus obliquus FSP-3 were investigated. With batch culture, the highest lutein content (4.61 mg/g) and lutein productivity (4.35 mg/L/day) were obtained when using 8.0 mM calcium nitrate as the nitrogen source. With this best nitrogen source condition, the microalgae cultivation was performed using two bioreactor strategies (namely, semi-continuous and two-stage operations) to further enhance the lutein content and productivity. Using semi-continuous operation with a 10% medium replacement ratio could obtain the highest biomass productivity (1304.8 mg/L/day) and lutein productivity (6.01 mg/L/day). This performance is better than most related studies. PMID:25453431

  8. Scenedesmus incrassatulus CLHE-Si01: a potential source of renewable lipid for high quality biodiesel production.

    PubMed

    Arias-Peñaranda, Martha T; Cristiani-Urbina, Eliseo; Montes-Horcasitas, Carmen; Esparza-García, Fernando; Torzillo, Giuseppe; Cañizares-Villanueva, Rosa Olivia

    2013-07-01

    The potential of microalgal oil from Scenedesmus incrassatulus as a feedstock for biodiesel production was studied. Cell concentration of S. incrassatulus and lipid content obtained during mixotrophic growth were 1.8 g/L and 19.5 ± 1.5% dry cell weight, respectively. The major components of biodiesel obtained from S. incrassatulus oil were methyl palmitate (26%) and methyl linoleate (49%), which provided a strong indication of high quality biodiesel. Fuel properties were determined by empirical equations and found to be within the limits of biodiesel standard ASTM D6751 and EN 14214. The quality properties of the biodiesel were high cetane number (62), low density (803 kg/m(3)), low viscosity (3.78 mm(2)/s), oxidation stability (9h) and cold filter plugging point (-4°C). Hence, S. incrassatulus has potential as a feedstock for the production of excellent quality biodiesel. PMID:23688667

  9. Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle.

    PubMed

    Voltolina, Domenico; Gómez-Villa, Herlinda; Correa, Gabriel

    2005-02-01

    Semicontinuous cultures of Scenedesmus obliquus in artificial wastewater were maintained with 30% and 40% daily dilutions and under a 14:10 h light-dark cycle, with temperatures of 25.5 and 17 degrees C during light and dark hours. Under this regime, the production of organic biomass was 39.3 and 25.2 mg l(-1)d(-1) for the 30% and 40% dilutions, and 24.9 and 16.7 mg l(-1)d(-1) of single-cell proteins. Most of the nitrogen removal took place during the light hours, with daily totals of 9.27 and 8.45 mg l(-1) for the 30% and 40% dilutions. With the former, 43.7% of the nitrogen removed was recycled by the microalgae into proteins and other organic nitrogen cell contents, but this efficiency decreased to 26.4% when the dilutions were raised to 40%. PMID:15474938

  10. Red algae and their use in papermaking.

    PubMed

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. PMID:20022488

  11. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  12. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    PubMed

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. PMID:26222672

  13. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus

    PubMed Central

    Patterson, David J.; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng

    2015-01-01

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. PMID:25819973

  14. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus.

    PubMed

    Gong, Yingchun; Patterson, David J; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2015-06-15

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. PMID:25819973

  15. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  16. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  17. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  18. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  19. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  20. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  1. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. PMID:24602833

  2. Streptophyte algae and the origin of embryophytes

    PubMed Central

    Becker, Burkhard; Marin, Birger

    2009-01-01

    Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Recent Progress Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. Conclusions The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater

  3. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors.

    PubMed

    Li, Yecong; Zhou, Wenguang; Hu, Bing; Min, Min; Chen, Paul; Ruan, Roger R

    2011-12-01

    The objectives of this study are to find the robust strains for the centrate cultivation system and to evaluate the effect of environmental factors including light intensity, light-dark cycle, and exogenous CO2 concentration on biomass accumulation, wastewater nutrient removal and biodiesel production. The results showed that all 14 algae strains from the genus of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were able to grow on centrate. The highest net biomass accumulation (2.01 g/L) was observed with Chlorella kessleri followed by Chlorella protothecoides (1.31 g/L), and both of them were proved to be capable of mixotrophic growth when cultivated on centrate. Environmental factors had significant effect on algal biomass accumulation, wastewater nutrients removal and biodiesel production. Higher light intensity and exogenous CO2 concentration with longer lighting period promote biomass accumulation, biodiesel production, as well as the removal of chemical oxygen demand and nitrogen, while, lower exogenous CO2 concentration promotes phosphorus removal. PMID:21982450

  4. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  5. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  6. Metagenome Survey of a Multispecies and Alga-Associated Biofilm Revealed Key Elements of Bacterial-Algal Interactions in Photobioreactors

    PubMed Central

    Krohn-Molt, Ines; Wemheuer, Bernd; Alawi, Malik; Poehlein, Anja; Güllert, Simon; Schmeisser, Christel; Pommerening-Röser, Andreas; Grundhoff, Adam; Daniel, Rolf; Hanelt, Dieter

    2013-01-01

    Photobioreactors (PBRs) are very attractive for sunlight-driven production of biofuels and capturing of anthropogenic CO2. One major problem associated with PBRs however, is that the bacteria usually associated with microalgae in nonaxenic cultures can lead to biofouling and thereby affect algal productivity. Here, we report on a phylogenetic, metagenome, and functional analysis of a mixed-species bacterial biofilm associated with the microalgae Chlorella vulgaris and Scenedesmus obliquus in a PBR. The biofilm diversity and population dynamics were examined through 16S rRNA phylogeny. Overall, the diversity was rather limited, with approximately 30 bacterial species associated with the algae. The majority of the observed microorganisms were affiliated with Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes. A combined approach of sequencing via GS FLX Titanium from Roche and HiSeq 2000 from Illumina resulted in the overall production of 350 Mbp of sequenced DNA, 165 Mbp of which was assembled in larger contigs with a maximum size of 0.2 Mbp. A KEGG pathway analysis suggested high metabolic diversity with respect to the use of polymers and aromatic and nonaromatic compounds. Genes associated with the biosynthesis of essential B vitamins were highly redundant and functional. Moreover, a relatively high number of predicted and functional lipase and esterase genes indicated that the alga-associated bacteria are possibly a major sink for lipids and fatty acids produced by the microalgae. This is the first metagenome study of microalga- and PBR-associated biofilm bacteria, and it gives new clues for improved biofuel production in PBRs. PMID:23913425

  7. Quantitative structure-activity analysis of the algae toxicity of nitroaromatic compounds.

    PubMed

    Schmitt, H; Altenburger, R; Jastorff, B; Schüürmann, G

    2000-06-01

    Proliferation toxicity toward the algae Scenedesmus vacuolatus in a 24 h one-generation reproduction assay was determined for nitrobenzene and 18 derivatives, including two phenols. The resultant EC(50) values covering more than 4 orders of magnitude were subjected to a quantitative structure-activity analysis (QSAR) using hydrophobicity in terms of the octanol/water partition coefficient in logarithmic form, log K(ow), and 16 quantum chemical descriptors of molecular reactivity that were calculated with the AM1 scheme. For 13 mononitro derivatives and the highly hydrophobic trifluralin, a narcotic-type mode of action can explain most of the toxicity variation. Correction of log K(ow) for ionization for the phenols and quantification of the molecular susceptibility for one-electron reduction as apparently rate-determining biotransformation step by the energy of the lowest unoccupied molecular orbital, E(LUMO), yields a highly significant QSAR for all 19 compounds (r(adj)(2) = 0.90), which can be further improved when adding the maximum net atomic charge at the nitro nitrogen, q(nitro)(-)(N), as the third descriptor (r(adj)(2) = 0.93). Comparison of the energy of the singly occupied molecular orbital, E(SOMO), of the radical anions as initial metabolites with the E(SOMO) of known redox cyclers suggests that dinitrobenzenes and TFM as well as multiply chlorinated nitrobenzenes may also exert oxidative stress. This is based on an E(SOMO) window of -0.30 to 0. 55 eV as a tentative criterion for molecular structures to have the potential for redox cycling, derived from a set of eight known redox cyclers. The discussion includes a detailed analysis of apparently relevant metabolic pathways and associated modes of toxic action of nitroaromatics. PMID:10858317

  8. Method and apparatus for processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  9. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  11. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  12. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  13. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  14. Cultivation of freshwater microalga Scenedesmus sp. using a low-cost inorganic fertilizer for enhanced biomass and lipid yield.

    PubMed

    Nayak, Manoranjan; Thirunavoukkarasu, Manikkannan; Mohanty, Rama C

    2016-01-01

    The potential of an inorganic fertilizer as an alternative nutrient source for the cultivation of Scenedesmus sp. IMMTCC-6 was investigated. With a preliminary study at a shake-flask scale, the microalgae cultivation was scaled up in a photobioreactor containing an inorganic fertilizer medium. Microalgae cultured in a shake flask containing 0.1 g L(-1) of urea and 1.0 g L(-1) of NPK (Nitrogen: Phosphorus: Potassium) fertilizers showed a promising result in biomass productivity. During the scale-up study in a photobioreactor the specific growth rate (μ d(-1)), biomass yield (g L(-1)), and total biomass productivity (mg L(-1) d(-1)), was found to be 0.265, 1.19 and 66.1, respectively. The lipid yield (%) as per dry cell weight (DCW) and lipid productivity (mg L(-1) d(-1)) was found to be a maximum of 28.55 and 18.87, respectively, in a stationary phase of the microalgae growth. The fatty acids methyl ester profile was proven to be desirable for biodiesel production. PMID:26923125

  15. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production.

    PubMed

    Shen, Qiao-Hui; Jiang, Jia-Wei; Chen, Li-Ping; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-08-01

    The combination of tertiary wastewater treatment and microalgal lipid production is considered to be a promising approach to water eutrophication as well as energy crisis. To intensify wastewater treatment and microalgal biofuel production, the effect of organic and inorganic carbon on algal growth and nutrient removal of Scenedesmus obliquus were examined by varying TOC (total organic carbon) concentrations of 20-120mgL(-1) in wastewater and feeding CO2 concentrations in the range of 0.03-15%, respectively. The results showed that the maximal biomass and average lipid productivity were 577.6 and 16.7mgL(-1)d(-1) with 5% CO2 aeration. The total nitrogen, total phosphorus and TOC removal efficiencies were 97.8%, 95.6% and 59.1% respectively within 6days when cultured with real secondary municipal wastewater. This work further showed that S. obliquus could be utilized for simultaneous organic pollutants reduction, N, P removal and lipid accumulation. PMID:25958150

  16. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.

    PubMed

    Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A

    2014-05-20

    This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. PMID:24631723

  17. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

    PubMed

    Gruhn, Marvin; Frigon, Jean-Claude; Guiot, Serge R

    2016-01-01

    This study compared the acidogenic fermentation of Scenedesmus sp.-AMDD at laboratory-scale, under mesophilic (35°C) and thermophilic conditions (55°C). Preliminary batch tests were performed to evaluate best conditions for volatile fatty acid (VFA) production from microalgal biomass, with respect to the inoculum, pH and nutrients. The use of bovine manure as inoculum, the operating pH of 4.5 and the addition of a nutrient mix, resulted in a high VFA production of up to 222mgg(-1) total volatile solid (TVS), with a butyrate share of 27%. Both digesters displayed similar hydrolytic activity with 0.38±0.02 and 0.42±0.03 g soluble chemical oxygen demand (COD)g(-1) TVS for the digesters operated at 35 and 55°C, respectively. Mesophilic conditions were more favorable for VFA production, which reached 171±5, compared to 88±12 mg soluble CODg(-1) TVS added under thermophilic conditions (94% more). It was shown that in both digesters, butyrate was the predominant VFA. PMID:26551650

  18. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    PubMed

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. PMID:26849021

  19. Improvement of stability and carotenoids fraction of virgin olive oils by addition of microalgae Scenedesmus almeriensis extracts.

    PubMed

    Limón, Piedad; Malheiro, Ricardo; Casal, Susana; Acién-Fernández, F Gabriel; Fernández-Sevilla, José M; Rodrigues, Nuno; Cruz, Rebeca; Bermejo, Ruperto; Pereira, José Alberto

    2015-05-15

    Humans are not capable of synthesizing carotenoids de novo and thus, their presence in human tissues is entirely of dietary origin. Consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables. Microalgae are a good source of carotenoids that can be exploited. In the present work, carotenoids rich extracts from Scenedesmus almeriensis were added to extra-virgin olive oils at different concentrations (0.1 and 0.21 mg/mL) in order to enhance the consumption of these bioactives. Extracts brought changes in olive oils color, turning them orange-reddish. Quality of olive oils was improved, since peroxidation was inhibited. Olive oils fatty acids and tocopherols were not affected. β-carotene and lutein contents increase considerably, as well as oxidative stability, improving olive oils shelf-life and nutritional value. Inclusion of S. almeriensis extracts is a good strategy to improve and enhance the consumption of carotenoids, since olive oil consumption is increasing. PMID:25577071

  20. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  1. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately. PMID:27206398

  2. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  3. The Alga Ochromonas danica Produces Bromosulfolipids.

    PubMed

    White, Alexander R; Duggan, Brendan M; Tsai, Shiou-Chuan; Vanderwal, Christopher D

    2016-03-01

    Many halogenases interchangeably incorporate chlorine and bromine into organic molecules. On the basis of an unsubstantiated report that the alga Ochromonas danica, a prodigious producer of chlorosulfolipids, was able to produce bromosulfolipids, we have investigated the promiscuity of its halogenases toward bromine incorporation. We have found that bromosulfolipids are produced with the exact positional and stereochemical selectivity as in the chlorosulfolipid danicalipin A when this alga is grown under modified conditions containing excess bromide ion. PMID:26889956

  4. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  5. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  6. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production. PMID:25859392

  7. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  8. Inhibition of mast cells by algae.

    PubMed

    Price, Joseph A; Sanny, Charles; Shevlin, Dennis

    2002-01-01

    There is a history of use of algae as foods and as food additives, or nutraceuticals. Although algae are a safe component of human foods and animal feeds, the effects of the algae other than as a source of protein are not clear. We examined the prevalence of an antiinflammatory activity in selected algae using, as an assay system, the inhibition of histamine release from mast cells. Methanolic extracts of eleven algae were examined for activity to inhibit the release of histamine from mast cells in vitro. This activity was found widely among the samples tested. The activities of these extracts were not uniformly stable in acid methanol. Selected extracts studied further did not separate with the use of size-exclusion filtration filters. LH-20 chromatography suggested at least two main elution areas of activity of the Chlorella extract. In summary, we saw wide phylogenetic dispersion of mast cell inhibition activity, suggesting that this antiinflammatory property is common in algae. This effect was apparently due to multiple activities within the algal extracts. PMID:12639395

  9. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    DOE R&D Accomplishments Database

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  10. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  11. Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light.

    PubMed

    Warshawsky, D; Cody, T; Radike, M; Reilman, R; Schumann, B; LaDow, K; Schneider, J

    1995-07-14

    This laboratory has shown that the metabolism of benzo[a]pyrene (BaP), a carcinogenic polycyclic aromatic hydrocarbon (PAH), by a freshwater green alga, Selenastrum capricornutum, under gold light proceeds through a dioxygenase pathway with subsequent conjugation and excretion. This study was undertaken to determine: (1) the effects of different light sources on the enzymatic or photochemical processes involved in the biotransformation of BaP over a dose range of 5-1200 mg/l; (2) the phototoxicity of carcinogenic PAHs and mutagenic quinones to a green alga; (3) the ability of other algal systems to metabolize BaP. Cultures were exposed to different doses of BaP for 2 days at 23 degrees C under gold, white or UV-A fluorescent light on a diurnal cycle of 16 h light, 8 h dark. Under gold light, metabolites of BaP produced by Selenastrum capricornutum were the dihydrodiols of which the 11,12-dihydrodiol was the major metabolite. Under white light, at low doses, the major metabolite was the 9,10-dihydrodiol. With increasing dose, the ratio of dihydrodiols to quinones decreased to less than two. With increasing light energy output, from gold to white to UV-A in the PAH absorbing region, BaP quinone production increased. Of other carcinogenic PAHs studied, only 7H-dibenz[c,g]carbazole was as phototoxic as BaP while 7,12-dimethylbenz[a]anthracene, dibenz[a,j]acridine and non-carcinogenic PAHs, anthracene and pyrene, were not phototoxic. The 3,6-quinone of BaP was found to be highly phototoxic while quinones that included menadione, danthron, phenanthrene-quinone and hydroquinone were not. The data suggest that the phototoxicity of BaP is due to photochemical production of quinones; the 3,6-quinone of BaP is phototoxic and is probably the result of the production of short lived cyclic reactive intermediates by the interaction of light with the quinone. Lastly, only the green algae, Selenastrum capricornutum, Scenedesmus acutus and Ankistrodesmus braunii almost completely

  12. Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water using the microalga Scenedesmus obliquus

    NASA Astrophysics Data System (ADS)

    Yao, Zongli; Ying, Chengqi; Lu, Jianxue; Lai, Qifang; Zhou, Kai; Wang, Hui; Chen, Ling

    2013-11-01

    The capability of Scenedesmus obliquus to remove cations (K+, Na+, Ca2+, Mg2+) from saline-alkaline water was investigated at different salinities (0, 5, 10, 15, 20, 25) and carbonate alkalinities (0, 5, 10, 15, 20, 25, 30, 35 mmol/L). K+, Na+, Ca2+, and Mg2+ in saline-alkaline water were efficiently removed by S. obliquus. The maximum removal of the cations (29.37 mg for K+, 185.85 mg for Na+, 23.07 mg for Ca2+, 66.14 mg for Mg2+) occurred at salinity 25. The maximum removal of K+ (2.28 mg), Na+ (6.62 mg), Ca2+ (1.01 mg), and Mg2+ (0.62 mg) occurred at carbonate alkalinities of 25 mmol/L for K+, 35 mmol/L for Na+, 20 mmol/L for Ca2+, and 25 mmol/L for Mg2+, respectively. Under a salinity stress, the concentration of Na+ in S. obliquus increased significantly, while that of K+ decreased significantly. The concentrations of Ca2+ and Mg2+ decreased as well. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ were significantly lower in all salinity treatments than those of the control. Under alkaline stress, the concentrations of Na+ and K+ in S. obliquus decreased significantly and the ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ were significantly higher in all treatments than in the control. Moreover, the concentrations of Ca2+ and Mg2+ in S. obliquus at alkalinities of 5-10 mmol/L were significantly higher than those of the other treatments. The removal of Na+ by S. obliquus mainly occurs through biosorption, and Mg2+ and Ca2+ were removed through both biosorption and bioaccumulation.

  13. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  14. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae.

    PubMed

    Perron, Marie-Claude; Qiu, Baosheng; Boucher, Nathalie; Bellemare, François; Juneau, Philippe

    2012-04-01

    The phenomenon of cyanobacteria bloom occurs widely in lakes, reservoirs, ponds and slow flowing rivers. Those blooms can have important repercussions, at once on recreational and commercial activities but also on the health of animals and human beings. Indeed, many species are known to produce toxins which are released in water mainly at cellular death. The cyanotoxin most frequently encountered is the microcystin (MC), a hepatotoxin which counts more than 70 variants. The use of fast tests for the detection of this toxin is thus a necessity for the protection of the ecosystems and the human health. A promising method for their detection is a bioassay based on the chlorophyll a fluorescence of algae. Many studies have shown that algae are sensible to diverse pollutants, but were almost never used for cyanotoxins. Therefore, our goals were to evaluate the effect of microcystin on the fluorescence of different species of algae and how it can affect the flow of energy through photosystem II. To reach these objectives, we exposed four green algae (Scenedesmus obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 and Chlorella vulgaris CPCC111) to microcystin standards (variants MC-LF, LR, RR, YR) and to microcystin extracted from Microcystis aeruginosa (CPCC299), which is known to produce mainly MC-LR. Chlorophyll a fluorescence was measured by PEA (Plant Efficiency Analyzer) and LuminoTox. The results of our experiment showed that microcystins affect the photosynthetic efficiency and the flow of energy through photosystem II from 0.01 μg/mL, within only 15 min. From exposure to standard of microcystin, we showed that MC-LF was the most potent variant, followed by MC-YR, LR and RR. Moreover, green algae used in this study demonstrated different sensitivity to MCs, S. obliquus being the more sensitive. We finally demonstrated that LuminoTox was more sensitive to MCs than parameters measured with PEA, although the latter brings

  15. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  16. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature. PMID:16414751

  17. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications. PMID:27206511

  18. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. PMID:20547408

  19. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE).

    PubMed

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-09-01

    This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (-1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production. PMID:27093970

  20. Evaluation of novel thermo-resistant Micractinium and Scenedesmus sp. for efficient biomass and lipid production under different temperature and nutrient regimes.

    PubMed

    Sonmez, Cagla; Elcin, Evrim; Akın, Dilan; Oktem, Huseyin Avni; Yucel, Meral

    2016-07-01

    Despite the vast interest in microalgae as feedstock for biodiesel production, relatively few studies examined their response to diurnal temperature fluctuation. Here, we describe biomass and lipid productivities and fatty acid profiles of thermo-resistant Micractinium sp. and Scenedesmus sp. grown in batch cultures in a laboratory set-up that mimics a typically warm summer day in Central Anatolia with a 16-h light temperature of 30°C and 8-h dark temperature of 16°C (30°C (day)/16°C (night)). Both strains can survive a temperature range of 10-50°C. We found the lipid productivities of Micractinium sp. and Scenedesmus sp. as 30/21mgL(-1)d(-1) and 6/7mgL(-1)d(-1), respectively during the 30°C (day)/16°C (night) cycle. Saturated fatty acid content increased with increasing temperature. Additionally, we cultured Micractinium sp. under Nitrogen (N) and Phosphorus (P) limiting conditions. Highest lipid productivity of 85.4±2mgL(-1)d(-1) was obtained under P-depletion during exponential growth phase. Oleic acid amount also increased eight fold during P-deplete. PMID:27035473

  1. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  2. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  3. Genome of the red alga Porphyridium purpureum.

    PubMed

    Bhattacharya, Debashish; Price, Dana C; Chan, Cheong Xin; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P M; Arias, Maria Cecilia; Henrissat, Bernard; Coutinho, Pedro M; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life. PMID:23770768

  4. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  5. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  6. Harvesting of algae by froth flotation.

    PubMed

    LEVIN, G V; CLENDENNING, J R; GIBOR, A; BOGAR, F D

    1962-03-01

    A highly efficient froth flotation procedure has been developed for harvesting algae from dilute suspensions. The method does not depend upon the addition of flotants. Harvesting is carried out in a long column containing the feed solution which is aerated from below. A stable column of foam is produced and harvested from a side arm near the top of the column. The cell concentration of the harvest is a function of pH, aeration rate, aerator porosity, feed concentration, and height of foam in the harvesting column. The economic aspects of this process seem favorable for mass harvesting of algae for food or other purposes. PMID:14464557

  7. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  8. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution. PMID:22894111

  9. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  10. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf. PMID:4060672

  11. ALGAE BLOOMS AND PHOSPHORUS LOADING IN LAKE LOWELL, IDAHO

    EPA Science Inventory

    Algae blooms limit recreational use of Lake Lowell, ID (17050114) by reducing water clarity and esthetic qualities. Under bloom conditions, algae have a negative impact on the reservoir fishery because of periodic oxygen depletion associated with respiration and decomposition. ...

  12. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  13. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  14. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  15. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  16. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  17. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  20. Potential of mass algae production in Kuwait

    SciTech Connect

    Prokop, A.; Fekri, M.

    1984-11-01

    The rationale for efficient light absorption by algae at a production unit is given and design details of an intensive thin-layer technology outdoor (2.11m/sup 2/) unit are presented. Data on productivity under extreme conditions were collected. Maximum productivity data are close to those reported in the literature for similar geographic areas.

  1. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  2. OPTIMAL COST CONTROL STRATEGIES FOR ATTACHED ALGAE

    EPA Science Inventory

    This paper presents a cost-benefit analysis for alternative programs intended for the control of the nuisance growth of an attached alga (Cladophora). Such analyses require that changes in water quality be quantitatively related to the cost of implementation for specific manageme...

  3. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  4. Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae).

    PubMed

    Frouz, Jan; Ali, Arshad; Lobinske, Richard J

    2004-12-01

    Glyptotendipes paripes Edwards midge larval growth, development, survival, emerging adult size, and food digestibility when provided with six species of algae as food were studied in the laboratory. For the study, eggs from G. paripes adults maintained in the laboratory were reared to the adult stage at 30 degrees C for 60 d on pure culture of each algal species at densities of 0.4, 0.1, and 0.02 mg of algae (fresh weight) per milliliter, as a sole food source. All larvae reared on Microcystis sp., Botryoccocus braunii, and Scenedesmus quadricauda died before completing development. The only larvae to complete development to adult were those reared on 0.4 mg/ml Lyngbia cf. aeruginosa (44.0 d), Anabaena flos-aquae (29.7 d), and Chlorella keslerii (44.8 d). No significant differences in body size of the adults achieving complete development on the three algal species were found. Algal digestion, measured by comparing amounts of live and dead algal cells in remains of cultures used for feeding and in larval excrement, revealed that >95% of all L. cf. aeruginosa, A. flos-aquae, and Microcystis sp. cells were digested; for C. keslerii, 13% of cells were digested, whereas little or no digestion of B. braunii and S. quadricauda was observed. To evaluate the effects of algal species on larval growth, laboratory-reared (on artificial food) late third/early fourth instars of G. paripes were fed individual algal species, and 10 d later, body mass changes were recorded and compared with nonfed larvae. Body mass of larvae reared on L. cf. aeruginosa and A. flos-aquae significantly increased, whereas those provided Microcystis sp. and the nonfed larvae showed significant body mass reductions. Overall, B. braunii and S. quadricauda were not suitable as larval food, probably due to their low digestibility, and Microcystis sp. because of its toxicity. This study identifies some algae that do and others that do not support G. paripes larval growth. The information is useful in

  5. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    PubMed

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. PMID:25311189

  6. A one-stage cultivation process for lipid- and carbohydrate-rich biomass of Scenedesmus obtusiusculus based on artificial and natural water sources.

    PubMed

    Schulze, Christian; Reinhardt, Jakob; Wurster, Martina; Ortiz-Tena, José Guillermo; Sieber, Volker; Mundt, Sabine

    2016-10-01

    A one-stage cultivation process of the microalgae Scenedesmus obtusiusculus with medium based on natural water sources was developed to enhance lipids and carbohydrates. A medium based on artificial sea water, Baltic Sea water and river water with optimized nutrient concentrations compared to the standard BG-11 for nitrate (-75%), phosphate and iron (-90%) was used for cultivation. Although nitrate exhaustion over cultivation resulted in nitrate limitation, growth of the microalgae was not reduced. The lipid content increased from 6.0% to 19.9%, an increase in oleic and stearic acid was observed. The unsaponifiable matter of the lipid fraction was reduced from 19.5% to 11.4%. The carbohydrate yield rose from 45% to 50% and the protein content decreased from 32.4% to 15.9%. Using natural water sources with optimized nutrient concentrations could open the opportunity to modulate biomass composition and to reduce the cultivation costs. PMID:27394996

  7. Bio-oil production and removal of organic load by microalga Scenedesmus sp. using culture medium contaminated with different sugars, cheese whey and whey permeate.

    PubMed

    Borges, Wesley da Silva; Araújo, Breno Severiano Alves; Moura, Lucas Gomes; Coutinho Filho, Ubirajara; de Resende, Miriam Maria; Cardoso, Vicelma Luiz

    2016-05-15

    The objective of this study was to evaluate the bio-oil production and the organic load removal using the microalga Scenedesmus sp. The cultivation was carried out in reactors with a total volume of 3 L and 0.7 vvm aeration, with illumination in photoperiods of 12 h light/12 h dark for 12 days. The following sugar concentrations were tested: 2.5, 5.0 and 10 g/L of glucose, lactose, fructose and galactose with 10% inoculum volume. After experiments were performed with cheese whey in natura and cheese whey permeate with different lactose concentrations (1.5, 2.5, 3.5 and 5.0 g/L). In these experiments the inoculum concentrations were 10, 15, 20 and 30% (v/v). The results showed that this microalga was effective for the production of lipids when it was cultivated in medium with cheese whey in natura with 2.5 g/L of lactose and 20% inoculum (v/v). Using cheese whey in natura at the concentration of 3.5 g/L of lactose and 30% (v/v) of inoculum obtained 77.9% of TOC removal and 38.447 mg of TOC removed/mg oil produced. It was also observed that when there is increased production of bio-oil, there is less removal of organic matter. The addition of glucose, fructose or galactose in the medium did not enhance the production of bio-oil by Scenedesmus sp. when compared to lactose, but increased the organic matter removal. PMID:26948140

  8. Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae.

    PubMed

    Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2016-06-01

    Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes. PMID:27233115

  9. Phycobilisomes in Blue-Green Algae

    PubMed Central

    Wildman, Ruth B.; Bowen, C. C.

    1974-01-01

    Fifteen species of freshwater blue-green algae, including unicellular, filamentous, and colonial forms, were subjected to a variety of fixatives, fixation conditions, and stains for comparison of the preservation of phycobilisomes. Absorption spectra of the corresponding in vivo and released photosynthetic pigments, in 10 of the species that were maintained in culture, demonstrated the presence of phycocyanin in all 10 species and phycoerythrin in only 2 of them. Spectroscope and electron microscope evidence was obtained for localization of phycobiliproteins in phycobilisomes of Nostoc muscorum. Phycobilisomes were observed in all species examined in situ, strenghening the hypothesis that phycobilisomes are common to all phycobiliprotein-containing photosynthetic blue-green algae. Images PMID:4204443

  10. Toxicity of chlorinated benzenes to marine algae

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Jun; Wang, Xiu-Lin; Yu, Wei-Jun; Zhang, Li-Jun; Sun, Han-Zhang

    1997-12-01

    Growth of Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB), 1, 2, 3, 4-tetrachlorobenzene (1, 2, 3, 4-TeCB) and pentachlorobenzene (PeCB) was tested. Tests of 72 h- EC 50 values showed that the toxicity ranged in the order: MCB<1,2-DCB<1,2,3,4-TeCBalgae was almost in the order: Pyramidomonas sp. < Platymonas subcordiformis < Nannochloropsis oculata < Chlorella marine < Phaeodactylum tricomutum. Study of the QSAR (Quantitative Structure-Activity Relationship) between K OW and toxicity of CBs to marine algae showed good relationships between -log EC 50 and log K OW.

  11. Bioconcentration of tetrachlorobenzene in marine algae

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Lin; Ma, Yan-Jun; Cheng, Gang; Yu, Wei-Jun; Zhang, Li-Jun

    1997-09-01

    Bioconcentration of tetrachlorobenzene (TeCB) in Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis, and Phaeodactylum tricornutum; and toxicity of TeCB to the marine algae were tested. Values of bioconcentration potential parameters, including uptake rate constant k 1, elimination rate constant k 2 and bioconcentration factor BCF, were obtained not only from the time course of TeCB uptake by the marine algae by using a bioconcentration model, but also from the acute toxicity test data for percent inhibition PI(%)˜exposure concentration of TeCB-time by using a combined bioconcentration and probability model. The results showed good relationship between k 1(TOXIC) and k 1(UPTAKE) and k 2(TOXIC), k 2(UPTAKE), and BCF D(IOXIC) and BCF D(UPTAKE). Especially, the values of BCF D(TOXIC) were well consistent with those of BCF D(UPTAKE).

  12. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  13. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  14. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  15. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  16. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  17. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  18. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice. PMID:686747

  19. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops. PMID:20085253

  20. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view. PMID:20042280

  1. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  2. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae. PMID:26905655

  3. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research. PMID:9005517

  4. Heterotrimeric G-proteins in green algae

    PubMed Central

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1–1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions. PMID:24614119

  5. An evaluation of selective feeding by three age-groups of the rainbow mussel Villosa iris

    USGS Publications Warehouse

    Beck, K.; Neves, R.J.

    2003-01-01

    A tri-algal diet was fed to three age-groups of the rainbow mussel Villosa iris: ages 2-3 d, 50-53 d, and 3-6 years. Changes in the relative abundance of each algal species were determined in 5-h feeding trials from feeding chambers and by gut content analyses. All age-groups rejected Scenedesmus quadricauda and preferentially selected Nannochloropsis oculata and Selenastrum capricornutum, principally on the basis of size. Changes in the relative abundance of algae in feeding chambers did not differ significantly among age-groups. Observed differences in the ingested quantities of the similar-sized N. oculata and S. capricornutum were attributed to other particle-related characteristics. Results indicate that the rainbow mussel can be fed similar-sized algae at ali ages in captive propagation facilities. When developing a suitable algal diet for rearing juvenile mussels, one probably need not investigate different species at each stage of development if the algae used are in the 2.8-8.5-??m size range.

  6. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?

    PubMed

    Happe, Thomas; Hemschemeier, Anja; Winkler, Martin; Kaminski, Annette

    2002-06-01

    Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Electrons from reducing equivalents generated during fermentation enter the photosynthetic electron transport chain via the plastoquinone pool. They are transferred to the hydrogenase by photosystem I and ferredoxin. Thus, the [Fe]-hydrogenase is an electron 'valve' that enables the algae to survive under anaerobic conditions. During sulfur deprivation, illuminated algal cultures evolve large quantities of hydrogen gas, and this promises to be an alternative future energy source. PMID:12049920

  7. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates)

    PubMed Central

    Shanab, Sanaa; Essa, Ashraf; Shalaby, Emad

    2012-01-01

    Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg2+), lead (Pb2+) and cadmium (Cd2+) in aqueous solutions as a single metal species at conc. 5–100 mg / L under controled laboratory conditions. The obtained results showed that Hg2+ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb2+ and Cd2+ (5–20 mg / L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40–100 mg / L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg / L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg / L. The bioremoval of heavy metal ions (Hg2+, Pb2+ and Cd2+) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg2+), 86% (Cd2+) and 70% (Pb2+). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions. PMID:22476461

  8. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates).

    PubMed

    Shanab, Sanaa; Essa, Ashraf; Shalaby, Emad

    2012-03-01

    Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg²⁺), lead (Pb²⁺) and cadmium (Cd²⁺) in aqueous solutions as a single metal species at conc. 5-100 mg/L under controled laboratory conditions. The obtained results showed that Hg²⁺ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb²⁺ and Cd²⁺ (5-20 mg/L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40-100 mg/L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg/L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg/L. The bioremoval of heavy metal ions (Hg²⁺, Pb²⁺ and Cd²⁺) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg²⁺), 86% (Cd²⁺) and 70% (Pb²⁺). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions. PMID:22476461

  9. Evaluating integrated strategies for robust treatment of high saline piggery wastewater.

    PubMed

    Kim, Hyun-Chul; Choi, Wook Jin; Chae, A Na; Park, Joonhong; Kim, Hyung Joo; Song, Kyung Guen

    2016-02-01

    In this study, we integrated physicochemical and biological strategies for the robust treatment of piggery effluent in which high levels of organic constituents, inorganic nutrients, color, and salts remained. Piggery effluent that was stabilized in an anaerobic digester was sequentially coagulated, micro-filtered, and air-stripped prior to biological treatment with mixotrophic algal species that showed tolerance to high salinity (up to 4.8% as Cl(-)). The algae treatment was conducted with continuous O2 supplementation instead of using the combination of high lighting and CO2 injection. The microalga Scenedesmus quadricauda employed as a bio-agent was capable of assimilating both nitrogen (222 mg N g cell(-1) d(-1)) and phosphorus (9.3 mg P g cell(-1) d(-1)) and utilizing dissolved organics (2053 mg COD g cell(-1) d(-1)) as a carbon source in a single treatment process under the heterotrophic growth conditions. The heterotrophic growth of S. quadricauda proceeded rapidly by directly incorporating organic substrate in the oxidative assimilation process, which coincided with the high productivity of algal biomass, accounting for 2.4 g cell L(-1) d(-1). The algae-treated wastewater was subsequently ozonated to comply with discharge permits that limit color in the effluent, which also resulted in improved biodegradability of residual organics. The integrated treatment scheme proposed in this study also achieved 89% removal of COD, 88% removal of TN, and 60% removal of TP. The advantage of using the hybrid configuration suggests that this would be a promising strategy in full-scale treatment facilities for piggery effluent. PMID:26689659

  10. Removal of Pb(2+) by biomass of marine algae.

    PubMed

    Hamdy, A A

    2000-10-01

    New biosorbent material derived from ubiquitous marine algae has been examined in packed-bed flow for Pb(2+) removal through sorption columns. Mixed biomass of marine algae has been used, consisting of representative species of the following algae: Ulva lactuca (green algae), Jania rubens (red algae), and Sargassum asperifolium (brown algae). A mixture of these three species showed a promising removal capacity for Pb(2+) from aqueous solution. Lead uptake up to 281.8 mg/g dry algal mixture was observed. Equilibrium was achieved after 120 min. No significant effect of changing the flow rate on the removal capacity was noticed. It was found that Langmuir model expresses the system at pH 4. Mineral acids exhibited good elution properties (a mean of 93%) for recovery of sorbed biomass ions as compared with the tested alkalies (about 60%). PMID:10977889

  11. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes. PMID:25744715

  12. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  13. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  14. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2014-06-02

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  15. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  16. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  17. Method and apparatus for iterative lysis and extraction of algae

    SciTech Connect

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  18. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  19. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. PMID:25537136

  20. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  1. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  2. Inorganic carbon acquisition in some synurophyte algae.

    PubMed

    Bhatti, Shabana; Colman, Brian

    2008-05-01

    Some characteristics of photosynthesis of three synurophyte algae, Synura petersenii, Synura uvella and Tessellaria volvocina were investigated to determine the mechanism of inorganic carbon (C(i)) uptake. All three species were found to have no external carbonic anhydrase, no capacity for direct bicarbonate uptake and a low whole-cell affinity for C(i). The internal pH of S. petersenii determined using (14)C-benzoic acid and [2-(14)C]-5,5-dimethyloxazolidine-2,4-dione was pH 7.0-7.5, over an external pH range of 5.0-7.5. Thus, the pH difference between the cell interior of S. petersenii and the external medium was large enough, over the alga's growth range, to allow the accumulation of C(i) by the diffusive uptake of CO(2). Monitoring O(2) evolution and CO(2) uptake by suspensions of S. petersenii at pH 7.0 by mass spectrometry did not indicate a rapid uptake of CO(2), and the final CO(2) compensation concentration reached was 24 +/- 0.7 microM. Furthermore, when the cells were darkened, a brief burst of CO(2) occurred before a steady rate of dark respiration was established, suggesting a loss of CO(2) by photorespiration. An examination of the kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in homogenates of cells of S. petersenii, S. uvella and Mallomonas papillosa showed that values of the K(m) (CO(2)) were 28.4, 41.8 and 18.2 microM, respectively. These species lack the characteristics of cells with a CO(2)-concentrating mechanism because the cell affinity for C(i) appears to be determined by the relatively high CO(2) affinity of the Rubisco of these algae. PMID:18298411

  3. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  4. Pheromones in marine algae: A technical approach

    NASA Astrophysics Data System (ADS)

    Gassmann, G.; Müller, D. G.; Fritz, P.

    1995-03-01

    It is now well known that many marine organisms use low-molecular volatile substances as signals, in order to coordinate activities between different individuals. The study of such pheromones requires the isolation and enrichment of the secretions from undisturbed living cells or organisms over extended periods of time. The Grob-Hersch extraction device, which we describe here, avoids adverse factors for the biological materials such as strong water currents, rising gas bubbles or chemical solvents. Furthermore, the formation of sea-water spray is greatly reduced. The application of this technique for the isolation of pheromones of marine algae and animals is described.

  5. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated. PMID:19826917

  6. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors

    USGS Publications Warehouse

    Leland, H.V.; Brown, L.R.; Mueller, D.K.

    2001-01-01

    1. The taxonomic composition and biomass of the phytoplankton and the taxonomic composition of the phytobenthos of the San Joaquin River and its major tributaries were examined in relation to water chemistry, habitat and flow regime. Agricultural drainage and subsurface flow contribute to a complex gradient of salinity and nutrients in this eutrophic, 'lowland type' river. 2. Because of light-limiting conditions for growth, maintenance demands of the algae exceed production during summer and autumn in the San Joaquin River where there is no inflow from tributaries. In contrast to substantial gains in concentration of inorganic nitrogen and soluble reactive phosphorus during the summer of normal-flow years, net losses of algal biomass (2-4 ??g L-1 day-1 chlorophyll a) occurred in a mid-river segment with no significant tributary inflow. However, downstream of a large tributary draining the Sierra Nevada, a substantial net gain in algal biomass (6-11 ??g L-1 day-1) occurred in the summer, but not in the spring (loss of 1-6 ??g L-1 day-1) or autumn (loss of 2-5 ??g L-1 day-1). 3. The phytoplankton was dominated in summer by 'r-selected' centric diatoms (Thalassiosirales), species both tolerant of variable salinity and widely distributed in the San Joaquin River. Pennate diatoms were proportionally more abundant (in biomass) in the winter, spring and autumn. Abundant taxa included the diatoms Cyclotella meneghiniana, Skeletonema cf. potamos, Cyclostephanos invisitatus, Thalassiosira weissflogii, Nitzschia acicularis, N. palea and N. reversa, and the chlorophytes Chlamydomonas sp. and Scenesdesmus quadricauda. Patterns in the abundance of species indicated that assembly of the phytoplankton is limited more by light and flow regime than by nutrient supply. 4. The phytobenthos was dominated by larger, more slowly reproducing pennate diatoms. Few of the abundant species are euryhaline. The diatoms Navicula recens and Nitzschia inconspicua and cyanophytes, Oscillatoria spp

  7. Algae Biofuels Co-Location Assessment Tool

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with themore » requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.« less

  8. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  9. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  10. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppm (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppm NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppm NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx 4.2 was not appreciably affected by 15.0 ppm of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  11. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppM (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppM NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppM NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx. 4.2 was not appreciably affected by 15.0 ppM of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  12. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  13. Video micrography of algae photomovement and vectorial method of biomonitoring

    NASA Astrophysics Data System (ADS)

    Posudin, Yuri I.; Massjuk, N. P.; Lilitskaya, G. G.

    1996-01-01

    The simultaneous recording of several photomovement parameters of algae as test-functions during biomonitoring is proposed. Green alga Dunaliella viridis Teod. was used as the test- object for the estimation of different heavy metals. The quantitative changes of photomovement parameters as a criterion of toxicity were determined by means of the vectorial method of biomonitoring.

  14. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  15. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  16. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  17. Comparative Studies on Plastoquinones. IV. Plastoquinones in Algae

    PubMed Central

    Sun, Elena; Barr, Rita; Crane, F. L.

    1968-01-01

    Plastoquinones A and C have been found in all classes of algae, including representatives of greens, yellow-greens, blue-greens, reds, browns and the flagellate, Euglena. Plastoquinone C from red and brown algae can be separated into 6 different types. An additional plastoquinone C has been found in Gigartina and Rhydomela. From chromatographic evidence this may be equivalent to plastoquinone Co, a C type with a hydroxyl group on the first isoprene unit of the terpenoid sidechain of this substituted benzo-quinone. The ubiquinone, vitamin K and α-tocopherylquinone content of several algae is also reported. The presence of plastoquinone A in all green plants and many algae indicates that it may be a functional element in photosynthesis. Our study shows that plastoquinone C is more regularly present in algae than has been previously shown. PMID:16656993

  18. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter. PMID:12868282

  19. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study. PMID:26623940

  20. About the interest of a zooplankton compartment in pond systems: methodology to study the growth kinetic of Daphnia pulex on Scenedesmus sp.

    PubMed

    Liady, M N D; Tangou, T T; Fiogbe, E D; Cauchie, H-M; Vasel, J-L

    2015-01-01

    A reliable characterization of cladocerans' growth kinetic on their substrates is crucial for the estimation of their biochemical conversion rate in pond models. Although many studies reported cladocerans' growth inhibitions by high chlorophyceae contents, their growth kinetics had continued to be described in many pond system models by Monod-type kinetic, which describes growth saturation by high substrate contents, but fails to explain the disappearance of cladocerans observed during chlorophyceae's bloom periods. This study aimed to develop a methodology and assess whether growth-inhibition-type models used to describe microbial growth kinetics can be applicable to cladocerans. Experiments were carried out using Daphnia pulex populations and Scenedesmus sp. First, biomass of D. pulex was measured through digital image processing (DIP) during growth experiments. Then, three candidate models (i.e., Andrews, Edward and Haldane models), along with the Monod model, were fitted to the observed data and compared. The results showed that the DIP technique provided reliable results for estimating the biomass of D. pulex. Our findings show that the candidate growth inhibition-type models satisfactorily described D. pulex's growth kinetic (86% variance accounted for). Scenesdemus sp. were not strong inhibitors of the growth of D. pulex (high inhibition constant and low half-saturation constant found). PMID:26442483

  1. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    PubMed Central

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  2. Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: Effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics.

    PubMed

    Sarat Chandra, T; Deepak, R S; Maneesh Kumar, M; Mukherji, S; Chauhan, V S; Sarada, R; Mudliar, S N

    2016-05-01

    Scenedesmus obtusus, a freshwater microalga, was evaluated for its growth and biochemical characteristics under various culture conditions. S. obtusus was tolerant at all tested CO2 concentrations up to 20%. Among the different nitrogen sources, urea showed enhanced biomass productivities up to 2-fold compared to control, where the nitrogen source was sodium nitrate. Light intensity and photoperiod had a significant effect on growth rate and biomass productivity. The growth rate was observed maximum under continuous light exposure at the light intensities, 30μmolm(-2)sec(-1) and 60μmolm(-2)sec(-1) The species was able to tolerate the salinity levels up to 25mM NaCl, where, the increase in the concentration of NaCl suppressed the growth. Ammonium acetate and glycine showed better growth rate and biomass productivity indicating mixotrophic ability of S. obtusus. Supplementation of acetate and bicarbonate significantly enhanced the biomass productivity. Biodiesel properties of S. obtusus cultivated at various culture conditions were estimated. PMID:26923570

  3. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof.

    PubMed

    Amaro, Helena M; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B; Sousa-Pinto, I; Malcata, F Xavier; Guedes, A Catarina

    2015-10-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components-especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS(+•))) and biological reactive species (O₂(•)⁻ and (•)NO⁻). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH(•) and ABTS(+•), respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O₂(•)⁻, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in (•)NO⁻ assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance-which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  4. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities.

    PubMed

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Nayaka, S; Ramteke, P W

    2016-02-01

    The present study dealt with biomass, lipid concentration, fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under different phosphate concentrations, pH and light intensities, one at a time. Among different phosphate concentrations, higher biomass (770.10±11.0mg/L) and lipid concentration (176.87±4.6mg/L) were at the concentration of 60mg/L. Light intensity at 6000lux yielded higher biomass and lipid concentration of 742.0±9.7 and 243.15±9.1mg/L, respectively. The biomass (769.0±12.3mg/L) and lipid (179.47±5.5mg/L) concentration were highest at pH 8 and pH 6, respectively. All the culture treatments showed marked effect on the fatty acid profile and biodiesel properties of the extracted oil. FAME derived biodiesel properties were compared with European biodiesel standards (EN 14214), Indian biodiesel standards (IS 15607) and American biodiesel standards (ASTM D 6751-08) to assess the suitability of algal oil as biodiesel feedstock. PMID:26675046

  5. Chloroplast Phylogenomic Inference of Green Algae Relationships

    PubMed Central

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-01-01

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences. PMID:26846729

  6. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  7. Swimming like algae: biomimetic soft artificial cilia.

    PubMed

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  8. Random flow induced by swimming algae

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Rushkin, Ilia; Goldstein, Raymond

    2010-11-01

    In this work we studied the random flow induced in a fluid by the motion of a dilute suspension of the swimming algae Volvox carteri. The fluid velocity in the suspension is a superposition of the flow fields set up by the individual organisms, which in turn have multipole contributions that decay as inverse powers of distance from the organism. Here we show that the conditions under which the central limit theorem guarantees a Gaussian probability distribution function of velocity fluctuations are satisfied when the leading force singularity is a Stokeslet. Deviations from Gaussianity are shown to arise from near-field effects. Comparison is made with the statistical properties of abiotic sedimenting suspensions. The experimental results are supplemented by extensive numerical studies.

  9. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  10. Swimming like algae: biomimetic soft artificial cilia

    PubMed Central

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond E.

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  11. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  12. Photophysiology and cellular composition of sea ice algae

    SciTech Connect

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 {mu}g C {center dot} {mu}g chl{sup {minus}1} {center dot} h{sup {minus}1} higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and {sup 14}C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and {sup 14}C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities.

  13. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution. PMID:23011851

  14. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  15. Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening

    PubMed Central

    Binh, Chu Thi Thanh; Peterson, Christopher G.; Tong, Tiezheng; Gray, Kimberly A.; Gaillard, Jean-François; Kelly, John J.

    2015-01-01

    Production of titanium-dioxide nanomaterials (nano-TiO2) is increasing, leading to potential risks associated with unintended release of these materials into aquatic ecosystems. We investigated the acute effects of nano-TiO2 on metabolic activity and viability of algae and cyanobacteria using high-throughput screening. The responses of three diatoms (Surirella angusta, Cocconeis placentula, Achnanthidium lanceolatum), one green alga (Scenedesmus quadricauda), and three cyanobacteria (Microcystis aeruginosa, Gloeocapsa sp., Synechococcus cedrorum) to short-term exposure (15 to 60 min) to a common nano-TiO2 pigment (PW6; average crystallite size 81.5 nm) with simulated solar illumination were assessed. Five concentrations of nano-TiO2 (0.5, 2.5, 5, 10, and 25 mg L-1) were tested and a fluorescent reporter (fluorescein diacetate) was used to assess metabolic activity. Algae were sensitive to nano-TiO2, with all showing decreased metabolic activity after 30-min exposure to the lowest tested concentration. Microscopic observation of algae revealed increased abundance of dead cells with nano-TiO2 exposure. Cyanobacteria were less sensitive to nano-TiO2 than algae, with Gloeocapsa showing no significant decrease in activity with nano-TiO2 exposure and Synechococcus showing an increase in activity. These results suggest that nanomaterial contamination has the potential to alter the distribution of phototrophic microbial taxa within freshwater ecosystems. The higher resistance of cyanobacteria could have significant implications as cyanobacteria represent a less nutritious food source for higher trophic levels and some cyanobacteria can produce toxins and contribute to harmful algal blooms. PMID:25923116

  16. Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening.

    PubMed

    Binh, Chu Thi Thanh; Peterson, Christopher G; Tong, Tiezheng; Gray, Kimberly A; Gaillard, Jean-François; Kelly, John J

    2015-01-01

    Production of titanium-dioxide nanomaterials (nano-TiO2) is increasing, leading to potential risks associated with unintended release of these materials into aquatic ecosystems. We investigated the acute effects of nano-TiO2 on metabolic activity and viability of algae and cyanobacteria using high-throughput screening. The responses of three diatoms (Surirella angusta, Cocconeis placentula, Achnanthidium lanceolatum), one green alga (Scenedesmus quadricauda), and three cyanobacteria (Microcystis aeruginosa, Gloeocapsa sp., Synechococcus cedrorum) to short-term exposure (15 to 60 min) to a common nano-TiO2 pigment (PW6; average crystallite size 81.5 nm) with simulated solar illumination were assessed. Five concentrations of nano-TiO2 (0.5, 2.5, 5, 10, and 25 mg L-1) were tested and a fluorescent reporter (fluorescein diacetate) was used to assess metabolic activity. Algae were sensitive to nano-TiO2, with all showing decreased metabolic activity after 30-min exposure to the lowest tested concentration. Microscopic observation of algae revealed increased abundance of dead cells with nano-TiO2 exposure. Cyanobacteria were less sensitive to nano-TiO2 than algae, with Gloeocapsa showing no significant decrease in activity with nano-TiO2 exposure and Synechococcus showing an increase in activity. These results suggest that nanomaterial contamination has the potential to alter the distribution of phototrophic microbial taxa within freshwater ecosystems. The higher resistance of cyanobacteria could have significant implications as cyanobacteria represent a less nutritious food source for higher trophic levels and some cyanobacteria can produce toxins and contribute to harmful algal blooms. PMID:25923116

  17. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Uses and restrictions. The color additive dried algae meal may be safely used in chicken feed in... color of chicken skin and eggs. (2) The quantity of the color additive incorporated in the feed is...

  18. The plastid genome of the red alga Laurencia.

    PubMed

    Verbruggen, Heroen; Costa, Joana F

    2015-06-01

    We present the 174,935 nt long plastid genome of the red alga Laurencia sp. JFC0032. It is the third plastid genome characterized for the largest order of red algae (Ceramiales). The circular-mapping plastid genome is small compared to most florideophyte red algae, and our comparisons show a trend toward smaller plastid genome sizes in the family Rhodomelaceae, independent from a similar trend in Cyanidiophyceae. The Laurencia genome is densely packed with 200 annotated protein-coding genes (188 widely conserved, 3 open reading frames shared with other red algae and 9 hypothetical coding regions). It has 29 tRNAs, a single-copy ribosomal RNA cistron, a tmRNA, and the RNase P RNA. PMID:26986672

  19. Harmful algae blooms removal from fresh water with modified vermiculite.

    PubMed

    Miao, Chunguang; Tang, Yi; Zhang, Hong; Wu, Zhengyan; Wang, Xiangqin

    2014-01-01

    Vermiculite and vermiculite modified with hydrochloric acid were investigated to evaluate their flocculation efficiencies in freshwater containing harmful algae blooms (HABs) (Microcystis aeruginosa). Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, converted fluorescence microscope, plasma-atomic emission spectrometry, and Zetasizer were used to study the flocculation mechanism of modified vermiculite. It was found that the vermiculite modified with hydrochloric acid could coagulate algae cells through charge neutralization, chemical bridging, and netting effect. The experimental results show that the efficiency of flocculation can be notably improved by modified vermiculite. Ninety-eight per cent of algae cells in algae solution could be removed within 10 min after the addition ofmodified vermiculite clay. The method that removal of HABs with modified vermiculite is economical with high efficiency, and more research is needed to assess their ecological impacts before using in practical application. PMID:24600873

  20. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  1. EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL

    EPA Science Inventory

    We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.

  2. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  3. [Parameter determination of algae growth based on ecological tank experiment].

    PubMed

    Pang, Yong; Ding, Ling; Gao, Guang

    2005-05-01

    A dynamic simulation experiment of algae in an ecological tank was performed at the Taihu Laboratory for Lake Ecosystem Research. During the experiment, water from Taihu Lake was infused into the ecological tank and samples were taken continually to observe algae growth under varying conditions, such as temperature, sunlight and nutrients. Based on the experiment, an algae growth model, considering nitrogen and phosphorus cycle, was developed by using the advanced PHREEQC model. After that, a detailed calibration and validation of parameters in the model were done on the basis of experimental results. The least square method was used to determine the optimal set of parameters. The calculated values of algae and nutrient concentrations show fairly satisfying fittness with measured data. PMID:16124474

  4. ENDOTOXINS, ALGAE AND 'LIMULUS' AMOEBOCYTE LYSATE TEST IN DRINKING WATER

    EPA Science Inventory

    Field and laboratory studies were conducted to determine the distribution of algae and bacteria, and investigate sources of endotoxins (lipopolysaccharides) in drinking water. The field survey was performed on five drinking water systems located in Allegheny County, Pennsylvania ...

  5. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  6. ALGAE AND CRUSTACEANS AS INDICATORS OF BIOACTIVITY OF INDUSTRIAL WASTES

    EPA Science Inventory

    Freshwater (Selenastrum capricornutum) and estuarine (Skeketonema costatum) algae were exposed to liquid wastes from 10 industrial sites in laboratory bioassays. All wastes affected algal growth either by stimulation or by stimulation at low concentrations and inhibition at high ...

  7. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  8. Photobiological hydrogen production in green algae and photosynthetic bacteria

    SciTech Connect

    Greenbaum, E.

    1986-01-01

    We have shown that, under appropriate physiological conditions, certain freshwater and marine green algae are capable of splitting water to molecular hydrogen and oxygen in a sustained steady-state reaction. In these algae, the gaseous-fuel-producing reaction can be driven by light throughout the visible portion of the solar emission spectrum, including the long wavelength (red) 700-nm region. No external energy sources are required.

  9. Algae culture for cattle feed and water purification. Final report

    SciTech Connect

    Varani, F.T.; Schellenbach, S.; Veatch, M.; Grover, P.; Benemann, J.

    1980-05-16

    The feasibility of algae growth on centrate from anaerobic digester effluent and the refeed of both effluent solids and the algae to feedlot cattle were investigated. The digester was operated with dirt feedlot manure. The study serves as a supplement for the work to design a utility sized digester for the City of Lamar to convert local feedlot manure into a fuel gas. The biogas produced would power the electrical generation plant already in service. Previous studies have established techniques of digester operation and the nutritional value for effluent solids as fed to cattle. The inclusion of a single-strain of algae, Chlorella pyrenidosa in the process was evaluated here for its capability (1) to be grown in both open and closed ponds of the discharge water from the solids separation part of the process, (2) to purify the discharge water, and (3) to act as a growth stimulant for cattle feed consumption and conversion when fed at a rate of 6 grams per head per day. Although it was found that the algae could be cultured and grown on the discharge water in the laboratory, the study was unable to show that algae could accomplish the other objectives successfully. However, the study yielded supplementary information useful to the overall process design of the utility plant. This was (1) measurement of undried digester solids fed to cattle in a silage finishing ration (without algae) at an economic value of $74.99 per dry ton based on nutritional qualities, (2) development of a centrate treatment system to decolorize and disinfect centrate to allow optimum algae growth, and (3) information on ionic and mass balances for the digestion system. It is the recommendation of this study that algae not be used in the process in the Lamar bioconversion plant.

  10. Study on algae removal by immobilized biosystem on sponge

    NASA Astrophysics Data System (ADS)

    Pei, Haiyan; Hu, Wenrong

    2006-10-01

    In this study, sponges were used to immobilize domesticated sludge microbes in a limited space, forming an immobilized biosystem capable of algae and microcystins removal. The removal effects on algae, microcystins and UV260 of this biosystem and the mechanism of algae removal were studied. The results showed that active sludge from sewage treatment plants was able to remove algae from a eutrophic lake’s water after 7 d of domestication. The removal efficiency for algae, organic matter and microcystins increased when the domesticated sludge was immobilized on sponges. When the hydraulic retention time (HRT) was 5h, the removal rates of algae, microcystins and UV260 were 90%, 94.17% and 84%, respectively. The immobilized biosystem consisted mostly of bacteria, the Ciliata and Sarcodina protozoans and the Rotifer metazoans. Algal decomposition by zoogloea bacteria and preying by microcreatures were the two main modes of algal removal, which occurred in two steps: first, absorption by the zoogloea; second, decomposition by the zoogloea bacteria and the predacity of the microcreatures.

  11. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae.

    PubMed

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-12-21

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  12. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  13. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  14. Extraction of mercury from ground-water using immobilized algae

    SciTech Connect

    Barkley, N.P.

    1991-01-01

    Bio-recovery Systems Inc., conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency's (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to absorb mercury from contaminated groundwater in laboratory studies and pilot-scale field tests. Algae biomass was incorporated in a permeable polymeric matrix. The product, AlgaSORB, packed into absorption columns, exhibited excellent flow characteristics, and functioned as a 'biological' ion exchange resin. A sequence of eleven laboratory tests demonstrated the ability of the product to absorb mercury from groundwater that contained high levels of total dissolved solids and hard water components. However, use of a single AlgaSORB preparation yielded non-repeatable results with samples collected at different times of the year. The strategy of extracting the groundwater through two columns containing different times of the year. The strategy of extracting the groundwater through two columns containing different preparations of AlgaSORB was developed and proved successful in laboratory and pilot-scale field tests. Field test results indicate that AlgaSORB could be economically competitive with ion exchange resins for removal of mercury, with the advantage that hardness and other dissolved solids do not appear to compete with heavy metals for binding capacity. (Copyright (c) 1991--Air and Waste Management Association.)

  15. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  16. Microfluidic one-way streets for algae

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Goldstein, Raymond E.

    2012-02-01

    Controlling locomotion and transport of microorganisms is a key challenge in the development of future biotechnological applications. Here, we demonstrate the use of optimized microfluidic ratchets to rectify the mean swimming direction in suspensions of the unicellular green alga Chlamydomonas reinhardtii, which is a promising candidate for the photosynthetic production of hydrogen. To assess the potential of microfluidic barriers for the manipulation of algal swimming, we studied first the scattering of individual C. reinhardtii from solid boundaries. High-speed imaging reveals the surprising result that these quasi-spherical ``puller''-type microswimmers primarily interact with surfaces via direct flagellar contact, whereas hydrodynamic effects play a subordinate role. A minimal theoretical model, based on run-and-turn motion and the experimentally measured surface-scattering law, predicts the existence of optimal wedge-shaped ratchets that maximize rectification of initially uniform suspensions. We confirm this prediction in experimental measurements with different geometries. Since the mechano-elastic properties of eukaryotic flagella are conserved across many genera, we expect that our results and methods are applicable to a broad class of biflagellate microorganisms.

  17. Comparative transcriptome analysis of four prymnesiophyte algae.

    PubMed

    Koid, Amy E; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C; Caron, David A; Heidelberg, Karla B

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  18. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  19. Is the Future Really in Algae?

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  20. Two-step evolution of endosymbiosis between hydra and algae.

    PubMed

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. PMID:27404042

  1. [Comparison of histone-like proteins from blue-green algae with ribosomal basic proteins of alga and wheat germ histones].

    PubMed

    Gofshteĭn, L V; Iurina, N P; Romashkin, V I; Oparin, A I

    1975-01-01

    Histone-like proteins was found in blue-green alga Anacystis nidulans, which has no nucleus. F2b2, F2a2, F2a1 fractions were found in histone-like algae proteins and no fraction F1. Content of basic amino acids (arginine being prevailing in algae protein) is quite identical in histone-like algae proteins and in wheat germs histones, while the content of acid amino acids is considerably higher in algae. The presence in procaryotic cells of basic proteins similar in a number of properties to histones of higher organisms suggests that these proteins are evolutionary precursors of eucaryotic histones. PMID:813782

  2. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    SciTech Connect

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  3. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    PubMed Central

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  4. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. PMID:20933402

  5. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus. PMID:26679972

  6. Anti-phytopathogenic activities of macro-algae extracts.

    PubMed

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  7. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  8. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  9. Influence of algae on photolysis rates of chemicals in water

    SciTech Connect

    Zepp, R.G.; Schlotzhauer, P.F.

    1983-08-01

    Sunlight-induced algal transformations of 22 nonionic organic chemicals were studied in order to provide kinetic results and equations concerning the influence of algae on the behavior of pollutants in freshwater environments. Screening studies indicated that green and blue-green algae, at concentrations of 1-10 mg of chlorophyll a/L, accelerate photoreaction of certain polycylic aromatic hydrocarbons, organophosphorus compounds, and anilines in water. The rate of change in aniline concentration, (P), in the aniline-Chlamydomonas photoreaction can be described by the following expression: rate = A(1 + B/(P))-1. At low substrate concentrations, the reaction rate is first order with respect to both algae and substrate concentration. Methyl parathion and parathion photoreacted 390 times more rapidly when sorbed by algae than in distilled water, and aniline and m-toluidine reacted over 12000 times faster, indicating that light-induced algal transformations of certain pollutants may be significant. Other results indicated that reaction rates are unaffected by heat-killing the algae. 27 references

  10. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-08-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor. PMID:26737928

  11. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    PubMed

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. PMID:26657897

  12. Mg-lattice associations in red coralline algae

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  13. Mg-lattice associations in red coralline algae

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.,; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons (L. glaciale & P. calcareum) and thallus areas (P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  14. Benefits of using algae as natural sources of functional ingredients.

    PubMed

    Ibañez, Elena; Cifuentes, Alejandro

    2013-03-15

    Algae have been suggested as a potential source of bioactive compounds to be used in the food and pharmaceutical industries. With the strong development of functional foods as a method to improve or maintain health, the exploration of new compounds with real health effects is now an intense field of research. The potential use of algae as source of functional food ingredients, such as lipids, proteins, polysaccharides, phenolics, carotenoids, etc., is presented, together with the different possibilities of improving valuable metabolites production either using the tools and the knowledge provided by marine biotechnology or improving the different factors involved in the production on a large scale of such metabolites. The bio-refinery concept is also presented as a way to improve the efficient use of algae biomass while favouring process sustainability. PMID:23339029

  15. [Immunostimulating activity of the lipopolysaccharides of blue-green algae].

    PubMed

    Besednova, N N; Smolina, T P; Mikheĭskaia, L V; Ovodova, R G

    1979-12-01

    The whole cells of blue-gree algae and lipopolysaccharides isolated from these cells were shown to stimulate the production of macro-(mainly) and microglobulin antibodies in rabbits. The macro- and microphage indices in rabbits increased significantly after the injection of LPS isolated from blue-green algae 24--48 hours before infecting the animals with a virulent Y. pseudotuberculosis strain. Besides, the inhibiting action of this strain on the migration of phagocytes to the site of infection was abolished immediately after the injection. The use of the indirect hemagglutination test allowed to prove the absence of close antigenic interrelations between blue-green algae and the following organisms: Spirulina platensis, Microcystis aeruginosa, Phormidium africanum and P. uncinatum. PMID:117655

  16. Extremophilic micro-algae and their potential contribution in biotechnology.

    PubMed

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. PMID:25443670

  17. Algae from the arid southwestern United States: an annotated bibliography

    SciTech Connect

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  18. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  19. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  20. Aragonitic Pennsylvanian phylloid algae from New Mexico: The missing link

    SciTech Connect

    Kirkland, B.L.; Moore, C.H. Jr. ); Dickson, J.A.D. )

    1991-03-01

    Remarkably well-preserved codiacean algae (Eugonophyllum and Anchicodium) retaining original aragonite are present in the Virgilian Holder Formation, Sacramento Mountains, south-central New Mexico. The algae are preserved in a 20-cm-thick packstone between two thick (> 5m) shale beds. Aragonite is preserved as a felt-like mesh of needles in the algal skeletons, in the shell fragments of molluscs, in the walls of sponges, and in botryoidal and isopachous marine cements. The aragonite is confirmed by X-ray diffraction, by visual inspection of pristine aragonite needles with SEM, and by a high content of Sr as revealed by microprobe analysis. The average Sr content of the algae (9,091 ppm, n = 21) is comparable to modern codiaceans. Preservation of internal structure in Eugonophyllum was previously unknown. The medullary (interior) region of the Eugonophyllum thallus is composed of an aragonite felt punctuated by small (20 {mu}m diameter), parallel utricles. As in modern codiaceans, the utricles in the cortical (exterior) region of the thallus increase in diameter and their bulbous tips coalesce to form the outer cortex of the plant. This occurrence provides a key piece of evidence in support of hypotheses concerning the nature and origin of phylloid algal bioherms. Because the internal structure of most fossil phylloid algae is replaced by sparry mosaic calcite, taxonomic classification has been difficult even at the fundamental level of division (phylum). The authors discovery confirms that at least some ancient phylloid algae resembled the modern green algae Halimeda or Udotea, and lends credibility to the suggestion that ancient phylloid algal mounds are analogous to modern Halimeda mounds of the South Pacific.

  1. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  2. Smallest algae thrive as the Arctic Ocean freshens.

    PubMed

    Li, William K W; McLaughlin, Fiona A; Lovejoy, Connie; Carmack, Eddy C

    2009-10-23

    As climate changes and the upper Arctic Ocean receives more heat and fresh water, it becomes more difficult for mixing processes to deliver nutrients from depth to the surface for phytoplankton growth. Competitive advantage will presumably accrue to small cells because they are more effective in acquiring nutrients and less susceptible to gravitational settling than large cells. Since 2004, we have discerned an increase in the smallest algae and bacteria along with a concomitant decrease in somewhat larger algae. If this trend toward a community of smaller cells is sustained, it may lead to reduced biological production at higher trophic levels. PMID:19900890

  3. Heavy metals in marine algae of the Kuwait coast

    SciTech Connect

    Buo-Olayan, A.H.; Subrahmanyam, M.N.V.

    1996-12-31

    Marine algae are considered as important primary producers in the coastal region. Several marine algal species are being considered as raw material for various economically important products and this has resulted in their increasing demand. Marine algal species also have been suggested to be the indicators of pollution. Keeping in view the importance of marine algal species for direct or indirect human and cattle consumption, it is necessary to monitor the bioaccumulation of certain elements in these species. This study was aimed at establishing the concentration levels of trace metals in marine algae of the Kuwait coast. 26 refs., 1 fig., 3 tabs.

  4. Algae as promising organisms for environment and health

    PubMed Central

    2011-01-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  5. Algae Biofuels Co-Location Assessment Tool for Canada

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated betweenmore » points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.« less

  6. Algae as promising organisms for environment and health.

    PubMed

    Shalaby, Emad A

    2011-09-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  7. Chemical composition of the green alga Codium Divaricatum Holmes.

    PubMed

    He, Zhizhou; Zhang, Anjiang; Ding, Lisheng; Lei, Xinxiang; Sun, Jianzhang; Zhang, Lixue

    2010-12-01

    A new sterol, 24-R-stigmasta-4,25-diene-3β,6β-diol (1), along with three known compounds (2-3), was isolated from the green alga Codium divaricatum Holmes, a traditional Chinese medicine, which is efficacious against cancer. All structures were determined by spectroscopic methods and comparison with related known compounds. Single-crystal X-ray crystallography allowed us to confirm the structure of 1. To our knowledge, the compound 1 is reported as the first from natural source, and compounds 2, 4 have not been isolated from green algae before. PMID:20655992

  8. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  9. [Effectiveness and characteristics of treating algae-laden raw water by stocking silver carp].

    PubMed

    Fan, Zhen-Qiang; Cui, Fu-Yi; Ma, Hua; He, Wen-Jie; Yin, Pei-Jun

    2008-03-01

    To reduce the negative effect of algae on conventional water treatment, a full-scale research of removing algae from algae-laden raw water by stocking filter-feeding silver carp was processed. After the pretreatment in a presedimentation tank with silver carp, the concentration of phytoplankton, the biomass of cyanobacteria and Microsystis flos-aquae in algae-laden raw water with Microsystis flos-aquae its dominant species decreased 61.8%, 76.1% and 78.2% respectively. This effective decrease of algae load on conventional process created favorable conditions for water treatment. Analysis indicates that food habit of silver carp and algae size are two causes of different removal efficiency between cyanobacteria and green algae. The results show that biomanipulation of silver carp is applicable for treating algae-laden raw water in which colonial cyanobacteria is dominant. PMID:18649519

  10. An algal removal using a combination of flocculation and flotation processes.

    PubMed

    Phoochinda, W; White, D A; Briscoe, B J

    2004-12-01

    The paper describes certain facets of the removal of the algae (Scenedesmus quadricauda) from water, using a froth flotation separation method, in conjunction with two types of surfactants, (cetyltrimethylammonium bromide) CTAB and (sodium dodecylsulfate) SDS. A 90% algal removal efficiency was achieved when 100 mg l(-1) of CTAB was used whereas for the SDS solutions, the same concentration gave, by comparison, a very poor algal removal efficiency. An addition of 1 mg l(-1) of a commercial cationic polyelectrolyte, which was the optimal concentration as was evident from the zeta potential and the particle size distribution measurements, prior to the SDS addition resulted in a formation of algal flocs and consequently a substantial improvement in the extent of the algal removal. A 50 mg l(-1) solution of SDS was found to be the optimal concentration to completely remove these algal flocs from water. The amount of water removed along with the algal flocs, produced using 1 mg l(-1) of the commercial polyelectrolyte and subsequently removed using SDS, was comparatively lower than that removed with the algal cells when CTAB was used as the 'collector'. It was generally found, in this study, that an addition of the polyelectrolyte improved the removal efficiencies and the rate of separation and also decreased the amount of the associated water removed along with the algal sludge. PMID:15691199

  11. CLOSING THE CARBON LOOP: GROWING ALGAE USING SUSTAINABLE CO2 FROM BIO-WASTE

    EPA Science Inventory

    Record oil prices, poor air quality, and the threat of global warming have resulted in renewed interest in micro algae for its great potential as a biofuels feedstock. However, research is predominantly focused on growing algae with coal flue gas, and extracting the algae oils...

  12. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  13. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  14. Relationship between carbohydrate movement and the symbiosis in lichens with green algae.

    PubMed

    Hill, D J; Ahmadjian, V

    1972-09-01

    When isolated in pure culture, four genera of lichen algae were able to produce the polyol which is known to move from the alga to the fungus in lichens with these algae. This conclusion corrects earlier suggestions that the mobile polyol is only formed by the alga in the lichen thallus. Stichococcus produced sorbitol and it is therefore suggested that, in lichens with this alga, sorbitol moves between the symbionts. Hyalococcus and Stichococcus had a similar pattern of incorporation of H(14)CO 3 (-) in the light, suggesting a close relationship between these algae which are only separated now on morphological grounds.The pattern of incorporation of H(14)CO 3 (-) in the light into Cladonia cristatella and its alga (Trebouxia erici) in culture indicates that in the cultured algae more (14)C was incorporated into ethanol insoluble substances and lipids and less into ribitol than in the lichen. The pattern in a joint culture of the alga and the fungus of C. cristatella was approximately intermediate between that of the lichen and the alga. However, only a small amount of (14)C fixed by the alga reached the fungus in the joint culture, and it is therefore suggested that the presence of the fungus without morphological differentiation into a lichen thallus is not sufficient to promote the alga to release carbohydrate. PMID:24481561

  15. Spectral shifting by dyes to enhance algae growth.

    PubMed

    Prokop, A; Quinn, M F; Fekri, M; Murad, M; Ahmed, S A

    1984-11-01

    The photosynthetic growth action spectrum of a green alga at three bands of visible light (blue, orange, and red) at fixed quanta input and under light-limiting conditions was measured in a batch cultivation system. Quantum efficiencies (biomass dry weight increment per quanta absorbed) were better in the yellow-red region than in the blue region. Results served as a basis for the design and optimization of a dye system that would shift the energy of solar radiation to the required wavelength range by absorbing ultraviolet to blue radiation and emitting in the yellow-red, thus enhancing algae growth. Direct incorporation of dyes into the growth medium, although theoretically expected to enhance growth, in fact resulted in dye decomposition, toxicity to algae and consequently in growth inhibition. Indirect application of dyes in a double tubular reactor (algae inside and dye solution outside) demonstrated growth enhancement for certain dyes with high quantum yields and stability, which had suitable absorption/emission spectra for artificial light sources used. The maximum indirect growth enhancement was obtained using rhodamine 6G at a concentration of 3x10(-5)M with tungsten filament lamp sources. PMID:18551655

  16. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  17. Biodegradation of phenols by the alga Ochromonas danica.

    PubMed Central

    Semple, K T; Cain, R B

    1996-01-01

    The eukaryotic alga Ochromonas danica, a nutritionally versatile, mixotrophic chrysophyte, grew on phenol as the sole carbon source in axenic culture and removed the phenol carbon from the growth medium. Respirometric studies confirmed that the enzymes involved in phenol catabolism were inducible and that the alga oxidized phenol; the amount of oxygen consumed per mole of oxidized substrate was approximately 65% of the theoretical value. [U-14C]phenol was completely mineralized, with 65% of the 14C label appearing as 14CO2, approximately 15% remaining in the aqueous medium, and the rest accounted for in the biomass. Analysis of the biomass showed that 14C label had been incorporated into the protein, nucleic acid, and lipid fractions; phenol carbon is thus unequivocally assimilated by the alga. Phenol-grown cultures of O. danica converted phenols to the corresponding catechols, which were further metabolized by the meta-cleavage pathway. This surprising result was rigorously confirmed by taking the working stock culture through a variety of procedures to check that it was axenic and repeating the experiments with algal extracts. This is, as far as is known, the first definitive identification of the meta-cleavage pathway for aromatic ring degradation in a eukaryotic alga, though its incidence in other eukaryotes has been (infrequently) suggested. PMID:8919787

  18. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  19. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  20. Ecological assessments with algae: a review and synthesis.

    PubMed

    Stevenson, Jan

    2014-06-01

    Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site-specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional-scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management. PMID:26988318

  1. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems. PMID:23876487

  2. Basis for the Resistance of Several Algae to Microbial Decomposition

    PubMed Central

    Gunnison, Douglas; Alexander, Martin

    1975-01-01

    The basis for the resistance of certain algae to microbial decomposition in natural waters was investigated using Pediastrum duplex, Staurastrum sp., and Fischerella muscicola as test organisms. Enzyme preparations previously found to convert susceptible algae into spheroplasts had no such effect on the resistant species, although glucose and galacturonic acid were released from P. duplex walls. Little protein or lipid but considerable carbohydrate was found in the walls of the refractory organisms, but resistance was not correlated with the presence of a unique sugar monomer. A substance present in Staurastrum sp. walls was characterized as lignin or lignin-like on the basis of its extraction characteristics, infrared spectrum, pyrolysis pattern, and content of an aromatic building block. Sporopollenin was found in P. duplex, and cellulose in Staurastrum sp. Cell walls of the algae were fractionated, and the fractions least susceptible to microbial degradation were the sporopollenin of P. duplex, the polyaromatic component of Staurastrum sp., and two F. muscicola fractions containing several sugar monomers. The sporopollenin content of P. duplex, the content of lignin or a related constituent of Staurastrum sp., and the resistance of the algae to microbial attack increased with age. It is suggested that resistance results from the presence of sporopollenin in P. duplex, a lignin-like material in Staurastrum sp., and possibly heteropolysaccharides in F. muscicola. PMID:808166

  3. THE OCCURRENCE OF HORMESIS IN PLANTS AND ALGAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-algae Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one fung...

  4. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption. PMID:26964936

  5. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%). PMID:11014298

  6. Settlement of marine periphytic algae in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Nayar, S.; Goh, B. P. L.; Chou, L. M.

    2005-08-01

    This note describes settlement studies of marine periphytic algae on glass substrata in a tropical estuary in Singapore. The rates of production in terms of 14C radiotracer uptake, biomass in terms of chlorophyll a, community structure and cell abundance were measured from the settled periphytic algae at various depths in the water column and compared with the prevailing hydrographical conditions. Relatively higher periphytic algal settlement was observed at 1 m depth, even though it was not statistically different from other depths. Diatoms such as Skeletonema costatum and Thalassiosira rotula dominated the assemblage, together with the marine cyanobacteria Synechococcus sp. The three settlement parameters viz., periphytic algal production, chlorophyll a and cell counts showed significant differences between the days of settlement, with no significant differences observed for different depths. The periphytic algal community in this study comprised 30 microalgal species, dominated by diatoms (78%), followed by cyanobacteria (19% - primarily Synechococcus sp.), green flagellates (1%), dinoflagellates (1%) and other forms accounting for the remaining 1% of the total cell counts. Correlation studies and principal component analysis (PCA) revealed significant influence of silicate concentrations in the water column with the settlement of periphytic algae in this estuary. Though photoinhibited at the surface, photosynthetically available radiation did not seem to influence the overall settlement of periphytic algae. Diatoms and Synechococcus in the periphytic algal community were influenced by water temperature, PAR, pH and dissolved oxygen as seen in the PCA plots.

  7. A review of heavy metal adsorption by marine algae

    NASA Astrophysics Data System (ADS)

    Jin-Fen, Pan; Rong-Gen, Lin; Li, Ma

    2000-09-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  8. Antibiotic activity of lectins from marine algae against marine vibrios.

    PubMed

    Liao, W-R; Lin, J-Y; Shieh, W-Y; Jeng, W-L; Huang, R

    2003-07-01

    Saline and aqueous ethanol extracts of marine algae and the lectins from two red algal species were assayed for their antibiotic activity against marine vibrios. Experimental studies were also carried out on the influence of environmental factors on such activity, using batch cultures. The results indicated that many of the saline extracts of the algal species were active and that the activity was selective against those vibrios assayed. The algal extracts were active against Vibrio pelagius and the fish pathogen V. vulnificus, but inactive against V. neresis. Algal lectins from Eucheuma serra (ESA) and Galaxaura marginata (GMA) strongly inhibited V. vulnificus but were inactive against the other two vibrios. The antibacterial activity of algal extracts was inhibited by pretreatment with various sugars and glycoprotein. Extracts of the two red algae, E. serra and Pterocladia capillacea, in saline and aqueous ethanol, inhibited markedly the growth rate of V. vulnificus at very low concentrations. Culture results indicated that metabolites active against V. vulnificus were invariably produced in P. capillacea over a wide range of temperature, light intensity, and nutritional conditions. Enhanced antibacterial activity occurred when P. capillacea was grown under higher irradiance, severe nutrient stress and moderate temperature (20 degrees C), reflecting the specific antibiotic characteristics of this alga. The strong antibiotic activity of lectins towards fish pathogenic bacteria reveals one of the important roles played by algal lectins, as well as the potential high economic value of those marine algae assayed for aquaculture and for biomedical purposes. PMID:12884128

  9. INFLUENCE OF ALGAE ON PHOTOLYSIS RATES OF CHEMICALS IN WATER

    EPA Science Inventory

    Sunlight-induced algal transformations of 22 nonionic organic chemicals were studied in order to provide kinetic results and equations concerning the influence of algae on the behavior of pollutants in freshwater environments. Screening studies indicated that green and blue-green...

  10. ASPECTS OF PHOSPHATE UTILIZATION BY BLUE-GREEN ALGAE

    EPA Science Inventory

    The effects of various external phosphate concentrations on physiological and cytological aspects of Plectonema boryanum have been studied. P. boryanum was found to tolerate a wide range of phosphate concentrations, from 1 to 1000 mg of phosphate per liter. Growth of the alga in ...

  11. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis

    PubMed Central

    Paasch, Amber E.; Graham, Linda E.; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  12. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  13. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  14. Survey of Hydrogenase Activity in Algae: Final Report

    SciTech Connect

    Brand, J. J.

    1982-04-01

    The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.

  15. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae. PMID:24369344

  16. BIOCONCENTRATION OF A HEXACHLOROBIPHENYL IN GREAT LAKES PLANKTONIC ALGAE

    EPA Science Inventory

    The bioconcentration of 2,4,5,2',4',5'-hexachlorobiphenyl (HCB) was examined in the Great Lakes algae Fragilaria crotonensis, Ankistrodesmus falcatus, and Microcystis sp. The bioconcentration factors varied from species to species, whether they were expressed in terms of cell num...

  17. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis.

    PubMed

    Satjarak, Anchittha; Paasch, Amber E; Graham, Linda E; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  18. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  19. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains.

    PubMed

    Han, Lin; Pei, Haiyan; Hu, Wenrong; Han, Fei; Song, Mingming; Zhang, Shuo

    2014-08-01

    In this work, four microalgae including Chlorella sp. SDEC-10, Chlorella ellipsoidea SDEC-11, Scenedesmus bijuga SDEC-12 and Scenedesmus quadricauda SEDC-13 isolated from a local lake have been investigated for the properties of growth, nutrient removal and lipid accumulation in synthetic sewage. Their biomass ranged between 0.4 and 0.5g/L. The total phosphorus removal efficiency of four strains was nearly 100%, but in the case of total nitrogen and ammonium the removal efficiency was relatively low. Their lipid content, ranging from 25.92% to 27.76% and corresponding to the lipid productivity 7.88-18.08mg/L/d, was higher than that obtained in BG-11. Palmitic acid and oleic acid were the predominant compositions found through fatty acids analysis. S. quadricauda SDEC-13 performed best both in nutrient removal and in lipid production among the four strains. PMID:24731916

  20. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.

    PubMed

    Deng, Lin; Wang, Hongli; Deng, Nansheng

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (lambda = 365 nm, 250 W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0 mg L(-1) and initial algae concentration ranged from ABS(algae) (the absorbency of algae) = 0.025 to ABS(algae) = 0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250 W metal halide lamps was V0 = kC(0)(0.1718)A(algae)(0.5235) (C0 was initial concentration of Cr(VI); A(algae) was initial concentration of algae) under the condition of pH 4. PMID:16839665

  1. Recovery of dilute metal ions by biosorption on river algae and its component

    SciTech Connect

    Fujita, Toyohisa; Kogita, Hiroki; Mamiya, Mitsuo; Yen, W.T.

    1995-12-31

    Green algae taken from an acidic mine drainage and blue-green algae take from an alkaline hot spring stream were collected and tested for their ability to recover or remove dilute metal ions. Experimental results demonstrated that unwashed blue-green algae and washed green algae effectively adsorbed base metals ions and eluted the at pH 1. It was also found that washed and dried algae adsorbed precious metal ions more effectively than unwashed algae. For example, the washed and dried blue-green algae was capable of adsorbing 0.31 kg of gold pre kg of algae. The gold from tetrachloroaurate solution which was adsorbed on washed blue-green algae was found to change to a metallic state following initial metal binding. In the case of a dilute gold complex solution leached with thiourea, only a small amount of gold could be captured by algae. Further experiments were conducted on components of the algae, such as alginic acid, agar, cellulose and chitin and mixtures of these components, in order to determine their contribution to metal adsorption characteristics. However, a mixture of these two components demonstrated both good adsorption and desorption characteristics indicating an interaction between the individual components.

  2. A New Noncalcified Dasycladalean Alga from the Silurian of Wisconsin

    USGS Publications Warehouse

    LoDuca, S.T.; Kluessendorf, Joanne; Mikulic, Donald G.

    2003-01-01

    Noncalcified thalli, consisting of a narrow main axis with numerous branched hairlike laterals in whorls and a subapical array of undivided clavate laterals, from the Silurian (Llandovery) Brandon Bridge Formation of southeastern Wisconsin, constitute the basis for a new genus and species of dasycladalean alga, Heterocladus waukeshaensis. A relationship within the family Triploporellaceae is indicated by the whorled arrangement of the laterals and the absence of gametophores on mature specimens. A compilation of occurrence data suggests that noncalcified dasyclads, as a whole, were more abundant and diverse during the Ordovician and Silurian than at any other time in their history. The heterocladous thallus architecture of this alga adds to a wide range of morphological variation documented among Ordovician and Silurian dasyclads, the sum of which indicates that Dasycladales underwent a significant evolutionary radiation during the early Paleozoic.

  3. Determination of aliphatic hydrocarbons in the alga Himanthalia elongata.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2004-02-01

    The algae considered new foods according to Regulation CE 258/97 need a guarantee of their healthfulness before being in the European market. In this work ten samples of the brown alga Himanthalia elongata have been analyzed with the aim of verifying the absence of aliphatic hydrocarbons, due to the ability of the macroalgae to capture lipophilic organic compounds of the marine water coming from accidental or continuous leaks of raw oil and refined products, which happen each year with the growth of the industrialization and the demand of energy. The fat of the samples were Soxhlet extracted using hexane:dichloromethane (1:1) for 7h. The organic fractions were purified using silica microcolumns. The identification and quantification of the aliphatic hydrocarbons have been carried out using gas chromatography (GC) with flame ionization detector (FID). The total hydrocarbon content was between 14.8 and 40.2 microg g(-1) dry weight. PMID:14759670

  4. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  5. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  6. Antiallergic benefit of marine algae in medicinal foods.

    PubMed

    Kim, Se-Kwon; Vo, Thanh-Sang; Ngo, Dai-Hung

    2011-01-01

    The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the past two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control, or even cure these disorders with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is essential to isolate novel antiallergic therapeutics from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This contribution focuses on antiallergic agents derived from marine algae and presents an overview of their potential application in medicinal foods for the treatment of allergic disorders. PMID:22054954

  7. Bioremoval of toxic elements with aquatic plants and algae

    SciTech Connect

    Wang, T.C.; Ramesh, G.; Weissman, J.C.; Varadarajan, R.; Benemann, J.R.

    1995-12-31

    Aquatic plants were screened to evaluate their ability to adsorb dissolved metals. The plants screened included those that are naturally immobilized (attached algae and rooted plants) and those that could be easily separated from suspension (filamentous microalgae, macroalgae, and floating plants). Two plants were observed to have high adsorption capabilities for cadmium (Cd) and zinc (Zn) removal: one blue green filamentous alga of the genus Phormidium and one aquatic rooted plant, water milfoil (Myriophyllum spicatum). These plants could also reduce the residual metal concentration to 0.1 mg/L or less. Both plants also exhibited high specific adsorption for other metals (Pb, Ni, and Cu) both individually and in combination. Metal concentrations were analyzed with an atomic absorption spectrophotometer (AAS).

  8. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  9. Biosorption of lead and nickel by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B. . Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  10. Green Algae as Model Organisms for Biological Fluid Dynamics*

    PubMed Central

    Goldstein, Raymond E.

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068

  11. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms.

    PubMed

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. PMID:27054497

  12. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

    PubMed Central

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001 PMID:27054497

  13. A preliminary study on automated freshwater algae recognition and classification system

    PubMed Central

    2012-01-01

    Background Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap. Results The development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%. Conclusions This study

  14. Evidence of ancient genome reduction in red algae (Rhodophyta).

    PubMed

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. PMID:26986787

  15. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  16. Cytotoxic sterols from the formosan brown alga Turbinaria ornata.

    PubMed

    Sheu, J H; Wang, G H; Sung, P J; Chiu, Y H; Duh, C Y

    1997-12-01

    Two hydroperoxysterols 24-hydroperoxy-24-vinyl-cholesterol (1) and 29-hydroperoxystigmasta-5,24(28)-dien-3beta-ol (2), and fucosterol (3) were isolated from the brown alga Turbinaria ornata (Sargassaceae). Hydroperoxide 2 is a new natural compound and was converted into 29-hydroxystigmasta-5,24 (28)-dien-3beta-ol (4) by reaction with LAH. Sterols 1, 2, and 4 exhibited cytotoxicity against various cancer cell lines. PMID:17252381

  17. Mathematical simulation of photophobic responses in blue-green algae

    SciTech Connect

    Hader, D.P.; Burkart, U.

    1982-01-01

    A computer model is described to simulate photophobic reversal of blue-green algae. The model is based on electrical potential changes within the cells, which are treated as separate compartments. The updating of potentials is accomplished through iterative calculation of recurrence equations, permitting easy programming for computer calculation. The influence of a number of conditions on photophobic reversal has been studied, and the predictions of the model have been verified by experiments with the living organisms.

  18. Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium).

    PubMed

    Hagedorn, M; Carter, V L; Leong, J C; Kleinhans, F W

    2010-04-01

    Coral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained. The focus of this paper was to understand some of the cryo-physiology of the endosymbiotic algae, Symbiodinium, living within three species of Hawaiian coral, Fungia scutaria, Porites compressa and Pocillopora damicornis in Kaneohe Bay, Hawaii. Although cryopreservation of algae is common, the successful cryopreservation of these important coral endosymbionts is not common, and these species are often maintained in live serial cultures within stock centers worldwide. Freshly-extracted Symbiodinium were exposed to cryobiologically appropriate physiological stresses and their viability assessed with a Pulse Amplitude Fluorometer. Stresses included sensitivity to chilling temperatures, osmotic stress, and toxic effects of various concentrations and types of cryoprotectants (i.e., dimethyl sulfoxide, propylene glycol, glycerol and methanol). To determine the water and cryoprotectant permeabilities of Symbiodinium, uptake of radio-labeled glycerol and heavy water (D(2)O) were measured. The three different Symbiodinium subtypes studied demonstrated remarkable similarities in their morphology, sensitivity to cryoprotectants and permeability characteristics; however, they differed greatly in their sensitivity to hypo- and hyposmotic challenges and sensitivity to chilling, suggesting that standard slow freezing cryopreservation may not work well for all Symbiodinium. An appendix describes our H(2)O:D(2)O water exchange experiments and compares the diffusionally determined permeability with the two parameter model osmotic permeability. PMID:19857482

  19. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  20. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  1. Viruses of symbiotic Chlorella-like algae isolated from Paramecium bursaria and Hydra viridis

    PubMed Central

    Van Etten, James L.; Meints, Russel H.; Kuczmarski, Daniel; Burbank, Dwight E.; Lee, Kit

    1982-01-01

    We previously reported that isolation of symbiotic Chlorella-like algae from the Florida strain of Hydra viridis induced replication of a virus (designated HVCV-1) in the algae. We now report that isolation of symbiotic Chlorella-like algae from four other sources of green hydra and one source of the protozoan Paramecium bursaria also induced virus synthesis. Algae from one of these hydra contained a virus identical to HVCV-1 (based on its rate of sedimentation, buoyant density, reaction to HVCV-1 antiserum, and DNA restriction fragments) whereas algae from the other three hydra contained another similar, but distinct, virus (designated HVCV-2). The virus from the paramecium algae (designated PBCV-1) was distinct from both HVCV-1 and HVCV-2. The symbiotic algae in the hydra could also be distinguished ultrastructurally. Chloroplasts of both algae that produced HVCV-1 lacked a pyrenoid whereas chloroplasts of the other three symbiotic algae contained pyrenoids. Since all symbiotic eukaryotic algae we have examined have had virus, a potential viral role in symbiosis is suggested. Images PMID:16593198

  2. The effects of graphene oxide on green algae Raphidocelis subcapitata.

    PubMed

    Nogueira, P F M; Nakabayashi, D; Zucolotto, V

    2015-09-01

    Graphene represents a new class of nanomaterials that has attracted great interest due to its unique electrical, thermal, and mechanical properties. Once disposed in the environment, graphene can interact with biological systems and is expected to exhibit toxicological effects. The ecotoxicity of graphene and its derivatives, viz.: graphene oxide (GO) depends on their physicochemical properties, including purity, diameter, length, surface charge, functionalization and aggregation state. In this study we evaluated the effects of graphene oxide (GO) on green algae Raphidocelis subcapitata. The algae were exposed to different concentrations of GO pre-equilibrated for 24h with oligotrophic freshwater medium (20ml) during incubation in a growth chamber under controlled conditions: 120μEm(-2)s(-1) illumination; 12:12h light dark cycle and constant temperature of 22±2°C. Algal growth was monitored daily for 96h by direct cell counting. Reactive oxygen species level (ROS), membrane damage (cell viability) and autofluorescence (chl-a fluorescence) were evaluated using fluorescent staining and further analyzed by flow cytometry. The toxic effects from GO, as observed in algal density and autofluorescence, started at concentrations from 20 and 10μgmL(-1), respectively. Such toxicity is probably the result of ROS generation and membrane damage (cell viability). The shading effect caused by GO agglomeration in culture medium may also contribute to reduce algal density. The results reported here provide knowledge regarding the GO toxicity on green algae, contributing to a better understanding of its environmental behavior and impacts. PMID:26204245

  3. Microwave-enhanced pyrolysis of natural algae from water blooms.

    PubMed

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. PMID:27128164

  4. Measurement of Carbon Dioxide Compensation Points of Freshwater Algae 1

    PubMed Central

    Birmingham, Brendan C.; Colman, Brian

    1979-01-01

    A technique is described for the measurement of total dissolved inorganic carbon by acid release as CO2 followed by its conversion to methane and detection by flame ionization in a modified gas chromatograph. This method was used to determine the dissolved inorganic carbon concentration reached at compensation point when algae were allowed to photosynthesize in a closed system in a buffer at known pH, and the CO2 compensation point was calculated from this concentration. The CO2 compensation points of 16 freshwater algae were measured at acid and alkaline pH in air-saturated medium: at acid pH the CO2 compensation points ranged from 4.8 to 41.5 microliters per liter while at alkaline pH they ranged from 0.2 to 7.2 microliters per liter. Removal of O2 from the medium caused a slight lowering of compensation point at acid pH but had little effect at alkaline pH. These low, O2-insensitive compensation points are characteristic of C4 plants. It is suggested that these low CO2 compensation points are maintained by an active bicarbonate uptake by algae especially at alkaline pH. PMID:16661077

  5. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering. PMID:25636485

  6. Unveiling privacy: advances in microtomography of coralline algae.

    PubMed

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (μCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths. PMID:25777060

  7. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    PubMed

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae. PMID:26108508

  8. Uptake and distribution of technetium in several marine algae

    SciTech Connect

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  9. Phycobilisome Heterogeneity in the Red Alga Porphyra umbilicalis1

    PubMed Central

    Algarra, Patricia; Thomas, Jean-Claude; Mousseau, Anne

    1990-01-01

    Phycobilisomes were isolated from Rhodophyceae brought from the field (Porphyra umbilicalis) or grown in culture under laboratory conditions (Antithamnion glanduliferum). In P. umbilicalis two kinds of well-coupled (ellipsoidal and hemidiscoidal) phycobilisomes were detected, in contrast to A. glanduliferum cultured algae in which only one kind of well-coupled, ellipsoidaltype phycobilisome appeared. The new phycobilisome-type particle detected in P. umbilicalis is characterized by an impoverishment in R-phycoerythrin and by sedimentation at lower density. The comparison between both phycobilisomes of P. umbilicalis allows determination of the presence of one colorless linker polypeptide (30 kilodaltons) associated with R-phycocyanin and allophycocyanin and two (40 and 38 kilodaltons) associated to R-phycoerythrin. The percentage of linker polypeptides associated with this pigment is low in the new phycobilisome-like particle detected. This suggests that part of the R-phycoerythrin is less strongly bound to the phycobilisome than the other pigments. This feature could probably explain the existence of two kinds of phycobilisomes as intermediary steps of phycobilisome organization in algae exposed to rapid changes in environmental factors. In contrast, algae growing in culture and adapted to specific conditions do not present intermediary organization steps. Polypeptide composition and identification are given for this phycobilisome-like particle. Images Figure 4 Figure 5 PMID:16667317

  10. Multicellularity in green algae: upsizing in a walled complex

    PubMed Central

    Domozych, David S.; Domozych, Catherine E.

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes,” uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  11. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments. PMID:23917560

  12. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  13. Treatment efficacy of algae-based sewage treatment plants.

    PubMed

    Mahapatra, Durga Madhab; Chanakya, H N; Ramachandra, T V

    2013-09-01

    Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates. PMID:23404546

  14. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  15. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  16. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  17. Sulfated phenolic acids from Dasycladales siphonous green algae.

    PubMed

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense. PMID:26188914

  18. Multicellularity in green algae: upsizing in a walled complex.

    PubMed

    Domozych, David S; Domozych, Catherine E

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  19. Origins of multicellular complexity: Volvox and the volvocine algae.

    PubMed

    Herron, Matthew D

    2016-03-01

    The collection of evolutionary transformations known as the 'major transitions' or 'transitions in individuality' resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae. PMID:26822195

  20. Towards tradable permits for filamentous green algae pollution.

    PubMed

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. PMID:27155255

  1. Multi-centennial reconstruction of Aleutian climate from coralline algae

    NASA Astrophysics Data System (ADS)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  2. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. PMID:26763322

  3. Sludge-grown algae for culturing aquatic organisms: Part II. Sludge-grown algae as feeds for aquatic organisms

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Hung, K. M.; Chiu, S. T.

    1996-05-01

    This project investigated the feasibility of using sewage sludge to culture microalgae ( Chlorella-HKBU) and their subsequent usage as feeds for rearing different organisms. Part II of the project evaluated the results of applying the sludge-grown algae to feed Oreochromis mossambicus (fish), Macrobrachium hainenese (shrimp), and Moina macrocopa (cladocera). In general, the yields of the cultivated organisms were unsatisfactory when they were fed the sludge-grown algae directly. The body weights of O. mossambicus and M. macrocopa dropped 21% and 37%, respectively, although there was a slight increase (4.4%) in M. hainenese. However, when feeding the algal-fed cladocerans to fish and shrimp, the body weights of the fish and shrimp were increased 7% and 11% accordingly. Protein contents of the cultivated organisms were comparable to the control diet, although they contained a rather high amount of heavy metals. When comparing absolute heavy metal contents in the cultivated organisms, the following order was observed: alga > cladocera > shrimp, fish > sludge extracts. Bioelimination of heavy metals may account for the decreasing heavy metal concentrations in higher trophic organisms.

  4. Endozoic algae in shelled gastropods — a new symbiotic association in coral reefs?

    NASA Astrophysics Data System (ADS)

    Berner, T.; Wishkovsky, A.; Dubinsky, Z.

    1986-10-01

    Live algae were found in the hepatopancreas and gonads of the Red Sea snail Strombus tricornis. These organs are constantly concealed within the upper whorls of the snail's shell. Light penetration was 5 15% of the incident light reaching the shell. Pigment analysis indicated the presence of chlorophyll a, c and peridinin, a composition resembling the Dinoflagellata. Chlorophyll a concentration in the algae was 1.18±0.36 pg chl/cell. 14C assimilation of isolated algae incubated in the light exceeded that of dark controls, demonstrating the photosynthetic activity of the endozoic algae.

  5. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  6. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    ERIC Educational Resources Information Center

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  7. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  8. RESPONSES OF MARINE UNICELLULAR ALGAE TO BROMINATED ORGANIC COMPOUNDS IN SIX GROWTH MEDIA

    EPA Science Inventory

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp., were exposed to the industrial brominated compounds, tetrabromobisphenol A (TBBP), decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromo...

  9. Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels

    NASA Astrophysics Data System (ADS)

    Davis, Ryan W.; Wu, Hauwen; Singh, Seema

    2014-03-01

    Microalgal biotechnology is a nascent yet burgeoning field for developing the next generation of sustainable feeds, fuels, and specialty chemicals. Among the issues facing the algae bioproducts industry, the lack of efficient means of cultivar screening and phenotype selection represents a critical hurdle for rapid development and diversification. To address this challenge, we have developed a multi-modal and label-free optical tool which simultaneously assesses the photosynthetic productivity and biochemical composition of single microalgal cells, and provides a means for actively sorting attractive specimen (bioprospecting) based on the spectral readout. The device integrates laser-trapping micro-Raman spectroscopy and pulse amplitude modulated (PAM) fluorometry of microalgal cells in a flow cell. Specifically, the instrument employs a dual-purpose epi-configured IR laser for single-cell trapping and Raman spectroscopy, and a high-intensity VISNIR trans-illumination LED bank for detection of variable photosystem II (PSII) fluorescence. Micro-Raman scatter of single algae cells revealed vibrational modes corresponding to the speciation and total lipid content, as well as other major biochemical pools, including total protein, carbohydrates, and carotenoids. PSII fluorescence dynamics provide a quantitative estimate of maximum photosynthetic efficiency and regulated and non-regulated non-photochemical quenching processes. The combined spectroscopic readouts provide a set of metrics for subsequent optical sorting of the cells by the laser trap for desirable biomass properties, e.g. the combination of high lipid productivity and high photosynthetic yield. Thus the device provides means for rapid evaluation and sorting of algae cultures and environmental samples for biofuels development.

  10. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.

    PubMed

    Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A

    2014-08-20

    We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours. PMID:25321139

  11. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    SciTech Connect

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.

  12. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE PAGESBeta

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  13. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass. PMID:26108504

  14. Multi-scale Characterization of Improved Algae Strains

    SciTech Connect

    Dale, Taraka T.

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  15. Receptor mediated mineralocorticoid action in alga cell mutants.

    PubMed

    Mirshahi, M; Mirshahi, A; Nato, A; Agarwal, M K

    1992-12-21

    The multiplication of Chlamydomonas cells can be arrested by the spirolactone derivative RU 26752 and this is fully reversible by the natural hormone aldosterone. Continuous growth in the presence of RU 26752 led to the isolation of a population subsequently resistant to the action of mineralocortoid analogues, due possibly to the selection of mutant cells. Immunophotochemical evidence is provided for a 52 kDa protein that possesses functional steroid and DNA binding domains. Alga cells therefore appear to respond to steroid hormones in a manner similar to the mammalian systems, possibly via a receptor that may represent a pygmy ancestor of the latter day steroid receptor superfamily. PMID:1334844

  16. The value of post-extracted algae residue

    DOE PAGESBeta

    Bryant, Henry; Gogichaishvili, Ilia; Anderson, David; Richardson, James; Sawyer, Jason; Wickersham, Tryon; Drewery, Merritt

    2012-07-26

    This paper develops a hedonic pricing model for post-extracted algae residue (PEAR), which can be used for assessing the economic feasibility of an algal production enterprise. Prices and nutritional characteristics of commonly employed livestock feed ingredients are used to estimate the value of PEAR based on its composition. We find that PEAR would have a value lower than that of soybean meal in recent years. The value of PEAR will vary substantially based on its characteristics. PEAR could have generated algal fuel co-product credits that in recent years would have ranged between $0.95 and $2.43 per gallon of fuel produced.

  17. The auxin concentration in sixteen Chinese marine algae

    NASA Astrophysics Data System (ADS)

    Han, Lijun

    2006-09-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1 46.9 ng/g Fw (fresh weight) with FS and 5.3 110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3 103 ng/g Fw reported previously from multiple references.

  18. [Antimicrobial activity of various algae of the Panamanian Atlantic coast].

    PubMed

    Gupta, M P; Gómez, N E; Santana, A I; Solis, P N; Palacios, G

    1991-01-01

    The methanolic extracts in 5 of 7 alagae from the Atlantic coast of Panama: Caulerpa racemosa, Halimeda opuntia, Gelidiela acerosa, Laurencia papillosa y Acanthophora spicifera, showed antimicrobial activity against Staphylococcus aureus and Bacillus subtilis in a concentration of 50 mg/ml by the cylinder plate method. None of the algae studies showed activity against Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The content of agar in Acanthophora spicifera was found to be the highest (33.5%) of all the species studied. PMID:2024058

  19. Multidimensional electronic spectroscopy of phycobiliproteins from cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Turner, Daniel

    2011-03-01

    We describe new spectroscopic measurements which reveal additional information regarding the observed quantum coherences in proteins extracted from photosynthetic algae. The proteins we investigate are the phycobiliproteins phycoerythrin 545 and phycocyanin 645. Two new avenues have been explored. We describe how changes to the chemical and biological environment impact the quantum coherence present in the 2D electronic correlation spectrum. We also use new multidimensional spectroscopic techniques to reveal insights into the nature of the quantum coherence and the nature of the participating states.

  20. Bioactivities from Marine Algae of the Genus Gracilaria

    PubMed Central

    de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096