Science.gov

Sample records for algae ulva lactuca

  1. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca.

    PubMed

    Egan, S; Thomas, T; Holmström, C; Kjelleberg, S

    2000-06-01

    It is widely accepted that bacterial epiphytes can inhibit the colonization of surfaces by common fouling organisms. However, little information is available regarding the diversity and properties of these antifouling bacteria. This study assessed the antifouling traits of five epiphytes of the common green alga, Ulva lactuca. All isolates were capable of preventing the settlement of invertebrate larvae and germination of algal spores. Three of the isolates also inhibited the growth of a variety of bacteria and fungi. Their phylogenetic positions were determined by 16S ribosomal subunit DNA sequencing. All isolates showed a close affiliation with the genus Pseudoalteromonas and, in particular, with the species P. tunicata. Strains of this bacterial species also display a variety of antifouling activities, suggesting that antifouling ability may be an important trait for members of this genus to be highly successful colonizers of animate surfaces and for such species to protect their host against fouling.

  2. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.

    PubMed

    Asnaoui, H; Laaziri, A; Khalis, M

    2015-01-01

    Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.

  3. Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca.

    PubMed

    de Araújo, Ianna Wivianne Fernandes; Rodrigues, José Ariévilo Gurgel; Quinderé, Ana Luíza Gomes; Silva, Jane de Fátima Teixeira; Maciel, Gabrielle de Freitas; Ribeiro, Natássia Albuquerque; de Sousa Oliveira Vanderlei, Edfranck; Ribeiro, Kátia Alves; Chaves, Hellíada Vasconcelos; Pereira, Karuza Maria Alves; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2016-11-01

    We investigated structural features of polysaccharides from Ulva lactuca and their effects on the classical models of nociception and inflammation. Crude extract was obtained by enzymatic digestion and isolated by ion exchange chromatography on DEAE-cellulose. The fraction with higher yield was used in the tests (SP-Ul). Swiss mice received SP-Ul (1, 3 or 9mg/kg; i.v.), 30min prior to injection of 0.8%-acetic acid or 1%-formalin or prior to a thermal stimulus. At same doses, SP-Ul was tested on Wistar rats on paw edema elicited by different irritants (carrageenan, dextran, bradykinin, histamine or serotonin). The results of infrared characterization indicated the presence of hydroxyl groups, sulfate, uronic acid and glycosidic linkages in all SP fractions spectrums. SP-Ul decreased significantly the antinociception in response to acetic acid or formalin (second phase), but not in the hot-plate test, suggesting that its analgesia occurs through a peripheral mechanism. SP-Ul did not reduce carrageenan-induced paw edema as supported by both histological and myeloperoxidase activity assessments. However, SP-Ul (1mg/kg; s.c.) reduced dextran-elicited edema, showing vascular anti-inflammatory effect, with bradykinin as major target because it did not reduce histamine- and serotonin-induced paw edemas. Therefore, SP-Ul acts on bradykinin pathway in its antinociceptive and anti-inflammatory responses.

  4. Metals in Ulva lactuca in Hong Kong intertidal waters

    SciTech Connect

    Ho, Y.B. )

    1990-07-01

    The levels of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in Ulva lactuca collected from 24 intertidal sites around the Island of Hong Kong were determined by flame atomic absorption spectrophotometry. Twelve of the sites are in the rural southern parts of the island where the coastal waters are relatively clean. The remaining 12 sites are located in the north and within Victoria Harbor which receives, apart from industrial effluents, untreated domestic sewage from a population of some 3.5 million. The mean levels of Mn, Fe, Ni, Cu, Zn and Pb in Ulva from the urban sites were respectively 4.0, 4.6, 1.8, 2.3, 2.4, and 4.6 times those from the rural sites. However, somewhat similar levels of Cd were found in the alga among all the sites. Some locations of high levels of metal contamination have been identified in Victoria Harbor. Preliminary findings indicated that Ulva is a good indicator of Mn, Fe, Cu, Zn and Pb contamination due to its cosmopolitan distribution, simple morphology leading to ease of growth assessment, and its graded tolerance and response to pollutants. 11 refs., 3 figs., 3 tabs.

  5. Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes.

    PubMed

    Dickson, D M; Wyn Jones, R G; Davenport, J

    1982-09-01

    A study has been made of the osmotic responses of the green intertidal alga, Ulva lactuca, under two fluctuating salinity regimes; sinusoidal and square-wave fluctuations between 30 and 100% sea water in a 12 h cycle. These regimes closely resemble the tidal fluctuation of salinity encountered by the alga in its natural estuarine habitat. Data on changes in the inorganic ions, potassium, sodium, chloride and sulphate; in the organic solute, dimethylsulphoniopropionate; in the total sugar levels and estimated osmotic and turgor pressures under the two salinity regimes are reported. Significant differences in the solute responses under these different conditions were detected. In general, better control of ion fluxes appeared to be exercised under the sinusoidal conditions which also buffered changes in dimethylsulphoniopropionate levels. Influxes of potassium were highly light-dependent. Chloride levels conspicuously failed to reach the steady-state levels in the 6-h-hyper-osmotic part of either the abrupt or gradual cycle. The possible significance of these data, which may better reflect osmotic changes in the natural environment, and some of the problems encountered, particularly in accounting for charge balance under some conditions, are discussed.

  6. Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation.

    PubMed

    Areco, María Mar; Hanela, Sergio; Duran, Jorge; Afonso, María dos Santos

    2012-04-30

    Many industries have high heavy metals concentrations in their effluents that should be treated before disposal in drains or natural watercourses. When adsorption process is evaluated to generate and implement an efficient, economical and sustainable method suitable for heavy metals removal from contaminated effluents, it is necessary to develop an experimental setup that contains the adsorbent. Ulva lactuca, a marine green alga, was studied as a natural biosorbent for heavy metals at acid pH conditions. Adsorption experiments were carried out in glass columns and in batch where the alga was suspended or fixed in an agar matrix. Langmuir and Freundlich models were applied to the experimental results. Langmuir model best describes the adsorption isotherms in all analyzed cases. The adsorption capacity increases with pH. Kinetic studies demonstrate that, in most studied cases, the adsorption follows a pseudo second order kinetics model. Removal efficiencies of the biomaterial supported in agar or fixed in columns were: fixed in columns>suspended in batch mode>fixed in agar. Finally, the effect of the presence of two sorbates, Cd and Pb, in the solution was measured and results demonstrate that adsorption of both metals are diminished by co/adsorption.

  7. The influence of sulfathiazole on the macroalgae Ulva lactuca.

    PubMed

    Leston, Sara; Nunes, Margarida; Viegas, Ivan; Nebot, Carolina; Cepeda, Alberto; Pardal, Miguel Ângelo; Ramos, Fernando

    2014-04-01

    Sulfonamides (SA) are a class of antibiotics routinely found in environmental matrices and therefore their role as contaminants should be investigated in non-target organisms. With this purpose the present experimental work has evaluated the exposure of the chlorophycean Ulva lactuca L. to sulfathiazole (STZ), a SA drug commonly used in aquaculture, at two concentrations representing prophylactic (25 μg mL(-1)) and therapeutic (50 μg mL(-1)) administrations. Results showed that STZ exhibits high stability in seawater with only 18% degradation over the 5d assay at both dosages tested. Also, macroalgae demonstrated an efficient uptake capacity with constant internal concentrations after 24h regardless of the external solutions and thus should be considered as a bioindicator species in risk assessment. Both STZ concentrations induced a slight inhibition of the macroalgae growth after 96 h.

  8. Assessment of trace element contamination and bioaccumulation in algae (Ulva lactuca), mussels (Perna perna), shrimp (Penaeus kerathurus), and fish (Mugil cephalus, Saratherondon melanotheron) along the Senegalese coast.

    PubMed

    Diop, Mamadou; Howsam, Michael; Diop, Cheikh; Goossens, Jean F; Diouf, Amadou; Amara, Rachid

    2016-02-15

    Concentrations of 11 elements were quantified in five marine species from different trophic levels of a food web (algae, mussel, shrimp and fish), representative for shallow Senegalese coastal waters, and including species of commercial importance. Significant differences in element concentrations and bioaccumulation were demonstrated, revealing the utility of employing a suite of organisms as bioindicators to monitor metal contamination in coastal areas. There was no clear seasonal pattern in concentration of elements, however inter-site differences were observed. Calculations of transfer factors for all the studied elements showed that transfer factors from water were greater than those from sediments. For shrimp and mussel, the concentrations of Pb and Cd were below the EU's maximum level for human consumption, however high concentrations of arsenic in shrimp were recorded at all sites.

  9. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  10. Differential toxic effects of Ulva lactuca (Chlorophyta) on the herbivorous gastropods, Littorina littorea and L. obtusata (Mollusca).

    PubMed

    Peckol, Paulette; Putnam, Alysha B

    2016-12-28

    Members of the genus Ulva are widespread and abundant in intertidal and shallow subtidal areas but there are conflicting data regarding susceptibility to herbivory. While some studies have documented that Ulva spp. were favored by a diversity of marine herbivores, other work has revealed herbivore deterrence. We investigated grazing and growth rates of the littorinid species, Littorina littorea and L. obtusata, when offered Fucus vesiculosus, Ascophyllum nodosum, Ulva lactuca, and Chondrus crispus, highlighting distinctive vulnerabilities to toxic effects of U. lactuca. Ulva lactuca was the preferred food of L. littorea, while L. obtusata showed no grazing on this ephemeral algal species. In contrast, F. vesiculosus was highly preferred by L. obtusata. Although L. littorea demonstrated a grazing preference for U. lactuca, growth rate of this gastropod species was nearly 3× greater when fed F. vesiculosus, suggesting a non-lethal, negative effect of U. lactuca on L. littorea with long-term exposure. Mortality of L. obtusata ranged from 0% to 100% when held in the presence of various Ulva densities for 1 week, and Ulva exudate depressed herbivory of this gastropod. We conclude that the water-soluble, toxic exudate produced by U. lactuca in response to herbivory had allelochemical properties, and may contain a cleavage product (acrylic acid) of dimethylsulfoniopropionate or reactive oxygen species (i.e., H2 O2 ). Observed differences in susceptibility to Ulva toxicity by the littorinid species may be related to generalist versus specialist feeding and habitat strategies.

  11. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L).

  12. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels.

    PubMed

    Bikker, Paul; van Krimpen, Marinus M; van Wikselaar, Piet; Houweling-Tan, Bwee; Scaccia, Nazareno; van Hal, Jaap W; Huijgen, Wouter J J; Cone, John W; López-Contreras, Ana M

    2016-01-01

    The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg(-1) dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L(-1) sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg(-1) in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

  13. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.

  14. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    PubMed

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water.

  15. Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca.

    PubMed

    Vonlanthen, Sofie; Brown, Murray T; Turner, Andrew

    2011-01-01

    The degradation of the synthetic, amphoteric surfactant, cocamidopropyl betaine (CAPB) and its toxicity to the marine macroalga, Ulva lactuca, has been evaluated using several different physiological test end-points over different periods of exposure up to 120 h. Droplet surface angle measurements revealed that, following a period of acclimation of about 24 h, CAPB began to degrade and that primary degradation was complete within 120 h. Effective quantum yield (∆F/F(m)') and relative growth rates (RGRs) were the most sensitive measures of phytotoxicity, with CAPB concentrations at and above 10 mg l(-1) eliciting irreversible, time-dependent and/or dose-dependent responses. Cell membrane damage, estimated from measurements of ion leakage, was detected only at a concentration of 40 mg l(-1) after 48 h of exposure to CAPB but by 120 h damage was evident at all measured concentrations above 10 mg l(-1). These observations suggest that both CAPB and its metabolites are intrinsically toxic to U. lactuca. The findings of this study are discussed in terms of the environmental consequences of applying CAPB to control harmful algal blooms.

  16. Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of Ulva lactuca.

    PubMed

    Hussein, Usama K; Mahmoud, Hamada M; Farrag, Asmaa G; Bishayee, Anupam

    2015-11-01

    Hepatocellular carcinoma (HCC) is one of the common cancers and lethal diseases worldwide. Both oxidative stress and chronic inflammation contribute to the pathogenesis of HCC. Because of limited treatment options and a grave prognosis of HCC, preventive management has been emphasized. The marine macroalgae Ulva lactuca (Ulvaceae) is consumed by humans and livestock because of its nutritional value. Recent studies showed that various extracts of U. lactuca possess antiviral, antiplasmodial, antinephrotoxic, antioxidant, and anti-inflammatory properties. However, very limited information is available on anticancer potential of U. lactuca with no reports on liver cancer chemopreventive efficacy of this marine algae. Accordingly, the present study was initiated to evaluate the possible antihepatocarcinogenic effects and antioxidant mechanisms of action of various U. lactuca extracts against a clinically relevant rodent model of HCC. Initiation of hepatocarcinogenesis was performed in Sprague-Dawley rats by a single injection of dietary carcinogen diethylnitrosamine (DENA, 200 mg/kg, intraperitoneally), followed by promotion with phenobarbital (0.05%) in drinking water. The rats were fed with daily oral dose (50 mg/kg) of polysaccharide sulfate or aqueous extract of U. lactuca for 2, 12, and 24 weeks. At these timepoints, blood samples were taken to measure hepatic injury markers, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, and bilirubin. The liver tissue was harvested for measurement of hepatic oxidative indices, including lipid peroxidation, reduced glutathione, nitric oxide, catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase. Hepatic histopathology, immunohistochemical analysis of cell proliferation and apoptosis by DNA fragmentation assay were performed. Our results clearly indicate that sulfated polysaccharides of U. lactuca exert a marked chemoprevention of DENA

  17. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities

    PubMed Central

    FitzGerald, Jamie A.; Allen, Eoin; Wall, David M.; Jackson, Stephen A.; Murphy, Jerry D.; Dobson, Alan D. W.

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  18. Decontamination treatments to eliminate problem biota from macroalgal tank cultures of Osmundea pinnatifida, Palmaria palmata and Ulva lactuca.

    PubMed

    Kerrison, Philip D; Le, Hau Nhu; Twigg, Gail C; Smallman, Duncan R; MacPhee, Rory; Houston, Fiona A B; Hughes, Adam D

    2016-01-01

    The effect of a range of chemical disinfectants at different concentration and exposure times was investigated on five macroalgal species and the marine gastropod Littorina spp. Palmaria palmata, Osmundea pinnatifida and Ulva lactuca are commercially valuable and are often cultivated in tanks for food or feed. Ectocarpus siliculosus and Ulva intestinalis are common epiphytes of P. palmata and O. pinnatifida cultures, whilst Littorina spp. are common herbivorous epibionts within U. lactuca culture tanks. These contaminants reduce the productivity and quality of the culture as a food. Differential tolerance to the treatments was seen between the algal species using pulse-amplitude modulation (PAM) chlorophyll a fluorescence, a few hours and a week following treatment. We identified treatments that selectively damaged the epiphyte but not the basiphyte species. Ectocarpus siliculosus had a significantly lower tolerance to 1 % sodium hypochlorite than P. palmata, and to 25 % methanol than O. pinnatifida, with a 1-5 min exposure appearing most suitable. Ulva intestinalis had a significantly lower tolerance than P. palmata and O. pinnatifida to many disinfectants: 0.1-1 % sodium hypochlorite for 10 min, 0.5 % potassium iodide for up to 10 min, and 0.25 % Kick-start (a commercial aquaculture disinfectant solution) for 1-5 min. No treatment was able to kill the gastropod snails without also damaging U. lactuca, although agitation in freshwater for an hr may cause them to detach from the basiphyte, with little to no photophysiological impact seen to U. lactuca. This experiment forms the basis for more extended commercial trials.

  19. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca.

    PubMed

    Thanh, Thi Thu Thuy; Quach, Thi Minh Thu; Nguyen, Thi Nu; Vu Luong, Dang; Bui, Minh Ly; Tran, Thi Thanh Van

    2016-12-01

    The structure of an ulvan obtained by water extraction from green seaweed Ulva lactuca was elucidated by using IR, NMR, SEC-MALL and ESIMS methods. The ulvan was also evaluated for its cytotoxic effects on three human cancer cell lines. The results showed that the ulvan was composed of rhamnose, galactose, xylose, manose, glucose (with a mole ratio of Rha: Gal: Xyl: Man: Glu equal to 1: 0.03: 0.07: 0.01: 0.06), uronic acid (21.5%) and sulfate content (18.9%) with a molecular weight of 347000. This ulvan mainly consists of disaccharide [→4)-β-d-GlcA-(1→4)-α-l-Rha3S-(1→] and other minor disaccharide β-GlcA-(1→2)-α-Xyl and β-GlcA-(→2)-α-Rha. The ulvan showed a significant cytotoxic activity against hepatocellular carcinoma (IC50 29.67±2.87μg/ml), human breast cancer (IC50 25.09±1.36μg/ml), and cervical cancer (IC50 36.33±3.84μg/ml).

  20. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    PubMed

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  1. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea.

    PubMed

    Tian, Hua; Yin, Xueqiong; Zeng, Qinghuan; Zhu, Li; Chen, Junhua

    2015-08-01

    Two polysaccharides (ULP1 and ULP2) were isolated through ultrasonic-assisted extraction from green seaweed Ulva lactuca L. which was collected from the South China Sea. The highest yield of 17.57% was obtained under the conditions of 2% NaOH, 90 °C, material/water mass ratio 1:80, liquid extraction 5h and subsequent ultrasound-assisted extraction 1h. The structure of ULPs were characterized with periodate oxidation followed by Smith degradation, (1)H NMR, (13)C NMR spectroscopy, FTIR, and GPC. The molecular weights of ULP1 and ULP2 were 189 kDa and 230 kDa, respectively. The structural characteristics of ULP1 and ULP2 were quite similar. They were composed of rhamnose, xylose, glucose, and glucuronic acid. The content of rhamnose, xylose, glucose, glucuronic acid, sulfate was 51.2%, 12.3%, 20.1%, 16.4%, 12.0% for ULP1, respectively, and 60.8%, 14.2%, 8.2%, 16.8%, 26.8%, respectively, for ULP2. Both ULP1 and ULP2 showed good surface activity. 5 mg/mL ULP1 (2.62×10(-2) mmol/L) decreased the water surface tension to 51.63 mN/m. The critical micellar concentration of ULP1 and ULP2 was 1.01 mg/mL (5.3×10(-3) mmol/L) and 1.14 mg/mL (5.0×10(-3) mmol/L), respectively.

  2. [Seasonal variations of metal contents (Cd, Cu, Fe, Mn and Zn) in seaweed Ulva lactuca from the coast of El Jadida city (Morocco)].

    PubMed

    Kaimoussi, Aziz; Mouzdahir, Abdelkrim; Saih, Abdelkbir

    2004-04-01

    The quality of El Jadida Atlantic coastal water was monitored from April 1998 to March 1999 by measuring hydrological parameters (dissolved oxygen, suspended particulate matter, phosphates and nitrites) and using the seaweed Ulva lactuca as a quantitative bio-indicator of cadmium, copper, iron, manganese and zinc contamination. Metal content in seaweeds, collected every month from four stations characterized by the discharge of urban and industrial waste water, showed significant variations depending on the station and sampling period. However, the seaweed of El Jadida exhibited generally lower contents compared to those of similar species from other geographical areas.

  3. Consumption and feeding preference of Echinogammarus marinus on two different algae: Fucus vesiculosus and Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Martins, Irene; Leite, Nuno; Constantino, Emanuel

    2014-01-01

    Echinogammarus marinus constitutes the most abundant amphipod species in Fucus spp. assemblages from many North Atlantic estuaries. However, there are some doubts about the real use of fucoids by the amphipod. Whilst some studies report the ingestion of Fucus vesiculosus by E. marinus, others suggest that the amphipod preference for fucoids is mostly related to sheltering rather than feeding, due to the high phlorotannin content of brown algae. The purpose of the present work was to disentangle this issue by checking the consumption rate and feeding preference of E. marinus on F. vesiculosus, its preferential habitat, and on Ulva intestinalis, a green algae abundant in the Mondego estuary (Western Coast of Portugal) and usually considered as highly palatable for herbivores. In a 2-stage laboratorial setup, fresh disks of the two types of algae were offered to E. marinus for three days. Consumption rates were estimated from differences between algal and animal initial and final fresh weights using a control correction factor, while preference was tested by differences in algal consumption rates when no choice was offered (stage 1) and when the two algae were offered simultaneously (stage 2). Results showed that E. marinus effectively consumed fresh F. vesiculosus in much higher amounts than U. intestinalis and significantly preferred to consume F. vesiculosus over U. intestinalis. Therefore, feeding habits must be one of the factors related to the close association of the amphipod with F. vesiculosus, although other factors may also be involved (e.g. sheltering).

  4. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    SciTech Connect

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  5. Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinus

    PubMed Central

    Abdel-Warith, Abdel-Wahab A.; Younis, El-Sayed M.I.; Al-Asgah, Nasser A.

    2015-01-01

    This study aimed to evaluate the effects of diet containing the green macroalgae, Ulva lactuca, on the growth performance, feed utilization and body composition of African catfish Clarias gariepinus. Four experimental diets were formulated: D1 as a control group and D2, D3 and D4 which included 10%, 20% and 30% U. lactuca meal, respectively. 180 African catfish, weighing 9.59 ± 0.43 g, and with an average length of 11.26 ± 0.21, (mean ± SE) were divided into four groups corresponding to the different feeding regimes. The final body weight of the fish showed insignificant differences (P > 0.05) between the control and fish fed D2, whereas, there was a significant difference (P < 0.05) between these two diets compared with D3 and D4, with weights of 70.52, 60.92, 40.57 and 35.66 g recorded for D1, D2, D3 and D4, respectively. In the same trend significant differences were also evident in weight gain, specific growth rate and feed utilization. Fish fed with a diet containing 20% or 30% U. lactuca meal had poorer growth performance and feed utilization. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with D3 and D4 than in the control D1 and D2. Overall, the results of the experiment revealed that African catfish fed a diet with U. lactuca included at 20% and 30% levels showed poorer growth and feed utilization than the control group and fish fed diets containing 10% of U. lactuca. PMID:27081367

  6. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva.

    PubMed

    Thompson, Stephanie E M; Callow, Maureen E; Callow, James A

    2010-01-01

    Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic T2; Intersleek 700; Intersleek 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.

  7. Acute toxicity of live and decomposing green alga Ulva ( Enteromorpha) prolifera to abalone Haliotis discus hannai

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Rencheng; Zhou, Mingjiang

    2011-05-01

    From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva ( Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.

  8. Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta).

    PubMed

    Xie, Xiujun; Gao, Shan; Gu, Wenhui; Pan, Guanghua; Wang, Guangce

    2013-01-01

    For plants and algae, exposure to high light levels is deleterious to their photosynthetic machineries. It also can accelerate water evaporation and thus potentially lead to drought stress. Most photosynthetic organisms protect themselves against high light caused photodamages by xanthophyll cycle-dependent thermal energy dissipation. It is generally accepted that high light activates xanthophyll cycle. However, the relationship between xanthophyll cycle and drought stress remains ambiguous. Herein, Ulva pertusa (Chlorophyta), a representative perennial intertidal macro-algae species with high drought-tolerant capabilities and simple structures, was used to investigate the operation of xanthophyll cycle during desiccation in air. The results indicate that desiccation under dim light induced accumulation of antheraxanthin (Ax) and zeaxanthin (Zx) at the expense of violaxanthin (Vx). This accumulation could be arrested by dithiothreitol completely and by uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) partially, implying the participation of Vx de-epoxidase in conversion of Vx to Ax and Zx. Treatment with inhibitors of electron transport along thylakoid membrane, e.g. DCMU, PG and DBMIB, did not significantly arrest desiccation-induced accumulation of Ax and Zx. We propose that for U. pertusa, besides excess light, desiccation itself could also induce accumulation of Ax and Zx. This accumulation could proceed without electron transport along thylakoid membrane, and is possibly resulting from the reduction of thylakoid lumen volume during desiccation. Considering the pleiotropic effects of Ax and Zx, accumulated Ax and Zx may function in protecting thylakoid membrane and enhancing thermal quenching during emersion in air.

  9. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects.

    PubMed

    García-Casal, Maria N; Ramírez, José; Leets, Irene; Pereira, Ana C; Quiroga, Maria F

    2009-01-01

    Marine algae are easily produced and are good sources of Fe. If this Fe is bioavailable, algae consumption could help to combat Fe deficiency and anaemia worldwide. The objective of the present study was to evaluate Fe bioavailability, polyphenol content and antioxidant capacity from three species of marine algae distributed worldwide. A total of eighty-three subjects received maize- or wheat-based meals containing marine algae (Ulva sp., Sargassum sp. and Porphyra sp.) in different proportions (2.5, 5.0 and 7.5 g) added to the water to prepare the dough. All meals administered contained radioactive Fe. Absorption was evaluated calculating radioactive Fe incorporation in subjects' blood. The three species of marine algae were analysed for polyphenol content and reducing power. Algae significantly increased Fe absorption in maize- or wheat-based meals, especially Sargassum sp., due to its high Fe content. Increases in absorption were dose-dependent and higher in wheat- than in maize-based meals. Total polyphenol content was 10.84, 18.43 and 80.39 gallic acid equivalents/g for Ulva sp., Porphyra sp. and Sargassum sp., respectively. The antioxidant capacity was also significantly higher in Sargassum sp. compared with the other two species analysed. Ulva sp., Sargassum sp. and Porphyra sp. are good sources of bioavailable Fe. Sargassum sp. resulted in the highest Fe intake due to its high Fe content, and a bread containing 7.5 g Sargassum sp. covers daily Fe needs. The high polyphenol content found in Sargassum sp. could be partly responsible for the antioxidant power reported here, and apparently did not affect Fe absorption.

  10. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  11. Sequestration of Dimethylsulfoniopropionate (DMSP) and Acrylate from the Green Alga Ulva Spp. by the Sea Hare Aplysia juliana.

    PubMed

    Kamio, Michiya; Koyama, Mao; Hayashihara, Nobuko; Hiei, Kaori; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Nagai, Hiroshi

    2016-05-01

    Many animals sequester secondary metabolites from their food. In this study, we hypothesized that the sea hare Aplysia juliana sequesters secondary metabolites from green algae. To test this, we performed NMR-based metabolomic analysis on methanol extracts of Ulva spp. and A. juliana. Another sea hare, Bursatella leachii, which mainly feeds on another type of alga, was added to this analysis as an outgroup. Two body parts of the sea hares, skin and digestive glands, were used in the analysis. Principal component analysis (PCA) on the NMR data of these samples detected biomarkers common to Ulva spp. and A. juliana. This result indicates sequestration of secondary metabolites by the herbivore from the plants. The biomarker metabolites were identified as dimethylsulfoniopropionate (DMSP) and acrylate, which were concentrated in skin of A. juliana and were released from the skin of live animals when physically stressed. Thus, our NMR-based metabolomic study revealed sequestration of algae-derived secondary metabolites in skin of A. Juliana, and in the discharge of the metabolites under conditions that mimic attack by predators.

  12. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column.

    PubMed

    Vijayaraghavan, K; Jegan, J; Palanivelu, K; Velan, M

    2005-07-01

    Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata were investigated in a packed bed up-flow column. The experiments were conducted to study the effect of important design parameters such as bed height and flow rate. At a bed height of 25 cm, the metal-uptake capacity of U. reticulata for copper, cobalt and nickel was found to be 56.3+/-0.24, 46.1+/-0.07 and 46.5+/-0.08 mgg(-1), respectively. The Bed Depth Service Time (BDST) model was used to analyze the experimental data. The computed sorption capacity per unit bed volume (N0) was 2580, 2245 and 1911 mgl(-1) for copper, cobalt and nickel, respectively. The rate constant (K(a)) was recorded as 0.063, 0.081 and 0.275 lmg(-1)h(-1) for copper, cobalt and nickel, respectively. In flow rate experiments, the results confirmed that the metal uptake capacity and the metal removal efficiency of U. reticulata decreased with increasing flow rate. The Thomas model was used to fit the column biosorption data at different flow rates and model constants were evaluated. The column regeneration studies were carried out for three sorption-desorption cycles. The elutant used for the regeneration of the biosorbent was 0.1 M CaCl2 at pH 3 adjusted using HCl. For all the metal ions, a decreased breakthrough time and an increased exhaustion time were observed as the regeneration cycles progressed, which also resulted in a broadened mass transfer zone. The pH variations during both sorption and desorption process have been reported.

  13. Flat-plate techniques for measuring reflectance of macro-algae (Ulva curvata)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Thomsen, Mads Solgaard; Schwarzschild, Arthur

    2012-01-01

    We tested the consistency and accuracy of flat-plate spectral measurements (400–1000 nm) of the marine macrophyte Ulva curvata. With sequential addition of Ulva thallus layers, the reflectance progressively increased from 6% to 9% with six thalli in the visible (VIS) and from 5% to 19% with ten thalli in the near infrared (NIR). This progressive increase was simulated by a mathematical calculation based on an Ulva thallus diffuse reflectance weighted by a transmittance power series. Experimental and simulated reflectance differences that were particularly high in the NIR most likely resulted from residual water and layering structure unevenness in the experimental progression. High spectral overlap existed between fouled and non-fouled Ulva mats and the coexistent lagoon mud in the VIS, whereas in the NIR, spectral contrast was retained but substantially dampened by fouling.

  14. Metabolomics of Ulva lactuca Linnaeus (Chlorophyta) exposed to oil fuels: Fourier transform infrared spectroscopy and multivariate analysis as tools for metabolic fingerprint.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Costa, Christopher; Oliveira, Eva Regina de; Bauer, Claudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2017-01-30

    Fossil fuels, e.g. gasoline and diesel oil, account for substantial share of the pollution that affects marine ecosystems. Environmental metabolomics is an emerging field that may help unravel the effect of these xenobiotics on seaweeds and provide methodologies for biomonitoring coastal ecosystems. In the present study, FTIR and multivariate analysis were used to discriminate metabolic profiles of Ulva lactuca after in vitro exposure to diesel oil and gasoline, in combinations of concentrations (0.001%, 0.01%, 0.1%, and 1.0% - v/v) and times of exposure (30min, 1h, 12h, and 24h). PCA and HCA performed on entire mid-infrared spectral window were able to discriminate diesel oil-exposed thalli from the gasoline-exposed ones. HCA performed on spectral window related to the protein absorbance (1700-1500cm(-1)) enabled the best discrimination between gasoline-exposed samples regarding the time of exposure, and between diesel oil-exposed samples according to the concentration. The results indicate that the combination of FTIR with multivariate analysis is a simple and efficient methodology for metabolic profiling with potential use for biomonitoring strategies.

  15. Effects of methanolic macroalgae extracts from Caulerpa sertularioides and Ulva lactuca on Litopenaeus vannamei survival in the presence of Vibrio bacteria.

    PubMed

    Esquer-Miranda, Edgard; Nieves-Soto, Mario; Rivas-Vega, Martha Elisa; Miranda-Baeza, Anselmo; Piña-Valdez, Pablo

    2016-04-01

    Macroalgae are potentially excellent sources of highly bioactive secondary metabolites that are useful for the development of new functional ingredients. This study was conducted to determine whether methanolic extracts from Caulerpa sertularioides and Ulva lactuca macroalgae might be possible alternatives for the prevention of shrimp vibriosis, which is caused by Vibrio parahaemolyticus and Vibrio alginolyticus. Macroalgae extracts prepared with methanol as the solvent were evaluated for antibacterial activity with the microplate method. The extracts' effects on the mortality of juvenile Litopenaeus vannamei were evaluated at doses of 150 and 300 mg L(-1). Two independent assays for V. parahaemolyticus and V. alginolyticus were performed. The methanolic extract of C. sertularioides exhibited activity against V. parahaemolyticus and V. alginolyticus, and it had minimal inhibitory concentrations of <1000 and < 1500 μg mL(-1), respectively. L. vannamei mortality in the presence of both The methanolic extract of C. sertularioides exhibited activity against V. parahaemolyticus and V. alginolyticus, and it had minimal inhibitory concentrations of <1000 and <1500 μg mL(-1), respectively. and V. alginolyticus bacteria significantly decreased after treatment with 300 mg L(-1) C. sertularioides methanolic extract.

  16. Studies of marine macroalgae: saline desert water cultivation and effects of environmental stress on proximate composition. Final subcontract report. [Gracilaria tikvahiae; Ulva lactuca

    SciTech Connect

    Ryther, J.H.; DeBusk, T.A.; Peterson, J.E.

    1985-11-01

    The results presented in this report address the growth potential of marine macroalgae cultivated in desert saline waters, and the effects of certain environmental stresses (e.g., nitrogen, salinity, and temperature) on the proximate composition of several marine macroalgae. Two major desert saline water types were assayed for their ability to support the growth of Gracilaria, Ulva, and Caulerpa. Both water types supported short term growth, but long term growth was not supported. Carbohydrate levels in Gracilaria were increased by cultivation under conditions of high salinity, low temperature, and low nitrogen and phosphorous availability. Data suggests that it may be possible to maximize production of useful proximate constituents by cultivating the algae under optimum conditions for growth, and then holding the resulting biomass under the environmental conditions which favor tissue accumulation of the desired storage products. 16 refs., 21 figs., 19 tabs.

  17. De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Wang, Zengfu; Lin, Wei

    2010-03-01

    The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH{4/+}, NO{3/-}, NO{2/-} as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 μmol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 μmol M2 S-1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I clean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.

  18. A surface complexation model of YREE sorption on Ulva lactuca in 0.05-5.0 M NaCl solutions

    NASA Astrophysics Data System (ADS)

    Zoll, Alison M.; Schijf, Johan

    2012-11-01

    We present distribution coefficients, log iKS, for the sorption of yttrium and the rare earth elements (YREEs) on BCR-279, a dehydrated tissue homogenate of a marine macroalga, Ulva lactuca, resembling materials featured in chemical engineering studies aimed at designing renewable biosorbents. Sorption experiments were conducted in NaCl solutions of different ionic strength (0.05, 0.5, and 5.0 M) at T = 25 °C over the pH range 2.7-8.5. Distribution coefficients based on separation of the dissolved and particulate phase by conventional filtration (<0.22 μm) were corrected for the effect of colloid-bound YREEs (>3 kDa) using an existing pH-dependent model. Colloid-corrected values were renormalized to free-cation concentrations by accounting for YREE hydrolysis and chloride complexation. At each ionic strength, the pH dependence of the renormalized values is accurately described with a non-electrostatic surface complexation model (SCM) that incorporates YREE binding to three monoprotic functional groups, previously characterized by alkalimetric titration, as well as binding of YREE-hydroxide complexes (MOH2+) to the least acidic one (pKa ∼ 9.5). In non-linear regressions of the distribution coefficients as a function of pH, each pKa was fixed at its reported value, while stability constants of the four YREE surface complexes were used as adjustable parameters. Data for a single fresh U. lactuca specimen in 0.5 M NaCl show generally the same pH-dependent behavior but a lower degree of sorption and were excluded from the regressions. Good linear free-energy relations (LFERs) between stability constants of the YREE-acetate and YREE-hydroxide solution complex and surface complexes with the first and third functional group, respectively, support their prior tentative identifications as carboxyl and phenol. A similar confirmation for the second group is precluded by insufficient knowledge of the stability of YREE-phosphate complexes and a perceived lack of YREE binding

  19. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    PubMed Central

    Abd-Ellatef, Gamal-Eldein F; Ahmed, Osama M; Abdel-Reheim, Eman S; Abdel-Hamid, Abdel-Hamid Z

    2017-01-01

    Background Recently, several research studies have been focused on the isolation and function of the polysaccharides derived from different algal species, which revealed multiple biological activities such as antioxidant and antitumor activities. This study assesses the possible breast cancer chemopreventive properties of common seaweeds, sea lettuce, Ulva lactuca (ulvan) polysaccharides using in vitro bioassays on human breast cancer cell line (MCF-7) and an in vivo animal model of breast carcinogenesis. Methods Cytotoxic effect of ulvan polysaccharides on MCF-7 was tested in vitro. For an in vivo investigation, a single dose of 25 mg/kg body weight 7,12-dimethylbenz[a]anthracene (DMBA) and ulvan polysaccharides (50 mg/kg body weight every other day) for 10 weeks were administered orally to the Wistar rats. Results Deleterious histopathological alterations in breast tissues including papillary cyst adenoma and hyperplasia of ductal epithelial lining with intraluminal necrotic materials and calcifications were observed in the DMBA-administered group. These lesions were prevented in the DMBA-administered group treated with ulvan polysaccharides. The immunohistochemical sections depicted that the treatment of DMBA-administered rats with ulvan polysaccharides markedly increased the lowered pro-apoptotic protein, p53, and decreased the elevated anti-apoptotic marker, bcl2, expression in the breast tissue. The elevated lipid peroxidation and the suppressed antioxidant enzyme activities in DMBA-administered control were significantly prevented by the treatment with ulvan polysaccharides. The elevated levels of inflammatory cytokines tumor necrosis factor-α and nitric oxide were significantly ameliorated in DMBA-administered rats treated with ulvan polysaccharides as compared to DMBA-administered control. Conclusion In conclusion, ulvan polysaccharides at the level of initiation and promotion might have potential chemopreventive effects against breast carcinogenesis

  20. Engineered antifouling microtopographies - effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva.

    PubMed

    Schumacher, James F; Carman, Michelle L; Estes, Thomas G; Feinberg, Adam W; Wilson, Leslie H; Callow, Maureen E; Callow, James A; Finlay, John A; Brennan, Anthony B

    2007-01-01

    The effect of feature size, geometry, and roughness on the settlement of zoospores of the ship fouling alga Ulva was evaluated using engineered microtopographies in polydimethylsiloxane elastomer. The topographies studied were designed at a feature spacing of 2 microm and all significantly reduced spore settlement compared to a smooth surface. An indirect correlation between spore settlement and a newly described engineered roughness index (ERI) was identified. ERI is a dimensionless ratio based on Wenzel's roughness factor, depressed surface fraction, and the degree of freedom of spore movement. Uniform surfaces of either 2 mum diameter circular pillars (ERI=5.0) or 2 microm wide ridges (ERI=6.1) reduced settlement by 36% and 31%, respectively. A novel multi-feature topography consisting of 2 mum diameter circular pillars and 10 microm equilateral triangles (ERI=8.7) reduced spore settlement by 58%. The largest reduction in spore settlement, 77%, was obtained with the Sharklet AF topography (ERI=9.5).

  1. Evidence of Coexistence of C3 and C4 Photosynthetic Pathways in a Green-Tide-Forming Alga, Ulva prolifera

    PubMed Central

    Zhang, Xiaowen; Xu, Dong; Mou, Shanli; Cao, Shaona; Zheng, Zhou; Miao, Jinlai; Ye, Naihao

    2012-01-01

    Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C3 photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C4 photosynthesis, so C4 photosynthesis might be more wide-spread than previously anticipated. Both C3 and C4 photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C4 metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and phosphoenolpyruvate carboxykinase (PCK). To investigate whether the alga operates a C4-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature). The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase) activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea. PMID:22616009

  2. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.

    PubMed

    Xu, Jianfang; Fan, Xiao; Zhang, Xiaowen; Xu, Dong; Mou, Shanli; Cao, Shaona; Zheng, Zhou; Miao, Jinlai; Ye, Naihao

    2012-01-01

    Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C₃ photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C₄ photosynthesis, so C₄ photosynthesis might be more wide-spread than previously anticipated. Both C₃ and C₄ photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C₄ metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and phosphoenolpyruvate carboxykinase (PCK). To investigate whether the alga operates a C₄-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature). The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase) activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C₄-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.

  3. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain

    PubMed Central

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-01-01

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae. PMID:27102955

  4. The potential of algae blooms to produce renewable gaseous fuel.

    PubMed

    Allen, E; Browne, J; Hynes, S; Murphy, J D

    2013-11-01

    Ulva lactuca (commonly known as sea letuce) is a green sea weed which dominates Green Tides or algae blooms. Green Tides are caused by excess nitrogen from agriculture and sewage outfalls resulting in eutrophication in shallow estuaries. Samples of U. lactuca were taken from the Argideen estuary in West Cork on two consecutive years. In year 1 a combination of three different processes/pretreatments were carried out on the Ulva. These include washing, wilting and drying. Biomethane potential (BMP) assays were carried out on the samples. Fresh Ulva has a biomethane yield of 183LCH4/kgVS. For dried, washed and macerated Ulva a BMP of 250LCH4/kgVS was achieved. The resource from the estuary in West Cork was shown to be sufficient to provide fuel to 264 cars on a year round basis. Mono-digestion of Ulva may be problematic; the C:N ratio is low and the sulphur content is high. In year 2 co-digestion trials with dairy slurry were carried out. These indicate a potential increase in biomethane output by 17% as compared to mono-digestion of Ulva and slurry.

  5. The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga Ulva linza (synonym Enteromorpha linza).

    PubMed

    Callow, J A; Callow, M E; Ista, L K; Lopez, G; Chaudhury, M K

    2005-09-22

    The environmental scanning electron microscope has been used to image the adhesive pads secreted by zoospores of the marine alga Ulva linza as they settle on a range of self-assembled and grafted monolayers of different wettability, under natural, hydrated conditions. Results reveal that the diameter of the adhesive pad is strongly influenced by surface wettability, the adhesive spreading more (i.e. wetting the surface better) on the more hydrophilic surfaces. This is in direct contrast to previous observations on the spreading of marine bioadhesives and is in apparent contradiction to the predictions of the Young-Dupre equation for three-phase systems. In this paper, we attempt an explanation based upon thermodynamic analysis of the wetting properties of hydrophilic proteins.

  6. The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga Ulva linza (synonym Enteromorpha linza)

    PubMed Central

    Callow, J.A; Callow, M.E; Ista, L.K; Lopez, G; Chaudhury, M.K

    2005-01-01

    The environmental scanning electron microscope has been used to image the adhesive pads secreted by zoospores of the marine alga Ulva linza as they settle on a range of self-assembled and grafted monolayers of different wettability, under natural, hydrated conditions. Results reveal that the diameter of the adhesive pad is strongly influenced by surface wettability, the adhesive spreading more (i.e. wetting the surface better) on the more hydrophilic surfaces. This is in direct contrast to previous observations on the spreading of marine bioadhesives and is in apparent contradiction to the predictions of the Young–Dupre equation for three-phase systems. In this paper, we attempt an explanation based upon thermodynamic analysis of the wetting properties of hydrophilic proteins. PMID:16849189

  7. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers.

    PubMed

    Cooper, Scott P; Finlay, John A; Cone, Gemma; Callow, Maureen E; Callow, James A; Brennan, Anthony B

    2011-09-01

    Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.

  8. Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers.

    PubMed

    Ucar, Ikrime O; Cansoy, C Elif; Erbil, H Yildirim; Pettitt, Michala E; Callow, Maureen E; Callow, James A

    2010-09-01

    Wettability is one of the surface characteristics that is controlled by the chemical composition and roughness of a surface. A number of investigations have explored the relationship between water contact angle and surface free energy of polymeric coatings with the settlement (attachment) and adhesion strength of various marine organisms. However, the relationship between the contact angle hysteresis and fouling-release property is generally overlooked. In the present work, coatings were prepared by using commercial hydrophobic homopolymer and copolymer polyolefins, which have nearly the same surface free energy. The effects of contact angle hysteresis, wetting hysteresis, and surface free energy on the fouling-release properties for sporelings of the green alga Ulva from substrates were then examined quantitatively under a defined shear stress in a water channel. The ease of removal of sporelings under shear stress from the polymer surfaces was in the order of PP>HDPE>PPPE>EVA-12 and strongly and positively correlated with contact angle and wetting hysteresis; i.e., the higher the hysteresis, the greater the removal.

  9. The performance of hybrid titania/silica-derived xerogels as active antifouling/fouling-release surfaces against the marine alga Ulva linza: in situ generation of hypohalous acids.

    PubMed

    Damon, Corey A; Gatley, Caitlyn M; Beres, Joshua J; Finlay, John A; Franco, Sofia C; Clare, Anthony S; Detty, Michael R

    2016-09-13

    Mixed titania/silica xerogels were prepared using titanium tetraisopropoxide (TTIP) and tetraethoxy orthosilicate (TEOS). Xerogel properties were modified by incorporating n-octyltriethoxysilane (C8). The xerogels catalyze the oxidation of bromide and chloride with hydrogen peroxide (H2O2) to produce hypohalous acids at pH 7 and pH 8. The antifouling/ fouling-release performance of a TTIP/C8/TEOS xerogel in the presence and absence of H2O2 was evaluated for the settlement of zoospores of the marine alga Ulva linza and for the removal of sporelings (young plants). In the absence of H2O2, differences in the settlement of zoospores and removal of sporelings were not significant relative to a titanium-free C8/TEOS xerogel. Addition of H2O2 gave a significant reduction in zoospore settlement and sporeling removal relative to the C8/TEOS xerogel and relative to peroxide-free conditions. The impact of TTIP on xerogel characteristics was evaluated by comprehensive contact angle analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy.

  10. Isolation, purification, and identification of antialgal substances in green alga Ulva prolifera for antialgal activity against the common harmful red tide microalgae.

    PubMed

    Sun, Ying-ying; Wang, Hui; Guo, Gan-lin; Pu, Yin-fang; Yan, Bin-lun; Wang, Chang-hai

    2016-01-01

    Ten compounds (1~10) were successfully isolated from green algae Ulva prolifera through the combination of silica gel column chromatography, Sephadex LH-20 column chromatography and repeated preparative thin-layer chromatography. These ten compounds showed antialgal activity against red tide microalgae. Among them, compounds 3, 6, and 7 showed stronger antialgal activity against red tide microalgae. Furthermore, their structure was identified on the basis of spectroscopic data. There are three glycoglycerolipids: 1-O-octadecanoic acid-3-O-β-D-galactopyranosyl glycerol (2), 1-O-palmitoyl-3-O-β-D-galactopyranosyl glycerol (4), and 1-O-palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol (5); two monoglycerides: glycerol monopalmitate (1), 9-hexadecenoic acid, 2,3-dihydroxypropyl ester (3); two terpenoids: loliolide (6) and lsololiolide (7); one lipid-soluble pigments: zeaxanthin (8); one sterol: cholest-5-en-3-ol (9); and one alkaloid: pyrrolopiperazine-2,5-dione (10). These compounds were isolated from U. prolifera for the first time, and compounds 2, 3, 5, and 8 were isolated from marine macroalgae for the first time.

  11. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha).

    PubMed

    Hoipkemeier-Wilson, Leslie; Schumacher, James F; Carman, Michelle L; Gibson, Amy L; Feinberg, Adam W; Callow, Maureen E; Finlay, John A; Callow, James A; Brennan, Anthony B

    2004-02-01

    The settlement and release of Ulva spores from chemically modified, micro-engineered surface topographies have been investigated using poly(dimethyl siloxane) elastomers (PDMSe) with varying additions of non-network forming poly(dimethyl siloxane) based oils. The topographic features were based on 5 microns wide pillars or ridges separated by 5, 10, or 20 microns wide channels. Pattern depths were 5 or 1.5 microns. Swimming spores showed no marked difference in settlement on smooth surfaces covered with excess PDMS oils. However, incorporation of oils significantly reduced settlement density on many of the surfaces with topographic features, in particular, the 5 microns wide and deep channels. Previous results, confirmed here, demonstrate preferences by the spores to settle in channels and against pillars with spatial dimensions of 5 microns, 10 microns and 20 microns. The combination of lubricity and pillars significantly reduced the number of attached spores compared to the control, smooth, unmodified PDMSe surfaces when exposed to turbulent flow in a flow channel. The results are discussed in relation to the energy needs for spores to adhere to various surface features and the concepts of ultrahydrophobic surfaces. A factorial, multi-level experimental design was analyzed and a 2nd order polynomial model was regressed for statistically significant effects and interactions to determine the magnitude and direction of influence on the spore density measurements between factor levels.

  12. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    PubMed Central

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  13. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).

    PubMed

    Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce

    2014-10-01

    The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU.

  14. OPTIMIZATION OF SOME HEAVY METALS BIOSORPTION BY REPRESENTATIVE EGYPTIAN MARINE ALGAE(1).

    PubMed

    Elrefaii, Abdelmonem H; Sallam, Lotfy A; Hamdy, Abdelhamid A; Ahmed, Eman F

    2012-04-01

    Marine algae-as inexpensive and renewable natural biomass-have attracted the attention of many investigators to be used to preconcentrate and biosorb many heavy metal ions. Impressed by this concept, the metal uptake capacity of Egyptian marine algae was examined using representatives of green and brown algae, namely, Ulva lactuca L. and Sargassum latifolium (Turner) C. Agardh, respectively. The biosorption efficiencies of Cu(2+) , Co(2+) , Ni(2+) , Cd(2+) , Hg(2+) , Ag(2+) , and Pb(2+) ions seem to depend on the type of the algae used as well as the conditions under which the uptake processes were conducted. It was demonstrated that a pH range of 7.5-8.8 was optimum for the removal of the tested metals. Similarly, the uptake process was markedly accelerated during the first 2 h using relatively low metal level and sufficient amounts of the dried powdered tested algae.

  15. Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic levels.

    PubMed

    Qiu, Yao-Wen; Zeng, Eddy Y; Qiu, Hanlin; Yu, Kefu; Cai, Shuqun

    2017-02-01

    Persistent organic pollutants (POPs) present in water may be bioconcentrated in phytoplankton and further transferred into higher trophic levels. In the present study, seawater, sediment, phytoplankton and macroalgae (Ulva lactuca L.) samples were collected from two estuarine bays in South China and analyzed for 24 polybrominated diphenyl ethers (PBDEs) and 22 organochlorine pesticides (OCPs). The concentrations of PBDE congeners except BDE-209 were low in both phytoplankton and Ulva. BDE-209 was the predominant congener in phytoplankton and Ulva, accounting for 89.5% and 86.6% of the total average concentrations of PBDEs (48.5 and 4.1ngg(-1)dw), respectively. The average concentrations of DDTs, HCHs and 1-chloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDMU) in phytoplankton were 398, 241 and 11.3ngg(-1)dw, respectively, while those of DDTs and HCHs in Ulva were 8.4 and 33.1ngg(-1)dw. The levels of both PBDEs and OCPs were an order of magnitude higher in phytoplankton than in Ulva, indicating that phytoplankton with larger surface areas have higher uptake efficiency for POPs than Ulva. Bioconcentration factors (BCFs) of DDT and PBDE in phytoplankton from the two bays were in the range of 10(5)-10(6), suggesting that bioconcentration may be one of the key sources of POPs and algae can be an important route for POPs to move toward higher trophic levels.

  16. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  17. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  18. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    SciTech Connect

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A.

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  19. Heavy metal determinations in algae, mussels and clams. Their possible employment for assessing the sea water quality criteria

    NASA Astrophysics Data System (ADS)

    Locatelli, C.

    2003-05-01

    An empirical criterion for a possible classification of sea water quality is proposed. It is based on the knowledge of metal content in algae (Ulva Rigida) mussels (Mytilus Galloprovincialis) and clams (Tapes Philippinarum), three species present in marine ecosystems. The elements considered are Hg, Cu, Pb, Cd, Zn, Ni and Cr. The anatytical technique employed is Atomic Absorption Spectroscopy (AAS). The analytical procedure has been verified on three standard reference materials : Sea Water BCR-CRM 403, Ulva Lactuca BCR-CRM 279 and Mussel Tissue BCR-CRM 278. For all the elements, in addition to detection limits, accuracy and precision are given : the former, expressed as retative error (e). and the latter, expressed as relative standard deviation (sr), were in all cases lower than 6%.

  20. Preliminary study on the responses of three marine algae, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), to nitrogen source and its availability

    NASA Astrophysics Data System (ADS)

    Liu, Dongyan; Amy, Pickering; Sun, Jun

    2004-04-01

    An experiment was designed to select economically valuable macroalga species with high nutrient uptake rates. Such species cultured on a large scale could be a potential solution to eutrophication. Three macroalgae species, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), were chosen for the experiment because of their economic values and availability. Control and four nitrogen concentrations were achieved by adding NH{4/+} and NO{3/-}. The results indicate that the fresh weights of all species increase faster than that of control after 5 d culture. The fresh weight of Ulva pertusa increases fastest among the 3 species. However, different species show different responses to nitrogen source and its availability. They also show the advantage of using NH{4/+} than using NO{3/-}. U. pertusa grows best and shows higher capability of removing nitrogen at 200µmolL-1, but it has lower economical value. G. amansii has higher economical value but lower capability of removing nitrogen at 200 µmolL-1. The capability of nitrogen assimilation of S. enerve is higher than that of G. amansii at 200µmolL -1, but the former’s increase of fresh weight is lower than those of other two species. Then present preliminary study demonstrates that it is possible to use macroalgae as biofilters and further development of this approach could provide biologically valuable information on the source, fate, and transport of N in marine ecosystems. Caution is needed should we extrapolate these findings to natural environments.

  1. Spectral definition of the macro-algae Ulva curvata in the back-barrier bays of the Eastern Shore of Virginia, USA

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Solgaard, Mads; Schwarzchild, Arthur

    2012-01-01

    We have developed methods to determine the visible (VIS) to near-infrared (NIR) spectral properties of thalli and epiphytes of bloom-forming and green macrophyte Ulva curvata in back-barrier lagoons in Virginia, USA. A 2% increase in NIR thalli reflectance from winter to summer matched the drop in summer NIR transmittance. In contrast, summer and winter VIS reflectance were nearly identical while winter transmittance was 10-20% higher. NIR absorption remained at 5% but VIS absorption increased by 10-20% from winter to summer. Replicate consistency substantiated the high transmittance difference indicating thallus composition changed from summer to winter. Epiphytes increased thallus reflectance and decreased transmittance and exhibited broadband VIS and NIR absorptions in summer and selective peaks in winter. A simulation coupling water extinction with thallus reflectance and transmittance found seven submerged thalli maximized the surface reflectance enhancement.

  2. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  3. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly(dimethylsiloxane) (PDMS) model networks.

    PubMed

    Chaudhury, Manoj K; Finlay, John A; Chung, Jun Young; Callow, Maureen E; Callow, James A

    2005-01-01

    The effect of modulus and film thickness on the release of adhered spores and sporelings (young plants) of the green fouling alga Ulva (syn. Enteromorpha) was investigated. PDMS elastomers of constant thickness (100 microm) but different elastic moduli were prepared by varying cross-link density with functional silicone oligomers with degrees of polymerization ranging from 18-830. This provided a 50-fold range of modulus values between 0.2 and 9.4 MPa. Three PDMS coatings of different thicknesses were tested at constant elastic modulus (0.8 MPa). The data revealed no significant increase in percentage spore removal except at the lowest modulus of 0.2 MPa although sporelings released more readily at all but the highest modulus. The influence of coating thickness was also greater for the release of sporelings compared to spores. The release data are discussed in the light of fracture mechanics models that have been applied to hard fouling. New concepts appertaining to the release of soft fouling organisms are proposed, which take into account the deformation in the adhesive base of the adherand and deformation of the PDMS film.

  4. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    PubMed

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  5. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa.

    PubMed

    Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra

    2016-08-01

    Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa.

  6. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  7. Spectral definition of the macro-algae ulva curvata in the back-barrier bays of the eastern shore of Virginia, USA

    USGS Publications Warehouse

    Ramsey, E.; Rangoonwalaj, A.; Thomsen, M.S.; Schwarzschild, A.

    2012-01-01

    We have developed methods to determine the visible (VIS) to near-infrared (NIR) spectral properties of thalli and epiphytes of bloom-forming and green macro-phyte Ulva curvata in back-barrier lagoons in Virginia, USA. A 2% increase in NIR thalli reflectance from winter to summer (ca. 9.5%) matched the drop in summer NIR transmittance (ca. 90%). In contrast, summer and winter VIS reflectance (reaching 6%) were nearly identical while winter transmittance (ca. 85%) was 10-20% higher. NIR absorption remained at 5% but VIS absorption increased by 10-20% from winter to summer. Replicate consistency substantiated the high transmittance difference indicating thallus composition changed from summer to winter. Epiphytes increased thallus reflectance (

  8. Death by Ulva

    EPA Science Inventory

    We report on a series of field and laboratory mesocosm experiments where we examined the effects of two levels of decomposing Ulva on Spartina alterniflora growth, soil biogeochemistry, and nitrogen dynamics. Monitoring of porewater revealed rapid mineralization to ammonium from...

  9. Green seaweed Ulva as a monitor for pollution in coastal waters

    SciTech Connect

    Levine, H.G.

    1983-01-01

    Methods have been developed which capitalize on the capacity of Ulva to function as a bioindicator of pollution in coastal waters. Studies have been performed evaluating the growth of both Ulva tissue discs and Ulva germlings as they relate to physical and chemical parameters of the environment. The Ulva tissue disc method for the in situ monitoring of organic load (nitrogen and phosphorus) in coastal waters was demonstrated to be marginally effective. The in situ differential growth reponse of parthenogenetically developed germlings fulfilled the monitoring objective, but multi-faceted environmental considerations introduced complications which reduced the feasibility of the germling deployment method for routine monitoring. The assessment of Ulva as a bioaccumulator was undertaken. Use of Ulva as an in situ sampling device has demonstrated appreciable success. This in situ monitor can provide concentrated samples of environmental pollutants. Analytical techniques have been employed to extract information on trace metals, pesticides, PCBs and other accumulated organohalides. Ulva is a bioacumulator which, by all standards, has much to recommend it. Precedures have been developed to reduce much of the inherent biological varation. Ulva has world-wide occurrence, and is therefore capable of providing a standard for comparison of data. This alga merits consideration as an international monitor for pollutants in the marine environment.

  10. The origin of the Ulva macroalgal blooms in the Yellow Sea in 2013.

    PubMed

    Zhang, Jianheng; Huo, Yuanzi; Wu, Hailong; Yu, Kefeng; Kim, Jang Kyun; Yarish, Charles; Qin, Yutao; Liu, Caicai; Xu, Ren; He, Peimin

    2014-12-15

    Green algal blooms have occurred in the Yellow Sea for seven consecutive years from 2007 to 2013. In this study, satellite image analysis and field shipboard observations indicated that the Ulva blooms in 2013 originated in the Rudong coast. The spatial distribution of Ulva microscopic propagules in the Southern Yellow Sea also supported that the blooms originated in the Rudong coast. In addition, multi-source satellite data were used to evaluate the biomass of green algae on the Pyropia aquaculture rafts. The results showed that approximately 2784 tons of Ulva prolifera were attached to the rafts and possessed the same internal transcribed spacer and 5S rDNA sequence as the dominant species in the 2013 blooms. We conclude that the significant biomass of Ulva species on the Pyropia rafts during the harvesting season in radial tidal sand ridges played an important role in the rapid development of blooms in the Yellow Sea.

  11. Cultivation and conversion of marine macroalgae. [Gracilaria and Ulva

    SciTech Connect

    Ryther, J.H.; DeBusk, T.A.; Blakeslee, M.

    1984-05-01

    Research was conducted on the development of an alternative ocean energy farm concept that would not be dependent upon deep ocean water or other extraneous sources for its nutrient supply and that could be located in shallow, near shore, and protected coastal ocean areas. There are five tasks reported in this document: determination of the annual yield of Ulva in non-intensive cultures; evaluation of the effect of carbon concentration on Gracilaria and Ulva yields; evaluation of spray/mist culture of Ulva and Gracilaria; species screening for the production of petroleum replacement products; and synthesis analysis, and economic energy evaluation of culture data. An alternative concept to open ocean culture is a land-based energy production system utilizing saline waters from underground aquifers or enclosed coastal areas. Research was performed to evaluate growth and biomass production of all macroscopic algal species that could be obtained in adequate quantity in the central Florida area. A total of 42 species were grown in specially adapted burial vaults. These included 16 green algae (Garcilaria 4 weekshlorophyta), 2 brown algae (Phaeophyta), and 18 red algae (Rhodophyta). Of these, the most successful and suitable species were a strain of Gracilaria (a red seaweed) and Ulva (a green seaweed). These two species have a high carbohydrate content that may be anaerobically digested to methane gas. Well-nourished Gracilaria will double its biomass in 1 to 4 weeks, depending on the season, water flow, and other variables. After its biomass has doubled (i.e., from 2 to 4 kg/m/sup 2/) the incremental growth is harvested to return the crop to a starting density. Enrichment of the new starting crop following harvest could conceivably be accomplished onsite at the seaweed farm, but the rapid uptake and storage of nutrients by depleted seaweeds makes possible a simpler process, known as pulse fertilization.

  12. Purification and characterization of Ulva pertusa Kjellm alkaline phosphatase.

    PubMed

    Yang, Dong; Wang, Jingyun; Bao, Yongming; An, Lijia

    2003-05-01

    The activity of alkaline phosphatase (ALP, EC 3.1.3.1.) was found in seaweeds, including five kinds of green alga, eighteen kinds of red alga, and six kinds of brown alga, collected from the seaside of Dalian in China. The enzyme was purified 1230-fold from Ulva pertusa Kjellm. It had a specific activity of 48.6 U/mg protein and was proven to be homogeneous by SDS-PAGE with a subunit molecular mass of 19.5 kDa. The activity of ALP peaked at pH9.8, and was completely inhibited by DTT and partly by NBS. The Michaelis-Menten constant Km and the maximum reaction velocity Vmax, at pH 9.8 and 37 degrees C were 0.950 mM and 5.00 microM/min, respectively.

  13. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae.

    PubMed

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40  μ g·mL(-1) (11.1460  μ g·mL(-1) and 25.8689  μ g·mL(-1), resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40  μ g·mL(-1) (29.018  μ g·mL(-1) and 17.230  μ g·mL(-1), resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277  μ g·mL(-1) and 706.990  μ g·mL(-1)) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar.

  14. In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae.

    PubMed

    Alves, Anabela; Sousa, Rui A; Reis, Rui L

    2013-08-01

    Sustainable exploitation and valorization of natural marine resources represents a highly interesting platform for the development of novel biomaterials, with both economic and environmental benefits. In this context, toxicity data is regarded as a crucial and fundamental knowledge prior to any advances in the application development of natural derived polymers. In the present work, cytotoxicity of ulvan extracted from green algae Ulva lactuca was assessed by means of standard in vitro cytotoxicity assays. Fibroblast-like cells were incubated in the presence of this green algae's polysaccharide, and cell viability was assayed through 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium test. In addition, double stranded DNA and total protein were quantified in order to assess cell number. In order to establish ulvan's non-cytotoxic behaviour, the effect of this polysaccharide on cellular metabolic activity and cell number was directly compared to hyaluronic acid (HA), used as a non-cytotoxic control material. In this study, ulvan demonstrated promising results in terms of cytotoxicity, comparable to the currently used HA, which suggests that ulvan can be considered as non-toxic in the range of concentrations studied.

  15. Morphology and molecular identification of Ulva forming green tides in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Kong, Fanna; Mao, Yunxiang; Cui, Fujun; Zhang, Xingkui; Gao, Zhen

    2011-03-01

    Green tides are caused by the proliferation of chlorophytes under suitable hydrographic conditions. These blooms lead to environmental degradation and negatively impact the waters and seagrass beds, as well as fishing and other recreational activities in the bay. A comprehensive ecological understanding of the bloom dynamics, including the origin and persistence, is needed to foster management decisions. The algae in the great majority of green tide blooms usually belong to two genera of Ulvophyceae, Ulva and Enteromorpha. Ulva has been observed more often in recent years. In China, green tides occurred for the first time in the middle area of the Yellow Sea in 2007, and a large-scale algae blooming broke out in the middle and southern areas of the Yellow Sea in late May 2008. We identified them as Ulva prolifera by comparative analysis of the rDNA internal transcribed spacer 1 (ITS1), 5.8S and ITS2 sequences in combination with microscopic observation. Morphological differences were found between the free-floating algae and the attached thalli. Various reproduction patterns of the free-floating algae include sexual, asexual and vegetative propagations, which played important roles in the long-term green tide persistence in China. The ITS sequences of the blooming algae were identical to those of the samples from the Lianyungang sea area but were different from the attached samples from the Qingdao sea area. The results infer that the blooms are originated from other sea areas rather than from the local attached populations.

  16. Molecular and morphological diversity of Narragansett Bay (RI, USA) Ulva (Ulvales, Chlorophyta) populations.

    PubMed

    Guidone, Michele; Thornber, Carol; Wysor, Brian; O'Kelly, Charles J

    2013-10-01

    Macroalgal bloom-forming species occur in coastal systems worldwide. However, due to overlapping morphologies in some taxa, accurate taxonomic assessment and classification of these species can be quite challenging. We investigated the molecular and morphological characteristics of 153 specimens of bloom-forming Ulva located in and around Narragansett Bay, RI, USA. We analyzed sequences of the nuclear internal transcribed spacer 1 region (ITS1) and the chloroplast-encoded rbcL; based on the ITS1 data, we grouped the specimens into nine operational taxonomic units (OTUs). Eight of these OTUs have been previously reported to exist, while one is novel. Of the eight OTUs, all shared sequence identity with previously published sequences or differed by less than 1.5% sequence divergence for two molecular markers. Previously, 10 species names were reported for Ulva in Rhode Island (one blade and nine tube-forming species) based upon morphological classification alone. Of our nine OTUs, three contained blade-forming specimens (U. lactuca, U. compressa, U. rigida), one OTU had a blade with a tubular stipe, and six contained unbranched and/or branched tubular morphologies (one of these six, U. compressa, had both a blade and a tube morphology). While the three blade-forming OTUs in Narragansett Bay can frequently be distinguished by careful observations of morphological characteristics, and spatial/temporal distribution, it is much more difficult to distinguish among the tube-forming specimens based upon morphology or distribution alone. Our data support the molecular species concept for Ulva, and indicate that molecular-based classifications of Ulva species are critical for proper species identification, and subsequent ecological assessment or mitigation of Ulva blooms.

  17. A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas.

    PubMed

    Conti, Marcelo Enrique; Cecchetti, Gaetano

    2003-09-01

    Marine organisms were evaluated as possible biomonitors of heavy metal contamination in marine coastal areas. Concentrations of Cd, Cr, Cu, Pb, and Zn were measured in the green algae Ulva lactuca L., the brown algae Padina pavonica (L.) Thivy, the bivalve mollusc Mytilus galloprovincialis Lamarck, and the two gastropod molluscs Monodonta turbinata Born and Patella cerulea L. collected at six coastal stations in the area of the Gulf of Gaeta (Tyrrhenian Sea, central Italy). The coastal area of the Regional Park of Gianola and Monte di Scauri (a "Protected Sea Park" area) was chosen as a control site. Seawater samples were also collected in each site to assess soluble and total metal concentrations and to gain additional information on both the environmental conditions of the area and possible bioaccumulation patterns. Metal concentrations detected in algae and molluscs did not show significant differences among all stations studied. Moreover, statistical analyses (ANOVA, multiple comparison tests, cluster analysis) showed that the Sea Park station was not significantly different from the others. The hypothesis that the Protected Sea Park would be cleaner than the others must therefore be reconsidered. Data from this study were also compared with those previously obtained from uncontaminated sites in the Sicilian Sea, Italy. The results show clearly differences between these two marine ecosystems. The species examined showed great accumulations of metals, with concentration factors (CFs) higher than 10,000 with respect to the concentrations (soluble fractions) in marine waters. Metal concentrations recorded in this area may be used for background levels for intraspecific comparison within the Tyrrhenian area, a body of water about which information is still very scarce.

  18. The Complete Chloroplast and Mitochondrial Genomes of the Green Macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)

    PubMed Central

    Melton, James T.; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M.

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales). PMID:25849557

  19. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta).

    PubMed

    Melton, James T; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).

  20. Ulva (Chlorophyta, Ulvales) Biodiversity in the North Adriatic Sea (Mediterranean, Italy): Cryptic Species and New Introductions.

    PubMed

    Wolf, Marion A; Sciuto, Katia; Andreoli, Carlo; Moro, Isabella

    2012-12-01

    Ulva Linnaeus (Ulvophyceae, Ulvales) is a genus of green algae widespread in different aquatic environments. Members of this genus show a very simple morphology and a certain degree of phenotypic plasticity, heavily influenced by environmental conditions, making difficult the delineation of species by morphological features alone. Most studies dealing with Ulva biodiversity in Mediterranean waters have been based only on morphological characters and a modern taxonomic revision of this genus in the Mediterranean is not available. We report here the results of an investigation on the diversity of Ulva in the North Adriatic Sea based on molecular analyses. Collections from three areas, two of which subject to intense shipping traffic, were examined, as well as historical collections of Ulva stored in the Herbarium Patavinum of the University of Padova, Italy. Molecular analyses based on partial sequences of the rbcL and tufA genes revealed the presence of six different species, often with overlapping morphologies: U. californica Wille, U. flexuosa Wulfen, U. rigida C. Agardh, U. compressa Linnaeus, U. pertusa Kjellman, and one probable new taxon. U. californica is a new record for the Mediterranean and U. pertusa is a new record for the Adriatic. Partial sequences obtained from historical collections show that most of the old specimens are referable to U. rigida. No specimens referable to the two alien species were found among the old herbarium specimens. The results indicate that the number of introduced seaweed species and their impact on Mediterranean communities have been underestimated, due to the difficulties in species identification of morphologically simple taxa as Ulva.

  1. Macroalgae mitigation potential for fish aquaculture effluents: an approach coupling nitrogen uptake and metabolic pathways using Ulva rigida and Enteromorpha clathrata.

    PubMed

    Aníbal, Jaime; Madeira, Hélder T; Carvalho, Liliana F; Esteves, Eduardo; Veiga-Pires, Cristina; Rocha, Carlos

    2014-12-01

    Aquaculture effluents are rich in nitrogen compounds that may enhance local primary productivity, leading to the development of algae blooms. The goal of this study was to assess the potential use of naturally occurring green macroalgae (Ulva and Enteromorpha) as bioremediators for nitrogen-rich effluents from a fish aquaculture plant, by evaluating their respective uptake dynamics under controlled conditions. Ulva and Enteromorpha were incubated separately in aquaculture effluent from a local pilot station. Algae tissue and water samples were collected periodically along 4 h. For each sample, nitrate, nitrite, and ammonia concentrations were quantified in the effluent, while internal algae reserve pools and nitrate reductase activity (NRA) were determined within the algae tissues. Both macroalgae absorbed all dissolved inorganic nitrogen compounds in less than 1 h, favoring ammonia over nitrate. Ulva stored nitrate temporarily as an internal reserve and only used it after ammonia availability decreased, whereas Enteromorpha stored and metabolized ammonia and nitrate simultaneously. These distinct dynamics of ammonia and nitrate uptake supported an increase in NRA during the experiment. This study supports the hypothesis that Ulva or Enteromorpha can be used as bioremediators in aquaculture effluents to mitigate excess of dissolved inorganic nitrogen.

  2. Circadian Rhythms of Chloroplast Orientation and Photosynthetic Capacity in Ulva123

    PubMed Central

    Britz, Steven J.; Briggs, Winslow R.

    1976-01-01

    Ulva lactuca L. var. latissima (L.) Decandolle and var. rigida (C. Agardh) Le Jolis and U. mutabilis Foyn have a circadian rhythm of chloroplast orientation which results in large changes in the light-absorption properties of the thallus. During the day, the chloroplasts cover the outer face of the cells and absorbance is high. At night, the chloroplasts are along the side walls and absorbance is low. Enteromorpha linza (L.) J. Agardh, E. intestinalis (L.) Link, E. sp., and Monostroma grevillei (Thuret) Wittrock, members of the Ulvales, were not observed to have this rhythmic movement. Chloroplasts, when in the face position, could not be induced to move to the sides by high intensity light up to 80,000 lux. Unrelated to chloroplast position per se and light-absorption efficiency, there is a rhythm of photosynthetic capacity which peaks just before midday and which continues in constant darkness. Images PMID:16659613

  3. Ethanol Production from Ulva fasciata

    NASA Astrophysics Data System (ADS)

    Masutani, Evan M.; Yoza, Brandon A.

    The theoretical potential yield of Ulva fasciata as a biomass feedstock for fermentative ethanol was found to be about 310 L per tonne, dry weight. U. fasciata has numerous characteristics that render it a suitable mariculture energy crop. Specifically, it forms large complex structures that grow quickly, with high (14%) dry to wet weight percentages, holocellulose content for the dry mass of 51%, carbohydrate content of 5%, and relatively low (5%) lignin content. Enzymatic saccharification with a commercial cellulase (Accelerase) from Genencor was investigated: After a 12 hr digestion, 25% of the potential glucose was recovered from the cellulose fraction. The hydrolysate was supplemented with a modified YM medium and used directly for batch fermentation. A 12 hr incubation resulted in complete utilization of the glucose and production of ethanol. In this preliminary investigation, the ethanol yield corresponded to approximately 126 L per tonne (dry weight) of macroalga, or 43% of the theoretical alcohol yield with respect to only the cellulose and carbohydrate contents. Theoretical yields are higher when the hemicellulose fraction is considered. While sugar recovery needs further optimization, the data suggest that additional work is warranted.

  4. The green seaweed Ulva: a model system to study morphogenesis.

    PubMed

    Wichard, Thomas; Charrier, Bénédicte; Mineur, Frédéric; Bothwell, John H; Clerck, Olivier De; Coates, Juliet C

    2015-01-01

    Green macroalgae, mostly represented by the Ulvophyceae, the main multicellular branch of the Chlorophyceae, constitute important primary producers of marine and brackish coastal ecosystems. Ulva or sea lettuce species are some of the most abundant representatives, being ubiquitous in coastal benthic communities around the world. Nonetheless the genus also remains largely understudied. This review highlights Ulva as an exciting novel model organism for studies of algal growth, development and morphogenesis as well as mutualistic interactions. The key reasons that Ulva is potentially such a good model system are: (i) patterns of Ulva development can drive ecologically important events, such as the increasing number of green tides observed worldwide as a result of eutrophication of coastal waters, (ii) Ulva growth is symbiotic, with proper development requiring close association with bacterial epiphytes, (iii) Ulva is extremely developmentally plastic, which can shed light on the transition from simple to complex multicellularity and (iv) Ulva will provide additional information about the evolution of the green lineage.

  5. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    PubMed Central

    Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. PMID:24592162

  6. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses.

    PubMed

    Pang, Shao Jun; Liu, Feng; Shan, Ti Feng; Xu, Na; Zhang, Zhi Huai; Gao, Su Qin; Chopin, Thierry; Sun, Song

    2010-05-01

    In 2008, Qingdao (36 degrees 06'N, 120 degrees 25'E, PR China) experienced the world largest drifting macroalgal bloom composed of the filamentous macroalga Ulva prolifera. No convincing biologic evidence regarding the algal source is available so far. A series of field collections of both Ulva sp. and waters in various sites along Jiangsu coasts were conducted in March to May of 2009. Density of microscopic Ulva germlings in the waters sampled from different sites ranged from 7 to 3140 individuals L(-1), indicating the wide-spreading and long-term existence of the algae in the investigated region. Morphological and the nuclear ribosomal internal transcribed spacer ITS nrDNA and the chloroplast-encoded rbcL gene comparisons of 26 algal samples revealed that the algae collected from land-based animal aquaculture ponds mostly resembled the dominating blooming alga in 2008. Mismatch of Porphyra farming period with the occurrence of the green tide bloom, as well as the negative identification results of the sampled green algae from the Porphyra rafts eliminated Porphyra rafts as the principal and original source of the dominating blooming alga.

  7. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    PubMed

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-13

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  8. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    PubMed Central

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg−1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  9. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg‑1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  10. Physiological and Biochemical Responses of Ulva prolifera and Ulva linza to Cadmium Stress

    PubMed Central

    Jiang, He-ping; Gao, Bing-bing; Li, Wen-hui; Zhu, Ming; Zheng, Chun-fang; Zheng, Qing-song; Wang, Chang-hai

    2013-01-01

    Responses of Ulva prolifera and Ulva linza to Cd2+ stress were studied. We found that the relative growth rate (RGR), Fv/Fm, and actual photochemical efficiency of PSII (Yield) of two Ulvaspecies were decreased under Cd2+ treatments, and these reductions were greater in U. prolifera than in U. linza. U. prolifera accumulated more cadmium than U. linza under Cd2+ stress. While U. linza showed positive osmotic adjustment ability (OAA) at a wider Cd2+ range than U. prolifera. U. linza had greater contents of N, P, Na+, K+, and amino acids than U. prolifera. A range of parameters (concentrations of cadmium, Ca2+, N, P, K+, Cl−, free amino acids (FAAs), proline, organic acids and soluble protein, Fv/Fm, Yield, OAA, and K+/Na+) could be used to evaluate cadmium resistance in Ulva by correlation analysis. In accordance with the order of the absolute values of correlation coefficient, contents of Cd2+ and K+, Yield, proline content, Fv/Fm, FAA content, and OAA value of Ulva were more highly related to their adaptation to Cd2+ than the other eight indices. Thus, U. linza has a better adaptation to Cd2+ than U. prolifera, which was due mainly to higher nutrient content and stronger OAA and photosynthesis in U. linza. PMID:23533346

  11. Physiological and biochemical responses of Ulva prolifera and Ulva linza to cadmium stress.

    PubMed

    Jiang, He-ping; Gao, Bing-bing; Li, Wen-hui; Zhu, Ming; Zheng, Chun-fang; Zheng, Qing-song; Wang, Chang-hai

    2013-01-01

    Responses of Ulva prolifera and Ulva linza to Cd(2+) stress were studied. We found that the relative growth rate (RGR), Fv/Fm, and actual photochemical efficiency of PSII (Yield) of two Ulvaspecies were decreased under Cd(2+) treatments, and these reductions were greater in U. prolifera than in U. linza. U. prolifera accumulated more cadmium than U. linza under Cd(2+) stress. While U. linza showed positive osmotic adjustment ability (OAA) at a wider Cd(2+) range than U. prolifera. U. linza had greater contents of N, P, Na(+), K(+), and amino acids than U. prolifera. A range of parameters (concentrations of cadmium, Ca(2+), N, P, K(+), Cl(-), free amino acids (FAAs), proline, organic acids and soluble protein, Fv/Fm, Yield, OAA, and K(+)/Na(+)) could be used to evaluate cadmium resistance in Ulva by correlation analysis. In accordance with the order of the absolute values of correlation coefficient, contents of Cd(2+) and K(+), Yield, proline content, Fv/Fm, FAA content, and OAA value of Ulva were more highly related to their adaptation to Cd(2+) than the other eight indices. Thus, U. linza has a better adaptation to Cd(2+) than U. prolifera, which was due mainly to higher nutrient content and stronger OAA and photosynthesis in U. linza.

  12. Effect of diesel fuel pollution on the lipid composition of some wide-spread Black Sea algae and invertebrates.

    PubMed

    Nechev, Jordan T; Khotimchenko, Svetlana V; Ivanova, Albena P; Stefanov, Kamen L; Dimitrova-Konaklieva, Stefka D; Andreev, Stoitse; Popov, Simeon S

    2002-01-01

    Two green algae (Ulva rigida and Cladophora coelothrix), the mussel Mytilus galloprovincialis and the snail Rapana thomasiana from the Bulgarian Black Sea shore have been treated with diesel fuel (100mg l(-1)) in an aquarium with sea-water for three days. The lipids and their fatty acid changes have been examined. Significant changes have been observed mainly in the polar lipids and in the saturation of the fatty acids. These changes appeared to be bigger in the evolutionary less advanced species from both groups of marine organisms--algae and invertebrates (Ulva rigida and Mytilus galloprovincialis respectively). The data obtained could be used for a biomonitoring of the pollution.

  13. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter.

  14. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.

    PubMed Central

    Teichberg, Mirta; Fox, Sophia E; Olsen, Ylva S; Valiela, Ivan; Martinetto, Paulina; Iribarne, Oscar; Muto, Elizabeti Yuriko; Petti, Monica A V; Corbisier, Thaïs N; Soto-Jiménez, Martín; Páez-Osuna, Federico; Castro, Paula; Freitas, Helena; Zitelli, Andreina; Cardinaletti, Massimo; Tagliapietra, Davide

    2010-01-01

    Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

  15. The green seaweed Ulva: a model system to study morphogenesis

    PubMed Central

    Wichard, Thomas; Charrier, Bénédicte; Mineur, Frédéric; Bothwell, John H.; Clerck, Olivier De; Coates, Juliet C.

    2015-01-01

    Green macroalgae, mostly represented by the Ulvophyceae, the main multicellular branch of the Chlorophyceae, constitute important primary producers of marine and brackish coastal ecosystems. Ulva or sea lettuce species are some of the most abundant representatives, being ubiquitous in coastal benthic communities around the world. Nonetheless the genus also remains largely understudied. This review highlights Ulva as an exciting novel model organism for studies of algal growth, development and morphogenesis as well as mutualistic interactions. The key reasons that Ulva is potentially such a good model system are: (i) patterns of Ulva development can drive ecologically important events, such as the increasing number of green tides observed worldwide as a result of eutrophication of coastal waters, (ii) Ulva growth is symbiotic, with proper development requiring close association with bacterial epiphytes, (iii) Ulva is extremely developmentally plastic, which can shed light on the transition from simple to complex multicellularity and (iv) Ulva will provide additional information about the evolution of the green lineage. PMID:25745427

  16. Evaluation of antifouling activity of eight commercially available organic chemicals against the early foulers marine bacteria and Ulva spores.

    PubMed

    Bhattarai, Hari Datta; Paudel, Babita; Park, Nam-Sik; Lee, Kwang Soo; Shin, Hyun-Woung

    2007-10-01

    Environmental impacts caused by tin and copper based commercial antifouling (AF) paints were proved to be detrimental to aquatic ecosystems. Therefore, a search of environmental friendly AF compounds to be used in marine paint to protect the surface of maritime developmental structures from the unwanted biofouling is a burning issue of the present time. Commercially available eight organic chemicals--allyl isothiocyanate, beta-myrecene, cis-3-hexenyl acetate, citral, ethyl heptanoate, eugenol, methyl caproate, and octyl alcohol were evaluated forAF activities using both laboratory and field assays. The test chemicals were found to repel the target motile marine bacteria--Alteromonas marina, Bacillus atrophaeus, Roseobactergallaeciensis and Shewanella oneidensis and motile spores of the green alga, Ulva pertusa. The bacterial and Ulva spore repulsion activities of the test chemicals were measured by chemotaxis and agar diffusion methods respectively interestingly these test chemicals were less toxic to the test fouling species. The toxicity of the test chemicals was measured by using antibiotic assay disks against the bacteria and motility test against Ulva spores. Moreover, in field assay, all test chemicals showed a perfect performance ofAF activity showing no fouling during the experimental period of one year Such results and commercial as well as technical feasibility of the test chemicals firmly showed the possibility of using as alternatives of the existing toxic AF agents.

  17. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement.

    PubMed

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami

    2017-03-01

    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g(-1) VSadded was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene.

  18. In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks.

    PubMed

    Merceron, Michel; Antoine, Virginie; Auby, Isabelle; Morand, Philippe

    2007-10-01

    Ulva spp., the algae most responsible for green tides in Brittany (France), are found on the foreshore and in the most beachward wave area (MBWA) of many bays during green tide phenomena. These algae have recently been seen drifting at greater depths (reaching - 20 m). In view of the significant quantities of algae found at these depths, and the less favorable conditions for algal growth than in the intertidal zone, we attempted to determine if they could grow there. For that, during their maximum growth period (from May to July), algae were picked up at three stations located on the foreshore, in the MBWA and in the subtidal (deep) zones of the Bay of Douarnenez, and their nitrogen, carbon and chlorophyll a + b contents were determined, and their photosynthetic activity was compared in the laboratory. The intracellular concentrations did not differ much from one station to another, although in the subtidal zone, the irradiance and the nitrogen concentration in the ambient water were much lower than those measured on the foreshore and in the MBWA. Photosynthetic activity characterized by maximum amounts of oxygen produced at different irradiances and by saturating and compensating irradiance levels, was also quite similar at the three stations. The irradiance, temperature and salinity of the subtidal environment, together with the chemical and photosynthetic characteristics of the algae found in that area, are consistent with the hypothesis that they grow there, and that their nitrogen supply comes from nitrogen releases from sediments. Nevertheless, their growth rate is probably less than that of algae in the MBWA.

  19. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  20. Aspects of iron nutrition in macroalgae Ulva pertusa (Chlorophyta) under iron stress

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Wen; Dong, Shuang-Lin; Liu, Xiao-Yun

    2002-06-01

    Fe, Chlorophyll (Chl) and total nitrogen (TN) content in tissues were measured in Fe-deficient cultures of Ulva. pertusa over a period of 60 days. Photosynthetic carbon fixation rates were studied at the start of and 30 days after Fe-deficiency culture, when the effects of Fe-deficiency on the ultrastructure were also analyzed. The iron content in tissue decreased exponentially during Fe-deficiency (from 726.7 to 31.6 μg/gdw) and simultaneously Chl and TN content declined to 4.35% and 59.9% of their original levels respectively. Maximum carbon fixation rate (50 250 μmol/m2 s) under Fe-deficiency decreased significantly compared with the control (p<0.01) and was 13.6 to 0.365 μg C/cm2 h. Photosynthesis in Fe-deficient cells became light-saturated at lower irradiance than that in control. Ultrastructural observations of Fe-deficient cells showed reductions in chloroplast number, some degeneration of lamellar organization, an increase in vacuolar area, a decrease in mitochondrial matrix density, and variation in accumulation body number and morphology. During Fe-deficiency, the algae growth rate continued to decline and after 6 weeks of iron deficiency, no further growth was detectable. These suggested that the lower growth rate of Ulva. pertusa under Fe-deficiency could be due mainly to nitrogen utilization and inhibition of photosynthesis.

  1. Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae).

    PubMed

    Zhang, Haining; Li, Wei; Li, Jingjing; Fu, Wandong; Yao, Jianting; Duan, Delin

    2012-03-01

    In the Yellow Sea of China, large-scale green tides have broken out consecutively from 2007 to 2011. Ulva prolifera, the causative species of green tide, showed great ability to acclimate to adverse circumstance. To explore the mechanisms of rapid growth and stress resistance during the bloom, we characterized and analyzed hsp70 from U. prolifera. The results showed that hsp70 gene had 6 exons and 5 introns. The promoter-like region contained multiple cis-acting elements. The transcription of hsp70 was up-regulated by UV irradiation, heat treatment and salinities induction, but less influenced by desiccation. In vitro expression of HSP70 protein and western blot was also conducted, and the recombinant protein will be used in detecting the interaction between HSP70 and related functional proteins in the future. The study suggested that hsp70 could be used in prediction of stress tolerance in algae and monitoring environmental changes.

  2. High iron content and bioavailability in humans from four species of marine algae.

    PubMed

    García-Casal, Maria N; Pereira, Ana C; Leets, Irene; Ramírez, José; Quiroga, Maria F

    2007-12-01

    Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.

  3. Assessment and Characterisation of Ireland's Green Tides (Ulva Species)

    PubMed Central

    Wilkes, Robert J.; Heesch, Svenja; Bermejo, Ricardo; Johnson, Mark P.; Morrison, Liam

    2017-01-01

    Enrichment of nutrients and metals in seawater associated with anthropogenic activities can threaten aquatic ecosystems. Consequently, nutrient and metal concentrations are parameters used to define water quality. The European Union’s Water Framework Directive (WFD) goes further than a contaminant-based approach and utilises indices to assess the Ecological Status (ES) of transitional water bodies (e.g. estuaries and lagoons). One assessment is based upon the abundance of opportunistic Ulva species, as an indication of eutrophication. The objective of this study was to characterise Ireland’s Ulva blooms through the use of WFD assessment, metal concentrations and taxonomic identity. Furthermore, the study assessed whether the ecological assessment is related to the metal composition in the Ulva. WFD algal bloom assessment revealed that the largest surveyed blooms had an estimated biomass of 2164 metric tonnes (w/w). DNA sequences identified biomass from all locations as Ulva rigida, with the exception of New Quay, which was Ulva rotundata. Some blooms contained significant amounts of As, Cu, Cr, Pb and Sn. The results showed that all metal concentrations had a negative relationship (except Se) with the Ecological Quality Ratio (EQR). However, only in the case of Mn were these differences significant (p = 0.038). Overall, the metal composition and concentrations found in Ulva were site dependent, and not clearly related to the ES. Nevertheless, sites with a moderate or poor ES had a higher variability in the metals levels than in estuaries with a high ES. PMID:28045947

  4. Molecular identification of green algae from the rafts based infrastructure of Porphyra yezoensis.

    PubMed

    Shen, Qi; Li, Hongye; Li, Yan; Wang, Zongling; Liu, Jiesheng; Yang, Weidong

    2012-10-01

    To provide more information on the origin of the Ulva prolifera bloom in Qingdao sea area in China from 2007 to 2011, the diversity of green algae growing on the rafts of Porphyra yezoensis on the coast in Jiangsu Province was investigated based on ITS, rbcL and 5S sequences. Eighty-four of green algal samples from various sites and cruises in 2010 and 2011 were collected. According to ITS and rbcL sequences, samples from the rafts of P. yezoensis fell into four clades: Ulva linza-procera-prolifera (LPP) complex, Ulva flexuosa, Blidingia sp. and Urospora spp. However, based on the 5S rDNA, a more resolved DNA marker, only one of the 84 samples belonged to U. prolifera. Combined with the previous reports, it is likely that U. prolifera bloom in Qingdao sea area might consist of more than one origin, and Porphyra cultivation rafts might be one of the causes.

  5. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  6. Inhibition of growth of Ulva expansa (chlorophyta) by ultraviolet-B radiation

    SciTech Connect

    Grobe, C.W.; Murphy, T.M.

    1994-10-01

    We examined the effect of ultraviolet-B radiation (UV-B, 290-320 nm) on the growth rate of the intertidal marine alga Ulva expansa (Setch.) S & G. (Chlorophyta). Segments of thallus collected from a natural population were grown in outdoor seawater tanks. Combinations of UV-B-opaque screens, UV-B transparent screens, and UV-B lamps were used to investigate the effects of solar UV-B and solar plus supplemental UV-B on the growth of these segments. Growth was measured by changes in segment surface area, damp weight, and dry weight. Growth rates of segments were inhibited under both solar UV-B and solar plus supplemental UV-B treatments. Growth rates were also inhibited by high levels of photosynthetically active radiation, independent of UV-B fluence. These results indicate that increases in UV-B resulting from further ozone depletion will have a negative impact on the growth of this alga. 32 refs., 5 figs., 2 tabs.

  7. REMOVAL OF AMMONIA TOXCITY IN MARINE SEDIMENT TIES: A COMPARISON OF ULVA LACTUCA, ZEOLITE AND AREATION METHODS

    EPA Science Inventory

    Ammonia is suspected of causing some of the toxicity observed in marine sediment toxicity tests because it is sometimes found at elevated concentrations in marine interstitial waters. In marine waters, ammonia exists as un-ionized ammonia (NH3) and ammonium (NH4+) which combine ...

  8. Prevalence and mechanism of polyunsaturated aldehydes production in the green tide forming macroalgal genus Ulva (Ulvales, Chlorophyta).

    PubMed

    Alsufyani, Taghreed; Engelen, Aschwin H; Diekmann, Onno E; Kuegler, Stefan; Wichard, Thomas

    2014-10-01

    Lipoxygenase/hydroperoxide lyase mediated transformations convert polyunsaturated fatty acids into various oxylipins. First, lipoxygenases catalyze fatty acid oxidation to fatty acid hydroperoxides. Subsequently, breakdown reactions result in a wide array of metabolites with multiple physiological and ecological functions. These fatty acid transformations are highly diverse in marine algae and play a crucial rule in e.g., signaling, chemical defense, and stress response often mediated through polyunsaturated aldehydes (PUAs). In this study, green tide-forming macroalgae of the genius Ulva (Chlorophyta) were collected at various sampling sites in the lagoon of the Ria Formosa (Portugal) and were surveyed for PUAs. We demonstrated that sea-lettuce like but not tube-like morphotypes produce elevated amounts of volatile C10-polyunsaturated aldehydes (2,4,7-decatrienal and 2,4-decadienal) upon tissue damage. Moreover, morphogenetic and phylogenetic analyses of the collected Ulva species revealed chemotaxonomic significance of the perspective biosynthetic pathways. The aldehydes are derived from omega-3 and omega-6 polyunsaturated fatty acids (PUFA) with 20 or 18 carbon atoms including eicosapentaenoic acid (C20:5 n-3), arachidonic acid (C20:4 n-6), stearidonic acid (C18:4 n-3), and γ-linolenic acid (C18:3 n-6). We present first evidences that lipoxygenase-mediated (11-LOX and 9-LOX) eicosanoid and octadecanoid pathways catalyze the transformation of C20- and C18-polyunsaturated fatty acids into PUAs and concomitantly into short chain hydroxylated fatty acids.

  9. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  10. Antimicrobial activity of Ulva reticulata and its endophytes

    NASA Astrophysics Data System (ADS)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  11. Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria.

    PubMed

    Twigg, Matthew S; Tait, Karen; Williams, Paul; Atkinson, Steve; Cámara, Miguel

    2014-02-01

    Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores.

  12. Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C₄ pathway in CO₂ assimilation.

    PubMed

    Xu, Jianfang; Zhang, Xiaowen; Ye, Naihao; Zheng, Zhou; Mou, Shanli; Dong, Meitao; Xu, Dong; Miao, Jinlai

    2013-06-01

    The green-tide-forming macroalga Ulva linza was profiled by transcriptome sequencing to ascertain whether the alga carries both C3 and C4 photosynthesis genes. The key enzymes involved in C4 metabolism including pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and phosphoenolpyruvate carboxykinase (PCK) were found. When measured under normal and different stress conditions, expression of rbcL was higher under normal conditions and lower under the adverse conditions, whereas that of PPDK was higher under some adverse conditions, namely desiccation, high salinity, and low salinity. Both ribulose-1, 5-biphosphate carboxylase (RuBPCase) and PPDK were found to play a role in carbon fixation, with significantly higher PPDK activity across the stress conditions. These results suggest that elevated PPDK activity alters carbon metabolism in U. linza leading to partial operation of the C4 carbon metabolism, a pathway that, under stress conditions, probably contributes to the hardy character of U. linza and thus to its wide distribution.

  13. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite.

    PubMed

    Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong

    2016-10-15

    Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera.

  14. Isolation, expression and characterization of rbcL gene from Ulva prolifera J. Agardh (Ulvophyceae, Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Shao, Zhanru; Li, Wei; Guo, Hui; Duan, Delin

    2015-12-01

    Ulva prolifera is a typical green alga in subtidal areas and can grow tremendously fast. A highly efficient Rubisco enzyme which is encoded by UpRbcL gene may contribute to the rapid growth. In this study, the full-length UpRbcL open reading frame (ORF) was identified, which encoded a protein of 474 amino acids. Phylogenetic analysis of UpRbcL sequences revealed that Chlorophyta had a closer genetic relationship with higher plants than with Rhodophyta and Phaeophyta. The two distinct residues (aa11 and aa91) were presumed to be unique for Rubisco catalytic activity. The predicted three-dimensional structure showed that one α/β-barrel existed in the C-terminal region, and the sites for Mg2+ coordination and CO2 fixation were also located in this region. Gene expression profile indicated that UpRbcL was expressed at a higher level under light exposure than in darkness. When the culture temperature reached 35°C, the expression level of UpRbcL was 2.5-fold lower than at 15°C, and the carboxylase activity exhibited 13.8-fold decrease. UpRbcL was heterologously expressed in E. coli and was purified by Ni2+ affinity chromatography. The physiological and biochemical characterization of recombinant Rubisco will be explored in the future.

  15. Changes to the biomass and species composition of Ulva sp. on Porphyra aquaculture rafts, along the coastal radial sandbank of the Southern Yellow Sea.

    PubMed

    Huo, Yuanzi; Han, Hongbin; Shi, Honghua; Wu, Hailong; Zhang, Jianheng; Yu, Kefeng; Xu, Ren; Liu, Caicai; Zhang, Zhenglong; Liu, Kefu; He, Peimin; Ding, Dewen

    2015-04-15

    Compositions, changes and biomass of attached Ulva species on Porphyra rafts along the radial sandbank in the Yellow Sea were investigated, and potential contributions to green tides was analyzed. Ulva prolifera, Ulva flexuosa and Ulva linza were all appeared throughout the investigated period. U. prolifera and U. flexuosa dominated attached Ulva population on Porphyra rafts. Attached Ulva species biomass showed obviously spatial and temporal variations. Temperature, Ulva microscopic propagules and human activities were main factors to influence attached Ulva species biomass. The total attached Ulva species biomass was more than 20,000 fresh weight tons in April, and the green tide causative species U. prolifera accounted 51.03% in April 2013 before green tides occurred. The high biomass of attached Ulva species would contribute most to green tides in the Yellow Sea. But how attached Ulva species on Porphyra rafts contributing to green tides in the Yellow Sea should be further studied.

  16. Strong Endemism of bloom-forming tubular Ulva in Indian West Coast, with description of Ulva paschima Sp. Nov. (Ulvales, Chlorophyta).

    PubMed

    Bast, Felix; John, Aijaz Ahmad; Bhushan, Satej

    2014-01-01

    Ulva intestinalis and Ulva compressa are two bloom-forming morphologically-cryptic species of green seaweeds widely accepted as cosmopolitan in distribution. Previous studies have shown that these are two distinct species that exhibit great morphological plasticity with changing seawater salinity. Here we present a phylogeographic assessment of tubular Ulva that we considered belonging to this complex collected from various marine and estuarine green-tide occurrences in a ca. 600 km stretch of the Indian west coast. Maximum Likelihood and Bayesian Inference phylogenetic reconstructions using ITS nrDNA revealed strong endemism of Indian tubular Ulva, with none of the Indian isolates forming part of the already described phylogenetic clades of either U. compressa or U. intestinalis. Due to the straightforward conclusion that Indian isolates form a robust and distinct phylogenetic clade, a description of a new bloom-forming species, Ulva paschima Bast, is formally proposed. Our phylogenetic reconstructions using Neighbor-Joining method revealed evolutionary affinity of this new species with Ulva flexuosa. This is the first molecular assessment of Ulva from the Indian Subcontinent.

  17. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    PubMed

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  18. Daily activity rhythms in the intertidal gastropod Hydrobia ulvae (Pennant)

    NASA Astrophysics Data System (ADS)

    Barnes, R. S. K.

    1986-03-01

    The intertidal gastropod Hydrobia ulvae was subjected experimentally in undisturbed core samples to different combinations of the presence or absence of light and of cover by seawater. As displayed in the field, a greater proportion of snails were active in the dark than in the light, and when covered by water as opposed to being provided only with a damp sediment surface. A slight, but significant, rhythmic change in activity levels, with a period averaging 24·5 h, was shownby animals maintained under conditions of constant darkness and of damp sediment surface. Peak activity in this rhythm, which is equivalent to only 1·3-1·6 times minimum levels, did not coincide with the peaks of activity displayed during the more marked rhythmic response of H. ulvae to natural fluctuations in light intensity and tidal water cover, however, and this presumed endogenous rhythm does not appear to contribute to such rhythmic activity in the field. Increased proportional activity in nature is suggested to be most likely a direct response to changes in ambient light intensity and to the presence or absence of water cover.

  19. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Li, Daqiu; Chen, Changsheng; Ge, Jianzhong; Muller-Karger, Frank E.; Liu, Junpeng; Yu, Feng; He, Ming-Xia

    2010-05-01

    A massive bloom of the green macroalgae Ulva prolifera (previously known as Enteromorpha prolifera) occurred in June 2008 in the Yellow Sea (YS), resulting in perhaps the largest "green tide" event in history. Using a novel index (Floating Algae Index) and multiresolution remote sensing data from MODIS and Landsat, we show that U. prolifera patches appeared nearly every year between April and July 2000-2009 in the YS and/or East China Sea (ECS), which all originated from the nearshore Subei Bank. A finite volume numerical circulation model, driven by realistic forcing and boundary conditions, confirmed this finding. Analysis of meteorological/environmental data and information related to local aquaculture activities strongly supports the hypothesis that the recurrent U. prolifera in the YS and ECS resulted from aquaculture of the seaweed Porphyra yezoensis (or nori) conducted along the 200 km shoreline of the Subei Bank north of the Changjiang (Yangtze) River mouth. Given the continuous growth in aquaculture efforts in the region, similar macroalgae bloom events, such as the summer 2008 event, are likely to occur in the future, particularly between May and July. This was confirmed by the 2009 bloom event in the same regions and the same period. The profit of the local P. yezoensis aquaculture industry (˜16,000 Ha in 2007) is estimated as U.S. 53 million, yet the cost to manage the impact of the summer 2008 U. prolifera bloom exceeded U.S. 100 million. Therefore, better strategies are required to balance the economic benefit of seaweed aquaculture and the costs of environmental impacts.

  20. Comparison of the two pathogenic systems: Bremia Lactucae on Lactuca, and Phytophthora infestans on Solarum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oomycetes are the largest group of heterotrophic Stramenopiles, physically resembling fungi. However, biochemical analyses and comparison of sequences of ribosomal and mitochondrial genes suggest that Oomycetes share little taxonomic affinity to fungi, but are more closely related to heterokont alga...

  1. GROWTH DYNAMICS OF ULVA ROTUNDATA (CHLOROPHYTA) IN A FISH FARM: IMPLICATIONS FOR BIOMITIGATION AT A LARGE SCALE(1).

    PubMed

    Hernández, Ignacio; Pérez-Pastor, Abraham; Mateo, Juan J; Megina, Cesar; Vergara, Juan J

    2008-08-01

    Changes in biomass of several macroalgae [Ulva rotundata Bliding; Gracilariopsis longissima (S. G. Gmel.) Steentoft, L. M. Irvine et Farnham; Ulva intestinalis L.; and Cladophora sp.] and marine plants (Zostera noltii and Ruppia cirrhosa) growing naturally in earthen ponds of a fish farm (Acuinova, San Fernando, Southern Spain) were recorded during a year. The farm is mainly devoted to the culture of gilthered seabream (Sparus aurata). The most conspicuous algal species thriving in the ponds was U. rotundata, which reached densities up to 600 g dry mass · m(-2) and produced up to 20.45 g C · m(-2)  · d(-1) . Dissolved nutrients (phosphate and ammonium), tissue nutrient content, and growth rates of this species were estimated during 2001 and 2002. Evidence of natural biomitigation by U. rotundata when water circulates throughout the fish farm is presented. Due to the fish cultivation, both phosphate and ammonium increased as water circulated from the preculture ponds to the postculture ponds. As a consequence, U. rotundata tissue nitrogen (N) and phosphorus (P) increased from algae growing in preculture ponds to algae growing in the outflow channel, so that mean C:N:P ratio varied from 773:57:1 in preculture ponds to 567:64:1 in the outflow channel. Phosphorus limited growth of U. rotundata during the spring. As growth rates increased as a function of tissue P, data were fitted to the Droop equation. From this equation, the estimated maximal growth rate was 0.295 ± 0.041 d(-1) , the subsistence quota was 0.05 ± 0.01% P of dry mass, and the critical quota was 0.215% P of dry mass. The results suggest that management of the fish farm based on a large-scale integrated mariculture system of fish and macroalgae may increase the total ecological and economic benefits, both for the farm and for the environment.

  2. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    PubMed

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  3. Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon

    PubMed Central

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A.; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M.

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed. PMID:25875839

  4. Metal accumulation and oxidative stress responses in Ulva spp. in the presence of nocturnal pulses of metals from sediment: a field transplantation experiment under eutrophic conditions.

    PubMed

    Pereira, Patrícia; de Pablo, Hilda; Guilherme, Sofia; Carvalho, Susana; Santos, Maria Ana; Vale, Carlos; Pacheco, Mário

    2014-03-01

    In aquatic systems under eutrophic conditions, remobilization of metals from sediment to the overlying water may occur. Consequently, adaptive responses of local organisms could result from the accumulation of metals intermittently released from the sediment. In summer 2007, a field transplantation experiment was performed in the Óbidos lagoon (Portugal) with Ulva spp. comprising three short-term exposures (between 15:30-23:30; 23:30-07:30; 07:30-15:30) during a 24-h period. In each period, Ulva spp. was collected at a reference site located in the lower lagoon (LL) and transplanted to a eutrophic site located at the Barrosa branch (BB), characterized by moderate metal contamination. For comparison purposes, macroalgae samples were simultaneously exposed at LL under the same conditions. Both sites were surveyed in short-time scales (2-4 h) for the analysis of the variability of physical-chemical parameters in the water and metal levels in suspended particulate matter. The ratios to Al of particulate Mn, Fe, Cu and Pb increased during the period of lower water oxygenation at the eutrophic site, reaching 751 × 10⁻⁴, 0.67, 12 × 10⁻⁴, 9.9 × 10⁻⁴, respectively, confirming the release of metals from the sediment to water during the night. At the reference site, dissolved oxygen oscillated around 100%, Mn/Al ratios were considerably lower (81 × 10⁻⁴-301 × 10⁻⁴) compared to BB (234 × 10⁻⁴-790 × 10⁻⁴), and no increases of metal/Al ratios were found during the night. In general, algae uptake of Mn, Cu, Fe, Pb and Cd was significantly higher at the eutrophic site compared to the reference site. The results confirmed the potential of Ulva spp. as bioindicator of metal contamination and its capability to respond within short periods. An induction of SOD, an inhibition of CAT and the increase of LPO were recorded in Ulva spp. exposed at BB (between 23:30 and 7:30) probably as a response to the higher incorporation of Mn, Fe and Pb in

  5. Methods for the Induction of Reproduction in a Tropical Species of Filamentous Ulva

    PubMed Central

    Carl, Christina; de Nys, Rocky; Lawton, Rebecca J.; Paul, Nicholas A.

    2014-01-01

    The green seaweed Ulva is a major fouling organism but also an edible aquaculture product in Asia. This study quantified for the first time the effect of key factors on the reproduction of a tropical species of filamentous Ulva (Ulva sp. 3). The controlled timing of release of swarmers (motile reproductive bodies) was achieved when experiments were initiated in the early afternoon by exposing the thalli to a temperature shock (4°C) for 10 min and subsequently placing them into autoclaved filtered seawater under a 12 h light: 12 h dark photoperiod at 25°C. The release of swarmers then peaked two days after initiation. In contrast, segmentation, dehydration, salinity or time of initiation of experiments had no effect of any magnitude on reproduction. The released swarmers were predominantly biflagellate (95%), negatively phototactic and germinated without complementary gametes. This indicates that Ulva sp. 3 has a simple asexual life history dominated by biflagellate zoids. PMID:24824896

  6. Methods for the induction of reproduction in a tropical species of filamentous ulva.

    PubMed

    Carl, Christina; de Nys, Rocky; Lawton, Rebecca J; Paul, Nicholas A

    2014-01-01

    The green seaweed Ulva is a major fouling organism but also an edible aquaculture product in Asia. This study quantified for the first time the effect of key factors on the reproduction of a tropical species of filamentous Ulva (Ulva sp. 3). The controlled timing of release of swarmers (motile reproductive bodies) was achieved when experiments were initiated in the early afternoon by exposing the thalli to a temperature shock (4°C) for 10 min and subsequently placing them into autoclaved filtered seawater under a 12 h light: 12 h dark photoperiod at 25°C. The release of swarmers then peaked two days after initiation. In contrast, segmentation, dehydration, salinity or time of initiation of experiments had no effect of any magnitude on reproduction. The released swarmers were predominantly biflagellate (95%), negatively phototactic and germinated without complementary gametes. This indicates that Ulva sp. 3 has a simple asexual life history dominated by biflagellate zoids.

  7. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  8. The fast expansion of Pyropia aquaculture in ;Sansha; regions should be mainly responsible for the Ulva blooms in Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Jianheng; Zhao, Peng; Huo, Yuanzi; Yu, Kefeng; He, Peimin

    2017-04-01

    Massive Ulva blooms became an environmental disaster in the Yellow Sea from 2007 to 2015. In this study, field shipboard observations indicated that Ulva blooms originated in Pyropia aquaculture area, and the morphology of initial floating Ulva seaweed have the structure of rhizoid, which is similar with the attached Ulva on the Pyropia rafts. The spatial distribution of Ulva microscopic propagules in the southern Yellow Sea also supported that the blooms originated in the Pyropia aquaculture area. Besides, numerical model was used in this study, showing the origin of macroalgal blooms was traced to ;Sansha; regions which accounted for almost 70% of the total Pyropia aquaculture area. We conclude that the significant biomass (4252 tons) of Ulva species on the Pyropia rafts during the harvesting season in ;Sansha; regions played an important role in the early rapid development of blooms in the Yellow Sea.

  9. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China.

    PubMed

    Keesing, John K; Liu, Dongyan; Shi, Yajun; Wang, Yujue

    2016-04-15

    Annually recurrent green-tides in the Yellow Sea have been shown to result from direct disposal into the sea of fouling Ulva from Pyropia aquaculture. The role abiotic factors play in Ulva biomass accumulation on rafts was studied to find ways to mitigate this problem. Dissolved inorganic nitrogen (DIN) was very high at all sites, but the highest Ulva biomass was associated with the lowest DIN and anthropogenic N. Under luxuriant background nutrient conditions, variability in temperature and periods of emersion, rather than pH, light and salinity determined Ulva biomass. Two dominant species of Ulva displayed differing tolerances to temperature and desiccation which helped explain why Ulva prolifera dominates floating green-tides. Rather than trying to mitigate green-tides only by reducing nutrient pollution, an earlier harvest of Pyropia in southern Jiangsu Province especially before temperatures increase greatly above 10°C during April, could reduce the biomass of U. prolifera disposed from rafts.

  10. Occupational contact dermatitis from Cichorium (chicory, endive) and Lactuca (lettuce).

    PubMed

    Friis, B; Hjorth, N; Vail, J T; Mitchell, J C

    1975-10-01

    In two cases, occupational contact dermatitis was found to be due to chicory (Cichorium) used as a salad plant. In one of the two cases, contact sensitivity to letuce (Lactuca) was also observed. The sesquiterpene lactones of the plant may be the allergens.

  11. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems

    PubMed Central

    2012-01-01

    Background The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta) is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. Results De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC) numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur) were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins, such as glutamate

  12. The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat.

    PubMed

    Rybak, Andrzej; Messyasz, Beata; Łęska, Bogusława

    2013-04-01

    The possibility of using freshwater Ulva (Chlorophyta) as a bioaccumulator of metals (Co, Cr, Cu, Mn and Zn) in lake and river water was examined weekly in the summer of 2010 in three types of samples: the water, the sediment and the thalli of Ulva. Samples of freshwater Ulva were collected from two aqueous ecosystems lie 250 km away from the basin of the Baltic Sea and 53 km from each other. A flow lake located in the centre of the big city was the first water reservoir (ten sites) and second, the suburban river (six sites). The mean metal concentrations in the Ulva tissue from the river and the lake decreased in the following order: Mn > Zn > Cr > Cu > Co and Mn > Cr > Zn > Cu > Co, respectively. Moreover, a negative and statistically significant correlation between Mn concentrations in the Ulva thalli and the river water was observed. Additionally, numerous correlations were noted between the different concentrations of metals within the Ulva thalli, in the water and in the sediment. The great concentrations of Mn and Zn and the smallest of Co were found in thalli of Ulva, irrespective of the type of the ecosystem from which samples of algal thalli originated. Freshwater Ulva populations examined in this study were clearly characterized a dozen or so times by the higher Mn and Cr accumulation than taxa from that genera coming from sea ecosystems. The calculated bioconcentration factor confirm the high potential for freshwater Ulva to be a bioaccumulator of trace metals in freshwater ecosystems.

  13. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  14. The Influence of Charged Xerogel Side Chains on the Settlement and Adhesion of Ectocarpus crouaniorum and Ulva linza

    NASA Astrophysics Data System (ADS)

    Gatley, Caitlyn M.

    A series of five xerogel coatings were prepared to evaluate the influence of charged surface moieties on the settlement and adhesion strength of Ectocarpus crouaniorum and Ulva linza. The coatings were prepared from mixtures of 3-(N,N-dimethylaminopropyl)-trimethoxysilane (DMAP), N-methylaminopropyl trimethoxysilane (MAP), 3-aminopropyl triethoxysilane (APTES), (3,3,3-trifluoropropyl) trimethoxysilane (TFP), and phenyltriethoxysilane (PH), and tetraethoxysilane (TEOS). Contact angle analysis and X-ray photoelectron spectroscopy were used to characterize the surface of each coating. After immersion in artificial seawater, the coatings possessed broadly similar surface energies (50+/-1 - 69+/-3 mN m-1) and a widely varying ability to have positively charged functionality at the surface. The settlement and percent removal assay for E. crouaniorum revealed a stronger adhesion of the alga to coatings possessing positively charged functionalities at the surface 1:9 DMAP/TEOS, 1:9 MAP/TEOS, and 1:9 AP/TEOS relative to the uncharged, non-basic 1:4 TFP/TEOS and 1:4 PH/TEOS coatings. The settlement and percent removal assay for U. linza also revealed stronger adhesion of sporelings to positively charged surfaces functionalities. These results suggest that charged moieties present at the surface is an important parameter to consider when developing coatings for foul-release purposes.

  15. Effects of temperature on the germination of green algae micro-propagules in coastal waters of the Subei Shoal, China

    NASA Astrophysics Data System (ADS)

    Song, Wei; Peng, Keqin; Xiao, Jie; Li, Yan; Wang, Zongling; Liu, Xiangqing; Fu, Mingzhu; Fan, Shiliang; Zhu, Mingyuan; Li, Ruixiang

    2015-09-01

    Since 2007, large-scale green tides that primarily consisted of Ulva prolifera have consecutively invaded the coast of Qingdao (36°06'N, 120°25'E, PR China) in summer. The germination of green algae micro-propagules in the Subei Shoal played a significant role in the formation of these green tides. The change in sea temperature might be the key factor that affects the germination of the micro-propagules because the other environmental factors varied only slightly according to previous studies. This study was designed to investigate the effects of temperature on the germination of micro-propagules via laboratory experiments. The results showed the following: (1) five types of green algae micro-propagules, including U. prolifera, U. linza, U. compressa, Ulva sp. (Clade 6) and Blidingia sp., were detected in the seawater samples collected from the Subei Shoal; (2) at 5 °C, germinated micro-propagules were not detected in any of the samples; at 10 °C, the micro-propagules began to germinate, and the germination quantity markedly changed between 10 °C and 30 °C; (3) the germination numbers of U. prolifera, U. linza, Ulva sp. (Clade 6) and Blidingia sp. were maximized at 15 °C, 10 °C, 25 °C and 20 °C, respectively. This study indicated that the sea temperature played a significant role in the germination of green algae micro-propagules in water and could partly explain the community succession phenomenon of the attached green algae in the Subei Shoal.

  16. Use of polishing pond effluents to cultivate lettuce (Lactuca sativa) in a hydroponic system.

    PubMed

    Keller, R; Perin, K; Souza, W G; Cruz, L S; Zandonade, E; Cassini, S T A; Goncalves, R F

    2008-01-01

    The sanitary quality and productivity of hydroponic lettuce (Lactuca sativa L.) plants cultivated under greenhouse conditions and treated with effluent from anaerobic reactor + polishing pond followed by physical-chemical treatment was evaluated. Two hydroponic cultivations were performed at summer and winter time at Vitoria-ES, Brazil. The treatments for both cultivations were: T1) conventional nutrient solution, T2) effluent from physical-chemical treatment, T3) effluent from polishing pond, and T4) effluent from polishing pond with 50% dilution. The plants were evaluated for microbial contamination, productivity and nutrient content. In all cases, no significant microbial contamination of lettuce was detected and the levels of macronutrients in the shoot system were similar to those in published reports. In the experiments from summer season, the treatments T1 and T2 resulted in higher production than the T3 and T4 treatments. Plants from T3 and T4 had a less developed root system as a result of reduced oxygenation from competition with the higher algae biomass content from the polishing pond effluent. In the winter season, the effect of the algal biomass was pronounced only in the T3 treatment (undiluted effluent from polishing pond). In conclusion, hydroponic cultivation of lettuce with pond effluent is suitable as a complement to water and nutrients for plants.

  17. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  18. Ulva prolifera monitoring by GF-1 wide field-of-view sensor data

    NASA Astrophysics Data System (ADS)

    Liang, Wenxiu; Li, Junsheng; Zhou, Demin; Shen, Qian; Zhang, Fangfang; Zhang, Haobin

    2014-11-01

    Ulva prolifera, a kind of green macroalgae, is nontoxic itself, however, its bloom has bad effects on the marine environment, coastal scene, water sports and seashore tourism. Monitoring of the Ulva prolifera by remote sensing technology has the advantages of wide coverage, rapidness, low cost and dynamic monitoring over a long period of time. The GF-1 satellite was launched in April 2013, which provides a new suitable remote sensing data source for monitoring the Ulva prolifera. At present, segmenting image with a threshold is the most widely used method in Ulva prolifera extraction by remote sensing data, because it is simple and easy to operate. However, the threshold value is obtained through visual analysis or using a fixed statistical value, and could not be got automatically. Facing this problem, we proposed a new method, which can obtain the segmentation threshold automatically based on the local maximum gradient value. This method adopted the average NDVI value of local maximum gradient points as the threshold, and could get an appropriate segmentation threshold automatically for each image. The preliminary results showed that this method works well in monitoring Ulva prolifera by GF-1 WFV data.

  19. Analysis of expressed sequence tags from the Ulva prolifera (Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Niu, Jianfeng; Hu, Haiyan; Hu, Songnian; Wang, Guangce; Peng, Guang; Sun, Song

    2010-01-01

    In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera ( Ulva prolifera O. F. Müller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10 072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).

  20. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type.

    PubMed

    Miyamura, Shinichi

    2010-03-01

    Cytological and genetic investigations of two major groups of green algae, chlorophyte and streptophyte green algae, show a predominance of uniparental inheritance of the plastid and mitochondrial genomes in most species. However, in some crosses of isogamous species of Ulva compressa, these genomes are transmitted from mt+, mt(-), and both parents. In species with uniparental organelle inheritance, various mechanisms can eliminate organelles and their DNA during male gametogenesis or after fertilization. Concerning plastid inheritance, two major mechanisms are widespread in green algae: (1) digestion of plastid DNA during male gametogenesis, during fertilization, or after fertilization; and (2) disintegration or fusion of the plastid in the zygote. The first mechanism also eliminates the mitochondrial DNA in anisogamous and oogamous species. These mechanisms would ensure the predominantly uniparental inheritance of organelle genomes in green algae. To trace the evolutionary history of cytoplasmic inheritance in green algae, the relations between uniparental inheritance and sex type were considered in isogamous, anisogamous, and oogamous species using sex-specific features that might be nearly universal among Chlorophyta.

  1. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia.

    PubMed

    Al-Saif, Sarah Saleh Abdu-Llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A; Aref, Ibrahim A

    2014-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.

  2. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  3. Tracing the origin of green macroalgal blooms based on the large scale spatio-temporal distribution of Ulva microscopic propagules and settled mature Ulva vegetative thalli in coastal regions of the Yellow Sea, China.

    PubMed

    Huo, Yuanzi; Han, Hongbin; Hua, Liang; Wei, Zhangliang; Yu, Kefeng; Shi, Honghua; Kim, Jang Kyun; Yarish, Charles; He, Peimin

    2016-11-01

    From 2008 to 2016, massive floating green macroalgal blooms occurred annually during the summer months in the Yellow Sea. The original source of these blooms was traced based on the spatio-temporal distribution and species composition of Ulva microscopic propagules and settled Ulva vegetative thalli monthly from December 2012 to May 2013 in the Yellow Sea. High quantities of Ulva microscopic propagules in both the water column and sediments were found in the Pyropia aquaculture area along the Jiangsu coast before a green macroalgal bloom appeared in the Yellow Sea. The abundance of Ulva microscopic propagules was significantly lower in outer areas compared to in Pyropia aquaculture areas. A molecular phylogenetic analysis suggested that Ulva prolifera microscopic propagules were the dominant microscopic propagules present during the study period. The extremely low biomass of settled Ulva vegetative thalli along the coast indicated that somatic cells of settled Ulva vegetative thalli did not provide a propagule bank for the green macroalgal blooms in the Yellow Sea. The results of this study provide further supporting evidence that the floating green macroalgal blooms originate from green macroalgae attached to Pyropia aquaculture rafts along the Jiangsu coastline of the southern Yellow Sea.

  4. Genetic characterization of quantitative resistance to Bremia lactucae, the causal organism of lettuce downy mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the United States. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carryi...

  5. Effects of DCMU on chlorophyll fluorescence ratio F685/F735 in marine red, brown and green algae

    NASA Astrophysics Data System (ADS)

    Wu, Bao-Gan; Zuo, Dong-Mei; Zang, Ru-Bo

    1996-03-01

    The chlorophyll fluorescence ratio F685/F735 in vivo can be a useful indicator for stress detection in higher plants and seaweeds. DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] treatment influences this ratio. The effets of DCMU on F685/F735 of marine red, brown and green algae under excitation light of different wavelengths were investigated. In the brown algae, Laminaria japonica and Undaria pinnatifida, DCMU did not increase this ratio under blue light excitation but increased the ratio slightly under excitation by green light. For the red algae, Halymenia sinensis, DCMU increased the ratio markedly under both blue and green light excitation. The percentage increase could reach 50% (under green light excitation) and was due to unequal enhancement at the two emission maxima by DCMU. A fraction of chlorophyll which contributed to fluorescence in the 735 nm region was less sensitive to DCMU and was likely from photosystem I of red algae. In the green alga, Ulva pertusa, DCMU caused a slight increase in F685/F735 value under blue, green and red light. Green light excitation during DCMU treatment increased the ratio most (16%) but induced the lowest ratio in the control (without DCMU). It is proposed that a considerable fraction of fluorescence from the 735 nm region at room temperature may be emitted by the chlorophyll of photosystem I in red algae.

  6. Hydrobia ulvae feeding rates: A novel way to assess sediment toxicity.

    PubMed

    Shipp, Emily; Grant, Alastair

    2006-12-01

    Standard acute toxicity tests are widely used to assess contaminated sediments. However, such tests last 10 d or more and only provide information regarding lethality. Here, we present data concerning the use of a 28-d growth test and a 24-h test using feeding rate, as measured by egestion rate, of the marine snail Hydrobia ulvae. The test was used to assess the toxicity of estuarine sediments from a gradient of heavy metal contamination, and its sensitivity and ease of use were compared with those of 10-d tests using the amphipod crustacean Corophium volutator. Mortality of C. volutator and H. ulvae in 10-d lethal toxicity tests showed similar patterns of sensitivity. Lethality tests with both species showed no effects when carried out using sediments from a number of sites at which ecological impacts are known to occur. By contrast, growth over 28 d in H. ulvae was reduced at all sites where other studies have detected adverse ecological effects. Feeding rate after 24 h also was decreased at moderately contaminated sites where sediments were not acutely toxic, and it was a very good predictor of 28-d growth (r2 = 0.74). Both tests were straightforward to carry out, so H. ulvae has considerable potential as a test organism for chronic toxicity.

  7. Ulva additions alter soil biogeochemistry and negatively impact Spartina alterniflora growth

    EPA Science Inventory

    Decaying mats of Ulva can be washed into salt marshes by the tides as large wrack deposits, especially in eutrophic estuaries, where they can negatively impact marsh vegetation. We report on a series of field and laboratory mesocosm experiments where we examined the effects of d...

  8. Combined effects of light intensity and NH{4/+}-enrichment on growth, pigmentation, and photosynthetic performance of Ulva prolifera (Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Xu, Zhiguang; Wu, Haiyi; Zhan, Dongmei; Sun, Fuxin; Sun, Jianzhang; Wang, Guangce

    2014-09-01

    The aim of this study was to investigate the effects of light intensity and enhanced nitrogen supply on the growth and photosynthesis of the green-tide macroalga, Ulva prolifera. Thalli of U. prolifera were grown in natural or NH{4/+}-enriched seawater under two different light intensities for 7 days, and then the growth rate, pigmentation, and photosynthetic performance of the thalli were evaluated. The results show that the relative growth rate (RGR) was markedly higher under the high light level than under the low light level. Enrichment with NH{4/+} enhanced the RGR under high light intensity, but did not affect RGR under low light intensity. In low light conditions, NH{4/+} -enrichment resulted in a marked decrease in the maximal photosynthetic rate ( P m) and the maximum carbon fixation rate ( V max), but it did not affect the half saturation constant for carbon ( K 0.5) or the ratio of V max to K 0.5, which reflects the carbon acquisition efficiency. In high light conditions, P m, K 0.5, and the dark respiration rate ( R d) increased under NH{4/+} enrichment, but V max and the V max / K 0.5 ratio decreased. Regardless of the light intensity, NH{4/+}-enrichment did not affect the apparent photosynthetic efficiency ( α), which reflects the ability of the alga to use light energy at low light levels. Under both low and high light intensities, the chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car) contents in thalli were higher in NH{4/+}-enriched than in natural seawater, except that there was a decrease in the Chl b content of thalli in NH{4/+}-enriched seawater under low light intensity. Therefore, NH{4/+} enrichment improved the growth and photosynthetic performance of U. prolifera under high light intensity, but not under low light intensity. We discuss the possible mechanisms underlying these physiological responses.

  9. Yield response of head lettuce (Lactuca sativa l. ) to ozone

    SciTech Connect

    Temple, P.J.; Taylor, O.C.; Benoit, L.F.

    1986-01-01

    Head lettuce (Lactuca sativa L. cv Empire) was grown in the field and exposed in open-top chambers to proportional increments of ozone (O/sub 3/) from full charcoal filtration (CF) to twice ambient O/sub 3/ concentrations(NF x 2.0). Severe foliar injury developed on young plants exposed to O/sub 3/ concentrations 1.7 and 2.0 times greater than ambient (seasonal 7 hr means of 0.104 and 0.128 ppm, respectively). These exposure levels also reduced total head weight 13 and 35%, respectively, compared with CF plants. Marketable-sized head weight was reduced 21 and 80%, respectively.

  10. The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production.

    PubMed

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially 'seeded' under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m(-1) rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day(-1) between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0 ± 8.8 g dry weight m(-1) (228.7 ± 115.4 g fresh weight m(-1)) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5 ± 7.3 g dry weight m(-1) (120.2 ± 71.8 g fresh weight m(-1)) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems.

  11. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  12. A MOLECULAR PHYLOGENY OF ACROCHAETE AND OTHER ENDOPHYTIC GREEN ALGAE (ULVALES, CHLOROPHYTA)(1).

    PubMed

    Rinkel, Barbara E; Hayes, Paul; Gueidan, Cécile; Brodie, Juliet

    2012-08-01

    A molecular phylogeny was reconstructed from a culture collection of >150 isolates of epi-endophytic and endophytic green algae, based on nucleotide sequences of the plastid tufA and nuclear ITS2 loci. The cultures were isolated from a variety of algal hosts, notably the red algae Chondrus crispus, Mastocarpus stellatus, and Osmundea species, and the brown algae Chorda filum and Fucus serratus. The phylogeny revealed that in the Ulvales the majority of isolates fell into Acrochaete (Ulvellaceae), Ulva (Ulvaceae), Bolbocoleon (Bolbocoleaceae), and at least two unknown genera provisionally assigned to the Kornmanniaceae. Acrochaete was monophyletic. The genus was also more specious than previously described with 12 species, including up to six new species awaiting formal description. Isolates identified as Acrochaete repens, the type species of the genus, were polyphyletic. The remainder of the isolates were placed in the Ulotrichales. The results confirm that the endophytic habit supports a broad diversity of algal taxa and suggest that blade formation is a relatively recent innovation within the green algae.

  13. SEASONAL VARIABILITY OF PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES OF ULVAN IN TWO ULVA SPECIES (CHLOROPHYTA) FROM THE BRITTANY COAST(1).

    PubMed

    Robic, Audrey; Sassi, Jean-François; Dion, Patrick; Lerat, Yannick; Lahaye, Marc

    2009-08-01

    The seasonal variability in the extraction yield, physicochemical characteristics, and rheological properties of ulvan from two Ulva species contributing to Brittany "green tides" has been studied. These seaweeds were collected in the water column for Ulva armoricana Dion, de Reviers et Coat and on hard substrata for Ulva rotundata Bliding. The maximum ulvan extraction efficiency was not related to the maximum ulvan content in the seaweeds, but with the active growth period of the seaweeds. Ulvan chemical structure, macromolecular characteristics, and rheological properties were affected by both species and seasons. The proportion of high-molecular-weight ulvan was the major factor positively correlated with the gelling properties. Characteristics of ulvan from U. rotundata subjected to tides were more affected by seasons than ulvan from U. armoricana living in a more constant environment. These results point to several useful recommendations concerning Ulva sp. biomass collected with regard to ulvan characteristics and uses.

  14. Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes.

    PubMed

    Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2016-12-01

    The feasibility of co-digestion of Ulva with whey was investigated at varying substrate mixing ratios in two continuous reactors run with increasing and decreasing proportions of Ulva, respectively. Co-digestion with whey proved beneficial to the biomethanation of Ulva, with the methane yield being greater by up to 1.6-fold in co-digestion phases than in the Ulva mono-digestion phases. The experimental reactors responded differently, in terms of process performance and community structure, to the changes in the substrate mixing ratio. This can be attributed to the different operating regimes between two reactors, which may have caused the microbial communities to develop in different ways to acclimate. Methanosaeta-related populations were the predominant methanogens responsible for the production of methane regardless of different substrate mixing ratios in both reactors. Considering the methane recovery and the Ulva treatment capacity, the optimal fraction of Ulva in the substrate mixture is suggested to be 50-75%.

  15. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production.

    PubMed

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2015-01-01

    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion.

  16. Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess.

    PubMed

    Gonzalez, Alberto; Vera, Jeannette; Castro, Jorge; Dennett, Geraldine; Mellado, Macarena; Morales, Bernardo; Correa, Juan A; Moenne, Alejandra

    2010-10-01

    In order to analyse copper-induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione-S-transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes.

  17. Engineered antifouling microtopographies: the role of Reynolds number in a model that predicts attachment of zoospores of Ulva and cells of Cobetia marina.

    PubMed

    Magin, Chelsea M; Long, Christopher J; Cooper, Scott P; Ista, Linnea K; López, Gabriel P; Brennan, Anthony B

    2010-08-01

    A correlation between the attachment density of cells from two phylogenetic groups (prokaryotic Bacteria and eukaryotic Plantae), with surface roughness is reported for the first time. The results represent a paradigm shift in the understanding of cell attachment, which is a critical step in the biofouling process. The model predicts that the attachment densities of zoospores of the green alga, Ulva, and cells of the marine bacterium, Cobetia marina, scale inversely with surface roughness. The size and motility of the bacterial cells and algal spores were incorporated into the attachment model by multiplying the engineered roughness index (ERI(II)), which is a representation of surface energy, by the Reynolds number (Re) of the cells. The results showed a negative linear correlation of normalized, transformed attachment density for both organisms with ERI(II) x Re (R(2) = 0.77). These studies demonstrate for the first time that organisms respond in a uniform manner to a model, which incorporates surface energy and the Reynolds number of the organism.

  18. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids.

    PubMed

    Harada, Hisashi; Maoka, Takashi; Osawa, Ayako; Hattan, Jun-Ichiro; Kanamoto, Hirosuke; Shindo, Kazutoshi; Otomatsu, Toshihiko; Misawa, Norihiko

    2014-04-01

    The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3'-hydroxylase (CrtZ) and β,β-carotenoid 4,4'-ketolase (4,4'-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8%) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2% of total carotenoids), astaxanthin monoester (18.2%), and the free forms of astaxanthin (10.0%) and the other ketocarotenoids (17.5%), which indicated that artificial ketocarotenoids corresponded to 94.9% of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8%) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

  19. Annually recurrent macroalgal blooms (Ulva prolifera) resulting in the world's largest green-tides caused by expansion of coastal aquaculture in the Yellow Sea off China

    NASA Astrophysics Data System (ADS)

    Keesing, John; Liu, Dongyan

    2013-04-01

    The largest macroalgal blooms ever recorded occurred in the Yellow Sea of China in 2008 and 2009 and resulted in extensive green tides along the Shandong Province coastline, including at Qingdao. At their peak these Ulva prolifera blooms covered more than 4,000 km2 and affected 40,000 km2. A smaller bloom was recorded in 2007, but not earlier. Since then massive blooms have occurred annually in summer from 2008 to 2012. Using remote sensing methods, we tracked the source of the 2008 and 2009 blooms to an area along the Jiangsu Province coastline near Yancheng, over 200 km south of Qingdao, where there had been rapid expansion of Porphyra aquaculture to as much as 13 km offshore, prior to the appearance of the first bloom in 2007. Porphyra is grown on rafts which can become heavily fouled with U. prolifera which is disposed of into the sea when the Porphyra is harvested. The timing of the blooms occurred post the April harvest period when daily tidal ranges in this region can be in excess of 7 m. This provides the mechanism for transportation of the floating algae offshore and into the warm nutrient rich waters of the Yellow Sea where it grows rapidly forming large patches. As the patches of algae grow and join, they gradually move north, as a result of wind driven surface currents that prevail in the Yellow Sea in summer, ultimately washing ashore on the Shandong Peninsula. We present a range of oceanographic, biological, ecological and genetic data to support the hypothesis that Porphyra aquaculture provides the source biomass for the Yellow Sea green-tides. Improved aquaculture waste disposal methods in the southern area of Jiangsu Province are likely to reduce or prevent the Yellow Sea green tides and present a feasible solution to a recurrent problem.

  20. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives

    PubMed Central

    Kendel, Melha; Wielgosz-Collin, Gaëtane; Bertrand, Samuel; Roussakis, Christos; Bourgougnon, Nathalie; Bedoux, Gilles

    2015-01-01

    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy. PMID:26404323

  1. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  2. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics.

  3. The impact of extreme weather events on the seagrass Zostera noltii and related Hydrobia ulvae population.

    PubMed

    Cardoso, P G; Raffaelli, D; Pardal, M A

    2008-03-01

    Coastal areas are typically subjected to a range of stressors, but they now face the additional stressor of climate change, manifested in part by an increased intensity and frequency of extreme weather events. Thus, the Mondego estuary (Portugal) has experienced organic enrichment (eutrophication) issues and these are potentially exacerbated by extreme weather events (floods, droughts and heat waves). In this paper, we explore the impact of interactions of these different stressors on the ecology of the system, specifically on the two key components, the seagrass Zostera noltii and the mud snail Hydrobia ulvae. Extreme events affected different components of the estuarine ecosystem (primary producers and macrofauna) differently. Whilst the floods directly impacted on H. ulvae, by wiping out part of its population, they did not directly affect the biomass of Z. noltii. In contrast, drought events, through their effects on salinity, directly impacted the biomass of Zostera, which had knock-on effects on the dynamics of H. ulvae. We conclude that over the period when the estuary experienced eutrophication, extreme weather events contributed to the overall degradation of the estuary, while during the recovery phase following the introduction of a management programme, those extreme weather episodes delayed the recovery process significantly.

  4. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae.

    PubMed

    Mieszkin, Sophie; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A

    2012-01-01

    Previous studies have shown that bacterial biofilms formed from natural seawater (NSW) enhance the settlement of spores of the green alga Ulva linza, while single-species biofilms may enhance or reduce settlement, or have no effect at all. However, the effect of biofilms on the adhesion strength of algae, and how that may be influenced by coating/surface properties, is not known. In this study, the effect of biofilms formed from natural seawater and the marine bacterium Cobetia marina, on the settlement and the adhesion strength of spores and sporelings of the macroalga U. linza and the diatom Navicula incerta, was evaluated on Intersleek(®) 700, Intersleek(®) 900, poly(dimethylsiloxane) and glass. The settlement and adhesion strength of these algae were strongly influenced by biofilms and their nature. Biofilms formed from NSW enhanced the settlement (attachment) of both algae on all the surfaces while the effect of biofilms formed from C. marina varied with the coating type. The adhesion strength of spores and sporelings of U. linza and diatoms was reduced on all the surfaces biofilmed with C. marina, while adhesion strength on biofilms formed from NSW was dependent on the alga (and on its stage of development in the case of U. linza), and coating type. The results illustrate the complexity of the relationships between fouling algae and bacterial biofilms and suggest the need for caution to avoid over-generalisation.

  5. Grazing on green algae by the periwinkle Littorina littorea in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, U.; Reise, K.

    1994-06-01

    On sedimentary tidal flats in the Wadden Sea near the Island of Sylt, the periwinkle Littorina littorea occurred preferentially on clusters and beds of mussels and on shell beds (100 to 350 m-2), achieved moderate densities on green algal patches or mats (20 to 50 m-2), and remained rare on bare sediments (<5 m-2). Green algae covering>10% of sediment surface appeared in summer on approximately one third of the tidal zone, mainly in the upper and sheltered parts and almost never on mussel and shell beds. In feeding experiments, L. littorea ingested more of the dominant alge, Enteromorpha, than of Ulva, irrespective of whether or not algae were fresh or decaying. The tough thalli of Chaetomorpha were hardly consumed. Snails feeding on Enteromorpha produced fecal pellets from which new growth of Enteromorpha started. In the absence of periwinkles, Enteromorpha developed on mussels and the attached fucoids. Experimentally increased snail densities on sediments prevented green algal development, but the snails were unable to graze down established algal mats. It is concluded that natural densities of L. littorea hardly affect the ephemeral mass development of green algae on sediments. However, where the snails occur at high densities, i.e. on mussel beds, green algal development may be prevented.

  6. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia).

    PubMed

    Siegal-Willott, Jessica L; Harr, Kendal; Hayek, Lee-Ann C; Scott, Karen C; Gerlach, Trevor; Sirois, Paul; Reuter, Mike; Crewz, David W; Hill, Richard C

    2010-12-01

    Free-ranging Florida manatees (Trichechus manatus latirostris) consume a variety of sea grasses and algae. This study compared the dry matter (DM) content, proximate nutrients (crude protein [CP], ether-extracted crude fat [EE], nonfiber carbohydrate [NFC], and ash), and the calculated digestible energy (DE) of sea grasses (Thalassia testudinum, Halodule wrightii, and Syringodium filiforme) collected in spring, summer, and winter, and an alga (Chara sp.) with those of romaine lettuce (Lactuca sativa var. longifolia). Neutral-detergent fiber (NDF), acid-detergent fiber (ADF), and lignin (L) measured after ash-extraction were also compared. Results of statistical tests (C = 0.01) revealed DM content was higher in aquatic vegetation than in lettuce (P = 0.0001), but NDF and ADF were up to threefold greater, EE (P = 0.00001) and CP (P = 0.00001) were 2-9 times less, and NFC (P = 0.0001) was 2-6 times lower in sea grass than in lettuce, on a DM basis. Chara was lower in NDF, ADF, L, EE, CP, and NFC relative to lettuce on a DM basis. Ash content (DM basis) was higher (P = 0.0001), and DE was 2-6 times lower in aquatic vegetation than in lettuce. Sea grass rhizomes had lower L and higher ash contents (DM basis) than sea grass leaves. Based on the nutrient analyses, romaine lettuce and sea grasses are not equivalent forages, which suggests that the current diet of captive Florida manatees should be reassessed.

  7. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  8. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  9. Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvae and Corophium volutator-the possible role of trematodes

    NASA Astrophysics Data System (ADS)

    Jensen, K. T.; Mouritsen, K. N.

    1992-09-01

    Two littoral macrofaunal invertebrates, Hydrobia ulvae (Prosobranchia) and Corophium volutator (Amphipoda) suffered mass mortality on an intertidal mudflat in the Danish Wadden Sea in May June 1990. Dissection of collected H. ulvae individuals revealed a considerable increase from March to May in numbers of infected individuals by microphallid trematodes that use H. ulvae and C. volutator as first and second intermediate host, respectively. The numbers of infested snails were hereafter reduced by an amount equal to the observed mortality rate of snails. At the same time, the C. volutator population became extinct. Since other conceivable mortality factors could be ruled out, parasites are suspected to be the causative agent. Apart from the expected effects on potential predators by the decline in the two invertebrate populations, the benthic community changed and destabilization of the substratum occurred probably because of the die-off in C. volutator. Meteorological data suggest high temperatures as a triggering factor of the massdevelopment of the studied trematodes.

  10. Pb low doses induced genotoxicity in Lactuca sativa plants.

    PubMed

    Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C

    2017-03-01

    Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L(-1). In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO3)2 up to 20 mg L(-1). The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L(-1) significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L(-1) and presence of micronuclei (MN) were detected for 20 mg L(-1). Also, cell cycle impairment was observed for doses as low as 0.05 mg L(-1) and 0.5 mg L(-1) (mostly G2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays.

  11. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep.

    PubMed

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant.

  12. Phytotoxicity studies with Lactuca sativa in soil and nutrient solution

    SciTech Connect

    Hulzebos, E.M.; Dirven-van Breemen, E.M.; Dis, W.A. van; Herbold, H.A.; Hoekstra, J.A.; Baerselman, R.; Gestel, C.A.M van ); Adema, D.M.M.; Henzen, L. )

    1993-06-01

    The toxicity of 76 priority pollutants to lettuce (Lactuca sativa) was determined in soil and in nutrient solution. In the first case a static and in the latter a semistatic exposure was established. Volatile and easily degradable compounds had high EC50 values in soil. In nutrient solution, however, several of these compounds were rather toxic. Quantitative structure activity relationships (QSARs) relating EC50 values to log K[sub ow] could be described for the toxicity in nutrient solution. Generally, the toxicity of the compounds increased with increasing lipophilicity. Deviations were caused by reactivity (N-containing compounds, double bonds in compounds), low lipophilicity, and EC50 values close to solubility. To relate toxicity in soil and nutrient solution, soil EC50 values were recalculated to values in the soil pore water using calculated adsorption coefficients. Estimated pore-water EC50 values showed a good correlation with values determined in nutrient solution but were not equal to these values. The differences can be attributed to differences in exposure.

  13. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  14. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  15. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep

    PubMed Central

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant. PMID:24250615

  16. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    PubMed

    Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  17. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress

    PubMed Central

    Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli’s acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure. PMID:28033367

  18. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice.

    PubMed

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.

  19. The performance of aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel coatings against the marine alga Ectocarpus crouaniorum: relative roles of surface energy and charge.

    PubMed

    Evariste, Emmanuelle; Gatley, Caitlyn M; Detty, Michael R; Callow, Maureen E; Callow, James A

    2013-01-01

    The effect of a series of xerogel coatings modified with aminoalkyl/fluorocarbon/hydrocarbon groups on the adhesion of a new test species, the filamentous brown alga Ectocarpus crouaniorum, has been explored, and compared with the green alga Ulva linza. The results showed that E. crouaniorum adhered weakly to the less polar, low wettability coatings in the series, but stronger adhesion was shown on polar, higher surface energy coatings containing aminoalkyl groups. The results from a separate series of coatings tuned to have similar surface energies and polarities after immersion in artificial seawater (ASW), but widely different surface charges, demonstrated that surface charge was more important than surface energy and polarity in determining the adhesion strength of both E. crouaniorum and U. linza on xerogel coatings. No correlation was found between adhesion and contact angle hysteresis. X-ray photoelectron spectroscopy analysis of samples after immersion in ASW confirmed the presence of charged ammonium groups on the surface of the aminoalkylated coatings.

  20. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  1. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  2. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  3. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, Russell L.; Carr, R. Scott

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciatazoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciatazoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  4. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    SciTech Connect

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH{sub 3}) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH{sub 3} than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH{sub 3} concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH{sub 3} concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH{sub 3} and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH{sub 3}.

  5. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    PubMed

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera.

  6. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.

    PubMed

    Roberts, David A; de Nys, Rocky

    2016-03-15

    Green seaweeds from the genus Ulva are a promising feedstock for the production of biochar for carbon (C) sequestration and soil amelioration. Ulva can be cultivated in waste water from land-based aquaculture and Ulva blooms ("green tides") strand millions of tons of biomass on coastal areas of Europe and China each year. The conversion of Ulva into biochar could recycle C and nutrients from eutrophic water into agricultural production. We produce biochar from Ulva ohnoi, cultivated in waste water from an aquaculture facility, and characterize its suitability for C sequestration and soil amelioration through bio-chemical analyses and plant growth experiments. Two biomass pre-treatments (fresh water rinsing to reduce salt, and pelletisation to increase density) were crossed with four pyrolysis temperatures (300-750 °C). Biomass rinsing decreased the ash and increased the C content of the resulting biochar. However, biochar produced from un-rinsed biomass had a higher proportion of fixed C and a higher yield. C sequestration decreased with increasing pyrolysis temperatures due to the combination of lower yield and lower total C content of biochar produced at high temperatures. Biochar produced from un-rinsed biomass at 300 °C had the greatest gravimetric C sequestration (110-120 g stable C kg(-1) seaweed). Biochar produced from un-pelletised Ulva enhanced plant growth three-fold in low fertility soils when the temperature of pyrolysis was less than 450 °C. The reduced effectiveness of the high-temperature biochars (>450 °C) was due to a lower N and higher salt content. Soil ameliorated with biochar produced from pelletised biomass had suppressed plant germination and growth. The most effective biochar for C sequestration and soil amelioration was produced from un-rinsed and un-pelletised Ulva at 300 °C. The green tide that occurs annually along the Shandong coastline in China generates sufficient biomass (200,000 tons dry weight) to ameliorate 12,500

  7. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Lettuce (Lactuca sativa L.) is the major vegetable from the group of leafy vegetables. Several types of molecular markers were developed that are effictively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly avai...

  8. Semi-high throughput screening for potential drought-tolerance in lettuce (Lactuca sativa) germplasm collections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of th...

  9. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bremia lactucae causes the characteristic vein-delimited lesions, leaf chlorosis and necrosis and adversely affects marketability of lettuce. The disease has been managed with a combination of host resistance and fungicide applications with mixed success over the years. Fungicide applications are ro...

  10. Development of an assay for rapid detection of the lettuce downy mildew pathogen, Bremia lactucae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Downy mildew of lettuce, caused by Bremia lactucae, causes chlorosis on leaves and adversely affects marketability. Though downy mildew on lettuce can be controlled by fungicide applications, it is costly to routinely apply fungicides to prevent the establishment of downy mildew. Repeated use of the...

  11. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  12. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.

    PubMed

    Vanegas, C H; Bartlett, J

    2013-01-01

    Marine algae have emerged as an alternative feedstock for the production of a number of renewable fuels, including biogas. In addition to energy potential, other characteristics make them attractive as an energy source, including their ability to absorb carbon dioxide (CO2), higher productivity rates than land-based crops and the lack of water use or land competition. For Ireland, biofuels from marine algae can play an important role by reducing imports of fossil fuels as well as providing the necessary energy in rural communities. In this study, five potential seaweed species common in Irish waters, Saccorhiza polyschides, Ulva sp., Laminaria digitata, Fucus serratus and Saccharina latissima, were co-digested individually with bovine slurry. Batch reactors of 120ml and 1000ml were set up and incubated at 35 degrees C to investigate their suitability for production of biogas. Digesters fed with S. latissima produced the maximum methane yield (335 ml g volatile solids(-1) (g(VS)(-1) followed by S. polyschides with 255 ml g(VS)(-1). L. digitata produced 246ml g(VS)(-1) and the lowest yields were from the green seaweed Ulva sp. 191ml g(VS)(-1). The methane and CO2 percentages ranged between 50-72% and 10-45%, respectively. The results demonstrated that the seaweed species investigated are good feedstocks candidates for the production of biogas and methane as a source of energy. Their use on a large-scale process will require further investigation to increase yields and reduce production costs.

  13. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  14. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  15. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  16. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  17. Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Ming; Li, Ruixiang; Li, Yan; Xin, Ming; Xiao, Jie; Wang, Zongling; Tang, Xuexi; Pang, Min

    2015-09-01

    To define responses of short-term nutrient uptake in Ulva prolifera, we measured uptake rates, enzyme activity, and tissue nutrient content in lab experiments where we manipulated nutrient supply and irradiation. Nitrate uptake of U. prolifera was significantly impacted by the external nitrate concentrations, and ammonium uptake was mainly determined by the light availability. The measured nitrogen contents in tissues were higher than the calculated values from the uptake of dissolve inorganic nitrogen, indicating that U. prolifera might use multiple nitrogen sources. High external phosphate concentrations and sufficient light can accelerate the phosphate uptake of U. prolifera, while the measured phosphorus contents in tissues were lower than the calculated values from the uptake of phosphate, suggesting a possibility of internal phosphorus release. The enzymatic activities of nitrate reductase (NR), acid phosphatase (AcP) and alkaline phosphatase (AP) showed little changes, indicating that enzymatic activity might not a direct factor determining the short-term nutrient uptake of U. prolifera.

  18. Subchronic toxicity study of ulvan from Ulva pertusa (Chlorophyta) in Wistar rats.

    PubMed

    Qi, Huimin; Liu, Xiaolei; Wang, Kai; Liu, Dongmei; Huang, Liye; Liu, Shunmei; Zhang, Quanbin

    2013-12-01

    Ulvan extracted from Ulva pertusa (Chlorophyta) is a group of sulfated heteropolysaccharide, for simplicity, the sulfated polysaccharide is referred to as ulvan in this paper. To our knowledge, there is no detailed report investigating the toxicity of ulvan. In this study, the subchronic (6 months) toxicity of varying levels of ulvan extracted from U. pertusa was investigated in Wistar rats after oral administration. ALT, ALB, ALP, WBC, PLT, and liver relative organ weigh of female rats showed significantly difference at 3000 mg/kg body weight per day, compared with control group. On the other hand, TG, T-CHO concentrations of female rats (6 months) were significantly decreased at 600, 1200 and 3000 mg/kg body weight per day. This result proved that ulvan had antihyperlipidemic activity. Beside, ulvan showed anticoagulant activity in this study. Overall, our findings indicated that ulvan had affected specific hematology, serum biochemistry parameters and liver, and had great differences between males and females rats.

  19. Iron-encrusted diatoms and bacteria epibiotic on Hydrobia ulvae (Gastropoda: Prosobranchia)

    NASA Astrophysics Data System (ADS)

    Gillan, D. C.; Cadée, G. C.

    2000-02-01

    Rust-coloured shells of the gastropod Hydrobia ulvae collected in the Wadden Sea near Texel and in the Jade Busen were analysed under the scanning electron microscope. Most of the shells were found to be covered with a microbial community encrusted with an iron-rich mineral containing traces of Mn, Mg, Ca and Si (EDAX analysis). The community formed a biofilm including two morphotypes of diatoms identified as Cocconeis placentula and Achnanthes lemmermanni, two morphotypes of slender filamentous bacteria resembling Leucothrix and Flexibacter, aggregates of coccoid cells and large trichomes resembling members of the cyanobacterial orders Pleurocapsales and Stigonematales, respectively. The most frequent microorganisms of the biofilm were diatoms and filamentous bacteria.

  20. SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suppression subtractive hybridization (SSH) was employed to identify lettuce (Lactuca sativa) genes that are differentially expressed in symptomatic leaves infected with Verticillium dahliae. Genes expressed only in symptomatic leaves included those with homology to pathogenesis-related (PR) protei...

  1. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  2. Evaluating aquatic toxicity by visual inspection of thallus color in the green macroalga Ulva: testing a novel bioassay.

    PubMed

    Han, Young-Seok; Brown, Murray T; Park, Gyoung Soo; Han, Taejun

    2007-05-15

    A novel bioassaythat uses visual inspection of reproduction of the aquatic green macroalga Ulva has been developed for testing toxic chemicals. The method employs a technique to quantify percentage reproduction based on thallus color change during the progression of reproduction. The validity of visual inspection as a reliable method was supported by a high test score (80.4) from a test of the ability of 97 first year university students with no biology background to evaluate reproduction by visual observation after 30 min training. The sensitivity of the method was assessed using a reference toxicant (sodium dodecyl sulfate; SDS; EC50 = 7.1 mg x L(-1)), heavy metals Cu (0.063 mg x L(-1)), Cd (0.217 mg x L(-1, Pb (0.840 mg x L(-1)), Zn (0.966 mg x L(-1)), formalin (1.458 mg x L(-1)), diesel fuel (3.7 mL x L(-1)), and is shown to be similar or better than more established aquatic toxicity bioassays. Toxicity data obtained by the Ulva bioassay for elutriates of sludge collected from nine different locations were directly compared with the commercially available Microtox test. Ulva reproduction was significantly inhibited in all elutriates with the greatest and least toxic effects, estimated by toxicity units (TU) observed in elutriates from industrial waste (13.1 TU) and a filtration bed (4.8 TU), whereas values ranging from 1 to 4.5 TU were obtained from the Microtox test, confirming that the Ulva bioassay is more sensitive. Correlation analyses for EC50 data versus the concentrations of toxicants in the sludge indicated a significant relationship between toxicity and four heavy meals (Cd, Cu, Pb, Zn) for the Ulva bioassay but no such correlation was detected by the Microtox test. The new bioassay method is simple to use, easy to interpret, economical, and eco-relevant so would be a valuable addition to aquatic toxicity testing protocols for a wide range of toxicants. Moreover, since Ulva has a wide geographical distribution and species have similar reproductive

  3. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.

    PubMed

    Costa, J C; Gonçalves, P R; Nobre, A; Alves, M M

    2012-06-01

    Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis.

  4. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    PubMed

    Lawton, Rebecca J; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  5. [Analysis of the mineral elements of Lactuca sativa under the condition of different spectral components].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei

    2013-08-01

    Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.

  6. Ploidy Distribution of the Harmful Bloom Forming Macroalgae Ulva spp. in Narragansett Bay, Rhode Island, USA, Using Flow Cytometry Methods.

    PubMed

    Potter, Elaine E; Thornber, Carol S; Swanson, John-David; McFarland, Malcolm

    2016-01-01

    Macroalgal blooms occur worldwide and have the potential to cause severe ecological and economic damage. Narragansett Bay, RI is a eutrophic system that experiences summer macroalgal blooms composed mostly of Ulva compressa and Ulva rigida, which have biphasic life cycles with separate haploid and diploid phases. In this study, we used flow cytometry to assess ploidy levels of U. compressa and U. rigida populations from five sites in Narragansett Bay, RI, USA, to assess the relative contribution of both phases to bloom formation. Both haploid gametophytes and diploid sporophytes were present for both species. Sites ranged from a relative overabundance of gametophytes to a relative overabundance of sporophytes, compared to the null model prediction of √2 gametophytes: 1 sporophyte. We found significant differences in cell area between ploidy levels for each species, with sporophyte cells significantly larger than gametophyte cells in U. compressa and U. rigida. We found no differences in relative growth rate between ploidy levels for each species. Our results indicate the presence of both phases of each of the two dominant bloom forming species throughout the bloom season, and represent one of the first studies of in situ Ulva life cycle dynamics.

  7. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta)

    PubMed Central

    Rautenberger, Ralf; Fernández, Pamela A; Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E; Hurd, Catriona L; Roleda, Michael Y

    2015-01-01

    Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated dehydration and alter the stable carbon isotope (δ13C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is <1 μmol L−1, inhibition of the known use mechanisms, that is, direct uptake through the AE port and CAext-mediated dehydration decreased net photosynthesis (NPS) by only 56–83%, leaving the carbon uptake mechanism for the remaining 17–44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent transporters to which the remaining NPS can be attributed. The shift in δ13C signatures from –22‰ toward –10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms. PMID:25750714

  8. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta).

    PubMed

    Rautenberger, Ralf; Fernández, Pamela A; Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E; Hurd, Catriona L; Roleda, Michael Y

    2015-02-01

    Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated [Formula: see text] dehydration and alter the stable carbon isotope (δ (13)C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is <1 μmol L(-1), inhibition of the known [Formula: see text] use mechanisms, that is, direct [Formula: see text] uptake through the AE port and CAext-mediated [Formula: see text] dehydration decreased net photosynthesis (NPS) by only 56-83%, leaving the carbon uptake mechanism for the remaining 17-44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent [Formula: see text] transporters to which the remaining NPS can be attributed. The shift in δ (13)C signatures from -22‰ toward -10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial [Formula: see text] use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms.

  9. Ploidy Distribution of the Harmful Bloom Forming Macroalgae Ulva spp. in Narragansett Bay, Rhode Island, USA, Using Flow Cytometry Methods

    PubMed Central

    Swanson, John-David; McFarland, Malcolm

    2016-01-01

    Macroalgal blooms occur worldwide and have the potential to cause severe ecological and economic damage. Narragansett Bay, RI is a eutrophic system that experiences summer macroalgal blooms composed mostly of Ulva compressa and Ulva rigida, which have biphasic life cycles with separate haploid and diploid phases. In this study, we used flow cytometry to assess ploidy levels of U. compressa and U. rigida populations from five sites in Narragansett Bay, RI, USA, to assess the relative contribution of both phases to bloom formation. Both haploid gametophytes and diploid sporophytes were present for both species. Sites ranged from a relative overabundance of gametophytes to a relative overabundance of sporophytes, compared to the null model prediction of √2 gametophytes: 1 sporophyte. We found significant differences in cell area between ploidy levels for each species, with sporophyte cells significantly larger than gametophyte cells in U. compressa and U. rigida. We found no differences in relative growth rate between ploidy levels for each species. Our results indicate the presence of both phases of each of the two dominant bloom forming species throughout the bloom season, and represent one of the first studies of in situ Ulva life cycle dynamics. PMID:26918869

  10. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    PubMed

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  11. [Effect of outer space factors on lettuce seeds (Lactuca sativa) flown on "Kosmos" biosatellites].

    PubMed

    Nevzgodina, L V; Maksimova, E N; Akatov, Iu A; Kaminskaia, E V; Marennyĭ, A M

    1990-01-01

    The effect of cosmic radiation on air-dry lettuce (Lactuca sativa) seeds was investigated. It was attempted to discriminate the effects of cosmic ionizing radiation per se and its combination with solar light radiation. It was found that the number of aberrant cells in the seeds exposed to solar light was smaller than that of cells chielded with 0.0008 to 0.0035 g/cm2 foil which could be attributed to photoreactivity.

  12. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  13. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  14. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  15. Two new mountainous species of Lactuca (Cichorieae, Asteraceae) from Iran, one presenting a new, possibly myrmecochorous achene variant.

    PubMed

    Kilian, Norbert; Djavadi, Seyyedeh Bahereh; Eskandari, Majid

    2012-01-01

    It is shown that the concept of the Iranian endemic Lactuca polyclada in the sense of both its original author Boissier and its current use actually admixes two entirely different species, as was first noted by Beauverd a hundred years ago but has been neglected by later workers. One is a putative relative of Lactuca rosularis, the other was recognised by Beauverd as a member of the genus Cicerbita. The name Lactuca polyclada Boiss. is lectotypified here, maintaining its use as established by Beauverd for the Cicerbita species. Both species are morphologically delimited and mature achenes of Cicerbita polyclada are illustrated for the first time. The putative relative of Lactuca rosularis, a rare local endemic of the summit area of Kuh e-Dena, which has remained without a valid name by now, is described as a new species, Lactuca denaensis N. Kilian & Djavadi, and illustrated. A third member of the Lactuca rosularis group, Lactuca hazaranensis Djavadi & N. Kilian, discovered among a recent collection and apparently being a rare chasmophyte of the Hazaran mountain massif in the province of Kerman, Iran, is described as a species new to science, illustrated and delimited from the other two species. This new species has peculiar achenes representing a hitherto unknown variant: the body of the beaked achenes is divided into two segments by a transversal constriction in the distal third. The proximal segment contains the embryo, the distal segment is solid with a lipid-containing yellow tissue. The easily detachable pappus and the equally easily detachable beak potentially obstruct dispersal by wind. Since detachment of the beak also exposes the lipid-containing tissue of the distal segment, its potential as an elaiosome and myrmecochory as a possible mode of dispersal are discussed.

  16. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  17. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  18. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  19. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  20. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  1. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  2. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  3. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  4. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  5. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  7. Algae -- a poor man's HAART?

    PubMed

    Teas, Jane; Hebert, James R; Fitton, J Helen; Zimba, Paul V

    2004-01-01

    Drawing inferences from epidemiologic studies of HIV/AIDS and in vivo and in vitro HIV inhibition by algae, we propose algal consumption as one unifying characteristic of countries with anomalously low rates. HIV/AIDS incidence and prevalence in Eastern Asia ( approximately 1/10000 adults in Japan and Korea), compared to Africa ( approximately 1/10 adults), strongly suggest that differences in IV drug use and sexual behavior are insufficient to explain the 1000-fold variation. Even in Africa, AIDS/HIV rates vary. Chad has consistently reported low rates of HIV/AIDS (2-4/100). Possibly not coincidentally, most people in Japan and Korea eat seaweed daily and the Kanemba, one of the major tribal groups in Chad, eat a blue green alga (Spirulina) daily. Average daily algae consumption in Asia and Africa ranges between 1 and 2 tablespoons (3-13 g). Regular consumption of dietary algae might help prevent HIV infection and suppress viral load among those infected.

  8. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  9. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  10. Exposure of the marine deposit feeder Hydrobia ulvae to sediment spiked with LAS congeners.

    PubMed

    Mauffret, A; Temara, A; Blasco, J

    2010-05-01

    The lethal and sub-lethal toxicity of LAS congeners to the mollusc gastropod Hydrobia ulvae were assessed in spiked sediment bioassays. This complements the little knowledge available to date on mixture effects in the sediment compartment. The LAS homologues joint effect was concentration additive ([summation operator]TU(i) = 0.8-1). As opposed to the 10-d LC10 based on the sediment associated LAS concentration (91-330 mg/kg) which was independent of the homologue chain length, the LC10 based on the dissolved LAS fraction (0.804-0.068 mg/L) decreased as the homologue chain length increased from 10 to 13 carbons. The quantitative structure-activity relationship (QSAR) derived from these data was log (1/LC10 (mol/L)) = 0.64 log K(ow) + 4.40 (n = 5; r(2) = 0.76; s = 0.24). It showed an apparent higher toxicity compared to the typical QSAR for polar narcosis in water-only systems probably due to the simultaneous exposure of the snail to LAS through the dissolved and the sediment associated fractions. The egestion rate of the surviving snails recovered after few days' exposure (1-d NOEC: 40-107 mg/kg, 9-d NOEC: 65-190 mg/kg) which suggests that the organisms were able to acclimate to LAS during the exposure.

  11. Comparative Studies of the Pyrolytic and Kinetic Characteristics of Maize Straw and the Seaweed Ulva pertusa

    PubMed Central

    Ye, Naihao; Li, Demao; Chen, Limei; Zhang, Xiaowen; Xu, Dong

    2010-01-01

    Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min−1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n = 3), whereas that of maize straw can be described by the Mampel Power Law (n = 2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol−1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy. PMID:20844751

  12. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides.

  13. Rheology and characteristics of sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata.

    PubMed

    Shao, Ping; Qin, Minpu; Han, Longfei; Sun, Peilong

    2014-11-26

    The rheological characteristics of polysaccharides which were extracted and separated from Ulva fasciata (UFP) were investigated in aqueous solutions under conditions of concentration, temperature, solution pH and salt concentrations. It was described by the power-law model with a consistency index (k) and a flow behavior index (n). The rheology results showed UFP exhibited as a shear-thickening fluid and a possible mechanism was proposed to explain this phenomenon that might be the collapse of UFP necklace-type structures. UFP characteristics were evaluated by determining the chemical analysis and zeta potential. The findings indicated UFP may consist of partially ulvan, as the results were in accordance with the ulvan structure. Additionally, a rod-climbing effect and cold-set gelation were observed in the UFP semidilute solution. Therefore, the cold-set gelling properties and unique shear-thickening fluid properties in this work could be valuable for the exploration of U. fasciata as a new source of water-soluble gelling polysaccharides.

  14. Influences of Ulva fasciata polysaccharide on the rheology and stabilization of cinnamaldehyde emulsions.

    PubMed

    Shao, Ping; Shao, Jiamei; Jiang, Yike; Sun, Peilong

    2016-01-01

    Emulsifying properties of water soluble polysaccharides from Ulva fasciata (UFP) were evaluated in cinnamaldehyde/water emulsions in terms of droplet size distribution, rheological properties, visual phase separation, and zeta-potential. The cinnamaldehyde/water (10%, wt/wt) emulsions were formulated and stabilized by different concentrations of UFP (0.1-4%, wt/wt). The obtained emulsions showed monomodal droplet size distributions with average droplet size (D[3,2]) below 1.0μm, when 3% (wt/wt) UFP was added as the emulsifying agent under a homogenization pressure of 75MPa. The rheological properties and zeta-potential of the emulsions appeared to be dependent on the UFP concentration. Furthermore, the UFP exhibited better emulsifying and stabilizing properties in the investigated system when compared to other commercial polysaccharides of gum Arabic and gum Ghatti. The results also suggested that the emulsifying and stabilizing mechanism of the UFP may not only be ascribed to its surface-active protein moiety, but also to the hydrophobicity of the polysaccharide itself. These findings provided a theoretical basis for potential utilization of UFP as a novel hydrocolloid emulsifying agent.

  15. Allelopathic Interactions between the Opportunistic Species Ulva prolifera and the Native Macroalga Gracilaria lichvoides

    PubMed Central

    Zhang, Xiaowen; Fan, Xiao; Wang, Yitao; Li, Demao; Wang, Wei; Zhuang, Zhimeng; Ye, Naihao

    2012-01-01

    Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L−1 significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L−1 (p<0.05) in both semi-continuous co-culture assays and in co-culture assays without nutrient supplementation. In contrast, although U. prolifera had a density effect on G. lichvoides, the differences among treatments were not significant (p>0.05). Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community. PMID:22496758

  16. Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis.

    PubMed

    Zhuang, Yingbin; Guo, Jingxue; Chen, Limei; Li, Demao; Liu, Junhai; Ye, Naihao

    2012-07-01

    Production of bio-oil by microwave-assisted direct liquefaction (MADL) of Ulva prolifera was investigated, and the bio-oil was analyzed by elementary analysis, Fourier transform infrared spectroscopic analysis (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The results indicate that the liquefaction yield is influenced by the microwave power, liquefaction temperature, liquefaction time, catalyst content, solvent-to-feedstock ratio and moisture content. The maximum liquefaction yield of U. prolifera (moisture content of 8%) was 84.81%, which was obtained under microwave power of 600 W for 30 min at 180 °C with solvent-to-feedstock ratio of 16:1 and 6% H(2)SO(4). The bio-oil was composed of benzenecarboxylic acid, diethyl phthalate, long-chain fatty acids (C(13) to C(18)), fatty acid methyl esters and water. The results suggest that U. prolifera is a viable eco-friendly, green feedstock substitute for biofuels and chemicals production.

  17. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes.

    PubMed

    Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying

    2016-10-01

    For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity.

  18. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction.

    PubMed

    Zhang, Jianheng; Kim, Jang Kyun; Yarish, Charles; He, Peimin

    2016-03-15

    Since 2007, Ulva macroalgal blooms have occurred along the coastal areas of the Yellow Sea, China. These blooms are dominated by fragments of Ulva prolifera in the early stages of development. The objectives of this study were to identify the primary mode of asexual reproduction for U. prolifera and to evaluate the contribution of these thalli fragments to the formation of blooms. Four different growth and reproductive strategies of U. prolifera segments were found including: 1) tubular diameter becoming larger; 2) formation of new branches; 3) release of zoids; and 4) polarized growth. This is the first report showing the development of numerous blade-lets from a single segment, which is remarkably different from previous studies on other Ulva species. The results in the present study provide critical information to understand how this species is able to support its explosive growth during a bloom.

  19. Antioxidant system responses in two co-occurring green-tide algae under stress conditions

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhao, Xinyu; Tang, Xuexi

    2016-01-01

    Green tides have occurred every year from 2007 to 2014 in the Yellow Sea. Ulva prolifera (Müller) J. Agardh has been identified as the bloom-forming alga, co-occurring with U. intestinalis. We observed distinct strategies for both algal species during green tides. U. prolifera exhibited a high abundance initially and then decreased dramatically, while U. intestinalis persisted throughout. The antioxidant system responses of these two macroalgae were compared in the late phase of a green tide (in-situ) and after laboratory acclimation. Lipid peroxidation and antioxidant system responses differed significantly between the two. Malondialdehyde and hydrogen peroxide contents increased significantly in-situ in U. prolifera, but not in U. intestinalis. In U. prolifera, we observed a significant decrease in total antioxidant ability (T-AOC), antioxidant enzymes (SOD and Apx), and non-enzyme antioxidants (GSH and AsA) in-situ. U. intestinalis showed the same pattern of T-AOC and SOD, but its Gpx, Apx, and GSH responses did not differ significantly. The results suggest that U. prolifera was more susceptible than U. intestinalis to the harsh environmental changes during the late phase of a Yellow Sea green tide. The boom and bust strategy exhibited by U. prolifera and the persistence of U. intestinalis can be explained by differences in enzyme activity and antioxidant systems.

  20. [Distribution characteristics of benthic algae in intertidal zone of Ma' an Archipelago of Zhejiang Province].

    PubMed

    Zhang, Shou-Yu; Liang, Jun; Wang, Zhen-Hua; Wang, Kai

    2008-10-01

    Based on the survey of benthic algae in the intertidal zone of Ma' an Archipelago from March to July 2007, the algal species composition, distribution, and temperature feature were studied. The dominant algal species in the study area were preliminarily analyzed by using similarity indices (S(c)) and index of relative importance (IRI(c)). A total of 31 species sampled in sublittoral area were identified, among which, 7 species of 5 genera belonged to Chlorophyta, 8 species of 5 genera belonged to Phaeophyta, and 16 species of 14 genera belonged to Rhodophyta. Topical and selective distribution species influenced by wave and tide were identified in the intertidal zone. Ulva pertusa and Sargassum thunbergii were found in all survey area. Rhodophyta was the dominant species, with the occurring frequency being up to 61.1%, and Chlorophyta showed quite uniformed horizontal distribution. In addition, 81% of sampled species were from low-tide zone, and some were extended from mid-tide zone to low-tide zone. The composition comparability between mid-tide and low-tide species was 0.47, and the convergence effect in mid-tide and low-tide zone was higher than that in high-tide and mid-tide zone. The sublittoral area of Ma' an Archipelago showed obvious vertical zoning character, with temperate species being absolute abundant, and the warm-water species dominant. The marine floral texture of Ma' an Archipelago belongs to warm temperate-subtropical transitional marine flora.

  1. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  2. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf.

    PubMed

    Mashjoor, Sakineh; Yousefzadi, Morteza; Esmaeili, Mohamad Ali; Rafiee, Roya

    2016-10-01

    Pharmaceutical industry now accept the worlds ocean which contains a vast array of organisms with unique biological properties, as a major frontier for medical investigation. Bioactive compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically macro and micro algae, and cyanobacteria. The aim of this work was to investigate antimicrobial and cytotoxic activities of the extracts of marine macro algae Ulva flexuosa, Padina antillarum and Padina boergeseni from the northern coasts of the Persian Gulf, Qeshm Island, Iran, against three cell lines including MCF7, HeLa and Vero, as well as their inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. Antimicrobial activity of the marine macro algal extracts was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test the effects of the extracts on each cancer cell line. The algal extracts showed considerable antimicrobial activity against the majority of the tested bacteria and fungi. Both ethyl acetate and methanol extracts at the highest concentration (100 µg/ml) caused cell death, with the IC50 values calculated for each cell type and each algal extracts. Results are exhibited a higher decrease in the viability of the cells treated at the highest concentration of marine macro algal ethyl acetate extracts compared to the methanol extracts (78.9 % death in Vero cells by ethyl acetate extracts from U. flexuosa). Despite, the ethyl acetate extracts with lower dose- response of cells, exhibited better cytotoxic activity than methanol extracts (IC50: 55.26 μg/ml in Vero cells by ethyl acetate extracts from U. flexuosa). Based on the findings, it is concluded that the marine macro algal extracts from the Persian Gulf possess antibacterial and cytotoxic potential, which could be considered for future applications in medicine and identifying novel drugs from the

  3. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  4. Expression of genes involved in redox homeostasis and antioxidant defense in a marine macroalga Ulva fasciata by excess copper.

    PubMed

    Wu, Tsung-Meng; Hsu, Yuan-Ting; Sung, Ming-Shiuan; Hsu, Yi-Ting; Lee, Tse-Min

    2009-10-04

    The expression of genes involved in the control of redox homeostasis and antioxidant defense was studied in macroalga Ulva fasciata Delile in response to 5 and 50 microM CuSO(4). Redox-related genes, methionine sulfoxide reductase A (UfMsrA), thioredoxin (UfTrx), cyclophilin (UfCyp), and ferritin (UfFer) that were up-regulated by excess Cu [Wu, T.M., Lee, T.M., 2008. Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47, 346-360] were cloned and their expression was compared to superoxide dismutase (UfMnsod and UfFesod), ascorbate peroxidase (UfApx), glutathione reductase (UfGr), and catalase (UfCat). Transcripts of UfMsrA, UfCyp, and UfFer were increased by excess Cu with a peak at 3h and that of UfTrx increased after 6-9h, but not affected by 4-day exposure to excess Cu, except an increase in UfMsrA transcript. Transcripts of UfMnsod, UfFesod, UfApx, UfGr and UfCat can be increased by 4-day exposure to Cu excess [Wu, T.M., Lee, T.M., 2008. Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47, 346-360] but not by short-term excess Cu treatment, except UfGr whose transcript increased after 3h. Reactive oxygen species involved in up-regulation of antioxidant defense enzymes genes. These results suggest that the expression of genes of antioxidant defense enzymes and UfMsrA are associated with long-term adaptation of U. fasciata to Cu excess and transcription of redox-related genes and UfGr is up-regulated for short-term acclimation.

  5. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  6. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  7. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  8. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  9. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  10. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  11. Effects of kaurane diterpene derivatives on germination and growth of Lactuca sativa seedlings.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Pimenta, Lúcia P S; Boaventura, Maria Amélia D

    2005-01-01

    Kaurenoic and grandiflorenic acid, isolated from Wedelia paludosa (Asteraceae), some derivatives from these acids (alcohols, esters, amides, lactones, oximes) and other naturally occurring kaurane diterpenes were tested for their action on the growth of radical and shoot of Lactuca sativa. Gibberellic acid, GA3, a commercially available phytohormone, belonging to the same class of diterpenes, was also tested. Some of the tested substances showed a remarkable activity either in the inhibition or in stimulation of L. sativa growth. The activity, in some cases, was even higher than that of GA3.

  12. Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae.

    PubMed

    Khan, Farhan R; Misra, Superb K; Bury, Nicolas R; Smith, Brian D; Rainbow, Philip S; Luoma, Samuel N; Valsami-Jones, Eugenia

    2015-05-01

    Mechanisms involved in the uptake of Ag NPs, and NPs in general, have been long debated within nano-ecotoxicology. In vitro studies provide evidence of the different available uptake pathways, but in vivo demonstrations are lacking. In this study, pharmacological inhibitors were employed to block specific uptake pathways that have been implicated in the transport of metal NPs and aqueous metal forms; phenamil (inhibits Na(+) channel), bafilomycin A1 (H(+) proton pump), amantadine (clathrin-mediated endocytosis), nystatin (caveolae-mediated endocytosis) and phenylarsine oxide (PAO, macropinocytosis). Peringia ulvae (snails) were exposed to 150 µg Ag L(-1) added as citrate capped Ag NPs or aqueous Ag (AgNO3) in combination with inhibitor treatment (determined by preliminary studies). Reductions in accumulated tissue burdens caused by the inhibitors were compared to control exposures (i.e. no inhibition) after 6 and 24 h. No inhibitor treatment completely eliminated the uptake of Ag in either aqueous or NP form, but all inhibitor treatments, except phenamil, significantly reduced the uptake of Ag presented as Ag NPs. Clathrin- and caveolae-mediated endocytosis appear to be mechanisms exploited by Ag NPs, with the latter pathway only active at 24 h. Inhibition of the H(+) proton pump showed that a portion of Ag NP uptake is achieved as aqueous Ag and is explained by the dissolution of the particles (∼25% in 24 h). This in vivo study demonstrates that uptake of Ag from Ag NPs is achieved by multiple pathways and that these pathways are simultaneously active.

  13. Comparative study of the germination of Ulva prolifera gametes on various substrates

    NASA Astrophysics Data System (ADS)

    Geng, Huixia; Yan, Tian; Zhou, Mingjiang; Liu, Qing

    2015-09-01

    Since 2007, massive green tides have occurred every summer in the southern Yellow Sea (YS), China. They have caused severe ecological consequences and huge economic losses. Ulva prolifera originated from Subei Shoal of the YS was confirmed as causative species of the green tides. The Porphyra yezoensis aquaculture rafts in the Subei Shoal have been highly suspected to be the "seed bed" of the green tides, because U. prolifera abundantly fouled the Porphyra yezoensis aquaculture facilities. Besides, various habitats of aquaculture ponds along the Jiangsu coastline and mudflat in the Subei Shoal were proposed to be possible sources of green tides. To understand the "seed" of the green tides in the southern YS and mitigate the original biomass of the green tide, various materials used as substrates for the germination of U. prolifera gametes were tested in this study. Culture experiments showed the following: 1) materials used in the P. yezoensis rafts (plastic, bamboo, jute rope, plastic rope, nylon netting, and plastic netting) displayed a significantly higher germination rate than those associated with mudflats and aquaculture ponds (mud, sand and rock); 2) plastics were the best substrates for the germination of U. prolifera gametes; 3) poor germination was found on old fronds of U. prolifera,, and rubber showed inhibitory effect on germination. The success in germination on P. yezoensis rafts related materials supports the notion that these mariculture structures may be involved in acting as a seed bed for green tide macroalgae. The lack of germination on rubber surfaces may suggest one way to limit the proliferation of early stages of U. prolifera.

  14. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  15. Photobioreactors for mass cultivation of algae.

    PubMed

    Ugwu, C U; Aoyagi, H; Uchiyama, H

    2008-07-01

    Algae have attracted much interest for production of foods, bioactive compounds and also for their usefulness in cleaning the environment. In order to grow and tap the potentials of algae, efficient photobioreactors are required. Although a good number of photobioreactors have been proposed, only a few of them can be practically used for mass production of algae. One of the major factors that limits their practical application in algal mass cultures is mass transfer. Thus, a thorough understanding of mass transfer rates in photobioreactors is necessary for efficient operation of mass algal cultures. In this review article, various photobioreactors that are very promising for mass production of algae are discussed.

  16. RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea.

    PubMed

    De Cremer, Kaat; Mathys, Janick; Vos, Christine; Froenicke, Lutz; Michelmore, Richard W; Cammue, Bruno P A; De Coninck, Barbara

    2013-11-01

    The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens.

  17. The appearance of Ulva laetevirens (Ulvophyceae, Chlorophyta) in the northeast coast of the United States of America

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Kim, Jang Kyun; Wilson, Roderick; Yarish, Charles

    2014-10-01

    Introduced species may outcompete or hybridize with native species, resulting in the loss of native biodiversity or even alteration of ecosystem processes. In this study, we reported an alien distromatic Ulva species, which was found in an embayment (Holly Pond) connected with Long Island Sound, USA. The morphological and anatomical observations in combination with molecular data were used for its identification to species. Anatomy of collected specimens showed that the cell shape in rhizoidal and basal regions was round and the marginal teeth along the basal and median region were not found. These characteristics were primarily identical to the diagnostic characteristics of Ulva laetevirens Areschoug (Chlorophyta). The plastid-encoding tufA and nucleusencoding ITS1 were used for its molecular identification. Phylogenetic analysis for the tufA gene placed the specimens from Holly Pond in a well-supported clade along with published sequences of U. laetevirens identified early without any sequence divergence. In ITS tree, the sample also formed well-supported clades with the sequences of U. laetevirens with an estimated sequence divergence among the taxa in these clades as low as 1%. These findings confirmed the morpho-anatomical conclusion. Native to Australia, this species was reported in several countries along the Mediterranean coast after the late of 1990s. This is the first time that U. laetevirens is found in the northeast coast of United States and the second record for Atlantic North America.

  18. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed) Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects

    PubMed Central

    Rodeiro, Idania; Olguín, Sitlali; Santes, Rebeca; Herrera, José A.; Pérez, Carlos L.; Mangas, Raisa; Hernández, Yasnay; Fernández, Gisselle; Hernández, Ivones; Hernández-Ojeda, Sandra; Camacho-Carranza, Rafael; Valencia-Olvera, Ana; Espinosa-Aguirre, Jesús Javier

    2015-01-01

    The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1–500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25–50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent. PMID:26612994

  19. Seasonal patterns and recruitment dynamics of green tide-forming Ulva species along the intertidal rocky shores of the southern coast of Korea

    NASA Astrophysics Data System (ADS)

    Park, Sang Rul

    2014-12-01

    The abundance of two Ulva species in unmanipulated and artificial plots was investigated to better understand the ecological aspects of green tides on the intertidal rocky shore of the southern coast of Korea from July 1998 to January 2001. Artificial substrates were made on ceramic tiles (200 cm2) using a mixture of cement and rock and were set up on the rocky substrate in the lower intertidal zone using a hammer and anchor bolts. These settling plates were replaced every 1-2 months. Two Ulva species were recruited continuously for 3-4 months each year. U. pertusa was recruited during summer-autumn, whereas U. linza was recruited during winter-early spring or spring-early summer. However, U. pertusa dominated in the monitoring plots compared with the experimental period, with the exception of 2 months (February and March 2000). These results indicated that U. pertusa may be the main contributor to green tides along the intertidal rocky shores. The two Ulva species showed a positive relationship between density and biomass. This suggests that the physical removal of Ulva masses should be conducted during the early growing season. I hope this study provides valuable information for determining management policies for green tides on intertidal rocky shores.

  20. North American Continent – A new source of wild Lactuca spp. germplasm variability for future lettuce breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the years 2002-2008, missions were undertaken in the USA and Canada to search for wild and weedy Lactuca species. Altogether, 16 states in the USA (Arizona, California, Colorado, Idaho, Iowa, Minnesota, Montana, Nevada, New York, North Carolina, Oregon, South Dakota, Utah, Washington, Wisconsin a...

  1. Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.).

    PubMed

    Simko, Ivan

    2009-01-01

    A set of 61 simple sequence repeat (SSR) markers was developed from the 19,523 Lactuca sativa and Lactuca serriola unigenes. Approximately 4.5% of the unigenes contained a perfect SSR at least 20 bp long, corresponding to roughly 1 perfect SSR per 14.7 kb. Marker polymorphism was tested on a set comprising 96 accessions representing all major horticultural types and 3 wild species (L. serriola, Lactuca saligna, and Lactuca virosa). Both the average marker heterozygosity (UHe = 0.32) and the number of different alleles per locus (Na = 3.56) were significantly reduced in expressed sequence tag (EST)-SSRs as compared with anonymous SSRs (UHe = 0.59, Na = 5.53). Marker transfer rate to the wild species corresponded to the decreasing sexual compatibility with L. sativa and was higher for EST-SSRs (100% L. serriola, 87% L. saligna, and 75% L. virosa) than for anonymous SSRs (93%, 66%, and 42%, respectively). Assessment of population structure among 90 L. sativa cultivars with SSRs was in good agreement with classification into the horticultural types. The average marker heterozygosity was smallest in iceberg (0.097), Latin (0.140), and romaine-type (0.151) cultivars while highest in leaf (green leaf 0.208 and red leaf 0.240) lettuces. The level of marker heterozygosity is in accord with morphological variability observed in different horticultural types.

  2. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  3. Occupational dermatitis from Lactuca sativa (lettuce) and Cichorium (endive). Simultaneous occurrence of immediate and delayed allergy as a cause of contact dermatitis.

    PubMed

    Krook, G

    1977-02-01

    Four patients with occupational contact dermatitis to Lactuca sativa had cross-sensitivity to Cichorium endivia. One of the patients also had contact urticaria to Lactuca and Cichorium, and another reacted positively to scratch tests with these plants as a sign of immediate allergy. In two cases such immediate allergy was considered the cause of a vesicular, intense itching eruption within a few minutes of contact with fresh leaves of Lactuca on previously eczematous skin. The severe chronic dermatitis of the hands of these patients is ascribed to combined delayed and immediate allergy.

  4. ["Depilation" by micro-algae?].

    PubMed

    Ditrich, H

    1996-01-01

    Itching, reddening and depilation of body hairs was reported by swimmers in the Attersee-lake in Austria. Initially, an environmental crime was suspected. However, further investigations showed that a biological cause was probably responsible for these symptoms. The accrustations found on body hairs turned out in the scanning electron microscope to be dried mucus containing numerous diatoms. The prevailing micro-algae were identified as Cyclotella comensis. Thus, although the phenomenon had a natural, harmless cause, it may happen again given the appropriate environmental conditions.

  5. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012

    NASA Astrophysics Data System (ADS)

    Bao, Min; Guan, Weibing; Yang, Yang; Cao, Zhenyi; Chen, Qi

    2015-09-01

    The northward drift of green algae (Ulva prolifera) from Subei Shoal in the western Yellow Sea, China, during the spring and summer of 2012, was investigated using satellite data and numerical modeling. Past studies have suggested that the green algae, documented offshore of Shandong province since 2007, originate in Subei Shoal region of the Yellow Sea. To test this hypothesis, drift bottles and satellite-tracked surface drifters were released from Subei Shoal and used to investigate the trajectories of green algae. Subei Shoal is characterized by complex bathymetry such as broad tidal flats and radial sand ridges. To identify processes that drive drift of the green algae around the shoal, a coastal ocean model based on the Finite Volume Coastal Ocean Model (FVCOM) was used. This model is forced by tides and surface winds, and has sufficient resolution to include tidal flats and sand ridges during both wetting and drying. The results of numerical experiments indicated that sand ridges limit the trajectory of particles. Without wind, particles scattered from their initial positions displayed a tendency to move northward, but were unable to move out of Subei Shoal. When a southerly wind was introduced to the model, particles traveled further north, out of the shallow waters. After leaving Subei Shoal, drifters remained limited by tide and topography until reaching 34°30.0‧N. North of 34°30.0‧N, 33% of the trajectory vectors can be explained by Ekman theory, and the remainder are probably controlled by the strong baroclinic processes in this area. For the six surface-following drifters deployed, the mean drift speed was 11.1 cm s-1 (288.8 km month-1), close to the speed observed for patches of U. prolifera. Numerical models and the results from drifter bottles demonstrated that green algae could leave Subei Shoal, but only when aided by a southerly wind. Satellite-tracked drifters provided strong evidence that if floating particles do leave Subei Shoal, they

  6. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  7. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  8. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  9. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  10. Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion.

    PubMed

    Nielsen, H B; Heiske, S

    2011-01-01

    In the present study we tested four macroalgae species--harvested in Denmark--for their suitability of bioconversion to methane. In batch experiments (53 degrees C) methane yields varied from 132 ml g volatile solids(-1) (VS) for Gracillaria vermiculophylla, 152 mi gVS(-1) for Ulva lactuca, 166 ml g VS(-1) for Chaetomorpha linum and 340 ml g VS(-1) for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5-2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during 'green tides' in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.

  11. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  12. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  13. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.

  14. Advances in genetic engineering of marine algae.

    PubMed

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.

  15. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  16. Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel.

    PubMed

    Allen, Eoin; Wall, David M; Herrmann, Christiane; Murphy, Jerry D

    2014-10-01

    Ulva lactuca, a green seaweed, accumulates on beaches and shallow estuaries subject to eutrophication. As a residue, and a macro-algae, it is a source of sustainable third generation biofuel. Production of biomethane from mono-digestion of U. lactuca, however is problematic due to high levels of sulphur and low ratios of carbon to nitrogen. Fresh and dried U. lactuca were continuously co-digested with dairy slurry at ratios of 25%, 50% and 75% (by volatile solid content) in 6 number 5L reactors for 9months. The reactors digesting a mix with 75% U. lactuca struggled to reach stable conditions. Volatile fatty acid levels of 14,000mgl(-1) were experienced. The levels of ammonia increased with percentage U. lactuca in the mix. Optimum conditions were observed with a mix of 25% fresh U. lactuca and 75% slurry. A yield of 170LCH4kg(-1)VS was achieved at an organic loading rate of 2.5kgVSm(-3)d(-1).

  17. MACROALGAL VOLUME: A SURROGATE FOR BIOMASS IN SOME GREEN ALGAE

    EPA Science Inventory

    Two green algal morphotypes, filamentous species (e.g., Chaetomorpha spp.) and flattened or tubular (e.g.,Ulva spp. and Enteromorpha spp.) were collected from 63 sites within the Yaquina Bay estuary (Newport, OR) and used to compare an in situ volumetric biomass estimator to the...

  18. Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa.

    PubMed

    Young, Brian Jonathan; Riera, Nicolás Iván; Beily, María Eugenia; Bres, Patricia Alina; Crespo, Diana Cristina; Ronco, Alicia Estela

    2012-02-01

    Effluents generated during the process of anaerobic digestion should be treated before their disposal into the environment. The aim of this study was evaluating the effectiveness of the effluent treatment system from an anaerobic bioreactor, assessing the toxicity reduction with the Lactuca sativa seed germination and root elongation inhibition test. Three sampling points were selected along the effluent treatment system: inflow into the first treatment pond, outflow from the third pond and recirculated flow to the bioreactor. Effluent dilutions tested for each sampling point were 25% and 50% (v/v), undiluted sample and controls. The pH, conductivity, temperature, dissolved oxygen, BOD₅ and COD were measured. The decrease in the organic and inorganic loads was correlated with a reduction in the phytotoxicity. The use of the seed toxicity test allows evaluating the quality and effectiveness of the studied effluent treatment system.

  19. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  20. Plastid transformation in lettuce (Lactuca sativa L.) by polyethylene glycol treatment of protoplasts.

    PubMed

    Lelivelt, Cilia L C; van Dun, Kees M P; de Snoo, C Bastiaan; McCabe, Matthew S; Hogg, Bridget V; Nugent, Jacqueline M

    2014-01-01

    A detailed protocol for PEG-mediated plastid transformation of Lactuca sativa cv. Flora, using leaf protoplasts, is described. Successful plastid transformation using protoplasts requires a large number of viable cells, high plating densities, and an efficient regeneration system. Transformation was achieved using a vector that targets genes to the trnI/trnA intergenic region of the lettuce plastid genome. The aadA gene, encoding an adenylyltransferase enzyme that confers spectinomycin resistance, was used as a selectable marker. With the current method, the expected transformation frequency is 1-2 spectinomycin-resistant cell lines per 10(6) viable protoplasts. Fertile, diploid, homoplasmic, plastid-transformed lines were obtained. Transmission of the plastid-encoded transgene to the T1 generation was demonstrated.

  1. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    PubMed

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  2. Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.).

    PubMed

    Bell, Jared L; Burke, Ian C; Neff, Michael M

    2015-01-21

    Alternative sources of natural rubber are of importance due to economic, biological, and political threats that could diminish supplies of this resource. Prickly lettuce (Lactuca serriola L.) synthesizes long-chain natural rubber and was studied to determine underlying genetic and phenotypic characteristics of rubber biosynthesis. Genotypic and phenotypic analysis of an F2 segregating population using EST-SSR markers led to the discovery of genetic regions linked to natural rubber production. Interval mapping (IM) and multiple QTL mapping (MQM) identified several QTL in the mapping population that had significance based on LOD score thresholds. The discovered QTL and the corresponding local markers are genetic resources for understanding rubber biosynthesis in prickly lettuce and could be used in marker-assisted selection (MAS) breeding. Prickly lettuce is an excellent candidate for elucidating the rubber synthesis mechanism and has potential as a crop plant for rubber production.

  3. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  4. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  5. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  6. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  7. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  8. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  9. Comparative studies on phosphorus uptake and growth kinetics of the microalga Tetraselmis subcordiformis and the macroalga Ulva pertusa

    NASA Astrophysics Data System (ADS)

    Nan, Chunrong; Dong, Shuanglin

    2004-04-01

    Short-term uptake experiments and long-term semicontinuous culture experiments were performed under the condition of phosphorus (P) limitation to estimate and compare the P uptake and growth kinetics of the microalga Tetraselmis subcordiformis and the macroalga Ulva pertusa. Two new parameters, the maximum specific uptake rate ( V {m/sp}) and the maximal growth efficiency (β), are introduced to achieve uniformity for the comparison of nutrient uptake and growth efficiency between microalgae and macroalgae. T. subcordiformis possesses 3 times lower half saturation uptake constant, 4 times higher maximal growth rate and 20 times higher maximum specific uptake rate than U. pertusa, while U. pertusa possesses 4 times higher maximal growth efficiency than T. subcordiformis.

  10. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides.

  11. Method and apparatus for processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  12. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  13. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  14. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  15. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    PubMed

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming.

  16. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava.

    PubMed

    Kim, Ji-Young; Park, So-Hyun; Seo, Ga-Young; Kim, Young-Ju; Oh, Duck-Chul

    2015-09-01

    A novel bacterial strain, designated EC29(T), was isolated from the brown alga Ecklonia cava collected on Jeju Island, Republic of Korea. Cells of strain EC29(T) were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10-30 °C (optimum, 20-25 °C), at pH 6.0-9.5 (optimum, pH 7.5) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus Winogradskyella. Strain EC29(T) exhibited the highest 16S rRNA gene sequence similarities, of 96.5-97.8%, to the type strains of Winogradskyella pulchriflava EM106(T), Winogradskyella echinorum KMM 6211(T) and Winogradskyella ulvae KMM 6390(T). Strain EC29(T) exhibited < 27% DNA-DNA relatedness with Winogradskyella pulchriflava EM106(T) and Winogradskyella echinorum KMM 6211(T). The predominant fatty acids of strain EC29(T) were iso-C15 : 0, iso-C15 : 1 G, C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella eckloniae sp. nov. is proposed. The type strain is EC29(T) ( = KCTC 32172(T) = JCM 18703(T)).

  17. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  18. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  19. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately.

  20. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  1. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  2. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  3. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  4. Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers

    PubMed Central

    Alsufyani, Taghreed; Weiss, Anne; Wichard, Thomas

    2017-01-01

    The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6). Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2. PMID:28075408

  5. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  6. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  7. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  8. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  9. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  10. [Functional components in fish and algae oils].

    PubMed

    Conchillo, A; Valencia, I; Puente, A; Ansorena, D; Astiasarán, I

    2006-01-01

    An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated omega-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The omega-6/omega-3 ratio was lower than 0.4 in both oils. In the unsaponificable fraction, algae oil had a Mold lower cholesterol content and a higher proportion of squalene than fish oil. The phytosterol content was significantly higher in the algae oil.

  11. Oil from algae; salvation from peak oil?

    PubMed

    Rhodes, Christopher J

    2009-01-01

    A review is presented of the use of algae principally to produce biodiesel fuel, as a replacement for conventional fuel derived from petroleum. The imperative for such a strategy is that cheap supplies of crude oil will begin to wane within a decade and land-based crops cannot provide more than a small amount of the fuel the world currently uses, even if food production were allowed to be severely compromised. For comparison, if one tonne of biodiesel might be produced say, from rape-seed per hectare, that same area of land might ideally yield 100 tonnes of biodiesel grown from algae. Placed into perspective, the entire world annual petroleum demand which is now provided for by 31 billion barrels of crude oil might instead be met from algae grown on an area equivalent to 4% of that of the United States. As an additional benefit, in contrast to growing crops it is not necessary to use arable land, since pond-systems might be placed anywhere, even in deserts, and since algae grow well on saline water or wastewaters, no additional burden is imposed on freshwater-a significant advantage, as water shortages threaten. Algae offer the further promise that they might provide future food supplies, beyond what can be offered by land-based agriculture to a rising global population.

  12. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements.

  13. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature.

  14. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    PubMed

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  15. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    PubMed

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  16. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  17. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L.

    PubMed

    Silveira, Graciele Lurdes; Lima, Maria Gabriela Franco; Reis, Gabriela Barreto Dos; Palmieri, Marcel José; Andrade-Vieria, Larissa Fonseca

    2017-03-21

    Studies that help understand the mechanisms of action of environmental pollutants are extremely important in environmental toxicology. In this context, assays using plants as models stand out for their simplicity and low performance cost. Among the plants used for this purpose, Allium cepa L. is the model most commonly applied for cytogenotoxic tests, while Lactuca sativa L., already widely used in phytotoxic investigations, has been gaining prominence in cytotoxic analyses. The present study aimed to compare the responses of A. cepa and L. sativa via macroscopic (root growth) and microscopic analyses (cell cycle and DNA fragmentation via TdT-mediated deoxy-uracil nick and labeling (TUNEL) and comet assays) after exposure of their roots to environmental pollutants with known cytogenotoxic mechanisms. Both species presented sensitive and efficient response to the applied tests after exposure to the DNA-alkylating agent Methyl Methanesulfonate (MMS), the heavy metal Cadmium, the aluminum industry waste Spent Potliner (SPL) and the herbicide Atrazine. However, they differed regarding the responses to the evaluated endpoints. Overall, A. cepa was more efficient in detecting clastogenic changes, arising from DNA breakage, while L. sativa rather detected aneugenic alterations, related to chromosome segregation in mitosis. In the tests applied to verify DNA fragmentation (comet and TUNEL assays), A. cepa presented higher sensitivity. In conclusion, both models are efficient to evaluate toxicological risks of environmental pollutants.

  18. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce ( Lactuca sativa, L.)

    NASA Astrophysics Data System (ADS)

    Goularte, L.; Martins, C. G.; Morales-Aizpurúa, I. C.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B. W.; Landgraf, M.

    2004-09-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce ( Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D10-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  19. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    PubMed

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  20. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    PubMed

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  1. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils.

  2. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    PubMed

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  3. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa.

    PubMed

    Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C

    2012-10-01

    Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids.

  4. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water.

    PubMed

    Caporale, Antonio G; Sommella, Alessia; Lorito, Matteo; Lombardi, Nadia; Azam, Shah M G G; Pigna, Massimo; Ruocco, Michelina

    2014-09-15

    The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.

  5. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii.

    PubMed

    Pino, Ma Rosa; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2016-11-01

    Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC50 values obtained were in the range of 170-5656 mg L(-1) in the case of the radicle and 188-4558 mg L(-1) for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L(-1)), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC50 values below 1000 mg L(-1). The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.

  6. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    PubMed

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants.

  7. Isolation, biochemical characterization and antibiofilm effect of a lectin from the marine sponge Aplysina lactuca.

    PubMed

    Carneiro, Rômulo Farias; Lima, Paulo Henrique Pinheiro de; Chaves, Renata Pinheiro; Pereira, Rafael; Pereira, Anna Luísa; de Vasconcelos, Mayron Alves; Pinheiro, Ulisses; Teixeira, Edson Holanda; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda

    2017-06-01

    A new lectin was isolated from the marine sponge Aplysina lactuca (ALL) by combining ammonium sulfate precipitation and affinity chromatography on guar gum matrix. ALL showed affinity for the disaccharides α-lactose, β-lactose and lactulose (Ka=12.5, 31.9 and 145.5M(-1), respectively), as well as the glycoprotein porcine stomach mucin. Its hemagglutinating activity was stable in neutral acid pH values and temperatures below 60°C. ALL is a dimeric protein formed by two covalently linked polypeptide chains. The average molecular mass, as determined by Electrospray Ionization Mass Spectrometry (ESI-MS), was 31,810±2Da. ESI-MS data also indicated the presence of three cysteines involved in one intrachain and one interchain disulfide bond. The partial amino acid sequence of ALL was determined by tandem mass spectrometry. Eight tryptic peptides presented similarity with lectin I isolated from Axinella polypoides. Its secondary structure is predominantly β-sheet, as indicated by circular dichroism (CD) spectroscopy. ALL agglutinated gram-positive and gram-negative bacterial cells, and it were able to significantly reduce the biomass of the bacterial biofilm tested at dose- dependent effect.

  8. [The dynamic of calcium distribution during megasporegenesis of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi-Lan; Liu, Ru-Shi; Xie, Chao-Tian; Yang, Yan-Hong; Ge, Li-Li; Tian, Hui-Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the young ovule of lettuce (Lactuca sativa L.) at megasporogenesis stage to study the relationship between calcium and megaspore degeneration. At the megaspore mother cell stage, few calcium granules were formed in the cell (Plate I-1, 2). After meiosis of megaspore mother cell and forming an arrayed tetrad in a line (Plate I-3), three megaspores degenerated one by one from the micropyle end. In the process of degeneration, the numbers of calcium granules decreased in the three megaspores. After the first megaspore degenerated, the number of calcium granules decreased in the second megaspore, which began to degenerate (Plate II-7, 8). The third megaspore also had its number of calcium granules diminishing before it degenerated (Plate III-13, 14). The fourth megaspore always accumulated many calcium granules in the cytoplasm during its development (Plate IV-17, 18) and finally becomes functional one that will develop into an embryo sac (Plate IV-20). Megaspore degeneration is a process of programmed cell death which may be closely related with change in calcium content: when a megaspore of tetrad decreases calcium content the cell begins to degenerate, and when calcium increases in the cell, it will continue to develop into a functional megaspore. This is the first report about calcium distribution in megaspores of a tetrad during megasporogenesis in higher plants and will open a door to study the physiological function of calcium in megasporogenesis.

  9. The nitrogen and nitrate economy of butterhead lettuce (Lactuca sativa var capitata L).

    PubMed

    Broadley, Martin R; Seginer, Ido; Burns, Amanda; Escobar-Gutiérrez, Abraham J; Burns, Ian G; White, Philip J

    2003-09-01

    Quantifying and simulating the relationships between crop growth, total-nitrogen (total-N) and nitrate-N (NO3--N) concentration can improve crop nutritional husbandry. In this study, the relationship between shoot relative growth rate (RGR) and shoot total-N, organic-N and NO3--N concentration of hydroponically-grown lettuce (Lactuca sativa var. capitata L. cv. Kennedy) was described and simulated. Plants were grown hydroponically for up to 74 d. Nitrogen was supplied throughout (control; T1), or removed at 35 d (T2) and 54 d (T3), respectively, after sowing. The organic-N and NO3--N concentration declined in the shoots of control plants with growth, until commercial maturity approached when organic-N and NO3--N concentration increased. There were sub-linear relationships between both total-N and organic-N concentration, and shoot RGR, in the N-limited treatments, i.e. shoot RGR approached an asymptote at high shoot N concentration. The proportional effects of total-N and organic-N concentration on shoot RGR were independent of plant age. A dynamic simulation model ('Nicolet'), derived previously under different conditions, was used to simulate the growth, dry matter content, organic-N, and NO3--N concentration of lettuce grown under the extreme N-stress conditions experienced by the plants. In view of the largely successful fitting of the model to experimental data, the model was used to interpret the results. Suggestions for model improvement are made.

  10. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  11. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  12. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    PubMed

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  13. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2016-07-12

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  14. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  15. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  16. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  17. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  18. Photosynthetic activity and proteomic analysis highlights the utilization of atmospheric CO2 by Ulva prolifera (Chlorophyta) for rapid growth.

    PubMed

    Huan, Li; Gu, Wenhui; Gao, Shan; Wang, Guangce

    2016-12-01

    Free-floating Ulva prolifera is one of the causative species of green tides. When green tides occur, massive mats of floating U. prolifera thalli accumulate rapidly in surface waters with daily growth rates as high as 56%. The upper thalli of the mats experience environmental changes such as the change in carbon source, high salinity, and desiccation. In this study, the photosynthetic performances of PSI and PSII in U. prolifera thalli exposed to different atmospheric carbon dioxide (CO2 ) levels were measured. Changes in photosynthesis within salinity treatments and dehydration under different CO2 concentrations were also analyzed. The results showed that PSII activity was enhanced as CO2 increased, suggesting that CO2 assimilation was enhanced and U. prolifera thalli can utilize CO2 in the atmosphere directly, even when under moderate stress. In addition, changes in the proteome of U. prolifera in response to salt stress were investigated. Stress-tolerance proteins appeared to have an important role in the response to salinity stress, whereas the abundance of proteins related to metabolism showed no significant change under low salinity treatments. These findings may be one of the main reasons for the extremely high growth rate of free-floating U. prolifera when green tides occur.

  19. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    PubMed Central

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-01-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3−), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43−), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3− and NH4+) and phosphorus (PO43−). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea. PMID:27199215

  20. Influence of nutrients pollution on the growth and organic matter output of Ulva prolifera in the southern Yellow Sea, China.

    PubMed

    Zhou, Yuping; Tan, Liju; Pang, Qiuting; Li, Feng; Wang, Jiangtao

    2015-06-15

    The influence of nutrients on the growth of Ulva prolifera was studied in the SYS by field experiments. The wet weight of U. prolifera gradiently increased from 11.94% to 25.92% in proportion to contents of DIN supply, which indicated DIN content was essentially decisive for the output of U. prolifera blooms. Continuous nutrient supply could promote the growth of U. prolifera, indicated by the increase of growth rate from 10.46% of the batch culture to 42.17% of the in situ culture. The higher P utilized rate in all treatments showed P was the potential limited factor for the growth of U. prolifera. Moreover, it was calculated about 4.1×10(5)t organic matter was begot by U. prolifera in the whole Yellow Sea based on the statistical relationship between output of U. prolifera and DIN content. This work could be convenient to evaluate biomass and prepare enough tools to manage U. prolifera.

  1. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-05-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3‑), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43‑), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3‑ and NH4+) and phosphorus (PO43‑). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea.

  2. Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta).

    PubMed

    Angell, Alex R; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2015-06-01

    Salinity can affect the quantity and quality of total amino acids (TAAs) in seaweeds indirectly by altering growth rates and thereby diluting or concentrating the amino acid content of the biomass, or directly by altering the synthesis of specific amino acids and osmolytes. This study attempted to partition the indirect and direct effects of salinity on the quantity and quality of TAAs in the green seaweed Ulva ohnoi by culturing it under a range of salinities without nutrient limitation. Both the quantity and quality of TAAs varied across the salinity treatments. Quantity was most strongly related to the growth rate of the seaweed and was highest in the slowest growing seaweed. In contrast, the quality of TAAs (individual amino acids as a proportion of total content) was most strongly related to salinity for all amino acids, although this varied substantially among individual amino acids. Increases in salinity were positively correlated with the proportion of proline (46% increase), tyrosine (36% increase), and histidine (26% increase), whereas there was a negative correlation with alanine (29% decrease). The proportion of methionine, with strong links to the synthesis of the osmolyte dimethylsulfoniopropionate, did not correlate linearly with salinity and instead was moderately higher at the optimal salinities for growth. These results show that salinity simultaneously affects the quantity and quality of TAAs in seaweed through both indirect and direct mechanisms, with growth rates playing the overarching role in determining the quantity of TAAs.

  3. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  4. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  5. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  6. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  7. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  8. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  9. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  11. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution.

  12. Neonatal sepsis caused by Shewanella algae: A case report.

    PubMed

    Charles, Marie Victor Pravin; Srirangaraj, Sreenivasan; Kali, Arunava

    2015-01-01

    Sepsis remains a leading cause of mortality among neonates, especially in developing countries. Most cases of neonatal sepsis are attributed to Escherichia coli and other members of the Enterobacteriaceae family. Shewanella algae (S. algae) is a gram-negative saprophytic bacillus, commonly associated with the marine environment, which has been isolated from humans. Early onset neonatal sepsis caused by S. algae is uncommon. We report a case of S. algae blood stream infection in a newborn with early onset neonatal sepsis.

  13. Accumulation of platinum group elements by the marine gastropod Littorina littorea.

    PubMed

    Mulholland, Rachel; Turner, Andrew

    2011-04-01

    The accumulation and trophic transfer of the platinum group elements (PGE): Rh, Pd and Pt; have been studied in short-term (5 day) exposures conducted in aquaria containing the marine macroalga, Ulva lactuca, and/or the grazing mollusc, Littorina littorea. Metals added to sea water (to concentrations of 20 μg L⁻¹) were taken up by U. lactuca in the order Rh, Pt > Pd and by L. littorea in the order Pd ≥ Pt ≥ Rh, with greatest metal accumulation in the latter generally occurring in the visceral complex and kidney. When fed contaminated alga, accumulation of Rh and Pd by L. littorea, relative to total available metal, increased by an order of magnitude, while accumulation of Pt was not readily detected. We conclude that the diet is the most important vector for accumulation of Rh and Pd, while accumulation of Pt appears to proceed mainly from the aqueous phase.

  14. Accumulation of Cu and Zn in discarded antifouling paint particles by the marine gastropod, Littorina littorea

    NASA Astrophysics Data System (ADS)

    Gammon, Melanie; Turner, Andrew; Brown, Murray T.

    2009-10-01

    The short-term (5 day) accumulation of Cu and Zn in different tissues of the marine gastropod, Littorina littorea, has been studied in the presence of ˜10 mg l -1 of antifouling paint particles and pre- or simultaneously contaminated algal food ( Ulva lactuca). Accumulation of Cu was observed in the head-foot, digestive gland-gonad complex and gills to extents dependent on how and when food was contaminated and administered. However, retention of Zn was only observed in the gills and only when L. littorea and U. lactuca were simultaneously exposed to paint particles. Relative to the alga, faecal material was highly enriched in Zn, suggesting that the animal is able to rapidly eliminate this metal, most likely through the formation and egestion of insoluble phosphate granules. Thus, L. littorea is a useful biomonitor of marine contamination by antifouling applications in respect of Cu but not Zn.

  15. 4',4‴,7,7″-tetra-O-methylcupressuflavone inhibits seed germination of Lactuca sativa.

    PubMed

    DeForest, Jacob C; Du, Lin; Joyner, P Matthew

    2014-04-25

    Biflavonoids have been isolated from a wide variety of plant species, but little is known about their native biological functions. Here we report a possible ecological role for biflavonoids by describing the isolation of the biflavonoid 4',4‴,7,7″-tetra-O-methylcupressuflavone (1) from Araucaria columnaris and its inhibitory effect on seed germination. Compound 1 was isolated from needles of a single A. columnaris specimen and inhibited germination of Lactuca sativa seeds in a culture-dish assay; it was also detected in soil samples under the canopy where reduced germination was observed, but not in a location away from the canopy where germination was uninhibited.

  16. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  17. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  20. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  1. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  2. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    PubMed

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  3. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species.

  4. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  5. [The character of calcium distribution in developing anther of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Xu, Qing; Tian, Hui Qiao

    2005-10-01

    Potassium antimonite was used to locate calcium in the anther of lettuce (Lactuca sativa L) during its development. At the early stage of anther development there were few calcium granules in microspore mother cells and the cells of anther wall. After meiosis of microspore mother cells, calcium granules first appeared in the tapetal cells in which some small secretive vacuoles containing many calcium granules were formed and secreted into locule. Then, the tapetal cells began to degenerate. At the late stage of microspore, tapetal cells completely degenerated and its protoplast masses moved into anther locule with many calcium granules. Few calcium granules were precipitated in the microspores just being released from tetrad, but some on the surface of exine. Then calcium granules appeared in the nucleus and cytoplasm of early microspores, as wall as in the exine. When microspores formed some small vacuoles containing some calcium granules, and then the small vacuoles fused to form a large vacuole, the calcium granules in the nucleus and cytoplasm evidently decreased, microspore developed to the late stage. The result suggested that calcium is related to the formation of large vacuole in microspores. The wall of microspore also is a main location of calcium granules during its developing. At early microspore some calcium granules began to accumulate in exine, which suggested calcium related with exine formation. At late stage of microspore, most of calcium granules were mainly deposited on the surface of exine. After the first mitosis of microspores, the large vacuole of bicellular pollen disappeared and calcium granules in the large vacuole went back to cytoplasm again. When bicellular pollen synthesized starches some calcium granules appeared on the surface of starches, which suggested calcium may regulate starch synthesis. With amount of starches increasing, calcium granules disappeared from pollen cytoplasm and only some of them located on the surface of pollen.

  6. [Calcium distribution in the egg cell, zygote and proembryo of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Wei, Dong Mei; Tian, Hui Qiao

    2006-02-01

    Potassium antimonite precipitation was used to located calcium in the egg cells (before and after anthesis), zygotes and proembryos of lettuce (Lactuca sativa L.). A few calcium precipitates (ppts) were located in the small vacuoles of cytoplasm of egg cell at 3 d before anthesis, when egg cells just formed. Then the small vacuoles fused to form some bigger vacuoles in egg cell at 2d before anthesis. Calcium ppts increased evidently in the cytoplasm and nucleus of egg cells at this time. At 1d before anthesis, a biggest vacuole located at the micropyle end of the cell and its nucleus was pushed toward the chalazal end of the cell, which made an evident cellular polarity. The number of calcium ppts in the egg cell markedly decreased, suggesting that change of calcium distribution may be related to the development of egg cell. After anthesis and before fertilization, calcium ppts were still few in the egg cells, and most of them were accumulated in the nucleus, especially in the vacuoles of nucleolus. At 4h after anthesis, egg cell was fertilized and the wall at the chalazal end of egg cell was formed completely. Calcium ppts evidently increased again in egg cell, and some big ppts appeared in the karyoplasm of nucleus and abundant small ppts in the large vacuole. At 9h after anthesis, zygote completed its first division. Calcium ppts in the nucleus and cytoplasm of two-celled proembryo began to decrease, and only some ones accumulated in the vacuoles of nucleolus. At 18h after anthesis, zygote divided several times and became a multi-celled proembryo. Calcium ppts in the cells of proembryo ulteriorly diminished but there were many ppts on the surface of proembryo. The result indicates that calcium in egg cell, zygote and the cells of proembryo orderly changes its temporal and spatial position, which suggests that calcium may play a role during the development of egg cell and zygote.

  7. [Calcium distribution in the central cell of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Ye, Lv; Tian, Hui

    2008-02-01

    Potassium antimonite precipitation was used to locate calcium in the central cell of lettuce (Lactuca sativa L.) before and after pollination. At 3d before anthesis, two polar nuclei of central cell separately located at two polarity of the cell, and few calcium precipitates (ppts) appeared in the polar nuclei and cytoplasm, but some ppts in its small vacuoles. At 2d before anthesis, two polar nuclei moved toward the middle of the cell and fused to form a secondary nucleus, and the ppts evidently increased in the nucleus and cytoplasm. At 1d before anthesis, secondary nucleus again moved toward micropylar end and located near the egg to prepare for fertilization. Calcium precipitates were mainly accumulated in the secondary nucleus. After pollination and before fertilization, the distribution of calcium ppts was similar to that before pollination. At 4h after pollination, the central cell was fertilized, and calcium ppts evidently increased in the cell and numerous were accumulated in its nucleus and cytoplasm. At 6h after pollination, the primary endosperm nucleus completed its first division and formed two dissociate endosperm nuclei, and still many calcium precipitates appeared in the nucleus and cytoplasm. With endosperm development, calcium ppts decreased in the endosperm cell. At 1d after emasculated and without pollination, the secondary nucleus of the cell still bordered on the egg and some calcium ppts appeared in the secondary nucleus. The results indicated that the temporal and spatial changes of calcium in the central cell may play an important physiological role during the development of the central cell and endosperm.

  8. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.

    PubMed

    Carassay, Luciano R; Bustos, Dolores A; Golberg, Alberto D; Taleisnik, Edith

    2012-02-15

    Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca(2+) deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production. Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca(2+) (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca(2+) scavengers, Ca(2+) transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed. Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca(2+) scavenger (EGTA) and Ca(2+) transport inhibitors (verapamil, LaCl(3)) and reduced by supplying Ca(2+) along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O(2)(·-) and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.

  9. Sterol chemotaxonomy of marine pelagophyte algae.

    PubMed

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  10. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  11. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  12. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice.

  13. Polyamine biosynthetic diversity in plants and algae.

    PubMed

    Fuell, Christine; Elliott, Katherine A; Hanfrey, Colin C; Franceschetti, Marina; Michael, Anthony J

    2010-07-01

    Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.

  14. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  15. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  16. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  17. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  18. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  19. Evaluating the suitability of Hydrobia ulvae as a test species for sediment metal toxicity testing applying a tissue residue approach to metal mixtures in laboratory and field exposures.

    PubMed

    Campana, Olivia; Rodríguez, Antonio; Blasco, Julián

    2013-05-01

    A major weakness in evaluating the suitability of a biomonitor organism is the poor ability to predict the variability of the bioavailability of metals from measured environmental concentrations. In this study, the intertidal gastropod Hydrobia ulvae was used to evaluate its suitability as a test organism for assessing sediment metal toxicity. Toxicity tests were run with sediments spiked with copper, cadmium and zinc applied both as single metal and as a mixture to investigate toxicological interactions evaluating different lethal and sublethal effects. Dose-response relationships were constructed based both on tissue residue approach and particulate metal concentrations. Because metal-spiked sediments used in routine toxicity tests often do not exhibit the same adsorption/desorption kinetics as the natural sediments, the laboratory results were compared to 10-d bioassays conducted with natural field sediments collected from the Guadalete estuary (SW Spain). Highly significant correlations between tissue residue concentrations and particulate metal concentrations were found for all metal-spiked or field-collected and demonstrated that: (i) H. ulvae readily accumulated copper and cadmium in response to contamination and (ii) dietary uptake was determined to be the most significant route of metal exposure. The comparison of the modeled tissue residue-response curve developed from the mixture tests was in good agreement with the results from the bioassay conducted with field sediments and strongly demonstrated that H. ulvae is also a suitable test organism for assessing copper sediment toxicity. In contrast, the dose-response curve expressed as a function of total particulate metal concentrations would fail in predicting effect, erroneously assessing higher metal toxicity.

  20. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities

    NASA Astrophysics Data System (ADS)

    Jiao, Guangling; Yu, Guangli; Wang, Wei; Zhao, Xiaoliang; Zhang, Junzeng; Ewart, Stephen H.

    2012-06-01

    To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae ( Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae ( Ascophyllum nodosum and Fucus vesiculosus), and one green alga ( Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were analyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.

  1. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  2. Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskål (×) Monostroma oxyspermum (Kutz.)Doty.

    PubMed

    Gupta, Vishal; Kumari, Puja; Reddy, Crk

    2015-01-01

    Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz.) Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR% = 36.7 ± 1.55%) over the fusion partners U. reticulata (33.2 ± 2.6%) and M. oxyspermum (17.8 ± 1.77%), while others were superior to the mid-parental value (25.2 ± 2.2%) (p < 0.05). The fatty acid (FA) analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs) compared to saturated FAs (SFAs) and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae.

  3. Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskål (×) Monostroma oxyspermum (Kutz.)Doty

    PubMed Central

    Gupta, Vishal; Kumari, Puja; Reddy, CRK

    2015-01-01

    Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz.) Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR% = 36.7 ± 1.55%) over the fusion partners U. reticulata (33.2 ± 2.6%) and M. oxyspermum (17.8 ± 1.77%), while others were superior to the mid-parental value (25.2 ± 2.2%) (p < 0.05). The fatty acid (FA) analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs) compared to saturated FAs (SFAs) and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae. PMID:25688248

  4. Metabolic regulation of ammonium uptake by Ulva rigida (Chlorophyta): A compartmental analysis of the rate-limiting step for uptake

    SciTech Connect

    Fujita, R.M.; Wheeler, P.A.; Edwards, R.L. )

    1988-12-01

    Non-linear time courses of ammonium (NH{sub 4}{sup +}) depletion from the medium and internal accumulation of soluble nitrogen (N) in macroalgae imply that the rate-limiting step for ammonium uptake changes over time. We tested this hypothesis by measuring the time course of N accumulation in N-limited Ulva rigida C. Agardh. Total uptake was measured as removal of NH{sub 4}{sup +} from medium. Rates for the component processes (transport of NH{sub 4}{sup +} across the membrane = R{sub t}, assimilation of tissue NH{sub 4}{sup +} into soluble N compounds = R{sub a}, and incorporation of soluble N compounds into macromolecules = R{sub i}) were determined by measuring the rate of labelling of the major tissue N pools after the addition of {sup 15}N-ammonium. The results indicate that nitrogen-specific rates (mass N taken up/mass N present/unit time) are ranked in the order of R{sub t} > R{sub a} > R{sub i}. Absolute uptake rates ({mu}mol N{center dot}mg dry wt{sup {minus}1}{center dot}h{sup {minus}1}) showed a different relationship. Membrane transport appears to be inhibited when NH{sub 4}{sup +} accumulates in the tissue. Maximum uptake rates occur when assimilation of NH{sub 4}{sup +} into soluble N compounds begins. Assimilation of NH{sub 4}{sup +} into soluble N compounds was initially faster than incorporation of soluble N compounds into macromolecules. Implications of rate limitations caused by differences in maximal rates and maximal pool sizes are discussed.

  5. Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress.

    PubMed

    Sung, Ming-Shiuan; Hsu, Yi-Ting; Hsu, Yuan-Ting; Wu, Tzure-Meng; Lee, Tse-Min

    2009-01-01

    The modulation of manganese superoxide dismutase (MnSOD), FeSOD, ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) gene expression and activities and antioxidants in Ulva fasciata against hypersalinity (90 per thousand)-induced oxidative stress was studied. Increases in H(2)O(2) contents but no changes in lipid peroxidation and protein carbonyl group contents suggest oxidative damage did not occur in 90 per thousand condition. Antioxidants were consumed for reactive oxygen species (ROS) scavenging indicated by decreased ascorbate and glutathione contents by 90 per thousand. Antioxidant enzymes were differently expressed by 90 per thousand for ROS removal. MnSOD activity and transcript increased 1 h after 90 per thousand treatment with a peak at hour 3, while FeSOD activity increased fast to the plateau after 1 h and its transcript increased after 3 h. APX activity increased 1 h after 90 per thousand but its transcript rose till 3 h, and GR activity increased after 1 h with a peak at hour 3 but its transcript increased till 3 h. CAT activity and transcript increased after 12 h. Enzyme activity is transcriptionally regulated by 90 per thousand except a fast increase in FeSOD, APX, and GR activities during 1 h. APX is responsible for early H(2)O(2) decomposition while CAT scavenges H(2)O(2) in the later period. The inhibition of 90 per thousand induced increase of H(2)O(2) content and FeSOD activity and transcript by treatment of a H(2)O(2) scavenger, dimethylthiourea, and the increase of FeSOD transcript of 30 per thousand grown thalli by H(2)O(2) treatment suggest that H(2)O(2) mediates the upregulation of FeSOD by hypersalinity while other enzymes is modulated by factors other than H(2)O(2).

  6. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  7. LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed the genetic diversity and population structure among 148 cultivated lettuce (Lactuca sativa L.) accessions using the high-throughput GoldenGate assay and 384 EST (Expressed Sequence Tag)-derived SNP (single nucleotide polymorphism) markers. A custom OPA (Oligo Pool All), LSGermOPA was fo...

  8. Differential Scanning Calorimetry as a Tool for Nondestructive Measurements of Seed Deterioration in Lettuce (Lactuca sativa, CV “Black Seeded Simpson”)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was undertaken to determine if changes in lipid phase behavior could be used to detect lost viability in lettuce (Lactuca sativa) seeds. We used seeds from the cultivar ‘Black Seeded Simpson’ that were purchased every 2-3 years since 1989 and stored in resealable plastic bags at constan...

  9. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  10. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water.

    PubMed

    Blaine, Andrea C; Rich, Courtney D; Sedlacko, Erin M; Hyland, Katherine C; Stushnoff, Cecil; Dickenson, Eric R V; Higgins, Christopher P

    2014-12-16

    Using reclaimed water to irrigate food crops presents an exposure pathway for persistent organic contaminants such as perfluoroalkyl acids (PFAAs) to enter the human food chain. This greenhouse study used reclaimed water augmented with varying concentrations (0.2-40 μg/L) of PFAAs, including perfluorocarboxylates (C3F7COO(-) to C8F17COO(-)) and perfluorosulfonates (C4F9SO2O(-), C6F13SO2O(-), C8F17SO2O(-)), to investigate potential uptake and concentration-response trends in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa). In addition, studies were conducted to evaluate the role of soil organic carbon concentrations on plant uptake of PFAAs. PFAA concentrations in lettuce leaves and strawberry fruit were measured for each aqueous PFAA concentration applied. PFAA plant concentrations increased linearly with the aqueous concentration for all PFAAs, with PFCAs bioaccumulating to a greater degree than PFSAs in the edible portions of the tested plants. Chain-length-dependency trends were evident in both lettuce shoot and strawberry fruit, with decreasing concentrations associated with increasing chain length. Perfluorobutanoate (PFBA) and perfluoropentanoate (PFPeA), both short-chain PFAAs (<8 carbon chain length), accumulated the most compared with other PFAAs tested in the edible parts of both lettuce and strawberry. PFAA concentrations in strawberry root and shoot were also measured at selected PFAA aqueous concentrations (0.4, 4, and 40 μg/L). Short-chain perfluorocarboxylates were the dominant fraction in the strawberry fruit and shoot compartments, whereas a more even distribution of all PFAAs appeared in the root compartment. Lettuce grown in soils with varying organic carbon contents (0.4%, 2%, 6%) was used to assess the impact of organic carbon sorption on PFAA bioaccumulation. The lettuce grown in soil with the 6% organic carbon content had the lowest bioaccumulation of PFAAs. Bioaccumulation factors for lettuce were correlated to carbon chain

  11. [Studies on the calcium distribution in developing synergids of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Tian, Hui Qiao

    2007-08-01

    Potassium antimonite was used to locate calcium in the synergids of lettuce (Lactuca sativa L) during their development. The two synergids on 3d before anthesis formed evident polarity with most cytoplasm located in the micropylar end and nucleus in the middle and a big vacuole in the chalazal end. At this time, calcium precipitates were a few in both cells. Calcium precipitates in the two synergids began to increase on 2d before anthesis. Synergid wall in the micropylar end thickened on 1d before anthesis, in which many calcium precipitates located. Near anthesis, synergids formed filiform apparatus in which abundant calcium precipitates accumulated to prepare for attracting pollen tubes entering. At anthesis, the distribution of calcium precipitates between two synergids was the same. At 1h after pollination, calcium precipitates evidently increased in one synergid that seemed to degenerate, the other one was persistent and the distribution of calcium granules did not change. Two synergids kept intact at 1d after emasculated, and the distribution of calcium precipitates did not display difference, suggesting that the degeneration of one synergid was caused by approaching pollen tubes which might give some signal to induce calcium increase of the synergid. Before fusion of sperm cell with egg cell, the cytoplasm of degenerated synergid embraced the egg and formed a thin layer between the egg and the central cell. Calcium precipitates in the different parts of degenerated synergid were closely connected with the fertilization: calcium precipitates accumulated in the near chalazal end of degenerated synergid at 1h after pollination. At 2.5h after pollination, the calcium precipitates increased at the chalazal end, especially abundant in the thin layer between the egg and the central cell. However, at 4h after pollination, the fertilization had finished at this time, the distribution of calcium precipitates in degenerated synergid changed again: the precipitates

  12. Biofuels from algae: challenges and potential.

    PubMed

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2010-09-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.

  13. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  14. Engineering algae for biohydrogen and biofuel production.

    PubMed

    Beer, Laura L; Boyd, Eric S; Peters, John W; Posewitz, Matthew C

    2009-06-01

    There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.

  15. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  16. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  17. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  18. Algae: America’s Pathway to Independence

    DTIC Science & Technology

    2007-03-30

    Bioenergy, Biofuel, Energy Policy CLASSIFICATION: Unclassified The United States is dependent on foreign oil to meet 63% of its petroleum demand...source of bioenergy. ALGAE: AMERICA’S PATHWAY TO INDEPENDENCE Ensuring a secure supply of energy is a strategic challenge for...150 years,6 the U.S. will be competing with other nations to procure the 2 finite commodity. The Department of Energy (DOE) estimates that by the

  19. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  20. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae.

    PubMed

    Bondoso, Joana; Albuquerque, Luciana; Nobre, M Fernanda; Lobo-da-Cunha, Alexandre; da Costa, Milton S; Lage, Olga Maria

    2015-02-01

    Four isolates, belonging to the deep-branching phylum Planctomycetes, were recovered from the biofilm of two marine macroalgae, Ulva sp. and Laminaria sp., from the Northern coast of Portugal. These strains were light pink- or red-pigmented; the cells were variable in shape and usually organized in rosettes. They had a dimorphic cell cycle with budding reproduction. The organisms were chemoheterotrophic, strictly aerobic and mesophilic. The 16S rRNA gene sequence analysis showed that the strains belong to the family Planctomycetaceae with Rhodopirellula as the closest genus. The isolates form two separate branches (strain LF1(T) forms one branch and the strains UC8(T), UF3 and UF42 form a second branch) clearly separated from Rhodopirellula baltica with 94.2% and 93.8% 16S rRNA gene sequence similarity, respectively. Based on differential characteristics that distinguish the novel genera from R. baltica, such as cell size and shape, ultrastructure, enzymatic activities, substrate utilization pattern, fatty acid composition, phospholipid profiles and phylogeny we propose that the isolates represent two novel genera of the order Planctomycetales, Roseimaritima ulvae gen. nov., sp. nov. (type strain is UC8(T)=DSM 25454(T)=LMG 27778(T)) and Rubripirellula obstinata gen. nov., sp. nov. (type strain is LF1(T)=LMG 27779(T)=CECT 8602(T)).

  1. Ulva and Enteromorpha (Ulvaceae, Chlorophyta) from two sides of the Yellow Sea: analysis of nuclear rDNA ITS and plastid rbcL sequence data

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Li, Nan; Jiang, Peng; Boo, Sung Min; Lee, Wook Jae; Cui, Yulin; Lin, Hanzhi; Zhao, Jin; Liu, Zhengyi; Qin, Song

    2010-07-01

    Ulvacean green seaweeds are common worldwide; they formed massive green tides in the Yellow Sea in recent years, which caused marine ecological problems as well as a social issue. We investigated two major genera of the Ulvaceae, Ulva and Enteromorpha, and collected the plastid rbcL and nuclear ITS sequences of specimens of the genera in two sides of the Yellow Sea and analyzed them. Phylogenetic trees of rbcL data show the occurrence of five species of Enteromorpha ( E. compressa, E. flexuosa, E. intestinalis, E. linza and E. prolifera) and three species of Ulva ( U. pertusa, U. rigida and U. ohnoi). However, we found U. ohnoi, which is known as a subtropical to tropical species, at two sites on Jeju Island, Korea. Four ribotypes in partial sequences of 5.8S rDNA and ITS2 from E. compressa were also found. Ribotype network analysis revealed that the common ribotype, occurring in China, Korea and Europe, is connected with ribotypes from Europe and China/Japan. Although samples of the same species were collected from both sides of the Yellow Sea, intraspecific genetic polymorphism of each species was low among samples collected worldwide.

  2. Phylogenetic analyses of four species of Ulva and Monostroma grevillei using ITS, rbc L and 18S rDNA sequence data

    NASA Astrophysics Data System (ADS)

    Lin, Zhongheng; Shen, Songdong; Chen, Weizhou; Li, Huihui

    2013-01-01

    Chlorophyta species are common in the southern and northern coastal areas of China. In recent years, frequent green tide incidents in Chinese coastal waters have raised concerns and attracted the attention of scientists. In this paper, we sequenced the 18S rDNA genes, the internal transcribed spacer (ITS) regions and the rbc L genes in seven organisms and obtained 536-566 bp long ITS sequences, 1 377-1 407 bp long rbc L sequences and 1 718-1 761 bp long partial 18S rDNA sequences. The GC base pair content was highest in the ITS regions and lowest in the rbc L genes. The sequencing results showed that the three Ulva prolifera (or U. pertusa) gene sequences from Qingdao and Nan'ao Island were identical. The ITS, 18S rDNA and rbc L genes in U. prolifera and U. pertusa from different sea areas in China were unchanged by geographic distance. U. flexuosa had the least evolutionary distance from U. californica in both the ITS regions (0.009) and the 18S rDNA (0.002). These data verified that Ulva and Enteromorpha are not separate genera.

  3. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research.

  4. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  5. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  6. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  7. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.

  8. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  9. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes.

  10. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2016-07-12

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  11. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  12. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  13. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  14. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  15. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  16. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  17. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  18. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  19. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil.

    PubMed

    França, Fernanda C S S; Albuuerque, Adriana M A; Almeida, Amanda C; Silveira, Patrícia B; Filho, Crescêncio A; Hazin, Clovis A; Honorato, Eliane V

    2017-01-15

    Currently one of the main sources of atmospheric pollution identified in urban centers is derived from both industrial and motor vehicle emissions. These pollutants can be adsorbed to particulate matter which is present in the air or deposited in the soil and plants, eventually reaching the human food chain. In this context, the present study aimed to determine the concentration of metals such as Cu, Pb, Cd, Ni and Zn in two subspecies of Lactuca sativa L. and in the soil from were lettuce samples were collected. The results for the soil samples analyzed show a possible contamination by Pb with concentration values as high as 140mg.kg(-1), which are above the Brazilian standards defined by Resolution CONAMA 420/2009 (Brazilian Environmental Council). However, the values found in the lettuce itself reveal that it is still suitable for consumption.

  20. Reduced allelopathic inhibition of lettuce (Lactuca sativa) growth caused by velvet bean (Mucuna pruriens) under 3D-clinorotation.

    PubMed

    Tomita-Yokotani, Kaori; Fujii, Yoshiharu; Hashimoto, Hirofumi; Yamashita, Masamichi

    2003-06-01

    Allelopathy between Mucuna pruriens (velvet bean) and Lactuca sativa (lettuce) was studied under 3D-clinorotation. Growth of both roots and shoots of lettuce seedlings was suppressed by the presence of velvet bean. The degree of suppression was less on the clinostat compared to the normal static earth gravity. L-DOPA (L-3, 4-dihydroxyphenylalanine) is known to be a major substance in allelopathy of velvet bean. Amount of L-DOPA diffused out from a sintered filter paper into agar medium was compared between clinorotation and control group, and found no significant difference. It was concluded that some factors related to release, transport, and sensing phenomena of allelopathic substances may be responsible to the new findings in this study.

  1. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants

    PubMed Central

    Garcia, R.; Simas, N. K.

    2017-01-01

    Peanut (Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants (Commelina benghalensis and Ipomoea nil) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides.

  2. Application of synthetic biology in cyanobacteria and algae.

    PubMed

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO(2) and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.

  3. Method and apparatus for lysing and processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  4. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  5. Acetone, butanol, and ethanol production from wastewater algae.

    PubMed

    Ellis, Joshua T; Hengge, Neal N; Sims, Ronald C; Miller, Charles D

    2012-05-01

    Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.

  6. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses.

  7. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  8. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  9. Biodiesel from algae: challenges and prospects.

    PubMed

    Scott, Stuart A; Davey, Matthew P; Dennis, John S; Horst, Irmtraud; Howe, Christopher J; Lea-Smith, David J; Smith, Alison G

    2010-06-01

    Microalgae offer great potential for exploitation, including the production of biodiesel, but the process is still some way from being carbon neutral or commercially viable. Part of the problem is that there is little established background knowledge in the area. We should look both to achieve incremental steps and to increase our fundamental understanding of algae to identify potential paradigm shifts. In doing this, integration of biology and engineering will be essential. In this review we present an overview of a potential algal biofuel pipeline, and focus on recent work that tackles optimization of algal biomass production and the content of fuel molecules within the algal cell.

  10. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  11. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  12. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  13. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  14. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  15. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    PubMed

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies.

  16. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  17. Identification and characterization of a library of surfactins and fengycins from a marine endophytic Bacillus sp.

    PubMed

    Nair, Divya; Vanuopadath, Muralidharan; Nair, Bipin G; Pai, Jayashree Gopalakrishna; Nair, Sudarslal Sadasivan

    2016-11-01

    An endophytic bacterial strain from a marine green alga, Ulva lactuca, was isolated and identified by 16S rRNA gene sequencing method. The bacterial isolate was found to secrete two major families of cyclic depsilipopeptides, surfactins, and fengycins. Sequencing of the isolated lipopeptides was carried out using the MS(n) data obtained from an electrospray ionization (ESI) ion trap mass spectrometer coupled to an HPLC system. The assigned sequences were confirmed by a chemical derivatization approach involving esterification followed by mass spectrometric analysis. Distinction of leucine residues from isoleucine was established through a combined electron transfer dissociation-collision-induced dissociation (ETD-CID) method. The fengycins described in this study were found to cause significant delay of growth of two plants, Vigna radiata (mung bean) and Oryza sativa (rice). To the best of our knowledge, this is the first study describing identification and characterization of cyclic peptides from an endophytic Bacillus sp. isolated from marine algae.

  18. A multiresidue approach for the simultaneous quantification of antibiotics in macroalgae by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Leston, Sara; Freitas, Andreia; Rosa, João; Barbosa, Jorge; Lemos, Marco F L; Pardal, Miguel Ângelo; Ramos, Fernando

    2016-10-15

    Together with fish, algae reared in aquaculture systems have gained importance in the last years, for many purposes. Besides their use as biofilters of effluents, macroalgae's rich nutritional profiles have increased their inclusion in human diets but also in animal feeds as sources of fatty acids, especially important for the fish industry. Nonetheless, algae are continuously exposed to environmental contaminants including antibiotics and possess the ability for bioaccumulation of such compounds. Therefore, the present paper describes the development and validation of an ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of antibiotics in the green macroalgae Ulva lactuca. This multi-residue method enables the determination of 38 compounds distributed between seven classes and was fully validated according to EU Decision 2002/657/EC.

  19. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  20. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  1. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study.

  2. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  3. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term.

  4. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.

    PubMed

    Ozkan, Altan; Kinney, Kerry; Katz, Lynn; Berberoglu, Halil

    2012-06-01

    This paper reports the construction and performance of an algae biofilm photobioreactor that offers a significant reduction of the energy and water requirements of cultivation. The green alga Botryococcus braunii was cultivated as a biofilm. The system achieved a direct biomass harvest concentration of 96.4 kg/m(3) with a total lipid content 26.8% by dry weight and a productivity of 0.71 g/m(2) day, representing a light to biomass energy conversion efficiency of 2.02%. Moreover, it reduced the volume of water required to cultivate a kilogram of algal biomass by 45% and reduced the dewatering energy requirement by 99.7% compared to open ponds. Finally, the net energy ratio of the cultivation was 6.00 including dewatering. The current issues of this novel photobioreactor are also identified to further improve the system productivity and scaleup.

  5. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins.

  6. Random flow induced by swimming algae

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Rushkin, Ilia; Goldstein, Raymond

    2010-11-01

    In this work we studied the random flow induced in a fluid by the motion of a dilute suspension of the swimming algae Volvox carteri. The fluid velocity in the suspension is a superposition of the flow fields set up by the individual organisms, which in turn have multipole contributions that decay as inverse powers of distance from the organism. Here we show that the conditions under which the central limit theorem guarantees a Gaussian probability distribution function of velocity fluctuations are satisfied when the leading force singularity is a Stokeslet. Deviations from Gaussianity are shown to arise from near-field effects. Comparison is made with the statistical properties of abiotic sedimenting suspensions. The experimental results are supplemented by extensive numerical studies.

  7. Swimming like algae: biomimetic soft artificial cilia.

    PubMed

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond

    2013-01-06

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia.

  8. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  9. Interactions of metals and protons with algae

    SciTech Connect

    Crist, R.H.; Oberholser, K.; Schwartz, D.; Marzoff, J.; Ryder, D.; Crist, D.R.

    1988-07-01

    Proton uptake by intact algal cells was found to consist of two processes: (1) a fast (<4 s) surface reaction and (2) a slow (2h) diffusion of protons into cells. A pH titration technique measured only the rapid surface reaction that forms negative sites at higher pH. Adsorption of alkali, alkaline earth, and transition metal ions on algae was quantitatively represented by the Langmuir adsorption isotherm with its two parameters y/sub m/, the maximum amount of metal adsorbed, and K, the equilibrium constant taken as a measure of bond strength. Variations of these parameters with pH and type of metal indicate that metals adsorb to algal surfaces by electrostatic attraction to negative sites, such as carboxylate anions of poly(galaturonic acid) (pectin), as previously suggested.

  10. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  11. The globins of cyanobacteria and algae.

    PubMed

    Johnson, Eric A; Lecomte, Juliette T J

    2013-01-01

    Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.

  12. Chloroplast Phylogenomic Inference of Green Algae Relationships.

    PubMed

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-02-05

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.

  13. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO2 supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O2 production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use. PMID:14063790

  14. Algae biomass cultivation in nitrogen rich biogas digestate.

    PubMed

    Krustok, I; Diaz, J G; Odlare, M; Nehrenheim, E

    2015-01-01

    Because microalgae are known for quick biomass growth and nutrient uptake, there has been much interest in their use in research on wastewater treatment methods. While many studies have concentrated on the algal treatment of wastewaters with low to medium ammonium concentrations, there are several liquid waste streams with high ammonium concentrations that microalgae could potentially treat. The aim of this paper was to test ammonium tolerance of the indigenous algae community of Lake Mälaren and to use this mixed consortia of algae to remove nutrients from biogas digestate. Algae from Lake Mälaren were cultivated in Jaworski's Medium containing a range of ammonium concentrations and the resulting algal growth was determined. The algae were able to grow at NH4-N concentrations of up to 200 mg L(-1) after which there was significant inhibition. To test the effectiveness of the lake water algae on the treatment of biogas digestate, different pre-cultivation set-ups and biogas digestate concentrations were tested. It was determined that mixing pre-cultivated suspension algae with 25% of biogas digestate by volume, resulting in an ammonium concentration of around 300 mg L(-1), produced the highest algal growth. The algae were effective in removing 72.8±2.2% of NH4-N and 41.4±41.4% of PO4-P.

  15. Biomass of algae growth on natural water medium.

    PubMed

    Ramaraj, Rameshprabu; Tsai, David Dah-Wei; Chen, Paris Honglay

    2015-01-01

    Algae are the dominant primary producers in aquatic ecosystems. Since algae are highly varied group organisms, which have important functions in ecosystem, and their biomass is an essential biological resource. Currently, algae have been applied increasingly to diverse range of biomass applications. Therefore, this study was aimed to investigate the ecological algae features of microalgal production by natural medium, ecological function by lab scale of the symbiotic reactor which is imitated nature ecosystem, and atmospheric CO2 absorption that was related the algal growth of biomass to understand algae in natural water body better. Consequently, this study took advantages of using the unsupplemented freshwater natural medium to produce microalgae. Algal biomass by direct measurement of total suspended solids (TSS) and volatile suspended solids (VSS) resulted as 0.14g/L and 0.08g/L respectively. The biomass measurements of TSS and VSS are the sensible biomass index for algae production. The laboratory results obtained in the present study proved the production of algae by the natural water medium is potentially feasible.

  16. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  17. [Numerical simulation on hydrodynamic character for algae growth].

    PubMed

    Wang, Hua; Pang, Yong

    2008-04-01

    In order to quantificationally study the direct effects of hydrodynamic condition on the growth of algae, the Microcystis aeruginosa was chosen to carry through the disturbance-experiment. By keeping the same value of illumination, temperature and nutrition and changing the rotate speed of oscillator, the growing processes of algae under different disturbance intensities were researched. The hydraulic parameter was presented to amend the formula for the growth of algae. Take Neijiang as an example. A 2-D unsteady model for algae growth was established to forecast the scope of water blooms in Neijiang. It is found that the growth of algae is obviously influenced by hydrodynamic condition, and a condign low velocity is beneficial for its growth while both the quiescence condition and high velocity will restrain its growth rate. After the close of the water gate in Leading Channel, the velocity in Neijiang will be decreased, which accelerated the growth rate of algae, and the area of water blooms will be increased to 2.5 km2 which is about 36.8 percent of the total water surface area of Neijiang. Under the quiescent condition and the improved hydrodynamic condition, the growth rate of algae will be effectively controlled and the area of water blooms will be reduced to 0.78 km2 and 0.18 km2 respectively.

  18. [Seasonal variation characteristics of algae biomass in Chaohu Lake].

    PubMed

    Jiang, Xia; Wang, Shu-Hang; Zhong, Li-Xiang; Jin, Xiang-Can; Sun, Shi-Qun

    2010-09-01

    The biomass and distribution of algae community in Chaohu Lake were investigated in 2008. At the same time, the seasonal variations of algae translocation between the sediment and overlying water were also quantitative studied by self-made "algae up/down trap". Chaohu Lake was dominated by Cyanobacteria all the year, and dominant Cyanobacteria species changed in different seasons. In spring, Anabaena was the dominant species, and Microcystis was the subdominant species; In the whole summer and autumn, the dominant species is Microcystis. Algae biomass increased significantly from May and the maximum appeared in August, was 146.37 mg x m(-3) with Chl-a. The value of algae biomass were 9.75-16.24 mg x kg(-1) in the surface sediments, and the minimum appeared in Summer, then the algae biomass increased gradually with the maximum value in winter. Translocation process between the sediment and the overlying water occurred throughout the study period. The recruitment rates increased at first with the maximum rates in early August, was 0.036 8 mg x (m2 x d) (-1), and then had a downward tendency. However the sedimentation rates increased slowly firstly with the maximum rate in early September, then it decreased sharply, was 0.032 1 mg x (m2 x d)(-1). Multiple stepwise regression showed that temperature was the most significant factor for the algae biomass in Chaohu Lake, Total nitrogen (TN) and Total phosphorus(TP) are sub-important factors.

  19. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  20. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  1. Preliminary survey of fungistatic properties of marine algae.

    PubMed

    WELCH, A M

    1962-01-01

    Welch, Ann Marie (U. S. Veterans Administration Hospital, Durham, N. C.). Preliminary survey of fungistatic properties of marine algae. J. Bacteriol. 83:97-99. 1962-Homogenized preparations of 35 marine algae were tested for inhibitory activity against 6 pathogenic or opportunistically pathogenic fungi with saturated filter-paper discs on seeded Sabouraud agar plates; 11 of these preparations produced wide zones of inhibition against 1 or more test organisms, and at least 4 of the 11 are considered to be worthy of further study. The results indicated that further search should be made for antifungal substances from marine algae.

  2. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  3. Nitrate content of lettuce (Lactuca sativa L.) after fertilization with sewage sludge and irrigation with treated wastewater.

    PubMed

    Castro, E; Mañas, M P; De Las Heras, J

    2009-02-01

    A romaine-type lettuce (Lactuca sativa L.) was cultivated over three crop seasons (spring 2005, spring 2006 and autumn-winter 2006) in six 36 m(2) plots in Alcázar de San Juan, Spain. A drip irrigation system was used to water all plots: five plots with drinking water and one plot with wastewater from the activated sludge system of a wastewater treatment plant (WWTP). One drinking water-irrigated plot was not fertilized (control). Five different treatments were applied to the soil: three organic mixtures (sewage sludge, sewage sludge mixed with pine bark and municipal solid waste with composted sludge) and a conventional fertilizer were applied to the four plots irrigated with drinking water. The last plot was irrigated with treated wastewater. The treatments were tested for their effect on plant growth and nitrate concentration in vegetable tissue. An increase in fresh weight in the lettuce was linked to the dosage of sewage sludge. The highest nitrate level was observed in the sewage sludge treatment in all crops and seasons, although, in general, all values were below the maximum limits established by the European Commission for nitrate content in fresh romaine lettuce. In the third crop season, a significant increase in nitrate content was observed in lettuce from organic treatments. Nitrate concentration in lettuce from irrigated treated wastewater was higher than control, although significant differences were not found.

  4. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds

    PubMed Central

    Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-01-01

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125

  5. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products.

  6. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    PubMed

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  7. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.

  8. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    PubMed

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h(-1)) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch(-1)) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  9. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L.

    PubMed

    Aguiar, Luara Louzada; Andrade-Vieira, Larissa Fonseca; de Oliveira David, José Augusto

    2016-11-01

    Coffee wastewater (CWW) is an effluent produced through wet processing of coffee containing high concentration of organic matter, nutrients, salts and also agrochemicals. It is released directly into the argillaceous soil or into decantation tanks for later disposal into soils, by fertigation, subsurface infiltration or superficial draining. However, this practice is not followed by the monitoring the toxicity potential of this effluent. In this sense, the present work aimed to evaluate the phytotoxic, cytogenotoxic and mutagenic potential of CWW on seed germination, root elongation and cell cycle alterations in the plant model Lactuca sativa L. The effluent (CWW) collected was diluted in distilled water into six concentrations solutions (1.25%, 1.66%, 2.5%, 5.0%, 10%, 20%). A solution of raw CWW (100%) was also applied. Distilled water was used as negative control), and the DNA alkylating agent, metilmetano sulfonate (4×10(-4)M) as positive control. Physico-chemical parameters of the CWW was accessed and it was found that the effluent contained total phenols and inorganic matter in amounts within the limits established by the National Environment Council (CONAMA). Nevertheless, the biologicals assays performed demonstrated the phytotoxicity and cytogenotoxicty of CWW. Seed germination was totally inhibited after exposure of raw CWW. In addition, a decrease in seed germination speed as well as in root growth dose-dependently manner was noticed. Moreover, nuclear and chromosomal alterations were observed in the cell cycle, mostly arising from aneugenic action.

  10. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.).

    PubMed

    Valerio, Marlon Escoto; García, Juan Fernández; Peinado, Francisco Martín

    2007-05-25

    In this work the different concentrations of soluble elements in soils from natural (peridotitic soils) and anthropogenic (soils affected by a pyrite-mine spill) origin, are used to determine the phytotoxicity in lettuce (Lactuca sativa L.). The solutions are obtained from soil:water extracts (1:1), having neutral pH and high concentrations of As, Pb, Zn, Mn, Co and Ni, with values exceeding the toxic level for soil solution [Bohn HL, McNeal BL, O'Connor GA. Soil Chemistry, Wiley Interscience. Wiley & Sons, New York, 1985]. The variables evaluated are: Seed Germination (SG), Root Elongation (RE), Germination Rate (GR) and Root Necrosis (RN). The most sensitive variables in the bioassay with these solutions are GR and RN, in these cases the solution causes a reduction of 44% and 67%, respectively, in relation to control (distilled water). The test using soil-water solutions is sensitive and reproducible to determine phytotoxicity in lettuce caused by potentially pollutant elements in soils.

  11. The effects of cover crop on weed control in collard (Brassica olerecea var acephala) and lettuce (Lactuca sativa L.).

    PubMed

    Mennan, H; Ngouajio, M; Isik, D; Kose, B; Kaya, E

    2006-01-01

    Leafy vegetables are not very competitive and weed interference can cause considerable yield losses in collard (Brassica olerecea var acephala) and lettuce (Lactuca sativa L.). Currently there are no pre or post emergence herbicides registered for weed control in these vegetables in Turkey. For this reason, alternative weed control strategies need to be developed. Cover crop residue could represent an alternative method of weed management in these crops. Field studies were conducted in 2004 at the Black Sea Agricultural Research Institute experimental field in Samsun, Turkey. The cover crop treatments consisted of Sorghum bicolor (L.) Moench, Sorghum vulgare Pers., Vicia villosa L., Amaranthus cruentus L., Pisum sativum L. and the bare ground with no cover crop. All cover crops were seeded by hand and incorporated into the soil on 11 May, 2004. Each plot was 10 m2 (2 x 5 m) and arranged in a randomized complete block design with four replications. All cover crops were incorporated into the soil by discing on 1 September 2004 at flowering stage of the cover crops. Broadleaved weed species were dominant in the experimental area. Most cover crops established well and S. bicolor biomass was the highest. The number of weed species emerging in all treatments was different at 14 DAD (days after desiccation). Similar results were observed at 28 and 56 DAD. Treatments with Vicia villosa residues had fewer weed species and lower total weed densities than other treatments.

  12. [The dynamics of calcium distribution in stigma and style of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Gu, Li; Tian, Hui Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the stigma and style of lettuce (Lactuca sativa L.) before and after pollination. The stigma of lettuce is two splits. Abundant calcium granules are displayed in the wall of papillae on the receptive surface of stigma before and after pollination, which may facilitate pollen germination. However, a few calcium granules in the wall of epidermis cell on no-receptive surface. Calcium distribution in style presents a gradient in transmitting tissue and parenchyma cells from the top to the base of the style before pollination. After pollination, calcium in transmitting tissue distinctly increased and its gradient distribution became more evident. Pollen tubes grow in the intercellular gaps of transmitting tissue. When pollen tubes grew into transmitting tissue, calcium granules in parenchyma around transmitting tissue decreased, suggesting a calcium movement was controlled by pollen tubes. The calcium gradient distribution also appeared in the trachea of vascular bundle of style. In general, calcium in style displays a feature of time-special distribution: transmitting tissue doesn't need much more calcium that is only stored in the parenchyma before pollination. However, calcium in parenchyma cells may be transported to transmitting tissue and make the latter contain more calcium to form an evident calcium gradient and meet the requirement of pollen tubes directionally growing after pollination. This is the second sample of calcium gradient existing in style, which was found by using potassium antimonite method.

  13. Toxic Effects of Copper-based Nanoparticles or Compounds to Lettuce (Lactuca sativa) and Alfalfa (Medicago sativa)

    PubMed Central

    Hong, Jie; Rico, Cyren; Zhao, Lijuan; Adeleye, Adeyemi S.; Keller, Arturo A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2014-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 day-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg/L. At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species. PMID:25474419

  14. Lab on a chip technologies for algae detection: a review.

    PubMed

    Schaap, Allison; Rohrlack, Thomas; Bellouard, Yves

    2012-08-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies.

  15. [Parameter determination of algae growth based on ecological tank experiment].

    PubMed

    Pang, Yong; Ding, Ling; Gao, Guang

    2005-05-01

    A dynamic simulation experiment of algae in an ecological tank was performed at the Taihu Laboratory for Lake Ecosystem Research. During the experiment, water from Taihu Lake was infused into the ecological tank and samples were taken continually to observe algae growth under varying conditions, such as temperature, sunlight and nutrients. Based on the experiment, an algae growth model, considering nitrogen and phosphorus cycle, was developed by using the advanced PHREEQC model. After that, a detailed calibration and validation of parameters in the model were done on the basis of experimental results. The least square method was used to determine the optimal set of parameters. The calculated values of algae and nutrient concentrations show fairly satisfying fittness with measured data.

  16. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  17. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  18. Exploration of the gasification of Spirulina algae in supercritical water.

    PubMed

    Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

    2012-09-01

    This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported.

  19. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  20. Bicarbonate produced from carbon capture for algae culture.

    PubMed

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.

  1. Harmful algae blooms removal from fresh water with modified vermiculite.

    PubMed

    Miao, Chunguang; Tang, Yi; Zhang, Hong; Wu, Zhengyan; Wang, Xiangqin

    2014-01-01

    Vermiculite and vermiculite modified with hydrochloric acid were investigated to evaluate their flocculation efficiencies in freshwater containing harmful algae blooms (HABs) (Microcystis aeruginosa). Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, converted fluorescence microscope, plasma-atomic emission spectrometry, and Zetasizer were used to study the flocculation mechanism of modified vermiculite. It was found that the vermiculite modified with hydrochloric acid could coagulate algae cells through charge neutralization, chemical bridging, and netting effect. The experimental results show that the efficiency of flocculation can be notably improved by modified vermiculite. Ninety-eight per cent of algae cells in algae solution could be removed within 10 min after the addition ofmodified vermiculite clay. The method that removal of HABs with modified vermiculite is economical with high efficiency, and more research is needed to assess their ecological impacts before using in practical application.

  2. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  3. Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea.

    PubMed

    Zhang, Jian Heng; Huo, Yuan Zi; Zhang, Zheng Long; Yu, Ke Feng; He, Qing; Zhang, Lin Hui; Yang, Li Li; Xu, Ren; He, Pei Min

    2013-12-01

    Since 2007, the world's largest macroalgal blooms have occurred along the coastal area of the Yellow Sea for 6 consecutive years. In 2012, shipboard surveying and satellite remote sensing were used to monitor the whole blooming process. The blooms originated in Rudong sea area of the South Yellow Sea where bloom patches were of dark green and filamentous thalli were the dominant morphology. The scale of the blooms reached its peak size in Rizhao sea area of the North Yellow Sea, and decreased promptly and became insignificant in Qingdao coast where the blooms turned yellow, mostly with air sac blades. Meanwhile, vegetative cells of the green tide algae changed into cytocysts gradually from which germ cells were released as the blooms drifted northward. Additionally, chlorophyll contents and fluorescence activity of free-floating thalli in the North Yellow Sea were both significantly lower than that in the South Yellow Sea. Those studies presented here contributed to increasing our understanding about how the green tide declined gradually in the North Yellow Sea.

  4. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  5. Study on algae removal by immobilized biosystem on sponge

    NASA Astrophysics Data System (ADS)

    Pei, Haiyan; Hu, Wenrong

    2006-10-01

    In this study, sponges were used to immobilize domesticated sludge microbes in a limited space, forming an immobilized biosystem capable of algae and microcystins removal. The removal effects on algae, microcystins and UV260 of this biosystem and the mechanism of algae removal were studied. The results showed that active sludge from sewage treatment plants was able to remove algae from a eutrophic lake’s water after 7 d of domestication. The removal efficiency for algae, organic matter and microcystins increased when the domesticated sludge was immobilized on sponges. When the hydraulic retention time (HRT) was 5h, the removal rates of algae, microcystins and UV260 were 90%, 94.17% and 84%, respectively. The immobilized biosystem consisted mostly of bacteria, the Ciliata and Sarcodina protozoans and the Rotifer metazoans. Algal decomposition by zoogloea bacteria and preying by microcreatures were the two main modes of algal removal, which occurred in two steps: first, absorption by the zoogloea; second, decomposition by the zoogloea bacteria and the predacity of the microcreatures.

  6. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  7. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  8. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-03

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  9. [Study on the sorption of 4-octylphenol by freshwater algae].

    PubMed

    Peng, Zhang-e; Yang, Hai-zhen; Wang, Bei-bei; Deng, Nan-sheng

    2009-12-01

    The sorption of 4-octylphenol (4-OP) by two freshwater algae was investigated. Results showed that the sorption of 4-octylphenol by algae was obvious and quick, where 20% of initial 4-OP (2 mg/L) was accumulated by Chlorella vulgaris (CV) and 46% initial 4-OP (2 mg/L) was accumulated by Anabaena cylindrical (AC) after 5 min incubation. The sorption got equilibrium at 1 h after incubation. Langmuir sorption model was good appropriate type for this sorption. The effect of pH value on CV sorption was obvious than that on AC sorption. The sorption capacity of the biomass of two algae increased with the decrease of pH value. The analyzing of interaction between algae and 4-octylphenol was performed by fluorescence spectrum. Results showed that the algae could weaker the fluorescence spectrum intensity of 4-octylphenol and result in red shift of the maximum absorbance wavelength of mixture solution. Based on the results, it was speculated that algae bound with the contamination could use the near UV region of solar radiation and induced the contamination degradation.

  10. Modelling the effect of fluctuating herbicide concentrations on algae growth.

    PubMed

    Copin, Pierre-Jean; Coutu, Sylvain; Chèvre, Nathalie

    2015-03-01

    Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers.

  11. Phosphorus-Limited Growth of a Green Alga and a Blue-Green Alga

    PubMed Central

    Lang, Douglas S.; Brown, Edward J.

    1981-01-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nägeli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nägeli than in S. quadricauda. Synechococcus Nägeli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). PMID:16345896

  12. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  13. Is the Future Really in Algae?

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  14. Coccolithophorid algae culture in closed photobioreactors.

    PubMed

    Moheimani, Navid R; Isdepsky, Andreas; Lisec, Jan; Raes, Eric; Borowitzka, Michael A

    2011-09-01

    The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L(-1) day(-1) respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20-25% of dry weight) and calcium carbonate (11-12% of dry weight) contents were also the highest of all species tested.

  15. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  16. Detection of Cyanotoxins in Algae Dietary Supplements

    PubMed Central

    Roy-Lachapelle, Audrey; Solliec, Morgan; Bouchard, Maryse F.; Sauvé, Sébastien

    2017-01-01

    Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements. PMID:28245621

  17. Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins.

    PubMed

    Pereira, Silvia; Saker, Martin L; Vale, Micaela; Vasconcelos, Vitor M

    2009-07-01

    The effects of aqueous extracts from Microcysts aeruginosa strains (both microcystin-producers and non-microcystin producers) on germination and root growth were investigated for three economically important plant species: Festuca rubra L., Lolium perenne L., and Lactuca sativa L. There was a clear inhibition of root growth for L. sativa exposed to strains containing microcystins (5.9-56.4 microg L(-1)). The strain that produced the most pronounced effects contained the lowest concentration of microcystin suggesting that other cellular compounds may also affect growth.

  18. Copper-Induced Membrane Depolarizations Involve the Induction of Mosaic TRP Channels, Which Activate VDCC Leading to Calcium Increases in Ulva compressa

    PubMed Central

    Gómez, Melissa; González, Alberto; Sáez, Claudio A.; Moenne, Alejandra

    2016-01-01

    The marine macroalga Ulva compressa (Chlorophyceae) is a cosmopolitan species, tolerant to heavy metals, in particular to copper. U. compressa was cultivated with 10 μM copper for 12 h and membrane depolarization events were detected. First, seven depolarization events occurred at 4, 8, 12–13, 80, and 86 min, and at 5 and 9 h of copper exposure. Second, bathocuproine sulphonate, a specific copper-chelating compound, was added before incorporating copper to the culture medium. Copper-induced depolarizations were inhibited by bathocuproine at 4, 8, 12–13, 80, and 86 min, but not at 5 and 9 h, indicating that initial events are due to copper ions entry. Third, specific inhibitors of human TRPA1, C4, C5, M8, and V1corresponding to HC030031, ML204, SKF96363, M8B, and capsazepin, respectively, were used to analyze whether copper-induced depolarizations were due to activation of transient receptor potentials (TRPs). Inhibitor effects indicate that the seven depolarizations involved the activation of functional mosaic TRPs that displayed properties similar to human TRPA, C, M, and/or V. Finally, inhibition of copper-induced depolarizations using specific TRP inhibitors suppressed calcium increases at 2, 3, and 12 h due to activation of voltage-dependent calcium channels (VDCCs). Thus, copper induces seven depolarization events that involve activation of mosaic TRPs which, in turn, activates VDCC leading to calcium increases at 2, 3, and 12 h in U. compressa. PMID:27379106

  19. The Hydrobia ulvae-Maritrema subdolum association: influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity.

    PubMed

    Mouritsen, K N

    2002-12-01

    The effects of environmental factors and exudates from the amphipod Corophium volutator on the emergence of Maritrema subdolum cercariae (Digenea: Microphallidae) from the snail Hydrobia ulvae were investigated in the laboratory. Increasing the temperature (15 to 25 degrees C) caused an overall 11-fold increase in emergence rate under varying salinities (24 to 36 per thousand). The effect of salinity depended on the experimental temperature. Emergence increased with increasing salinity at higher temperatures, but decreased with increasing salinity at 15 degrees C. Whereas the different levels of salinity had no effect, increasing the temperature significantly reduced the life span of cercariae. In comparison with complete darkness, light caused a two-fold increase in emergence, whereas an increment of the water pressure from 1.0 to 1.3 ATM (corresponding to 0 and 3 m of depth) left the shedding rate unaffected. Unidentified exudates from the second intermediate host, C. volutator, significantly depressed the cercarial emergence rate. The main transmission window of M. subdolum seems to occur during low water in tidal pools where light levels are high and solar radiation rapidly elevates the water temperature, as well as salinity through evaporation. The consequence of such a transmission strategy is discussed in relation to the impact of M. subdolum on the population dynamics of the second intermediate host.

  20. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water.

    PubMed

    Paudyal, Hari; Pangeni, Bimala; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Ghimire, Kedar Nath; Alam, Shafiq

    2013-11-01

    A green seaweed, Ulva japonica, was modified by loading multivalent metal ions such as Zr(IV) and La(III) after CaCl2 cross-linking to produce metal loaded cross-linked seaweed (M-CSW) adsorbents, which were characterized by elemental analysis, functional groups identification, and metal content determination. Maximum sorption potential for fluoride was drastically increased after La(III) and Zr(IV) loading, which were evaluated as 0.58 and 0.95 mmol/g, respectively. Loaded fluoride was quantitatively desorbed by using dilute alkaline solution for its regeneration. Mechanism of fluoride adsorption was inferred in terms of ligand exchange reaction between hydroxyl ion on co-ordination sphere of the loaded metal ions of M-CSW and fluoride ion in aqueous solution. Application of M-CSW for the treatment of actual waste plating solution exhibited successful removal of fluoride to clear the effluent and environmental standards in Japan, suggesting high possibility of its application for the treatment of fluoride rich waste water.