Sample records for algal batch reactor

  1. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  2. Cadmium removal using Cladophora in batch, semi-batch and flow reactors.

    PubMed

    Sternberg, Steven P K; Dorn, Ryan W

    2002-02-01

    This study presents the results of using viable algae to remove cadmium from a synthetic wastewater. In batch and semi-batch tests, a local strain of Cladophora algae removed 80-94% of the cadmium introduced. The flow experiments that followed were conducted using non-local Cladophora parriaudii. Results showed that the alga removed only 12.7(+/-6.4)% of the cadmium introduced into the reactor. Limited removal was the result of insufficient algal quantities and poor contact between the algae and cadmium solution.

  3. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  4. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  5. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  6. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year (0...

  7. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year (0...

  8. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  9. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    PubMed

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of heavy metal toxicity in continuous flow and batch reactors

    NASA Astrophysics Data System (ADS)

    Sengor, S. S.; Gikas, P.; Moberly, J. G.; Peyton, B. M.; Ginn, T. R.

    2009-12-01

    The presence of heavy metals may significantly affect microbial growth. In many cases, small amounts of particular heavy metals may stimulate microbial growth; however, larger quantities may result in microbial growth reduction. Environmental parameters, such as growth pattern may alter the critical heavy metal concentration, above which microbial growth stimulation turns to growth inhibition. Thus, it is important to quantify the effects of heavy metals on microbial activity for understanding natural or manmade biological reactors, either in situ or ex situ. Here we compare the toxicity of Zn and Cu on Arthrobacter sp., a heavy metal tolerant microorganism, under continuous flow versus batch reactor operations. Batch and continuous growth tests of Arthrobacter sp. were carried out at various individual and combined concentrations of Zn and Cu. Biomass concentration (OD) was measured for both the batch and continuous reactors, whereas ATP, oxygen uptake rates and substrate concentrations were additionally measured for the continuous system. Results indicated that Cu was more toxic than Zn under all conditions for both systems. In batch reactors, all tested Zn concentrations up to 150 uM showed a stimulatory effect on microbial growth. However, in the case of mixed Zn and Cu exposures, the presence of Zn either eliminated (at the 50 uM level both Zn and Cu) or reduced by ~25% (at the 100 and 150 uM levels both Zn and Cu) the Cu-induced inhibition. In the continuous system, only one test involved combined Cu (40uM) and Zn (125uM) and this test showed similar results to the 40uM Cu continuous test, i.e., no reduction in inhibition. The specific ATP concentration, i.e., ATP/OD, results for the continuous reactor showed an apparent recovery for both Cu-treated populations, although neither the OD nor glucose data showed any recovery. This may reflect that the individual microorganisms that survived after the addition of heavy metals, kept maintaining the usual ATP

  12. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    PubMed

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor

    NASA Astrophysics Data System (ADS)

    Marwan; Suhendrayatna; Indarti, E.

    2015-06-01

    The present work was aimed to study the so-called direct transesterification of microalgae lipids to biodiesel in a batch microwave reactor. As a comparison, preparation of palm oil to biodiesel by alkaline catalyzed ethanolysis was also carried out. Palm oil biodiesel was recovered close to an equilibrium conversion (94-96% yield) under microwave heating for at least 6 min, while the conventional method required more than 45 minutes reaching the same yield. A very short reaction time suggests the benefit of microwave effect over conventional heating method in making biodiesel. FTIR analysis revealed the presence of fatty acid ethyl esters with no undesired chemical groups or compounds formed due to local heat generated by microwave effect, thus the conversion only followed transesterification route. Oil containing microalgae of Chlorella sp. isolated from the local brackish water pond was used as a potential source of biodiesel. High yield of biodiesel (above 0.6 g/g of dried algae) was also attainable for the direct transesterification of microalgae in the microwave reactor. Effect of water content of the algae biomass became insignificant at 11.9%(w/w) or less, related to the algae biomass dried for longer than 6 h. Fast transesterification of the algal oil towards equilibrium conversion was obtained at reaction time of 6 min, and at longer times the biodiesel yield remains unchanged. FAME profile indicates unsaturated fatty acids as major constituents. It was shown that microwave irradiation contributes not only to enhance the transeseterification, but also to assist effective release of fatty acid containing molecules (e.g. triacylglycerol, free fatty acids and phospholipids) from algal cells.

  14. CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR

    EPA Science Inventory


    The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...

  15. Generation of OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor

    NASA Astrophysics Data System (ADS)

    Fang, Yu; Shimizu, Sayaka; Yamamoto, Takuya; Komarov, Sergey

    2018-03-01

    Ultrasonic technology has been widely investigated in the past as one of the advance oxidation processes to treat wastewater, in this process acoustic cavitation causes generation of OH radical, which play a vital role in improving the treatment efficiency. In this study, OH radical formation rate was measured in batch and circulatory reactor by using Weissler reaction at various ultrasound output power. It is found that the generation rate in batch reactor is higher than that in circulatory reactor at the same output power. The generation rate tended to be slower when output power exceeds 137W. The optimum condition for circulatory reactor was found to be 137W output and 4L/min flow rate. Results of aluminum foil erosion test revealed a strong dependence of cavitation zone length on the ultrasound output power. This is assumed to be one of the reasons why the generation rate of HO radicals becomes slower at higher output power in circulatory reactor.

  16. Sequencing batch-reactor control using Gaussian-process models.

    PubMed

    Kocijan, Juš; Hvala, Nadja

    2013-06-01

    This paper presents a Gaussian-process (GP) model for the design of sequencing batch-reactor (SBR) control for wastewater treatment. The GP model is a probabilistic, nonparametric model with uncertainty predictions. In the case of SBR control, it is used for the on-line optimisation of the batch-phases duration. The control algorithm follows the course of the indirect process variables (pH, redox potential and dissolved oxygen concentration) and recognises the characteristic patterns in their time profile. The control algorithm uses GP-based regression to smooth the signals and GP-based classification for the pattern recognition. When tested on the signals from an SBR laboratory pilot plant, the control algorithm provided a satisfactory agreement between the proposed completion times and the actual termination times of the biodegradation processes. In a set of tested batches the final ammonia and nitrate concentrations were below 1 and 0.5 mg L(-1), respectively, while the aeration time was shortened considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  18. Anaerobic sequencing batch reactors for wastewater treatment: a developing technology.

    PubMed

    Zaiat, M; Rodrigues, J A; Ratusznei, S M; de Camargo, E F; Borzani, W

    2001-01-01

    This paper describes and discusses the main problems related to anaerobic batch and fed-batch processes for wastewater treatment. A critical analysis of the literature evaluated the industrial application viability and proposed alternatives to improve operation and control of this system. Two approaches were presented in order to make this anaerobic discontinuous process feasible for industrial application: (1) optimization of the operating procedures in reactors containing self-immobilized sludge as granules, and (2) design of bioreactors with inert support media for biomass immobilization.

  19. Batch Tests To Determine Activity Distribution and Kinetic Parameters for Acetate Utilization in Expanded-Bed Anaerobic Reactors

    PubMed Central

    Fox, Peter; Suidan, Makram T.

    1990-01-01

    Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175

  20. Batch tests to determine activity distribution and kinetic parameters for acetate utilization in expanded-bed anaerobic reactors.

    PubMed

    Fox, P; Suidan, M T

    1990-04-01

    Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.

  1. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    NASA Astrophysics Data System (ADS)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  2. Modeling Lab-sized Anaerobic Fluidized Bed Reactor (AFBR) for Palm Oil Mill Effluent (POME) treatment: from Batch to Continuous Reactors

    NASA Astrophysics Data System (ADS)

    Mufti Azis, Muhammad; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2018-03-01

    Indonesia is aiming to produce 30 million tones/year of crude palm oil (CPO) by 2020. As a result, 90 million tones/year of POME will be produced. POME is highly polluting wastewater which may cause severe environmental problem due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Due to the limitation of open pond treatment, the use of AFBR has been considered as a potential technology to treat POME. This study aims to develop mathematical models of lab-sized Anaerobic Fluidized Bed Reactor (AFBR) in batch and continuous processes. In addition, the AFBR also utilized natural zeolite as an immobilized media for microbes. To initiate the biomass growth, biodiesel waste has been used as an inoculum. In the first part of this study, a batch AFBR was operated to evaluate the COD, VFA, and CH4 concentrations. By comparing the batch results with and without zeolite, it showed that the addition of 17 g/gSCOD zeolite gave larger COD decrease within 20 days of operation. In order to elucidate the mechanism, parameter estimations of 12 kinetic parameters were proposed to describe the batch reactor performance. The model in general could describe the batch experimental data well. In the second part of this study, the kinetic parameters obtained from batch reactor were used to simulate the performance of double column AFBR where the acidogenic and methanogenic biomass were separated. The simulation showed that a relatively long residence time (Hydraulic Residence Time, HRT) was required to treat POME using the proposed double column AFBR. Sensitivity analyses was conducted and revealed that μm1 appeared to be the most sensitive parameter to reduce the HRT of double column AFBR.

  3. Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor

    NASA Astrophysics Data System (ADS)

    Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.

  4. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    PubMed

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  6. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology.

    PubMed

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos; Jia, Qilong

    2018-03-01

    Wastewater treatment technology with better energy efficiency and recyclability is in urgent demand. Photo-Sequencing batch reactor (SBR), which introduces microalgae into conventional SBR, is considered to have more potential for resource recycling. In this study, a photo-SBR was evaluated through the manipulation of several key operational parameters, i.e., aeration strength, light supply intensity and time per cycle, and solid retention time (SRT). The algal-bacterial symbiotic system had the potential of removing COD, NH 4 + -N and TN with limited aeration, representing the advantage of energy-saving by low aeration requirement. Maintaining appropriate proportion of microalgae in the symbiotic system is critical for good system performance. Introducing microalgae into conventional SBR has obvious impact on the original microbial ecology. When the concentration of microalgae is too high (>4.60 mg Chl/L), the inhibition on certain phyla of bacteria, e.g., Bacteroidetes and Actinobacteria, would become prominent and not conducive to the stable operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    PubMed

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Sequencing batch reactor biofilm system for treatment of milk industry wastewater.

    PubMed

    Sirianuntapiboon, Suntud; Jeeyachok, Narumon; Larplai, Rarintorn

    2005-07-01

    A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.

  9. Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.

    PubMed

    Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein

    2012-01-01

    Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.

  10. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion.

    PubMed

    Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J

    2012-12-01

    The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN

    2017-03-01

    In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.

  12. Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors.

    PubMed

    Fu, H; Zhang, J-J; Xu, Y; Chao, H-J; Zhou, N-Y

    2017-03-01

    The ortho-nitrophenol (ONP)-utilizing Alcaligenes sp. strain NyZ215, meta-nitrophenol (MNP)-utilizing Cupriavidus necator JMP134 and para-nitrophenol (PNP)-utilizing Pseudomonas sp. strain WBC-3 were assembled as a consortium to degrade three nitrophenol isomers in sequential batch reactors. Pilot test was conducted in flasks to demonstrate that a mixture of three mononitrophenols at 0·5 mol l -1 each could be mineralized by this microbial consortium within 84 h. Interestingly, neither ONP nor MNP was degraded until PNP was almost consumed by strain WBC-3. By immobilizing this consortium into polyurethane cubes, all three mononitrophenols were continuously degraded in lab-scale sequential reactors for six batch cycles over 18 days. Total concentrations of ONP, MMP and PNP that were degraded were 2·8, 1·5 and 2·3 mol l -1 during this time course respectively. Quantitative real-time PCR analysis showed that each member in the microbial consortium was relatively stable during the entire degradation process. This study provides a novel approach to treat polluted water, particularly with a mixture of co-existing isomers. Nitroaromatic compounds are readily spread in the environment and pose great potential toxicity concerns. Here, we report the simultaneous degradation of three isomers of mononitrophenol in a single system by employing a consortium of three bacteria, both in flasks and lab-scale sequential batch reactors. The results demonstrate that simultaneous biodegradation of three mononitrophenol isomers can be achieved by a tailor-made microbial consortium immobilized in sequential batch reactors, providing a pilot study for a novel approach for the bioremediation of mixed pollutants, especially isomers present in wastewater. © 2016 The Society for Applied Microbiology.

  13. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials.

    PubMed

    Lim, Jun-Wei; Seng, Chye-Eng; Lim, Poh-Eng; Ng, Si-Ling; Sujari, Amat-Ngilmi Ahmad

    2011-11-01

    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.

    PubMed

    Chen, J Paul; Wang, Lin

    2004-01-01

    Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.

  15. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    DTIC Science & Technology

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  16. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  17. Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR).

    PubMed

    Tawfik, A; El-Kamah, H

    2012-01-01

    This study has been carried out to assess the performance of a combined system consisting of an anaerobic hybrid (AH) reactor followed by a sequencing batch reactor (SBR) for treatment of fruit-juice industry wastewater at a temperature of 26 degrees C. Three experimental runs were conducted in this investigation. In the first experiment, a single-stage AH reactor was operated at a hydraulic retention time (HRT) of 10.2 h and organic loading rate (OLR) of 11.8 kg COD m(-3) d(-1). The reactor achieved a removal efficiency of 42% for chemical oxygen demand (COD), 50.8% for biochemical oxygen demand (BOD5), 50.3% for volatile fatty acids (VFA) and 56.4% for total suspended solids (TSS). In the second experiment, two AH reactors connected in series achieved a higher removal efficiency for COD (67.4%), BOD5 (77%), and TSS (71.5%) at a total HRT of 20 h and an OLR of 5.9 kg COD m(-3) d(-1). For removal of the remaining portions of COD, BOD5 and TSS from the effluent of the two-stage AH system, a sequencing batch reactor (SBR) was investigated as a post-treatment unit. The reactor achieved a substantial reduction in total COD, resulting in an average effluent concentration of 50 mg L(-1) at an HRT of 11 h and OLR of 5.3 kg COD m(-3) d(-1). Almost complete removal of total BOD5 and oil and grease was achieved, i.e. 10 mg L(-1) and 1.2 mg L(-1), respectively, remained in the final effluent of the SBR.

  18. Critical analysis of submerged membrane sequencing batch reactor operating conditions.

    PubMed

    McAdam, Ewan; Judd, Simon J; Gildemeister, René; Drews, Anja; Kraume, Matthias

    2005-10-01

    To evaluate the Submerged Membrane Sequencing Batch Reactor process, several short-term studies were conducted to define critical flux, membrane aeration and intermittent filtration operation. Critical flux trials indicated that as mixed liquor suspended solids increased in concentration so would the propensity for membrane fouling. Consequently in order to characterise the impact of biomass concentration increase (that develops during permeate withdrawal) upon submerged microfiltration operation, two longer term studies were conducted, one with a falling hydraulic head and another with a continuous hydraulic head (as in membrane bio-reactors). Trans membrane pressure data was used to predict the maximum possible operating periods at 10 and 62 days for the falling hydraulic head and continuous hydraulic head respectively. Further analysis revealed that falling hydraulic head operation would require 21% more aeration to maintain a consistent crossflow velocity than continuous operation and would rely on pumping for full permeate withdrawal 80% earlier. This study concluded that further optimisation would be required to make this technology technically and economically viable.

  19. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam.

    PubMed

    Ueno, Ryohei; Wada, Shun; Urano, Naoto

    2008-01-01

    This study reports on the stability of the cells of a heterotrophic green micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam (PUF) cubes during degradation of mixed hydrocarbon substrate, which was composed of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), in 5 successive cycles of repeated batch cultivation at 30 degrees C. Both RND16 cells and mixed hydrocarbon substrate components had been entrapped in PUF cubes through cultivation. PUF-immobilized RND16 degraded n-alkanes almost completely, whereas the strain hardly degraded PAHs in PUFs, rather they accumulated in the matrices. It is noteworthy that this result is strikingly different from that of the free-living cell culture, where RND16 reduced concentrations of both n-alkanes and PAHs. However, PAHs accumulation in the PUFs did not impair the performance of the immobilized alga to utilize n-alkanes. These results suggest that the PUFs harboring RND16 cells could be used repeatedly for selective retrieval of PAHs from oil-polluted waters after preferential biodegradation of n-alkanes by algae.

  20. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.

    PubMed

    Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.

  2. Repeated-batch operation of immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis.

    PubMed

    Yeon, Ji-Hyeon; Jung, Kyung-Hwan

    2011-09-01

    In this study, we investigated the performance of an immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-β-D-galactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the beta-galactosidase inclusion bodies were sustained in the alginate beads during the repeated-batch operations. Consequently, we experimentally verified that β-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.

  3. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M

    2017-11-04

    Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.

  4. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    PubMed

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    PubMed

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    NASA Astrophysics Data System (ADS)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  7. Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor.

    PubMed

    Kim, B W; Chang, H N; Kim, I K; Lee, K S

    1992-08-01

    Hydrogen sulfide dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. Substrate inhibition occurred at sulfide concentrations above 5.7 mM. Light inhibition was found at average light intensities of 40,000 lux in a sulfide concentration of 5 mM, where no substrate inhibition occurred. Light intensity, the most important growth parameter, was attenuated through both scattering by sulfur particles and absorption by the cells. Average cell and sulfur particle sizes were 1.1 and 9.4 microm, respectively. Cells contributed 10 times as much to the turbidity as sulfur particles of the same weight concentration. The light attenuation factor was mathematically modeled, considering both the absorption and scattering effects based on the Beer-Lambert law and the Rayleigh theory, which were introduced to the cell growth model. Optimal operational conditions relating feed rate vs. light intensity were obtained to suppress the accumulation of sulfate and sulfide and save light energy for 2- and 4-L fed-batch reactors. Light intensity should be greater for the same performance (H(2)S removal rate/unit cell concentration) in larger reactors due to the scaleup effect on light transmission. Knowledge of appropriate growth kinetics in photosynthetic fed-batch reactors was essential to increase feed rate and light intensity and therefore cell growth. A mathematical model was developed that describes the cell growth by considering the light attenuation factor due to scattering and absorption and the crowding effect of the cells. This model was in good agreement with the experimental results. (c) 1992 John Wiley & Sons, Inc.

  8. REUSABLE ADSORBENTS FOR DILUTE SOLUTIONS SEPARATION. 6. BATCH AND CONTINUOUS REACTORS FOR ADSORPTION AND DEGRADATION OF 1,2-DICHLOROBENZENE FROM DILUTE WASTEWATER STREAMS USING TITANIA AS A PHOTOCATALYST. (R828598C753)

    EPA Science Inventory

    Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...

  9. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.

  10. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  11. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  12. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    PubMed

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  13. Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch

    NASA Astrophysics Data System (ADS)

    Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.

    2006-04-01

    Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.

  14. Praseodymium sorption on Laminaria digitata algal beads and foams.

    PubMed

    Wang, Shengye; Hamza, Mohammed F; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-10-15

    Algal (Laminaria digitata) beads and algal foams have been prepared by a new synthesis mode and the sorbents were tested for praseodymium sorption in batch and fixed-bed like systems (recirculation or one-pass modes), respectively. Metal binding occurs through ion-exchange with Ca(II) ions used for ionotropic gelation of alginate contained in the algal biomass and eventually with protons. Sorption isotherms at pH 4 are described by the Langmuir and the Sips equations with maximum sorption capacities close to 110-120mgPrg -1 . Uptake kinetics are fitted by the pseudo-second order reaction rate equation for both beads and foams; in the case of beads the Crank equation also gives good fit of experimental data. Metal is successfully desorbed using 2M HCl/0.05M CaCl 2 solutions and the sorbent can be efficiently re-used for a minimum of 5 cycles with negligible decrease in sorption/desorption properties and appreciable concentrating effect (around 8-10 times the initial metal concentration). Tested in continuous mode, the algal foam shows typical breakthrough curves that are fitted by the Yan method; desorption is also efficient and allows under the best conditions to achieve a concentration factor close to 8. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Aerobic degradation of petroleum refinery wastewater in sequential batch reactor.

    PubMed

    Thakur, Chandrakant; Srivastava, Vimal C; Mall, Indra D

    2014-01-01

    The aim of the present work was to study the effect of various parameters affecting the treatment of raw petroleum refinery wastewater (PRW) having chemical oxygen demand (COD) of 350 mg L(-1) and total organic carbon (TOC) of 70 mg L(-1) in sequential batch reactor (SBR). Effect of hydraulic retention time (HRT) was studied in instantaneous fill condition. Maximum COD and TOC removal efficiencies were found to be 80% and 84%, respectively, for fill phase of 2 h and react phase of 2 h with fraction of SBR being filled with raw PRW in each cycle being 0.4. Effect of parameters was studied in terms of settling characteristic of treated slurry. Kinetics of treatment process has been studied. FTIR and UV-visible analysis of PRW before and after treatment have been performed so as to understand the degradation mechanism.

  16. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  17. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weimin; Criddle, Craig S.

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetingsmore » at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.« less

  18. Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment.

    PubMed

    Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio

    2008-02-01

    An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.

  19. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    PubMed

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2010-08-01

    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Enhanced nitrogen removal with spent mushroom compost in a sequencing batch reactor.

    PubMed

    Yang, Yunlong; Tao, Xin; Lin, Ershu; Hu, Kaihui

    2017-11-01

    In order to remove nitrogen effectively from the wastewater with a low C/N ratio, the feasibility of using spent mushroom compost (SMC) hydrolysates as carbon sources for denitrification was investigated in a sequencing batch reactor (SBR). With SMCs supplement, the SBR performance was improved obviously within the 180days of operation. The total nitrogen removal was promoted from 46.9% to 81-89.4%, and no negative impact induced by different SMCs on the SBR system was observed. The abundance of functional genes including amoA, nirS/K, norB and nosZ in the active sludge was quantified by qPCR, and most of them elevated after SMC was fed. 16S rRNA gene high-throughput sequencing showed that the significant change in microbial community not only promoted pollutants removal but also benefited the stability of the reactor. Therefore, SMC could be an extremely promising carbon source used for nitrogen removal due to its cost-effective and efficient characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  2. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    EPA Science Inventory

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  3. Copper desorption from Gelidium algal biomass.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  4. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  5. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  6. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.

    PubMed

    Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H

    2007-01-01

    Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.

  7. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    PubMed

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  8. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    PubMed Central

    Langone, Michela; Yan, Jia; Haaijer, Suzanne C. M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Andreottola, Gianni

    2014-01-01

    Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale sequencing batch reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8–8.0, respectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high NH3-N (1.9–10 mg NH3-N/L) and low nitrite (3–8 mg TNN/L) are required conditions during the whole SBR cycle. Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α–subunit (amoA) gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the “Ca. Brocadia fulgida” type, able to grow in presence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS) gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus Nitrobacter was detected

  10. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  12. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    PubMed

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor.

    PubMed

    Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R

    2008-07-01

    Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on

  14. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer†

    PubMed Central

    Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E.; Zhang, Jianzhong; Buchsbaum, Monte S.; Kolb, Hartmuth C.; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of 18F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [18F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on “split-box architecture”, with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [18F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880. PMID:23135409

  15. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    PubMed

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Removal and recovery of uranium(VI) by waste digested activated sludge in fed-batch stirred tank reactor.

    PubMed

    Jain, Rohan; Peräniemi, Sirpa; Jordan, Norbert; Vogel, Manja; Weiss, Stephan; Foerstendorf, Harald; Lakaniemi, Aino-Maija

    2018-05-24

    This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na 2 CO 3 ) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  18. Characterization of efficient aerobic denitrifiers isolated from two different sequencing batch reactors by 16S-rRNA analysis.

    PubMed

    Wang, Ping; Li, Xiuting; Xiang, Mufei; Zhai, Qian

    2007-06-01

    By adopting two sequencing batch reactors (SBRs) A and B, nitrate as the substrate, and the intermittent aeration mode, activated sludge was domesticated to enrich aerobic denitrifiers. The pHs of reactor A were approximately 6.3 at DOs 2.2-6.1 mg/l for a carbon source of 720 mg/l COD; the pHs of reactor B were 6.8-7.8 at DOs 2.2-3.0 mg/l for a carbon source of 1500 mg/l COD. Both reactors maintained an influent nitrate concentration of 80 mg/l NO3- -N. When the total inorganic nitrogen (TIN) removal efficiency of both reactors reached 60%, aerobic denitrifier accumulation was regarded completed. By bromthymol blue (BTB) medium, 20 bacteria were isolated from the two SBRs and DNA samples of 8 of these 20 strains were amplified by PCR and processed for 16SrRNA sequencing. The obtained results were analysed by a Blast similarity search of the GenBank database, and constructing a phylogenetic tree for identification by comparison. The 8 bacteria were found to belong to the genera Pseudomonas, Delftia, Herbaspirillum and Comamonas. At present, no Delftia has been reported to be an aerobic denitrifier.

  19. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes.

    PubMed

    Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik

    2012-04-01

    Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. [Factors of the rapid startup for nitrosation in sequencing batch reactor].

    PubMed

    Li, Dong; Tao, Xiao-Xiao; Li, Zhan; Wang, Jun-An; Zhang, Jie

    2011-08-01

    The approach and factors for realizing the rapid startup of nitrosation were researched at the low level of dissolved oxygen (DO) in sequencing batch reactor (SBR). The main parameters of the reactor were controlled as follows: DO were 0.15-0.40 mg/L, pH values kept from 7.52 to 8.30, temperature maintained at 22.3-27.1 degrees C, and time of aeration was 8 hours. The purpose of rapid startup for nitrosation was achieved after 57 cycles (36 d) with the alternative influent of high and low ammonium wastewater (the mean values were 245.28 mg/L and 58.08 mg/L respectively) in a SBR, and the nitrosation rate was even 100%. Factors of accumulation of nitrite were investigated and the effects of DO and pH were analyzed during the startup for nitrosation. The results showed that it could improve the efficiency of nitrosation when DO concentration was increased appropriately. The activity of nitrite oxidizing bacteria (NOB) was recovered gradually when DO was higher than 0.72 mg/L. The key factor of controlling nitrosation reaction was the concentration of free ammonia (FA), while the final factor was the concentration of DO. pH was a desired controlling parameter to show the end of nitrification in a SBR cycle, while DO concentration did not indicate the finishing of SBR nitrification accurately because it increased rapidly before ammonia nitrogen was oxidized absolutely.

  1. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.

    PubMed

    Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A

    2004-01-01

    This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.

  2. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    PubMed

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  5. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor.

    PubMed

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-10

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3(-)-N could be removed or reduced, some amount of NO2(-)-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  6. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  7. A comparison of anaerobic 2, 4-dichlorophenoxy acetic acid degradation in single-fed and sequencing batch reactor systems

    NASA Astrophysics Data System (ADS)

    Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.

    2017-08-01

    This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).

  8. Deactivation of TEM-1 β-Lactamase Investigated by Isothermal Batch and Non-Isothermal Continuous Enzyme Membrane Reactor Methods

    PubMed Central

    Rogers, Thomas A.

    2011-01-01

    The thermal deactivation of TEM-1 β-lactamase was examined using two experimental techniques: a series of isothermal batch assays and a single, continuous, non-isothermal assay in an enzyme membrane reactor (EMR). The isothermal batch-mode technique was coupled with the three-state “Equilibrium Model” of enzyme deactivation, while the results of the EMR experiment were fitted to a four-state “molten globule model”. The two methods both led to the conclusions that the thermal deactivation of TEM-1 β-lactamase does not follow the Lumry-Eyring model and that the Teq of the enzyme (the point at which active and inactive states are present in equal amounts due to thermodynamic equilibrium) is at least 10 °C from the Tm (melting temperature), contrary to the idea that the true temperature optimum of a biocatalyst is necessarily close to the melting temperature. PMID:22039393

  9. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  10. Feasibility of bioengineered two-stages sequential batch reactor and filtration-adsorption process for complex agrochemical effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas

    2013-11-01

    In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  12. Response of an algal consortium to diesel under varying culture conditions.

    PubMed

    Chavan, Anal; Mukherji, Suparna

    2010-03-01

    A diesel-tolerant sessile freshwater algal consortium obtained from the vicinity of Powai Lake (Mumbai, India) was cultured in the laboratory. The presence of diesel in batch cultures enhanced the maximum specific growth rate of the algal consortium. With decrease in light-dark (L:D) cycle from 20:4 to 4:20 h, the chlorophyll-a levels decreased; however, the removal of diesel was found to be maximum at L:D of 18:6 h with 37.6% degradation over and above controls. In addition to growth in the form of green clumps, white floating biomass was found surrounding the diesel droplets on the surface. This culture predominated at the least L:D ratio of 4:20 h. Studies confirmed the ability of the floating organisms to grow heterotrophically in the dark utilizing diesel as carbon source and also in the presence of light in a medium devoid of organic carbon sources.

  13. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    PubMed

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    PubMed

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  15. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH.

    PubMed

    Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo

    2018-02-01

    Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The mechanism and design of sequencing batch reactor systems for nutrient removal--the state of the art.

    PubMed

    Artan, N; Wilderer, P; Orhon, D; Morgenroth, E; Ozgür, N

    2001-01-01

    The Sequencing Batch Reactor (SBR) process for carbon and nutrient removal is subject to extensive research, and it is finding a wider application in full-scale installations. Despite the growing popularity, however, a widely accepted approach to process analysis and modeling, a unified design basis, and even a common terminology are still lacking; this situation is now regarded as the major obstacle hindering broader practical application of the SBR. In this paper a rational dimensioning approach is proposed for nutrient removal SBRs based on scientific information on process stoichiometry and modelling, also emphasizing practical constraints in design and operation.

  17. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  18. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide andmore » uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).« less

  19. High Solid Fed-batch Butanol Fermentation with Simultaneous Product Recovery: Part II - Process Integration.

    PubMed

    Qureshi, Nasib; Klasson, K Thomas; Saha, Badal C; Liu, Siqing

    2018-04-25

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 gL -1 SSB hydrolysis, a fed-batch reactor with in-situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 gL -1 h -1 and 0.36 were obtained, respectively. In the fed-batch reactor fed with SSB hydrolyzates these productivity and yield values were 0.44 gL -1 h -1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 gL -1 ) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  20. Conversion of Small Algal Oil Sample to JP-8

    DTIC Science & Technology

    2012-01-01

    cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to

  1. Enhancing the performance of sequencing batch reactors by adding crushed date seeds to remove high concentrations of 2,4-dinitrophenol.

    PubMed

    Al-Mutairi, Nayef Z

    2011-11-01

    Wastewater treatment systems using simultaneous adsorption and biodegradation processes have been successful in treating toxic pollutants present in industrial wastewater. The goal of this investigation was to assess the effectiveness of date seeds in reducing the toxic effects of 2,4-dinitrophenol (DNP) on activated sludge microorganisms. Two identical sequencing batch reactors (SBRs) (4-L glass vessel), each with a 3.5-L working volume, were used. The initial DNP concentrations in the reactor were 50, 75, 100, 250, and 500 mg/L. The reactor amended with date seeds was capable of degrading DNP at significantly greater rates (11 +/- 2.5 mg/L x h) than the control SBR (4 +/- 1.2 mg/L x h) at a 95% confidence level. Date seeds can be added to the mixed liquor of activated sludge treatment plants to remove high concentrations of DNP from wastewater, to protect the treatment plant against toxic components in the influent and enhance the settling characteristics of the mixed liquor.

  2. The catalytic activity of CoMo/USY on deoxygenation reaction of anisole in a batch reactor

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Putri, I. F.; Heraldy, E.; Hidayat, Y.

    2018-04-01

    The catalytic hydrodeoxigenation of the bio oil model compounds (biomass pyrolysis results) typically uses sulphide catalysts. In this study, we studied the activity of non-sulphide catalyst, the effect of temperature and reaction time on anisole deoxygenation. The catalytic activity was performed in a batch reactor, using N2 gas at 1 bar of pressure. The product was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The result showed that the Co-Mo/USY catalyst perform a highest activity and produce pentamethylbenzene, an oxygen free products, when reaction time is 2 hours. The Co-Mo/USY catalysts has the value of the total yield of the product increased with time increase drastically.

  3. Treatment of Slaughter House Wastewater in a Sequencing Batch Reactor: Performance Evaluation and Biodegradation Kinetics

    PubMed Central

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4 +-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4 +-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, K s, Y, k d) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation. PMID:24027751

  4. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Maróti, Gergely; Bagi, Zoltán; Minárovics, János; Nagy, Katalin; Kondorosi, Éva; Rákhely, Gábor; Kovács, Kornél L

    2015-01-01

    The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable

  5. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  6. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  8. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    PubMed

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.

    PubMed

    Alcántara, Cynthia; Muñoz, Raúl; Norvill, Zane; Plouviez, Maxence; Guieysse, Benoit

    2015-02-01

    This study investigated the generation of N2O by microcosms withdrawn from 7-L high rate algal ponds (HRAPs) inoculated with Chlorella vulgaris and treating synthetic wastewater. Although HRAPs microcosms demonstrated the ability to generate algal-mediated N2O when nitrite was externally supplied under darkness in batch assays, negligible N2O emissions rates were consistently recorded in the absence of nitrite during 3.5-month monitoring under 'normal' operation. Thereafter, HRAP A and HRAP B were overloaded with nitrate and ammonium, respectively, in an attempt to stimulate N2O emissions via nitrite in situ accumulation. Significant N2O production (up to 5685±363 nmol N2O/g TSS h) was only recorded from HRAP B microcosms externally supplied with nitrite in darkness. Although confirmation under full-scale outdoors conditions is needed, this study provides the first evidence that the ability of microalgae to synthesize N2O does not affect the environmental performance of wastewater treatment in HRAPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    PubMed Central

    2009-01-01

    Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1), negligible if compared to that of the parental strain (0.028 h-1). However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the available carbon source for

  12. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors.

    PubMed

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2012-08-01

    The influence of biotic (algal inoculum concentration) and abiotic factors (illumination cycle, mixing velocity and nutrient strength) on the treatment efficiency, biomass generation and settleability were investigated with selected mixed algal culture. Dark condition led to poor nutrient removal efficiency. No significant difference in the N, P removal and biomass settleability between continuous and alternating illumination was observed, but a higher biomass generation capability for the continuous illumination was obtained. Different mixing velocity led to similar phosphorus removal efficiencies (above 98%) with different retention times. The reactor with 300 rpm mixing velocity had the best N removal capability. For the low strength wastewater, the N rates were 5.4±0.2, 9.1±0.3 and 10.8±0.3 mg/l/d and P removal rates were 0.57±0.03, 0.56±0.03 and 0.72±0.05 mg/l/d for reactors with the algal inoculum concentration of 0.2, 0.5 and 0.8 g/l, respectively. Low nutrient removal efficiency and poor biomass settleability were obtained for high strength wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale

    PubMed Central

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E.

    2012-01-01

    Summary Oxygen‐limited autotrophic nitrification/denitrification (OLAND) is a one‐stage combination of partial nitritation and anammox, which can have a challenging process start‐up. In this study, start‐up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l−1 day−1 with minimal nitrite and nitrate accumulation were considered a successful start‐up. SBR A and B were operated at 50% VER with 3 g NaCl l−1 in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start‐up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l−1). Start‐up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10–0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass‐specific nitrogen removal rates (141–220 mg N g−1 VSS day−1). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium‐oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start‐up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. PMID:22236147

  14. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale.

    PubMed

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E

    2012-05-01

    Oxygen-limited autotrophic nitrification/denitrification (OLAND) is a one-stage combination of partial nitritation and anammox, which can have a challenging process start-up. In this study, start-up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l(-1) day(-1) with minimal nitrite and nitrate accumulation were considered a successful start-up. SBR A and B were operated at 50% VER with 3 g NaCl l(-1) in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start-up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l(-1)). Start-up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10-0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass-specific nitrogen removal rates (141-220 mg N g(-1) VSS day(-1)). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start-up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing

  15. Hydrolysis of virgin coconut oil using immobilized lipase in a batch reactor.

    PubMed

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C.

  16. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    PubMed Central

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C. PMID:22953055

  17. INNOVATIVE IN-SITU MICROWAVE-ULTRASONIC REACTOR FOR ALGAL BIOMASS HARVESTING AND BIODIESEL PRODUCTION

    EPA Science Inventory

    The proposed research design project addresses critical process issues of harvesting, drying, and extraction stages of algal biofuel processes. The process operates under mild conditions which eliminates the need for high pressure vessels and high processing costs. Central ...

  18. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  19. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  20. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept.

    PubMed

    Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán

    2016-01-01

    Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.

  1. A strategy for urban outdoor production of high-concentration algal biomass for green biorefining.

    PubMed

    Lim, Chun Yong; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-05-01

    The present study was to investigate the feasibility of carrying out effective microalgae cultivation and high-rate tertiary wastewater treatment simultaneously in a vertical sequencing batch photobioreactor with small areal footprint, suitable for sustainable urban microalgae production. For 15 consecutive days, Chlorella sorokiniana was cultivated in synthetic wastewater under various trophic conditions. A cycle of 12-h heterotrophic: 12-h mixotrophic condition produced 0.98 g l(-1) d(-1) of algal biomass in tandem with a 94.7% removal of 254.4 mg l(-1) C-acetate, a 100% removal of 84.7 mg l(-1) N-NH4 and a removal of 15.0 mg l(-1) P-PO4. The cells were harvested via cost-effective chitosan flocculation with multiple dosing (3 times) applying established chitosan:cell ratio (1:300 w/w) and pH control (6.3-6.8). Reproducible flocculation efficiencies of greater than 99% and high-concentration algal broths (>20% solids) were achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know,more » in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.« less

  3. National Algal Biofuels Technology Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, John; Sarisky-Reed, Valerie

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less

  4. Optimality of affine control system of several species in competition on a sequential batch reactor

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. C.; Ramírez, H.; Gajardo, P.; Rapaport, A.

    2014-09-01

    In this paper, we analyse the optimality of affine control system of several species in competition for a single substrate on a sequential batch reactor, with the objective being to reach a given (low) level of the substrate. We allow controls to be bounded measurable functions of time plus possible impulses. A suitable modification of the dynamics leads to a slightly different optimal control problem, without impulsive controls, for which we apply different optimality conditions derived from Pontryagin principle and the Hamilton-Jacobi-Bellman equation. We thus characterise the singular trajectories of our problem as the extremal trajectories keeping the substrate at a constant level. We also establish conditions for which an immediate one impulse (IOI) strategy is optimal. Some numerical experiences are then included in order to illustrate our study and show that those conditions are also necessary to ensure the optimality of the IOI strategy.

  5. High solid fed-batch butanol fermentation with simultaneous product recovery: part II - process integration.

    USDA-ARS?s Scientific Manuscript database

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...

  6. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation.

    PubMed

    de Mendonça, Henrique Vieira; Ometto, Jean Pierre Henry Balbaud; Otenio, Marcelo Henrique; Marques, Isabel Paula Ramos; Dos Reis, Alberto José Delgado

    2018-08-15

    Scenedesmus obliquus (ACOI 204/07) microalgae were cultivated in cattle wastewater in vertical alveolar flat panel photobioreactors, operated in batch and continuous mode, after previous digestion in a hybrid anaerobic reactor. In batch operation, removal efficiencies ranges of 65 to 70% of COD, 98 to 99% of NH 4 + and 69 to 77.5% of PO 4 -3 after 12days were recorded. The corresponding figures for continuous flow were from 57 to 61% of COD, 94 to 96% of NH 4 + and 65 to 70% of PO 4 -3 with mean hidraulic retention time of 12days. Higher rates of CO 2 fixation (327-547mgL -1 d -1 ) and higher biomass volumetric productivity (213-358mgL -1 d -1 ) were obtained in batch mode. This microalgae-mediated process can be considered promising for bioremediation and valorization of effluents produced by cattle breeding yielding a protein-rich microalgal biomass that could be eventually used as cattle feed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Molecular identification and nanoremediation of microbial contaminants in algal systems using untreated wastewater.

    PubMed

    Limayem, Alya; Gonzalez, Francisco; Micciche, Andrew; Haller, Edward; Nayak, Bina; Mohapatra, Shyam

    2016-12-01

    Wastewater-algal biomass is a promising option to biofuel production. However, microbial contaminants constitute a substantial barrier to algal biofuel yield. A series of algal strains, Nannochloris oculata and Chlorella vulgaris samples (n = 30), were purchased from the University of Texas, and were used for both stock flask cultures and flat-panel vertical bioreactors. A number of media were used for isolation and differentiation of potential contaminants according to laboratory standards (CLSI). Conventional PCR amplification was performed followed by 16S rDNA sequencing to identify isolates at the species level. Nanotherapeutics involving a nanomicellar combination of natural chitosan and zinc oxide (CZNPs) were tested against the microbial lytic groups through Minimum Inhibitory Concentration (MIC) tests and Transmission Electronic Microscopy (TEM). Results indicated the presence of Pseudomonas spp., Bacillus pumilus/ safensis, Cellulosimicrobium cellulans, Micrococcus luteus and Staphylococcus epidermidis strains at a substantial level in the wastewater-fed algal reactors. TEM confirmed the effectiveness of CZNPs on the lytic group while the average MICs (mg/mL) detected for the strains, Pseudomonas spp, Micrococcus luteus, and Bacillus pumilus were 0.417, 3.33, and 1.458, respectively. Conclusively, CZNP antimicrobials proved to be effective as inhibitory agents against currently identified lytic microbial group, did not impact algae cells, and shows promise for in situ interventions.

  8. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  9. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content.

    PubMed

    Luo, Gang; Xie, Li; Zhou, Qi

    2009-06-01

    Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m(3) d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.

  10. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor.

    PubMed

    Tsai, Wen-Tien; Lee, Mei-Kuei; Su, Ting-Yi; Chang, Yuan-Ming

    2009-08-30

    In this work, the photocatalytic behaviors of bisphenol-A (BPA), which has been listed as one of endocrine disrupting chemicals, were carried out in a batch TiO(2) suspension reactor. The photodegradation efficiency has been investigated under the controlled process parameters including initial BPA concentration (i.e., 1-50 mg L(-1)), TiO(2) dosage (i.e., 5-600 mg/200 cm(3)), initial pH (i.e., 3-11), and temperature (i.e., 10-70 degrees C). It was found that the optimal conditions in the photoreaction process could be coped with at initial BPA concentration=20 mg L(-1), TiO(2) dosage=0.5 g L(-1) (100mg/200 cm(3)), initial pH=7.0, and temperature=25 degrees C. According to the Langmuir-Hinshelwood model, the results showed that the photodegradation kinetics for the destruction of BPA in water also followed the first-order model well. The apparent first-order reaction constants (k(obs)), thus obtained from the fittings of the model, were in line with the destruction-removal efficiencies of BPA in all the photocatalytic experiments. Based on the intermediate products identified in the study, the possible mechanisms for the photodegradation of BPA in water were also proposed in the present study.

  11. Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine ▿†

    PubMed Central

    Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.

    2011-01-01

    The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875

  12. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  13. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  14. Exploring the controls of soil biogeochemistry in a restored coastal wetland using object-oriented computer simulations of uptake kinetics and thermodynamic optimization in batch reactors

    NASA Astrophysics Data System (ADS)

    Payn, R. A.; Helton, A. M.; Poole, G.; Izurieta, C.; Bernhardt, E. S.; Burgin, A. J.

    2012-12-01

    Many hypotheses have been proposed to predict patterns of biogeochemical redox reactions based on the availability of electron donors and acceptors and the thermodynamic theory of chemistry. Our objective was to develop a computer model that would allow us to test various alternatives of these hypotheses against data gathered from soil slurry batch reactors, experimental soil perfusion cores, and in situ soil profile observations from the restored Timberlake Wetland in coastal North Carolina, USA. Software requirements to meet this objective included the ability to rapidly develop and compare different hypothetical formulations of kinetic and thermodynamic theory, and the ability to easily change the list of potential biogeochemical reactions used in the optimization scheme. For future work, we also required an object pattern that could easily be coupled with an existing soil hydrologic model. These requirements were met using Network Exchange Objects (NEO), our recently developed object-oriented distributed modeling framework that facilitates simulations of multiple interacting currencies moving through network-based systems. An initial implementation of the object pattern was developed in NEO based on maximizing growth of the microbial community from available dissolved organic carbon. We then used this implementation to build a modeling system for comparing results across multiple simulated batch reactors with varied initial solute concentrations, varied biogeochemical parameters, or varied optimization schemes. Among heterotrophic aerobic and anaerobic reactions, we have found that this model reasonably predicts the use of terminal electron acceptors in simulated batch reactors, where reactions with higher energy yields occur before reactions with lower energy yields. However, among the aerobic reactions, we have also found this model predicts dominance of chemoautotrophs (e.g., nitrifiers) when their electron donor (e.g., ammonium) is abundant, despite the

  15. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  16. PHYTO-REMOVAL OF TRINITROTOLUENE FROM WATER WITH BATCH KINETIC STUDIES

    EPA Science Inventory

    A series of batch reactor studies were conducted to obtain kinetic data for optimizing phyto-treatment of water contaminated with trinitrotoluene (TNT). A plant screening study indicated that stonewort and parrotfeather were the most effective among the plants tested; parrotfeath...

  17. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors.

    PubMed

    Khosravi, Morteza; Rakhshaee, Roohan; Ganji, Masuod Taghi

    2005-12-09

    Intact and treated biomass can remove heavy metals from water and wastewater. This study examined the ability of the activated, semi-intact and inactivated Azolla filiculoides (a small water fern) to remove Pb(2+), Cd(2+), Ni(2+) and Zn(2+) from the aqueous solution. The maximum uptake capacities of these metal ions using the activated Azolla filiculoides by NaOH at pH 10.5 +/- 0.2 and then CaCl(2)/MgCl(2)/NaCl with total concentration of 2 M (2:1:1 mole ratio) in the separate batch reactors were obtained about 271, 111, 71 and 60 mg/g (dry Azolla), respectively. The obtained capacities of maximum adsorption for these kinds of the pre-treated Azolla in the fixed-bed reactors (N(o)) were also very close to the values obtained for the batch reactors (Q(max)). On the other hand, it was shown that HCl, CH(3)OH, C(2)H(5)OH, FeCl(2), SrCl(2), BaCl(2) and AlCl(3) in the pre-treatment processes decreased the ability of Azolla to remove the heavy metals in comparison to the semi-intact Azolla, considerably. The kinetic studies showed that the heavy metals uptake by the activated Azolla was done more rapid than those for the semi-intact Azolla.

  18. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  20. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  1. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  2. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  3. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    PubMed

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Advanced Algal Systems Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  5. 3D magnetohydrodynamic modelling of a dc low-current plasma arc batch reactor at very high pressure in helium

    NASA Astrophysics Data System (ADS)

    Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.

    2013-04-01

    This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.

  6. High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study.

    PubMed

    Loh, Chun Heng; Wu, Bing; Ge, Liya; Pan, Chaozhi; Wang, Rong

    2018-03-01

    N-methyl-2-pyrrolidone (NMP) is widely used as a solvent in polymeric membrane fabrication process, its elimination from the process wastewater (normally at a high concentration > 1000 mg/L) prior to discharge is essential because of environmental concern. This study investigated the feasibility of treating high-strength NMP-containing process wastewater in a sequencing batch reactor (SBR; i.e., batch feeding and intermittent aerobic/anoxic condition) and a membrane bioreactor (MBR; i.e., continuous feeding and aeration), respectively. The results showed that the SBR with the acclimated sludge was capable of removing >90% of dissolved organic carbon (DOC) and almost 98% of NMP within 2 h. In contrast, the MBR with the acclimated sludge showed a decreasing NMP removal efficiency from 100% to 40% over 15-day operation. The HPLC and LC-MS/MS analytical results showed that NMP degradation in SBR and MBR could undergo different pathways. This may be attributed to the dissimilar bacterial community compositions in the SBR and MBR as identified by 16s rRNA gene sequencing analysis. Interestingly, the NMP-degrading capability of the activated sludge derived from MBR could be recovered to >98% after they were operated at the SBR mode (batch feeding mode with intermittent aerobic/anoxic condition). This study reveals that SBR is probably a more feasible process to treat high-strength NMP-containing wastewater, but residual NMP metabolites in the SBR effluent need to be post-treated by an oxidation or adsorption process in order to achieve zero-discharge of toxic chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fueling Future with Algal Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils ofmore » secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.« less

  8. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    PubMed

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  9. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    PubMed

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature.

    PubMed

    Bao, Ruiling; Yu, Shuili; Shi, Wenxin; Zhang, Xuedong; Wang, Yulan

    2009-09-15

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 degrees C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4mm, wet density 1.036 g mL(-1), sludge volume index 37 mL g(-1), and settling velocity 18.6-65.1 cm min(-1). Nitrite accumulation was observed, with a nitrite accumulation rate (NO(2)(-)-N/NO(x)(-)-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO(x) was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH(4)(+)-N, and PO(4)(3-)-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m(-3)d(-1), the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  11. On-site treatment of a motorway service area wastewater using a package sequencing batch reactor (SBR).

    PubMed

    Del Solar, J; Hudson, S; Stephenson, T

    2005-01-01

    A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d(-1) which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.

  12. Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.

    PubMed

    Park, J M; Choi, C Y; Seong, B L; Han, M H

    1982-10-01

    The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.

  13. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.

  14. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.

    PubMed

    Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M

    2010-05-01

    One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.

  15. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  16. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    PubMed

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  17. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

    PubMed

    Yang, Bin; Wyman, Charles E

    2004-04-05

    Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. Copyright 2004 Wiley Periodicals, Inc.

  18. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels

  19. Population dynamics in controlled unsteady-state systems: An application to the degradation of glyphosate in a sequencing batch reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, M.S.

    1988-01-01

    Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a systemmore » is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.« less

  20. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature.

    PubMed

    Jiang, Yu; Shang, Yu; Wang, Hongyu; Yang, Kai

    2016-12-01

    The start-up of an aerobic granular sludge (AGS) reactor at low temperature was more difficult than at ambient temperature.The rapid formation and characteristics of AGS in a sequencing batch airlift reactor at low temperature were investigated. The nutrient removal ability of the system was also evaluated. It was found that compact granules with clear boundary were formed within 10 days and steady state was achieved within 25 days. The settling properties of sludge were improved with the increasing secretion of extracellular polymeric substances and removal performances of pollutants were enhanced along with granulation. The average removal efficiencies of COD, NH4(+)-N, total nitrogen (TN), total phosphorus (TP) after aerobic granules maturing were over 90.9%, 94.7%, 75.4%, 80.2%, respectively. The rise of temperature had little impact on pollutant biodegradation while the variation of dissolved oxygen caused obvious changes in TN and TP removal rates. COD concentrations of effluents were below 30 mg l(-1) in most cycles of operation with a wide range of organic loading rates (0.6-3.0 kg COD m(-3) d(-1)). The rapid granulation and good performance of pollutant reduction by the system might provide an alternate for wastewater treatment in cold regions.

  1. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    PubMed

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  2. Effective algal harvesting by using mesh membrane for enhanced energy recovery in an innovative integrated photobioelectrochemical system.

    PubMed

    Luo, Shuai; Sai Shankar Sampara, Pranav; He, Zhen

    2018-04-01

    In this work, an innovative design of integrated photobioelectrochemcial system (IPB) and an algal harvesting method based on polyester-mesh membrane (MM) were investigated. The algal growth/harvesting period of 6 days led to the highest surface biomass productivity (SBP) of 0.88 g m -2  day -1 and the highest energy generation of 0.157 ± 0.001 kJ day -1 . The harvesting frequency of 3 times in an operational cycle (with three pieces of MM) enhanced the SBP to 1.14 g m -2  day -1 . The catholyte recirculation for catholyte mixing resulted in a positive net energy production (NEP) of 0.227 ± 0.025 kJ day -1 . Those results have demonstrated the benefits of both using mesh membrane and the new reactor design for algal collection with positive effects on improving IPB performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  4. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    NASA Astrophysics Data System (ADS)

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.

  5. Anaerobic digestion of corn ethanol thin stillage in batch and by high-rate down-flow fixed film reactors.

    PubMed

    Wilkinson, A; Kennedy, K J

    2012-01-01

    Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.

  6. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes

    PubMed Central

    Kurotani, Atsushi; Yamada, Yutaka

    2017-01-01

    Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893

  7. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1

  8. Sapphire Energy - Integrated Algal Biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass productionmore » facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the

  9. Cultivation of E. coli in single- and ten-stage tower-loop reactors.

    PubMed

    Adler, I; Schügerl, K

    1983-02-01

    E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.

  10. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products.

    PubMed

    Christenson, Logan B; Sims, Ronald C

    2012-07-01

    Maximizing algae production in a wastewater treatment process can aid in the reduction of soluble nitrogen and phosphorus concentrations in the wastewater. If harvested, the algae-based biomass offers the added benefit as feedstock for the production of biofuels and bioproducts. However, difficulties in harvesting, concentrating, and dewatering the algae-based biomass have limited the development of an economically feasible treatment and production process. When algae-based biomass is grown as a surface attached biofilm as opposed to a suspended culture, the biomass is naturally concentrated and more easily harvested. This can lead to less expensive removal of the biomass from wastewater, and less expensive downstream processing in the production of biofuels and bioproducts. In this study, a novel rotating algal biofilm reactor (RABR) was designed, built, and tested at bench (8 L), medium (535 L), and pilot (8,000 L) scales. The RABR was designed to operate in the photoautotrophic conditions of open tertiary wastewater treatment, producing mixed culture biofilms made up of algae and bacteria. Growth substrata were evaluated for attachment and biofilm formation, and an effective substratum was discovered. The RABR achieved effective nutrient reduction, with average removal rates of 2.1 and 14.1 g m(-2) day(-1) for total dissolved phosphorus and total dissolved nitrogen, respectively. Biomass production ranged from 5.5 g m(-2) day(-1) at bench scale to as high as 31 g m(-2) day(-1) at pilot scale. An efficient spool harvesting technique was also developed at bench and medium scales to obtain a concentrated product (12-16% solids) suitable for further processing in the production of biofuels and bioproducts. Copyright © 2012 Wiley Periodicals, Inc.

  11. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    NASA Astrophysics Data System (ADS)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  12. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    PubMed

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  13. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  14. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  15. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies.

    PubMed

    Schwitalla, P; Mennerich, A; Austermann-Haun, U; Müller, A; Dorninger, C; Daims, H; Holm, N C; Rönner-Holm, S G E

    2008-01-01

    Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle-specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption.One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded. IWA Publishing 2008.

  16. Algal Supply System Design - Harmonized Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abodeely, Jared; Stevens, Daniel; Ray, Allison

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logisticsmore » Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.« less

  17. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste.

    PubMed

    Angenent, Largus T; Sung, Shihwu; Raskin, Lutgarde

    2002-11-01

    Changes in methanogenic population levels were followed during startup of a full-scale, farm-based anaerobic sequencing batch reactor (ASBR) and these changes were linked to operational and performance data. The ASBR was inoculated with anaerobic digester sludge from a municipal wastewater treatment facility. During an acclimation period of approximately 3 months, the ASBR content was diluted to maintain a total ammonia-N level of approximately 2000mg l(-1). After this acclimation period, the volatile solids loading rate was increased to its design value of 1.7g l(-1) day(-1) with a 15-day hydraulic retention time, which increased the total ammonia-N level in the ASBR to approximately 3,600 mg l(-1). The 16S ribosomal RNA (rRNA) levels of the acetate-utilizing methanogens of the genus Methanosarcina decreased from 3.8% to 1.2% (expressed as a percentage of the total 16S rRNA levels) during this period, while the 16S rRNA levels of Methanosaeta concilii remained low (below 2.2%). Methane production and reactor performance were not affected as the 16S rRNA levels of the hydrogen-utilizing methanogens of the order Methanomicrobiales increased from 2.3% to 7.0%. Hence, it is likely that during operation with high ammonia levels, the major route of methane production is through a syntrophic relationship between acetate-oxidizing bacteria and hydrogen-utilizing methanogens. Anaerobic digestion at total ammonia-N levels exceeding 3500mg l(-1) was sustainable apparently due to the acclimation of hydrogen-utilizing methanogens to high ammonia levels.

  18. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  19. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor.

    PubMed

    Ma, Bingrui; Yu, Naling; Han, Yuetong; Gao, Mengchun; Wang, Sen; Li, Shanshan; Guo, Liang; She, Zonglian; Zhao, Yangguo; Jin, Chunji; Gao, Feng

    2018-06-13

    The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) have been explored under magnesium oxide nanoparticles (MgO NPs) stress. The NH 4 + -N removal efficiency kept relatively stable during the whole operational process. The MgO NPs at 30-60 mg/L slightly restrained the removal of chemical oxygen demand (COD), and the presence of MgO NPs also affected the denitrification and phosphorus removal. The specific oxygen uptake rate, nitrifying and denitrifying rates, phosphorus removal rate, and microbial enzymatic activities distinctly varied with the increase of MgO NPs concentration. The appearance of MgO NPs promoted more reactive oxygen species generation and lactate dehydrogenase leakage from activated sludge, suggesting that MgO NPs had obvious toxicity to activated sludge in the SBR. The protein and polysaccharide contents of extracellular polymeric substances from activated sludge increased with the increase of MgO NPs concentration. The microbial richness and diversity at different MgO NPs concentrations obviously varied at the phylum, class and genus levels due to the biological toxicity of MgO NPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. An evaluation of the phosphorus storage capacity of an anaerobic/aerobic sequential batch biofilm reactor.

    PubMed

    Chiou, Ren-Jie; Yang, Yi-Rong

    2008-07-01

    The aim of this work was to assess the phosphorus storage capability of the polyphosphate (poly-P) accumulating organisms (PAO) in the biofilm using a sequential batch biofilm reactor (SBBR). In the anaerobic phase, the specific COD uptake rates increases from 0.05 to 0.22 (mg-COD/mg-biomass/h) as the initial COD increases and the main COD uptake activity occurs in the initial 30 min. The polyhydroxyalkanoates (PHAs) accumulation from 18 to 38 (mg-PHA/g-biomass) and phosphorus release from 20 to 60 (mg-P/L) share a similar trend. The adsorbed COD cannot be immediately transformed to PHAs. Since the PHAs' demand per released phosphorus is independent of the initial COD, the enhancement of the PHA accumulation would be of benefit to phosphorus release. The only requirement is to have an initial amount of substrate that will result in sufficient PHA accumulation (approximately 20 mg-PHA/g-biomass) for phosphorus release. During the aerobic phase, the aeration should not only provide sufficient dissolved oxygen, but should also enhance the mass transfer and the diffusion. In other words, the limitation to the phosphorus storage capability always occurs during the anaerobic phase, not the aerobic phase.

  1. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    PubMed

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    NASA Astrophysics Data System (ADS)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  3. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined.

  4. Evaluation of enzymatic reactors for large-scale panose production.

    PubMed

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  5. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    PubMed

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  6. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle

  7. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  8. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    PubMed

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  9. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  10. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. In situ profiling of microbial communities in full-scale aerobic sequencing batch reactors treating winery waste in australia.

    PubMed

    McIlroy, Simon J; Speirs, Lachlan B M; Tucci, Joseph; Seviour, Robert J

    2011-10-15

    On-site aerobic sequencing batch reactor (SBR) treatment plants are implemented in many Australian wineries to treat the large volumes of associated wastewater they generate. Yet very little is known about their microbiology. This paper represents the first attempt to analyze the communities of three such systems sampled during both vintage and nonvintage operational periods using molecular methods. Alphaproteobacterial tetrad forming organisms (TFO) related to members of the genus Defluviicoccus and Amaricoccus dominated all three systems in both operational periods. Candidatus 'Alysiosphaera europaea' and Zoogloea were codominant in two communities. Production of high levels of exocellular capsular material by Zoogloea and Amaricoccus is thought to explain the poor settleability of solids in one of these plants. The dominance of these organisms is thought to result from the high COD to N/P ratios that characterize winery wastes, and it is suggested that manipulating this ratio with nutrient dosing may help control the problems they cause.

  12. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    PubMed

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  13. Recent developments on algal biochar production and characterization.

    PubMed

    Yu, Kai Ling; Lau, Beng Fye; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Ng, Eng Poh; Chang, Jo-Shu

    2017-12-01

    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Yanjie; Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456; Ji Min, E-mail: jmtju@yahoo.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration inmore » the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.« less

  15. NREL Algal Biofuels Projects and Partnerships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  16. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    PubMed Central

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%. PMID:28867948

  17. Effect of florfenicol on performance and microbial community of a sequencing batch biofilm reactor treating mariculture wastewater.

    PubMed

    Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen

    2018-02-01

    The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.

  18. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    PubMed

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  19. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor.

    PubMed

    Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai

    2016-05-01

    The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    PubMed

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO 4 3- -P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO 4 3- -P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO 2 - -N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor.

    PubMed

    Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M

    2011-05-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.

  3. Control of polymer network topology in semi-batch systems

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  4. Acceptance Test Data for BWXT Coated Particle Batches 93172B and 93173B—Defective IPyC and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Helmreich, Grant W.; Dyer, John A.

    Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture ofmore » 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).« less

  5. Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor.

    PubMed

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2014-04-01

    The present study investigated growth and biodegradation of 4-bromophenol (4-BP) by Arthrobacter chlorophenolicus A6 in batch shake flasks as well as in a continuously operated packed bed reactor (PBR). Batch growth kinetics of A. chlorophenolicus A6 in presence of 4-BP followed substrate inhibition kinetics with the estimated biokinetic parameters value of μ max = 0.246 h(-1), K i = 111 mg L(-1), K s  = 30.77 mg L(-1) and K = 100 mg L(-1). In addition, variations in the observed and theoretical biomass yield coefficient and maintenance energy of the culture were investigated at different initial 4-BP concentration. Results indicates that the toxicity tolerance and the biomass yield of A. chlorophenolicus A6 towards 4-BP was found to be poor as the organism utilized the substrate mainly for its metabolic maintenance energy. Further, 4-BP biodegradation performance by the microorganism was evaluated in a continuously operated PBR by varying the influent concentration and hydraulic retention time in the ranges 400-1,200 mg L(-1) and 24-7.5 h, respectively. Complete removal of 4-BP was achieved in the PBR up to a loading rate of 2,276 mg L(-1) day(-1).

  6. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  7. Effect of EDTA and Fe-EDTA complex concentration on TCF Kraft mill effluent degradability. Batch and continuous treatments.

    PubMed

    Diez, M C; Pouleurs, D; Navia, R; Vidal, G

    2005-09-01

    The effect of ethylenediaminetetracetic acid (EDTA) and Fe-EDTA complex on synthetic totally chlorine-free (TCF) effluent degradability in batch and continuously operating reactors was evaluated. Under batch treatment, the addition of EDTA and Fe-EDTA complex was studied in the range of 80 to 320 mg l(-1). Under continuously operated reactors, the Fe-EDTA complex concentration varied from 20 to 80 mg l(-1), and the hydraulic retention time (HRT) varied from 48 to 24 h. Sludge oxygen uptake rate (OUR) and chemical oxygen demand (COD) removal decreased when EDTA concentration increased in the influent under batch treatment; however, this inhibitory effect was reduced by the addition of Fe-EDTA complex. Without the addition of EDTA, COD removal decreased from 71% to 8%. The most efficient EDTA removal treatment (almost 10%) was the treatment of 80 mg l(-1) Fe-EDTA. Under continuously operated reactors, COD removal was greater than 57% in the synthetic TCF effluent with a Fe-EDTA concentration that varied from 20 to 80 mg l(-1); however, EDTA removal was lower than 25% in all cases. Synthetic TCF effluent with a Fe -EDTA concentration higher than 80 mg l(-1) could not be treated by the activated sludge treatment due to EDTA's inhibitory effect on the sludge.

  8. Algal succession and chronosequences on abandoned mine spoils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubert, L.E.; Starks, T.L.

    1978-06-01

    Soils were collected from spoil material aged 0 to 45 years. The soils were analyzed for the presence of algal species, chlorophyll ..cap alpha.., major cations, anions and trace elements. There was a gradual increase in the number of algal species and chlorophyll ..cap alpha.. from 1 year old spoils to adjacent unmined natural sites. A total of 41 algal species were identified from all sites. Several species were only found at the unmined sites and they may represent a stable algal community. Results of a statistical analysis on the litho- and chronosequence of the soils will be discussed.

  9. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  10. Effects of algal-derived carbon on sediment methane ...

    EPA Pesticide Factsheets

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac

  11. Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.

    PubMed

    Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

    2013-01-01

    This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre.

  12. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    PubMed

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  13. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    PubMed

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors.

    PubMed

    Bouallagui, Hassib; Rachdi, Boutheina; Gannoun, Hana; Hamdi, Moktar

    2009-06-01

    Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g(-1) total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).

  15. Methanol metabolism and archaeal community changes in a bioelectrochemical anaerobic digestion sequencing batch reactor with copper-coated graphite cathode.

    PubMed

    Park, Jungyu; Lee, Beom; Shi, Peng; Kwon, Hyejeong; Jeong, Sang Mun; Jun, Hangbae

    2018-07-01

    In this study, the metabolism of methanol and changes in an archaeal community were examined in a bioelectrochemical anaerobic digestion sequencing batch reactor with a copper-coated graphite cathode (BEAD-SBR Cu ). Copper-coated graphite cathode produced methanol from food waste. The BEAD-SBR Cu showed higher methanol removal and methane production than those of the anaerobic digestion (AD)-SBR. The methane production and pH of the BEAD-SBR Cu were stable even under a high organic loading rate (OLR). The hydrogenotrophic methanogens increased from 32.2 to 60.0%, and the hydrogen-dependent methylotrophic methanogens increased from 19.5 to 37.7% in the bulk of BEAD-SBR Cu at high OLR. Where methanol was directly injected as a single substrate into the BEAD-SBR Cu , the main metabolism of methane production was hydrogenotrophic methanogenesis using carbon dioxide and hydrogen released by the oxidation of methanol on the anode through bioelectrochemical reactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  17. The ins and outs of algal metal transport

    PubMed Central

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2012-01-01

    Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. PMID:22569643

  18. Nanocrystal synthesis in microfluidic reactors: where next?

    PubMed

    Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C

    2014-09-07

    The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.

  19. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE PAGES

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; ...

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  20. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  1. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred withoutmore » raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.« less

  2. Sustainable Algal Energy Production and Environmental Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  3. Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater.

    PubMed

    Liu, Jiaxin; Shi, Shengnan; Ji, Xiangyu; Jiang, Bei; Xue, Lanlan; Li, Meidi; Tan, Liang

    2017-07-01

    High-salinity wastewater is often difficult to treat by common biological technologies due to salinity stress on the bacterial community. Electricity-assisted anaerobic technologies have significantly enhanced the treatment performance by alleviating the impact of salinity stress on the bacterial community, but electricity-assisted aerobic technologies have less been reported. Herein, a novel bio-electrochemistry system has been designed and operated in which a pair of stainless iron mesh-graphite plate electrodes were installed into a sequencing batch reactor (SBR, designated as S1) to strengthen the performance of saline petrochemical wastewater under aerobic conditions. The removal efficiency of phenol and chemical oxygen demand (COD) in S1 were 94.1 and 91.2%, respectively, on day 45, which was clearly higher than the removal efficiency of a single SBR (S2) and an electrochemical reactor (S3), indicating that a coupling effect existed between the electrochemical process and biodegradation. A certain amount of salinity (≤8000 mg/L) could enhance the treatment performance in S1 but weaken that in S2. Illumina sequencing revealed that microbial communities in S1 on days 45 and 91 were richer and more diverse than in S2, which suggests that electrical stimulation could enhance the diversity and richness of the microbial community, and reduce the negative effect of salinity on the microorganisms and enrich some salt-adapted microorganisms, thus improve the ability of S1 to respond to salinity stress. This novel bio-electrochemistry system was shown to be an alternative technology for the high saline petrochemical wastewater.

  4. Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite.

    PubMed

    Dosta, J; Galí, A; Benabdallah El-Hadj, T; Macé, S; Mata-Alvarez, J

    2007-08-01

    The aim of this study was the operation and model description of a sequencing batch reactor (SBR) for biological nitrogen removal (BNR) from a reject water (800-900 mg NH(4)(+)-NL(-1)) from a municipal wastewater treatment plant (WWTP). The SBR was operated with three cycles per day, temperature 30 degrees C, SRT 11 days and HRT 1 day. During the operational cycle, three alternating oxic/anoxic periods were performed to avoid alkalinity restrictions. Oxygen supply and working pH range were controlled to achieve the BNR via nitrite, which makes the process more economical. Under steady state conditions, a total nitrogen removal of 0.87 kg N (m(3)day)(-1) was reached. A four-step nitrogen removal model was developed to describe the process. This model enlarges the IWA activated sludge models for a more detailed description of the nitrogen elimination processes and their inhibitions. A closed intermittent-flow respirometer was set up for the estimation of the most relevant model parameters. Once calibrated, model predictions reproduced experimental data accurately.

  5. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors.

    PubMed

    Bassin, João Paulo; Kleerebezem, Robbert; Muyzer, Gerard; Rosado, Alexandre Soares; van Loosdrecht, Mark C M; Dezotti, Marcia

    2012-02-01

    The effect of salinity on the activity of nitrifying bacteria, floc characteristics, and microbial community structure accessed by fluorescent in situ hybridization and polymerase chain reaction-denaturing gradient gel electrophoresis techniques was investigated. Two sequencing batch reactors (SRB₁ and SBR₂) treating synthetic wastewater were subjected to increasing salt concentrations. In SBR₁, four salt concentrations (5, 10, 15, and 20 g NaCl/L) were tested, while in SBR₂, only two salt concentrations (10 and 20 g NaCl/L) were applied in a more shock-wise manner. The two different salt adaptation strategies caused different changes in microbial community structure, but did not change the nitrification performance, suggesting that regardless of the different nitrifying bacterial community present in the reactor, the nitrification process can be maintained stable within the salt range tested. Specific ammonium oxidation rates were more affected when salt increase was performed more rapidly and dropped 50% and 60% at 20 g NaCl/L for SBR₁ and SBR₂, respectively. A gradual increase in NaCl concentration had a positive effect on the settling properties (i.e., reduction of sludge volume index), although it caused a higher amount of suspended solids in the effluent. Higher organisms (e.g., protozoa, nematodes, and rotifers) as well as filamentous bacteria could not withstand the high salt concentrations.

  6. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.

    PubMed

    Zvimba, J N; Mathye, M; Vadapalli, V R K; Swanepoel, H; Bologo, L

    2013-01-01

    This study investigated Fe(II) oxidation during acid mine drainage (AMD) neutralization using CaCO3 in a pilot-scale Sequencing Batch Reactor (SBR) of hydraulic retention time (HRT) of 90 min and sludge retention time (SRT) of 360 min in the presence of air. The removal kinetics of Fe(II), of initial concentration 1,033 ± 0 mg/L, from AMD through oxidation to Fe(III) was observed to depend on both pH and suspended solids, resulting in Fe(II) levels of 679 ± 32, 242 ± 64, 46 ± 16 and 28 ± 0 mg/L recorded after cycles 1, 2, 3 and 4 respectively, with complete Fe(II) oxidation only achieved after complete neutralization of AMD. Generally, it takes 30 min to completely oxidize Fe(II) during cycle 4, suggesting that further optimization of SBR operation based on both pH and suspended solids manipulation can result in significant reduction of the number of cycles required to achieve acceptable Fe(II) oxidation for removal as ferric hydroxide. Overall, complete removal of Fe(II) during AMD neutralization is attractive as it promotes recovery of better quality waste gypsum, key to downstream gypsum beneficiation for recovery of valuables, thereby enabling some treatment-cost recovery and prevention of environmental pollution from dumping of sludge into landfills.

  7. Techno-economic and life-cycle assessment of an attached growth algal biorefinery.

    PubMed

    Barlow, Jay; Sims, Ronald C; Quinn, Jason C

    2016-11-01

    This study examined the sustainability of generating renewable diesel via hydrothermal liquefaction (HTL) of biomass from a rotating algal biofilm reactor. Pilot-scale growth studies and laboratory-scale HTL experiments were used to validate an engineering system model. The engineering system model served as the foundation to evaluate the economic feasibility and environmental impact of the system at full scale. Techno-economic results indicate that biomass feedstock costs dominated the minimum fuel selling price (MFSP), with a base case of $104.31per gallon. Life-cycle assessment results show a base-case global warming potential (GWP) of 80gCO2-eMJ(-1) and net energy ratio (NER) of 1.65 based on a well-to-product system boundary. Optimization of the system reduces MFSP, GWP and NER to $11.90Gal(-1), -44gCO2-eMJ(-1), and 0.33, respectively. The systems-level impacts of integrating algae cultivation with wastewater treatment were found to significantly reduce environmental impact. Sensitivity analysis showed that algal productivity most significantly affected fuel selling price, emphasizing the importance of optimizing biomass productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor (ASBR).

    PubMed

    Zhao, Baisuo; Liu, Jie; Frear, Craig; Holtzapple, Mark; Chen, Shulin

    2016-12-01

    This study employed mixed-culture consolidated bioprocessing (CBP) to digest microalgal biomass in an anaerobic sequencing batch reactor (ASBR). The primary objectives are to evaluate the impact of hydraulic residence time (HRT) on the productivity of carboxylic acids and to characterize the bacterial community. HRT affects the production rate and patterns of carboxylic acids. For the 5-L laboratory-scale fermentation, a 12-day HRT was selected because it offered the highest productivity of carboxylic acids and it synthesized longer chains. The variability of the bacterial community increased with longer HRT (R 2 =0.85). In the 5-L laboratory-scale fermentor, the most common phyla were Firmicutes (58.3%), Bacteroidetes (27.4%), and Proteobacteria (11.9%). The dominant bacterial classes were Clostridia (29.8%), Bacteroidia (27.4%), Tissierella (26.2%), and Betaproteobacteria (8.9%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Algal biodiesel economy and competition among bio-fuels.

    PubMed

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry.

    PubMed

    Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao

    2018-01-02

    To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.

  11. Algal genes in the closest relatives of animals.

    PubMed

    Sun, Guiling; Yang, Zefeng; Ishwar, Arjun; Huang, Jinling

    2010-12-01

    The spread of photosynthesis is one of the most important but controversial topics in eukaryotic evolution. Because of massive gene transfer from plastids to the nucleus and because of the possibility that plastids have been lost in evolution, algal genes in aplastidic organisms often are interpreted as footprints of photosynthetic ancestors. These putative plastid losses, in turn, have been cited as support for scenarios involving the spread of plastids in broadscale eukaryotic evolution. Phylogenomic analyses identified more than 100 genes of possible algal origin in Monosiga, a unicellular species from choanoflagellates, a group considered to be the closest protozoan relatives of animals and to be primitively heterotrophic. The vast majority of these algal genes appear to be derived from haptophytes, diatoms, or green plants. Furthermore, more than 25% of these algal genes are ultimately of prokaryotic origin and were spread secondarily to Monosiga. Our results show that the presence of algal genes may be expected in many phagotrophs or taxa of phagotrophic ancestry and therefore does not necessarily represent evidence of plastid losses. The ultimate prokaryotic origin of some algal genes and their simultaneous presence in both primary and secondary photosynthetic eukaryotes either suggest recurrent gene transfer events under specific environments or support a more ancient origin of primary plastids.

  12. Influence of Al(III) on biofilm and its extracellular polymeric substances in sequencing batch biofilm reactors.

    PubMed

    Hu, Xuewei; Yang, Lei; Lai, Xinke; Yao, Qi; Chen, Kai

    2017-10-03

    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.

  13. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers:more » a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).« less

  14. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    DOE PAGES

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less

  15. Evidence for water-mediated mechanisms in coral–algal interactions

    PubMed Central

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  16. Evidence for water-mediated mechanisms in coral-algal interactions.

    PubMed

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk; Nugues, Maggy M

    2016-08-17

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. © 2016 The Author(s).

  17. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). © 2013 Phycological Society of America.

  18. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  19. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  20. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  1. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  2. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  3. TEXAS HARMFUL ALGAL BLOOM COORDINATION MX964014

    EPA Science Inventory

    Harmful algal blooms (HAB) are an expanding problem in coastal Texas. Nearly � of the known harmful algal blooms along the Texas coast have occurred in the past ten years and have led to significant resource and tourism losses. For example, there are at least two types of toxic...

  4. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  5. Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol.

    PubMed

    Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R

    2016-01-01

    Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste

  6. The Regulation of Gene Expression in Cnidarian-Algal Associations.

    DTIC Science & Technology

    1999-04-29

    initiation, establishment and maintenance of cnidarian -algal-algal associations. These associations are of global significance as corals and other related...underlying the establishment of the cnidarian -algal partnership, Further, the work described the natural life history of two associations, chosen for...histories of two cnidarians (hosts), a tropical coral Fungia scutaria and a temperate anemone Anthopleura elegantissima. We examined symbiosis onset in

  7. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    PubMed

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  8. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  9. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Biofuels Techno-Economic Analysis Algal Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into

  10. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    PubMed

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation.

    PubMed Central

    Ho, K L; Pometto, A L; Hinz, P N

    1997-01-01

    Four customized bioreactors, three with plastic composite supports (PCS) and one with suspended cells (control), were operated as repeated-batch fermentors for 66 days at pH 5 and 37 degrees C. The working volume of each customized reactor was 600 ml, and each reactor's medium was changed every 2 to 5 days for 17 batches. The performance of PCS bioreactors in long-term biofilm repeated-batch fermentation was compared with that of suspended-cell bioreactors in this research. PCS could stimulate biofilm formation, supply nutrients to attached and free suspended cells, and reduce medium channelling for lactic acid production. Compared with conventional repeated-batch fermentation, PCS bioreactors shortened the lag time by threefold (control, 11 h; PCS, 3.5 h) and sixfold (control, 9 h; PCS, 1.5 h) at yeast extract concentrations of 0.4 and 0.8% (wt/vol), respectively. They also increased the lactic acid productivity of Lactobacillus casei subsp. rhamnosus (ATCC 11443) by 40 to 70% and shortened the total fermentation time by 28 to 61% at all yeast extract concentrations. The fastest productivity of the PCS bioreactors (4.26 g/liter/h) was at a starting glucose concentration of 10% (wt/vol), whereas that of the control (2.78 g/liter/h) was at 8% (wt/vol). PCS biofilm lactic acid fermentation can drastically improve the fermentation rate with reduced complex-nutrient addition. PMID:9212403

  12. Cycle-time determination and process control of sequencing batch membrane bioreactors.

    PubMed

    Krampe, J

    2013-01-01

    In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.

  13. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  14. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  15. Application of a fluorometric microplate algal toxicity assay for riverine periphytic algal species.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Annoh, Hirochica; Ishihara, Satoru

    2013-08-01

    Although riverine periphytic algae attached to riverbed gravel are dominant species in flowing rivers, there is limited toxicity data on them because of the difficulty in cell culture and assays. Moreover, it is well known that sensitivity to pesticides differ markedly among species, and therefore the toxicity data for multiple species need to be efficiently obtained. In this study, we investigated the use of fluorometric microplate toxicity assay for testing periphytic algal species. We selected five candidate test algal species Desmodesmus subspicatus, Achnanthidium minutissimum, Navicula pelliculosa, Nitzschia palea, and Pseudanabaena galeata. The selected species are dominant in the river, include a wide range of taxon, and represent actual species composition. Other additional species were also used to compare the sensitivity and suitability of the microplate assay. A 96-well microplate was used as a test chamber and algal growth was measured by in-vivo fluorescence. Assay conditions using microplate and fluorometric measurement were established, and sensitivities of 3,5-dichlorophenol as a reference substance were assayed. The 50 percent effect concentrations (EC50s) obtained by fluorometric microplate assay and those obtained by conventional Erlenmeyer flask assay conducted in this study were consistent. Moreover, the EC50 values of 3,5-dichlorophenol were within the reported confidence intervals in literature. These results supported the validity of our microplate assay. Species sensitivity distribution (SSD) analysis was conducted using the EC50s of five species. The SSD was found to be similar to the SSD obtained using additional tested species, suggesting that SSD using the five species largely represents algal sensitivity. Our results provide a useful and efficient method for high-tier probabilistic ecological risk assessment of pesticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater.

    PubMed

    del Agua, Isabel; Usack, Joseph G; Angenent, Largus T

    2015-01-01

    The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor.

  17. Characterization of Nanoparticle Batch-To-Batch Variability

    PubMed Central

    Mülhopt, Sonja; Dilger, Marco; Adelhelm, Christel; Anderlohr, Christopher; Gómez de la Torre, Johan; Langevin, Dominique; Mahon, Eugene; Piella, Jordi; Puntes, Victor; Ray, Sikha; Schneider, Reinhard; Wilkins, Terry; Weiss, Carsten

    2018-01-01

    A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced. PMID:29738461

  18. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    PubMed

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Algicidal bacteria in the sea and their impact on algal blooms.

    PubMed

    Mayali, Xavier; Azam, Farooq

    2004-01-01

    Over the past two decades, many reports have revealed the existence of bacteria capable of killing phytoplankton. These algicidal bacteria sometimes increase in abundance concurrently with the decline of algal blooms, suggesting that they may affect algal bloom dynamics. Here, we synthesize the existing knowledge on algicidal bacteria interactions with marine eukaryotic microalgae. We discuss the effectiveness of the current methods to characterize the algicidal phenotype in an ecosystem context. We briefly consider the literature on the phylogenetic identification of algicidal bacteria, their interaction with their algal prey, the characterization of algicidal molecules, and the enumeration of algicidal bacteria during algal blooms. We conclude that, due to limitations of current methods, the evidence for algicidal bacteria causing algal bloom decline is circumstantial. New methods and an ecosystem approach are needed to test hypotheses on the impact of algicidal bacteria in algal bloom dynamics. This will require enlarging the scope of inquiry from its current focus on the potential utility of algicidal bacteria in the control of harmful algal blooms. We suggest conceptualizing bacterial algicidy within the general problem of bacterial regulation of algal community structure in the ocean.

  20. The stability of accumulating nitrite from Swine wastewater in a sequencing batch reactor.

    PubMed

    Wang, Liang; Zhu, Jun; Miller, Curtis

    2011-02-01

    Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH(4)-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH(4)-N/g MLSS · day (64% NO(2)-N, 16% NO(3)-N, and 20% NH(4)-N). Under 0.039 g NH(4)-N/g MLSS · day, more NO(2)-N was transformed to NO(3)-N with an effluent of 60% NO(2)-N, 20% NO(3)-N, and 20% NH(4)-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH(4)-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings.

  1. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  2. Optimization of the pretreatment of wastewater from a slaughterhouse and packing plant through electrocoagulation in a batch reactor.

    PubMed

    Orssatto, Fábio; Ferreira Tavares, Maria Hermínia; Manente da Silva, Flávia; Eyng, Eduardo; Farias Biassi, Brendown; Fleck, Leandro

    2017-10-01

    The purpose of this study is to evaluate the removal of chemical oxygen demand (COD), turbidity and color of wastewater from a pig slaughterhouse and packing plant through the electrochemical technique and to optimize the ΔV (electric potential difference) and HRT (hydraulic retention time) variables in an electrocoagulation batch reactor using aluminum electrodes. The experimental design used was rotatable central composite design. For turbidity, the values for removal efficiency obtained varied from 92.85% to 99.28%; for color, they varied from 81.34% to 98.93% and for COD, they varied from 58.61% to 81.01%. The best optimized conditions of treatment were at 25 min for the HRT and 25 V for the ΔV, which correspond to electrical current of 1.08 A and a current density of 21.6 mA cm -2 . The aluminum residue varied from 15.254 to 54.291 mg L -1 and the cost of the treatment was US$4.288 m -3 . The novelty of the work was the simultaneous optimization of three response variables using the desirability function applied to the treatment of wastewater from slaughterhouses.

  3. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    PubMed

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Anaerobic Biodegradation Of Methyl tert-Butyl Ether Under Iron-Reducing Conditions In Batch And Continuous-Flow Cultures

    EPA Science Inventory

    The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing...

  5. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; Wang, Zhe; She, Zonglian; Chang, Qingbo; Sun, Changqing; Zhang, Jian; Ren, Yun; Yang, Ning

    2013-11-01

    The effect of salinity on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR). The contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were positively correlated with the salinity. The polysaccharide (PS) and protein (PN) contents in both LB-EPS and TB-EPS increased with the increase of salinity. With the increase of salinity from 0.5% to 6%, the PN/PS ratios in LB-EPS and TB-EPS decreased from 4.8 to 0.9 and from 2.9 to 1.4, respectively. The four fluorescence peaks in both LB-EPS and TB-EPS identified by three-dimensional excitation-emission matrix fluorescence spectroscopy are attributed to PN-like substances and humic acid-like substances. The Fourier transform infrared spectra of the LB-EPS and TB-EPS appeared to be very similar, but the differences across the spectra were apparent in terms of the relative intensity of some bands with the increase of salinity. The sludge volume index showed a linear correlation with LB-EPS (R(2)=0.9479) and TB-EPS (R(2)=0.9355) at different salinities, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms.

    PubMed

    Wright, Moncie V; Matson, Cole W; Baker, Leanne F; Castellon, Benjamin T; Watkins, Preston S; King, Ryan S

    2018-06-01

    A 5-week mesocosm experiment was conducted to investigate the toxicity of titanium dioxide nanoparticles (TiO 2 NPs) to periphytic algae in an environmentally-realistic scenario. We used outdoor experimental streams to simulate the characteristics of central Texas streams receiving large discharges of wastewater treatment plant effluent during prolonged periods of drought. The streams were continually dosed and maintained at two concentrations. The first represents an environmentally relevant concentration of 0.05 mg L -1 (low concentration). The second treatment of 5 mg L -1 (high concentration) was selected to represent a scenario where TiO 2 NPs are used for photocatalytic degradation of pharmaceuticals in wastewater. Algal cell density, chlorophyll-a, ash-free dry mass, algal assemblage composition, and Ti accumulation were determined for the periphyton in the riffle sections of each stream. The high concentration treatment of TiO 2 NPs significantly decreased algal cell density, ash-free dry mass, and chlorophyll-a, and altered algal assemblage composition. Decreased abundance of three typically pollution-sensitive taxa and increased abundance of two genera associated with heavy metal sorption and organic pollution significantly contributed to algal assemblage composition changes in response to TiO 2 NPs. Benefits of the use of TiO 2 NPs in wastewater treatment plants will need to be carefully weighed against the demonstrated ability of these NPs to cause large changes in periphyton that would likely propagate significant effects throughout the stream ecosystem, even in the absence of direct toxicity to higher trophic level organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cultivation of algal biofilm using different lignocellulosic materials as carriers.

    PubMed

    Zhang, Qi; Liu, Cuixia; Li, Yubiao; Yu, Zhigang; Chen, Zhihua; Ye, Ting; Wang, Xun; Hu, Zhiquan; Liu, Shiming; Xiao, Bo; Jin, Shiping

    2017-01-01

    Algal biofilm technology is recently supposed to be a promising method to produce algal biomass as the feedstock for the production of biofuels. However, the carrier materials currently used to form algal biofilm are either difficult to be obtained at a low price or undurable. Commercialization of the biofilm technology for algal biomass production extremely requires new and inexpensive materials as biofilm carriers with high biomass production performances. Four types of lignocellulosic materials were investigated to evaluate their performance of acting as carriers for algal cells attachment and the relevant effects on the algal biomass production in this study. The cultivation of algal biofilm was processed in a self-designed flat plate photo-bioreactor. The biofilm production and chemical composition of the harvested biomass were determined. The surface physics properties of the materials were examined through a confocal laser-scanning microscopy. Algal biomass production varied significantly with the variation of the carriers ( P  < 0.05). All the lignocellulosic materials showed better performances in biofilm production than poly methyl methacrylate, and the application of pine sawdust as the carrier could gain the maximum biofilm productivity of 10.92 g m -2  day -1 after 16-day cultivation. In addition, 20.10-23.20% total lipid, 30.35-36.73% crude proteins, and 20.29-25.93% carbohydrate were achieved from the harvested biomasses. Biomass productivity increased linearly as the increase of surface roughness, and Wenzel's roughness factor of the tested materials, and surface roughness might significantly affect the biomass production through the size of surface morphology and the area of surface ( P  < 0.05). The results showed that lignocellulosic materials can be efficient carriers for low-cost cultivation of algal biofilm and the enhancement of biomass productivity.

  8. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  9. Effect of bacterial lipase on anaerobic co-digestion of slaughterhouse wastewater and grease in batch condition and continuous fixed-bed reactor.

    PubMed

    Affes, Maha; Aloui, Fathi; Hadrich, Fatma; Loukil, Slim; Sayadi, Sami

    2017-10-10

    This study aimed to investigate the effects of bacterial lipase on biogas production of anaerobic co-digestion of slaughterhouse wastewater (SHWW) and hydrolyzed grease (HG). A neutrophilic Staphylococcus xylosus strain exhibiting lipolytic activity was used to perform microbial hydrolysis pretreatment of poultry slaughterhouse lipid rich waste. Optimum proportion of hydrolyzed grease was evaluated by determining biochemical methane potential. A high biogas production was observed in batch containing a mixture of slaughterhouse composed of 75% SHWW and 25% hydrolyzed grease leading to a biogas yield of 0.6 L/g COD introduced. Fixed bed reactor (FBR) results confirmed that the proportion of 25% of hydrolyzed grease gives the optimum condition for the digester performance. Biogas production was significantly high until an organic loading rate (OLR) of 2 g COD/L. d. This study indicates that the use of biological pre-treatment and FBR for the co-digestion of SHWW and hydrolyzed grease is feasible and effective.

  10. Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor.

    PubMed

    Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer

    2014-09-20

    An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  12. "Batch" kinetics in flow: online IR analysis and continuous control.

    PubMed

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...

    2016-01-18

    Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less

  14. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization.

    PubMed

    Zhou, Haoyuan; Sheng, Yanqing; Zhao, Xuefei; Gross, Martin; Wen, Zhiyou

    2018-05-18

    Industries such as mining operations are facing challenges of treating sulfur-containing wastewater such as acid mine drainage (AMD) generated in their plant. The aim of this work is to evaluate the use of a revolving algal biofilm (RAB) reactor to treat AMD with low pH (3.5-4) and high sulfate content (1-4 g/L). The RAB reactors resulted in sulfate removal efficiency up to 46% and removal rate up to 0.56 g/L-day, much higher than those obtained in suspension algal culture. The high-throughput sequencing revealed that the RAB reactor contained diverse cyanobacteria, green algae, diatoms, and acid reducing bacteria that contribute the sulfate removal through various mechanisms. The RAB reactors also showed a superior performance of COD, ammonia and phosphorus removal. Collectively, the study demonstrated that RAB-based process is an effective method to remove sulfate in wastewater with small footprint and can be potentially installed in municipal or industrial wastewater treatment facilities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR).

    PubMed

    Casas, Mònica Escolà; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Algal toxins

    USGS Publications Warehouse

    Creekmore, Lynn H.

    1999-01-01

    Periodic blooms of algae, including true algae, dinoflagellates, and cyanobacteria or blue-green algae have been reported in marine and freshwater bodies throughout the world. Although many blooms are merely an aesthetic nuisance, some species of algae produce toxins that kill fish, shellfish, humans, livestock and wildlife. Pigmented blooms of toxinproducing marine algae are often referred to as “red tides” (Fig. 36.1). Proliferations of freshwater toxin-producing cyanobacteria are simply called “cyanobacterial blooms” or “toxic algal blooms.” Cyanobacterial blooms initially appear green and may later turn blue, sometimes forming a “scum” in the water (Fig. 36.2).Although algal blooms historically have been considered a natural phenomenon, the frequency of occurrence of harmful algae appears to have increased in recent years. Agricultural runoff and other pollutants of freshwater and marine wetlands and water bodies have resulted in increased nutrient loading of phosphorus and nitrogen, thus providing conditions favorable to the growth of potentially toxic algae. The detrimental impact of red tides and cyanobacterial blooms on wetland, shore, and pelagic species has long been suspected but not often been substantiated because information on the effects of these toxins in fish and wildlife species is lacking and diagnostic tools are limited.

  17. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    PubMed

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    PubMed

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH 3 -N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCOD Cr /g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCOD Cr ; specific growth rate (µ), 0.06 d -1 ; specific nitrification rate (SNR), 0.49 mg NH 3 -N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase

  19. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  20. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover.

    PubMed

    Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo

    2013-01-01

    Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  2. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation.

    PubMed

    Yong, Zi Jun; Bashir, Mohammed J K; Ng, Choon Aun; Sethupathi, Sumathi; Lim, Jun-Wei

    2018-01-01

    The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH 3 -N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH 3 -N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhancing nitrogen removal from low carbon to nitrogen ratio wastewater by using a novel sequencing batch biofilm reactor.

    PubMed

    Zou, Jinte; Li, Jun; Ni, Yongjiong; Wei, Su

    2016-12-01

    Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxic unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low COD/TN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice. Copyright © 2016. Published by Elsevier B.V.

  4. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    PubMed

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater.

    PubMed

    Mojiri, Amin; Aziz, Hamidi Abdul; Zaman, Nastaein Q; Aziz, Shuokr Qarani; Zahed, Mohammad Ali

    2014-06-15

    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  7. Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types.

    PubMed

    Ren, Hong-Yu; Kong, Fanying; Ma, Jun; Zhao, Lei; Xie, Guo-Jun; Xing, Defeng; Guo, Wan-Qian; Liu, Bing-Feng; Ren, Nan-Qi

    2018-03-01

    Synergistic system of dark fermentation and algal culture was initially operated at batch mode to investigate the energy production and nutrients removal from molasses wastewater in butyrate-type, ethanol-type and propionate-type fermentations. Butyrate-type fermentation was the most appropriate fermentation type for the synergistic system and exhibited the accumulative hydrogen volume of 658.3 mL L -1 and hydrogen yield of 131.7 mL g -1 COD. By-products from dark fermentation (mainly acetate and butyrate) were further used to cultivate oleaginous microalgae. The maximum algal biomass and lipid content reached 1.01 g L -1 and 38.5%, respectively. In continuous operation, the synergistic system was stable and efficient, and energy production increased from 8.77 kJ L -1  d -1 (dark fermentation) to 17.3 kJ L -1  d -1 (synergistic system). Total COD, TN and TP removal efficiencies in the synergistic system reached 91.1%, 89.1% and 85.7%, respectively. This study shows the potential of the synergistic system in energy recovery and wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  9. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  10. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.

    PubMed

    Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D

    2017-11-01

    Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  12. Biotic interactions as drivers of algal origin and evolution.

    PubMed

    Brodie, Juliet; Ball, Steven G; Bouget, François-Yves; Chan, Cheong Xin; De Clerck, Olivier; Cock, J Mark; Gachon, Claire; Grossman, Arthur R; Mock, Thomas; Raven, John A; Saha, Mahasweta; Smith, Alison G; Vardi, Assaf; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-11-01

    Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Algal MIPs, high diversity and conserved motifs

    PubMed Central

    2011-01-01

    Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs. PMID:21510875

  14. Algal MIPs, high diversity and conserved motifs.

    PubMed

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  15. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  16. Solar spectral conversion for improving the photosynthetic activity in algae reactors.

    PubMed

    Wondraczek, Lothar; Batentschuk, Miroslaw; Schmidt, Markus A; Borchardt, Rudolf; Scheiner, Simon; Seemann, Benjamin; Schweizer, Peter; Brabec, Christoph J

    2013-01-01

    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.

  17. Improving the throughput of batch photochemical reactions using flow: Dual photoredox and nickel catalysis in flow for C(sp2)C(sp3) cross-coupling.

    PubMed

    Abdiaj, Irini; Alcázar, Jesús

    2017-12-01

    We report herein the transfer of dual photoredox and nickel catalysis for C(sp 2 )C(sp 3 ) cross coupling form batch to flow. This new procedure clearly improves the scalability of the previous batch reaction by the reactor's size and operating time reduction, and allows the preparation of interesting compounds for drug discovery in multigram amounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light.

    PubMed

    Navntoft, C; Ubomba-Jaswa, E; McGuigan, K G; Fernández-Ibáñez, P

    2008-12-11

    Inactivation kinetics are reported for suspensions of Escherichia coli in well-water using compound parabolic collector (CPC) mirrors to enhance the efficiency of solar disinfection (SODIS) for batch reactors under real, solar radiation (cloudy and cloudless) conditions. On clear days, the system with CPC reflectors achieved complete inactivation (more than 5-log unit reduction in bacterial population to below the detection limit of 4CFU/mL) one hour sooner than the system fitted with no CPC. On cloudy days, only systems fitted with CPCs achieved complete inactivation. Degradation of the mirrors under field conditions was also evaluated. The reflectivity of CPC systems that had been in use outdoors for at least 3 years deteriorated in a non-homogeneous fashion. Reflectivity values for these older systems were found to vary between 27% and 72% compared to uniform values of 87% for new CPC systems. The use of CPC has been proven to be a good technological enhancement to inactivate bacteria under real conditions in clear and cloudy days. A comparison between enhancing optics and thermal effect is also discussed.

  19. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    PubMed

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  20. Short-term Influence of Drilling Fluid on Ciliates from Activated Sludge in Sequencing Batch Reactors.

    PubMed

    Babko, Roman; Kuzmina, Tatiana; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Danko, Yaroslav; Pawłowska, Małgorzata; Pawłowski, Artur

    2017-01-01

    Spent drilling muds are the liquid residues of rock drilling operations. Due to a high concentration of suspended solids and potentially detrimental chemical properties, they can negatively affect microorganisms participating in wastewater treatment processes. We evaluated the addition of a potassium-polymer drilling fluid (DF) to activated sludge in laboratory sequencing batch reactors (SBRs) for municipal wastewater treatment. Ciliate assemblage, the most dynamic component of eukaryotes in activated sludge, and which is highly sensitive to changes in the system, was evaluated. The average ciliate abundance dropped by about 51% (SBR 2; 1% DF added) and 33% (SBR 3; 3% DF added) in comparison to the control (SBR 1; wastewater only). A decrease in the total number of ciliate species during the experiment was observed, from 25 to 24 in SBR 2 and from 17 to 13 in SBR 3. Moreover, a drop in the number of dominant (>100 individuals mL) ciliate species was observed during the experiment-from eight in the control to five in SBR 2 and four in SBR 3-signaling noticeable changes in the quantitative structure of ciliate species. The species analyzed showed different responses to DF addition. The most sensitive was , which is bacteriovorus. In contrast, two predators, and , showed no reaction to DF addition. Our results indicate that addition of potassium-polymer DF, in doses of 1 to 3% of the treated wastewater volume, had no toxic effects on ciliates, but qualitative and quantitative changes in their community were observed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. A simple numerical model for predicting organic matter decomposition in a fed-batch composting operation.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito

    2002-01-01

    Using dog food as a model of the organic waste that comprises composting raw material, the degradation pattern of organic materials was examined by continuously measuring the quantity of CO2 evolved during the composting process in both batch and fed-batch operations. A simple numerical model was made on the basis of three suppositions for describing the organic matter decomposition in the batch operation. First, a certain quantity of carbon in the dog food was assumed to be recalcitrant to degradation in the composting reactor within the retention time allowed. Second, it was assumed that the decomposition rate of carbon is proportional to the quantity of easily degradable carbon, that is, the carbon recalcitrant to degradation was subtracted from the total carbon remaining in the dog food. Third, a certain lag time is assumed to occur before the start of active decomposition of organic matter in the dog food; this lag corresponds to the time required for microorganisms to proliferate and become active. It was then ascertained that the decomposition pattern for the organic matter in the dog food during the fed-batch operation could be predicted by the numerical model with the parameters obtained from the batch operation. This numerical model was modified so that the change in dry weight of composting materials could be obtained. The modified model was found suitable for describing the organic matter decomposition pattern in an actual fed-batch composting operation of the garbage obtained from a restaurant, approximately 10 kg d(-1) loading for 60 d.

  2. Fate and degradation kinetics of nonylphenol compounds in aerobic batch digesters.

    PubMed

    Ömeroğlu, Seçil; Sanin, F Dilek

    2014-11-01

    Nonylphenol (NP) compounds are toxic and persistent chemicals that are not fully degraded either in natural or engineered systems. Current knowledge indicates that these compounds concentrate in sewage sludge. Therefore, investigating the degradation patterns and types of metabolites formed during sludge treatment are important for land application of sewage sludge. Unfortunately, the information on the fate of nonylphenol compounds in sludge treatment is very limited. This study aims to investigate the biodegradation patterns of nonylphenol diethoxylate (NP2EO) in aerobic batch digesters. For this purpose, two NP2EO spiked and two control laboratory aerobic batch digesters were operated. The spiked digester contained 3 mg/L NP2EO in the whole reactor content. The compounds of interest (parent compound and expected metabolites) were extracted with sonication and analyzed by gas chromatography-mass spectrometry (GC-MS) as a function of time. Results showed that, following the day of spike, NP2EO degraded rapidly. The metabolites observed were nonylphenol monoethoxylate (NP1EO), NP and dominantly, nonylphenoxy acetic acid (NP1EC). The mass balance over the reactors indicated that the total mass spiked was highly accounted for by the products analyzed. The time dependent analysis indicated that the parent compound degradation and daughter product formation followed first order kinetics. The digester performance parameters analyzed (VS and COD reduction) indicated that the spike of NP2EO did not affect the digester performance. Published by Elsevier Ltd.

  3. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  4. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less

  5. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  6. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with themore » addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.« less

  7. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  9. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  10. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  11. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  12. A novel single-parameter approach for forecasting algal blooms.

    PubMed

    Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan

    2017-01-01

    Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4  cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of selected pharmaceutically active compounds on treatment performance in sequencing batch reactors mimicking wastewater treatment plants operations.

    PubMed

    Wang, Shuyi; Gunsch, Claudia K

    2011-05-01

    The impact of four pharmaceutically active compounds (PhACs) introduced both individually and in mixtures was ascertained on the performance of laboratory-scale wastewater treatment sequencing batch reactors (SBRs). When introduced individually at concentrations of 0.1, 1 and 10 μM, no significant differences were observed with respect to chemical oxygen demand (COD) and ammonia removal. Microbial community analyses reveal that although similarity index values generally decreased over time with an increase in PhAC concentrations as compared to the controls, no major microbial community shifts were observed for total bacteria and ammonia-oxidizing bacteria (AOB) communities. However, when some PhACs were introduced in mixtures, they were found to both inhibit nitrification and alter AOB community structure. Ammonia removal decreased by up to 45% in the presence of 0.25 μM gemfibrozil and 0.75 μM naproxen. PhAC mixtures did not however affect COD removal performance suggesting that heterotrophic bacteria are more robust to PhACs than AOB. These results highlight that the joint action of PhACs in mixtures may have significantly different effects on nitrification than the individual PhACs. This phenomenon should be further investigated with a wider range of PhACs so that toxicity effects can more accurately be predicted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  15. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  16. Two-decade reconstruction of algal blooms in China's Lake Taihu.

    PubMed

    Duan, Hongtao; Ma, Ronghua; Xu, Xiaofeng; Kong, Fanxiang; Zhang, Shouxuan; Kong, Weijuan; Hao, Jingyan; Shang, Linlin

    2009-05-15

    The algal blooming in the inland lakes has become a critically important issue for its impacts not only on local natural and social environments, but also on global human community. However, the occurrences of blooming on larger spatial scale and longer time scale have rarely been studied. As the third largest freshwater lake in China, Lake Taihu has drawn increasing attention from both public and scientific communities concerning its degradation. Using available satellite images, we reconstructed the spatial and temporal patterns of algal blooms in Lake Taihu through the pasttwo decades. The blooming characteristics over the past two decades were examined with the dynamic of initial blooming date being highlighted. The initial blooming dates were gradually becoming later and later from 1987 to 1997. Since 1998, however, the initial blooming date came earlier and earlier year by year, with approximately 11.42 days advancement per year. From 1987 to 2007, the annual duration of algal blooms lengthened year by year, in line with the substantial increases in the occurrences of algal blooms in spring and summer months. The algal blooms usually occur in northern bays and spread to center and south parts of Lake Taihu. The increases in previous winter's mean daily minimum temperature partially contributed to the earlier blooming onset. However, human activities, expressed as total gross domestic product (GDP) and population, outweighed the climatic contribution on the initial blooming date and blooming duration. This study may provide insights for the policy makers who try to curb the algal blooming and improve the water quality of inland freshwater lakes.

  17. Role of gas vesicles and intra-colony spaces during the process of algal bloom formation.

    PubMed

    Zhang, Yongsheng; Zheng, Binghui; Jiang, Xia; Zheng, Hao

    2013-06-01

    Aggregation morphology, vertical distribution, and algal density were analyzed during the algal cell floating process in three environments. The role of gas vesicles and intra-colony spaces was distinguished by algal blooms treated with ultrasonic waves and high pressure. Results demonstrated that the two buoyancy providers jointly provide buoyancy for floating algal cells. The results were also confirmed by force analysis. In the simulation experiment, the buoyancy acting on algal cells was greater than its gravity at sample ports 2 and 3 of a columnar-cultivated cell vessel, and intra-colony spaces were not detected. In Taihu Lake, gas vesicle buoyancy was notably less than total algal cell gravity. Buoyancy provided by intra-colony spaces exceeded total algal cell gravity at the water surface, but not at other water depths. In the Daning River, total buoyancies provided by the two buoyancy providers were less than total algal cell gravity at different water depths.

  18. Complete and simultaneous removal of ammonium and m-cresol in a nitrifying sequencing batch reactor.

    PubMed

    Zepeda, Alejandro; Ben-Youssef, Chérif; Rincón, Susana; Cuervo-López, Flor; Gómez, Jorge

    2013-06-01

    The kinetic behavior, oxidizing ability and tolerance to m-cresol of a nitrifying sludge exposed to different initial concentrations of m-cresol (0-150 mg C L(-1)) were evaluated in a sequencing batch reactor fed with 50 mg NH4 (+)-N L(-1) and operated during 4 months. Complete removal of ammonium and m-cresol was achieved independently of the initial concentration of aromatic compound in all the assays. Up to 25 mg m-cresol-C L(-1) (C/N ratio of 0.5), the nitrifying yield (Y-NO3 (-)) was 0.86 ± 0.05, indicating that the nitrate was the main product of the process; no biomass growth was detected. From 50 to 150 mg m-cresol-C L(-1) (1.0 ≤ C/N ≤ 3.0), simultaneous microbial growth and partial ammonium-to-nitrate conversion were obtained, reaching a maximum microbial total protein concentration of 0.763 g L(-1) (247 % of its initial value) and the lowest Y-NO3 (-) 0.53 ± 0.01 at 150 mg m-cresol-C L(-1). m-Cresol induced a significant decrease in the values of both specific rates of ammonium and nitrite oxidation, being the ammonium oxidation pathway the mainly inhibited. The nitrifying sludge was able to completely oxidize up to 150 mg m-cresol-C L(-1) by SBR cycle, reaching a maximum specific removal rate of 6.45 g m-cresol g(-1) microbial protein-N h(-1). The number of SBR cycles allowed a metabolic adaptation of the nitrifying consortium since nitrification inhibition decreased and faster oxidation of m-cresol took place throughout the cycles.

  19. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms.

    PubMed

    Wang, Jinfeng; Ding, Lili; Li, Kan; Huang, Hui; Hu, Haidong; Geng, Jinju; Xu, Ke; Ren, Hongqiang

    2018-01-15

    Quorum sensing (QS) signaling, plays a significant role in regulating formation of biofilms in the nature; however, little information about the occurrence and distribution of quorum sensing molecular in the biofilm of carriers has been reported. In this study, distribution of QS signaling molecules (the acylated homoserine lactones-AHLs, and AI-2), extracellular polymeric substances (EPS) and the mechanical properties in sequencing batch biofilm reactor (SBBR) biofilms have been investigated. Using increased centrifugal force, the biofilms were detached into different fractions. The AHLs ranged from 5.2ng/g to 98.3ng/g in different fractions of biofilms, and N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL) in the biofilms obtained at various centrifugal forces displayed significant differences (p<0.01). Interspecies communication signal autoinducer-2(AI-2) in the biofilms ranged from 79.2ng/g to 98.3ng/g. Soluble EPS and loosely bound EPS content in the different fractions of biofilms displayed significant positive relationship with the distribution of C12-HSL (r=0.86, p<0.05). Furthermore, 49.62% of bacteria in the biofilms were positively related with AHLs with 22.76% was significantly positively (p<0.05) related with AHLs. Biofilm adhesion and compliance was the strongest in the tightly-bound biofilm, the weakest in the supernatant/surface biofilm, which was in accordance with the distribution of C12 HSL(r=0.77, p<0.05) and C10-HSL(r=0.75, p<0.05), respectively. This study addressed on better understanding of possible methods for the improvement of wastewater bio-treatment through biofilm application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    PubMed

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  2. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission.

    PubMed

    Wei, Dong; Zhang, Keyi; Ngo, Huu Hao; Guo, Wenshan; Wang, Siyu; Li, Jibin; Han, Fei; Du, Bin; Wei, Qin

    2017-04-01

    In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH 4 + -N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO 2 had a much higher value than that of N 2 O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 −) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 − affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3 − utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 −. PMID:24324672

  4. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  5. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    NASA Astrophysics Data System (ADS)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  6. The Regulation of Gene Expression in Cnidarian-Algal Associations.

    DTIC Science & Technology

    1998-07-13

    symbiotic cnidarians , Aiptasia pallida, Anthopleura eligantissima, synbiosis-specific proteins, cDNA libraries, O. SECURITY CLASSIFICATION OP REPORT...gene expression in cnidarian -algal associations Award Period: 1 July 1995-30 June 1998 Objectives: A. To identify and characterize heat shock...Exploring Symbiosis-Specific Gene Expression in Cnidarian /Algal Associations. In: Molecular Approaches to the Study of the Ocean.. Ed. K. Cooksey, Chapman

  7. 2016 National Algal Biofuels Technology Review Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  8. Analysis-Software for Hyperspectral Algal Reflectance Probes v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timlin, Jerilyn A.; Reichardt, Thomas A.; Jenson, Travis J.

    This software provides onsite analysis of the hyperspectral reflectance data acquired on an outdoor algal pond by a multichannel, fiber-coupled spectroradiometer. The analysis algorithm is based on numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a function of the single backscattering albedo, which is dependent on the backscatter and absorption coefficients of the algal culture, which are in turn related to the algal biomass and pigment optical activity, respectively. Prior to the development of this software, while raw multichannel data were displayed in real time, analysis required a post-processing procedure to extract the relevantmore » parameters. This software provides the capability to track the temporal variation of such culture parameters in real time, as raw data are being acquired, or can be run in a post processing mode. The software allows the user to select between different algal species, incorporate the appropriate calibration data, and observe the quality of the resulting model inversions.« less

  9. Effects of fertilizers used in agricultural fields on algal blooms

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  10. High-performance recombinant protein production with Escherichia coli in continuously operated cascades of stirred-tank reactors.

    PubMed

    Schmideder, Andreas; Weuster-Botz, Dirk

    2017-07-01

    The microbial expression of intracellular, recombinant proteins in continuous bioprocesses suffers from low product concentrations. Hence, a process for the intracellular production of photoactivatable mCherry with Escherichia coli in a continuously operated cascade of two stirred-tank reactors was established to separate biomass formation (first reactor) and protein expression (second reactor) spatially. Cascades of miniaturized stirred-tank reactors were implemented, which enable the 24-fold parallel characterization of cascade processes and the direct scale-up of results to the liter scale. With PAmCherry concentrations of 1.15 g L -1 cascades of stirred-tank reactors improved the process performance significantly compared to production processes in chemostats. In addition, an optimized fed-batch process was outperformed regarding space-time yield (149 mg L -1  h -1 ). This study implicates continuous cascade processes to be a promising alternative to fed-batch processes for microbial protein production and demonstrates that miniaturized stirred-tank reactors can reduce the timeline and costs for cascade process characterization.

  11. A review of algal research in space

    NASA Astrophysics Data System (ADS)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  12. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  13. Sludge granulation and performance of a low superficial gas velocity sequencing batch reactor (SBR) in the treatment of prepared sanitary wastewater.

    PubMed

    Ji, Guodong; Zhai, Fengmin; Wang, Rongjing; Ni, Jinren

    2010-12-01

    A sequencing batch reactor (SBR) employing a low superficial gas velocity was used to produce aerobic granular sludge for wastewater treatment. At a gas velocity of 0.0056 m s(-1) sludge containing a mixture of light yellow and black granules with similar functional groups was quickly formed. The black granules contained crystals of CaCO(3), FeS, and Fe(2)O(3) as well as filamentous bacteria that strengthened the particles and reduced the mass transfer resistance. No inorganic crystals were detected in the yellow sludge granules, and their structure was maintained through cohesion mediated by extracellular polymeric substances (EPS). The light yellow granules were denser and offered better settling performance than the black granules, enhancing the settling properties of the mixed sludge. During a 12-h cycle, the maximum reductions in chemical oxygen demand (COD), NH(3)-N, and total nitrogen (TN) occurred at 240, 480, and 360 min with removal efficiencies of 90%, 90%, and 54%. When the cycle time was limited to 480 min, self-dissolution of the granules was avoided while sill maintaining removal efficiencies for COD, NH(3)-N, and TN of 88%, 90%, and 53%. 2010 Elsevier Ltd. All rights reserved.

  14. Evaluation of Heat Recuperation in a Concentric Hydrogen Reduction Reactor

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Hegde, Uday

    2012-01-01

    Heat recuperation in an ISRU reactor system involves the recovery of heat from a reacted regolith batch by transferring this energy into a batch of fresh regolith. One concept for a hydrogen reduction reactor is a concentric chamber design where heat is transferred from the inner, reaction chamber into fresh regolith in the outer, recuperation chamber. This concept was tested and analyzed to define the overall benefit compared to a more traditional single chamber batch reactor. Data was gathered for heat-up and recuperation in the inner chamber alone, simulating a single chamber design, as well as recuperation into the outer chamber, simulating a dual chamber design. Experimental data was also used to improve two analytical models, with good agreement for temperature behavior during recuperation, calculated mass of the reactor concepts, and energy required during heat-up. The five tests, performed using JSC-1A regolith simulant, also explored the effectiveness of helium gas fluidization, hydrogen gas fluidization, and vibrational fluidization. Results indicate that higher hydrogen volumetric flow rates are required compared to helium for complete fluidization and mixing, and that vibrational fluidization may provide equivalent mixing while eliminating the need to flow large amounts of excess hydrogen. Analysis of the total energy required for heat-up and steady-state operations for a variety of conditions and assumptions shows that the dual-chamber concept requires the same or more energy than the single chamber concept. With no clear energy savings, the added mass and complexity of the dual-chamber makes it unlikely that this design concept will provide any added benefit to the overall ISRU oxygen production system.

  15. Algal bloom-associated disease outbreaks among users of freshwater lakes-United States, 2009 - 2010

    EPA Science Inventory

    Algal blooms’ are local abundances of phytoplankton – microscopic photosynthesizing aquatic organisms found in surface waters worldwide; blooms are variable temporally and spatially and frequently produce a visible algal scum on the water. Harmful algal blooms (HABs) are abundan...

  16. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, David

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing,more » and refining.« less

  17. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  18. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures.

    PubMed

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L(-1)·day(-1) was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89-91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia.

  19. 27 CFR 19.748 - Dump/batch records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dump/batch records. 19.748... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Processing Account § 19.748 Dump/batch records. (a) Format of dump/batch records. Proprietor's dump/batch records shall contain, as...

  20. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  1. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    PubMed Central

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  2. Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater.

    PubMed

    Malakahmad, Amirhossein; Hasani, Amirhesam; Eisakhani, Mahdieh; Isa, Mohamed Hasnain

    2011-07-15

    Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03±0.02 mg/L Hg and 15.52±0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg(2+) and 96-98% of Cd(2+). The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg(2+) and Cd(2+) implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors.

    PubMed

    Guo, Xueping; Pang, Weihai; Dou, Chunling; Yin, Daqiang

    2017-05-01

    The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Performance evaluation and microbial community of a sequencing batch biofilm reactor (SBBR) treating mariculture wastewater at different chlortetracycline concentrations.

    PubMed

    Zheng, Dong; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Wang, Sen; Wang, Xuejiao

    2016-11-01

    The effects of chlortetracycline (CTC) on the performance, microbial activity, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater. Low CTC concentration (less than 6 mg/L) had no obvious effect on the SBBR performance, whereas high CTC concentration could inhibit the chemical oxygen demand (COD) and nitrogen removal of the SBBR. The microbial activity of the biofilm in the SBBR decreased with the increase of CTC concentration from 0 to 35 mg/L. The protein (PN) contents were always higher than the PS contents in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) at different CTC concentrations. The chemical compositions of LB-EPS and TB-EPS had obvious variations with the increase of CTC concentration from 0 to 35 mg/L. The high-throughput sequencing revealed the effects of CTC on the microbial communities of the biofilm at phylum, class and genus level. The relative abundances of some genera displayed a decreasing tendency with the increase of CTC concentration from 0 to 35 mg/L, such as Nitrospira, Paracoccus, Hyphomicrobium, Azospirillum. However, the relative abundances of the genera Flavobacterium, Aequorivita, Buchnera, Azonexus and Thioalbus increased with the increase of CTC concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Compilation of Common Algal Control and Management Techniques.

    DTIC Science & Technology

    1980-01-01

    sources within their exten- sive watersheds. Excessive algal production and the subsequent decay of algal biomass often result in oxygen depletion...organisms in the food chain. c. Harmless to man and animals. 8 d. No incorporation into mineral or biological cycles. e. No adverse effect on water...phytoplankton decreased by ca 30 percent and, due to better light conditions, the productive layer increased. The number of zooplankton, especially

  6. Adaptive Batch Mode Active Learning.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  7. Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass.

    PubMed

    Boleydei, Hamid; Mirghaffari, Nourollah; Farhadian, Omidvar

    2018-05-15

    Efficiency of a biosorbent prepared from the green macroalga Enteromorpha intestinalis biomass for decontamination of seawater and freshwater polluted by crude oil and engine spent oil was compared. The effect of different experimental conditions including contact time, pH, particle size, initial oil concentration, and biosorbent dose on the oil biosorption was studied in the batch method. The biosorbent was characterized by CHNOS, FTIR, and SEM analysis. The experimental data were well fitted to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. Based on the obtained results, the adsorption of spent oil with higher viscosity was better than crude oil. The biosorption of oil hydrocarbons from seawater was more efficient than freshwater. The algal biomasses which are abundantly available could be effectively used as a low-cost and environmentally friendly adsorbent for remediation of oil spill in the marine environments or in the water and wastewater treatment.

  8. HEALTH AND ECOLOGICAL IMPACTS OF HARMFUL ALGAL BLOOMS: RISK ASSESSMENT NEEDS

    EPA Science Inventory

    The symposium session, Indicators for Effects and Predictions of Harmful Algal Blooms, explored the current state of indicators used to assess the human health and ecological risks caused by harmful algal blooms, and highlighted future needs and impediments that must be overcome...

  9. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.

    PubMed

    Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2012-04-01

    The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis. Copyright © 2011 Wiley Periodicals, Inc.

  10. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR).

    PubMed

    Cao, Yongfeng; Zhang, Chaosheng; Rong, Hongwei; Zheng, Guilin; Zhao, Limin

    2017-01-01

    The effect of dissolved oxygen concentration (DO) on simultaneous nitrification and denitrification was studied in a moving bed sequencing batch reactor (MBSBR) by microelectrode measurements and by real-time PCR. In this system, the biofilm grew on polyurethane foam carriers used to treat municipal sewage at five DO concentrations (1.5, 2.5, 3.5, 4.5 and 5.5 mg/L). The results indicated that the MBSBR exhibited good removal of chemical oxygen demand (92.43%) and nitrogen (83.73%) when DO concentration was 2.5 mg/L. Increasing the oxygen concentration in the reactor was inhibitory to denitrification. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.2 to 2.6 mm when the DO concentration (from 1.5 mg/L to 5.5 mg/L) in the system increased. Oxygen diffusion was not significantly limited by the boundary layer surrounding the carrier and had the largest slope when DO concentration was 2.5 mg/L. The real-time PCR analysis indicated that the amount of the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria increased slowly as DO concentration increased. The proportions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as a percentage of the total bacteria, were low with average values of 0.063% and 0.67%, respectively. When the DO concentration was 2.5 mg/L, oxygen diffusion was optimal and ensured the optimal bacterial community structure and activity; under these conditions, the MBSBR was efficient for total inorganic nitrogen removal. Changing the DO concentration could alter the aerobic zone and the bacterial community structure in the biofilm, directly influencing the simultaneous nitrification and denitrification activity in MBSBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Medication waste reduction in pediatric pharmacy batch processes.

    PubMed

    Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott

    2014-04-01

    To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.

  13. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal massmore » culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.« less

  14. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Stabilization of benthic algal biomass in a temperate stream draining agroecosystems.

    PubMed

    Ford, William I; Fox, James F

    2017-01-01

    Results of the present study quantified carbon sequestration due to algal stabilization in low order streams, which has not been considered previously in carbon stream ecosystem studies. The authors used empirical mode decomposition of an 8-year carbon elemental and isotope dataset to quantify carbon accrual and fingerprint carbon derived from algal stabilization. The authors then applied a calibrated, process-based stream carbon model (ISOFLOC) that elicits further evidence of algal stabilization. Data and modeling results suggested that processes of shielding and burial during an extreme hydrologic event enhance algal stabilization. Given that previous studies assumed stream algae are turned over or sloughed downstream, the authors performed scenario simulations of the calibrated model in order to assess how changing environmental conditions might impact algae stabilization within the stream. Results from modeling scenarios showed an increase in algal stabilization as mean annual water temperature increases ranging from 0 to 0.04 tC km -2  °C -1 for the study watershed. The dependence of algal stabilization on temperature highlighted the importance of accounting for benthic fate of carbon in streams under projected warming scenarios. This finding contradicts the evolving paradigm that net efflux of CO 2 from streams increases with increasing temperatures. Results also quantified sloughed algae that is transported and potentially stabilized downstream and showed that benthos-derived sloughed algae was on the same order of magnitude, and at times greater, than phytoplankton within downstream water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The engine of the reef: photobiology of the coral–algal symbiosis

    PubMed Central

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  17. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, Stephen P.

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between sixmore » academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.« less

  18. Algal dermatitis in cichlids.

    PubMed

    Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K

    2002-05-01

    Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.

  19. Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

    NASA Astrophysics Data System (ADS)

    Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John

    2017-06-01

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

  20. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor

    PubMed Central

    Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong

    2014-01-01

    Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter. PMID:28788161

  1. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor.

    PubMed

    Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong

    2014-08-11

    Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.

  2. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  3. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus.

    PubMed

    Green, B J; Li, W Y; Manhart, J R; Fox, T C; Summer, E J; Kennedy, R A; Pierce, S K; Rumpho, M E

    2000-09-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO(2) fixation for at least 9 months if provided with only light and a source of CO(2). Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.

  4. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  5. Medication Waste Reduction in Pediatric Pharmacy Batch Processes

    PubMed Central

    Veltri, Michael A.; Hamrock, Eric; Mollenkopf, Nicole L.; Holt, Kristen; Levin, Scott

    2014-01-01

    OBJECTIVES: To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. METHODS: A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. RESULTS: Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. CONCLUSIONS: The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste. PMID:25024671

  6. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.

    PubMed

    Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul

    2015-12-01

    Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.

  7. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  8. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    PubMed

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  10. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    PubMed

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  11. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ingredients used; (j) Formula number; (k) Quantity of ingredients used in the batch that have been previously... product transferred; (q) Batch gain or loss; and (r) For each batch to be tax determined in accordance...

  12. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredients used; (j) Formula number; (k) Quantity of ingredients used in the batch that have been previously... product transferred; (q) Batch gain or loss; and (r) For each batch to be tax determined in accordance...

  13. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredients used; (j) Formula number; (k) Quantity of ingredients used in the batch that have been previously... product transferred; (q) Batch gain or loss; and (r) For each batch to be tax determined in accordance...

  14. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredients used; (j) Formula number; (k) Quantity of ingredients used in the batch that have been previously... product transferred; (q) Batch gain or loss; and (r) For each batch to be tax determined in accordance...

  15. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    USGS Publications Warehouse

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be

  16. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    PubMed

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon.

    PubMed

    Ibrahim, Wael M; Salim, Emad H; Azab, Yahia A; Ismail, Abdel-Hamid M

    2016-10-01

    Microcystins (MCs) are the most potent toxins that can be produced by cyanobacteria in drinking water supplies. This study investigated the abundance of toxin-producing algae in 11 drinking water treatment plants (DWTPs). A total of 26 different algal taxa were identified in treated water, from which 12% were blue green, 29% were green, and 59% were diatoms. MC levels maintained strong positive correlations with number of cyanophycean cells in raw and treated water of different DWTPs. Furthermore, the efficiency of various algal-based adsorbent columns used for the removal of these toxins was evaluated. The MCs was adsorbed in the following order: mixed algal-activated carbon (AAC) ≥ individual AAC > mixed algal powder > individual algal powder. The results showed that the AAC had the highest efficient columns capable of removing 100% dissolved MCs from drinking water samples, thereby offering an economically feasible technology for efficient removal and recovery of MCs in DWTPs. © The Author(s) 2015.

  18. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Visible‐Light‐Mediated Selective Arylation of Cysteine in Batch and Flow

    PubMed Central

    Bottecchia, Cecilia; Rubens, Maarten; Gunnoo, Smita B.; Hessel, Volker; Madder, Annemieke

    2017-01-01

    Abstract A mild visible‐light‐mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal‐free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine‐containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate‐buffered saline (PBS) buffer) within a short reaction time. PMID:28805276

  20. The mechanism of enhanced wastewater nitrogen removal by photo-sequencing batch reactors based on comprehensive analysis of system dynamics within a cycle.

    PubMed

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos

    2018-07-01

    To understand the mechanism of enhanced nitrogen removal by photo-sequencing batch reactors (photo-SBRs), which incorporated microalgal photosynthetic oxygenation into the aerobic phases of a conventional cycle, this study performed comprehensive analysis of one-cycle dynamics. Under a low aeration intensity (about 0.02 vvm), a photo-SBR, illuminated with light at 92.27 μ·mol·m -2 ·s -1 , could remove 99.45% COD, 99.93% NH 4 + -N, 90.39% TN, and 95.17% TP, while the control SBR could only remove 98.36% COD, 83.51% NH 4 + -N, 78.96% TN, and 97.75% TP, for a synthetic domestic sewage. The specific oxygen production rate (SOPR) of microalgae in the photo-SBR could reach 6.63 fmol O 2 ·cell -1 ·h -1 . One-cycle dynamics shows that the enhanced nitrogen removal by photo-SBRs is related to photosynthetic oxygenation, resulting in strengthened nitrification, instead of direct nutrient uptake by microalgae. A too high light or aeration intensity could deteriorate anoxic conditions and thus adversely affect the removal of TN and TP in photo-SBRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    PubMed

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  2. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  3. A direct comparison of U.S. Environmental Protection Agency's method 304B and batch tests for determining activated-sludge biodegradation rate constants for volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, M.L.; Wilcox, M.E.; Compernolle, R. van

    Biodegradation rate constants for volatile organic compounds (VOCs) in activated-sludge systems are needed to quantify emissions. One current US environmental Protection Agency method for determining a biodegradation rate constant is Method 304B. In this approach, a specific activated-sludge unit is simulated by a continuous biological treatment system with a sealed headspace. Batch experiments, however, can be alternatives to Method 304B. Two of these batch methods are the batch test that uses oxygen addition (BOX) and the serum bottle test (SBT). In this study, Method 304B was directly compared to BOX and SBT experiments. A pilot-scale laboratory reactor was constructed tomore » serve as the Method 304B unit. Biomass from the unit was also used to conduct BOX and modified SBT experiments (modification involved use of a sealed draft-tube reactor with a headspace recirculation pump instead of a serum bottle) for 1,2-dichloroethane, diisopropyl ether, methyl tertiary butyl ether, and toluene. Three experimental runs--each consisting of one Method 304B experiment, one BOX experiment, and one modified SBT experiment--were completed. The BOX and SBT data for each run were analyzed using a Monod model, and best-fit biodegradation kinetic parameters were determined for each experiment, including a first-order biodegradation rate constant (K{sub 1}). Experimental results suggest that for readily biodegradable VOCs the two batch techniques can provide improved means of determining biodegradation rate constants compared with Method 304B. In particular, these batch techniques avoid the Method 304B problem associated with steady-state effluent concentrations below analytical detection limits. However, experimental results also suggest that the two batch techniques should not be used to determine biodegradation rate constants for slowly degraded VOCs (i.e., K{sub 1} {lt} 0.1 L/g VSS-h).« less

  4. Algal cell disruption using microbubbles to localize ultrasonic energy

    PubMed Central

    Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.

    2015-01-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188

  5. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community.

    PubMed

    Rosemond, A D

    1993-07-01

    Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.

  6. Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nie, Yixiang

    Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.

  7. Integration of ozonation and an anaerobic sequencing batch reactor (AnSBR) for the treatment of cherry stillage.

    PubMed

    Alvarez, Pedro M; Beltrán, Fernando J; Rodríguez, Eva M

    2005-01-01

    Cherry stillage is a high strength organic wastewater arising from the manufacture of alcoholic products by distillation of fermented cherries. It is made up of biorefractory polyphenols in addition to readily biodegradable organic matter. An anaerobic sequencing batch reactor (AnSBR) was used to treat cherry stillage at influent COD ranging from 5 to 50 g/L. Different cycle times were selected to test biomass organic loading rates (OLR(B)), from 0.3 to 1.2 g COD/g VSS.d. COD and TOC efficiency removals higher than 80% were achieved at influent COD up to 28.5 g/L but minimum OLR(B) tested. However, as a result of the temporary inhibition of acetogens and methanogens, volatile fatty acids (VFA) noticeably accumulated and methane production came to a transient standstill when operating at influent COD higher than 10 g/L. At these conditions, the AnSBR showed signs of instability and could not operate efficiently at OLR(B) higher than 0.3 g COD/g VSS.d. A feasible explanation for this inhibition is the presence of toxic polyphenols in cherry stillage. Thus, an ozonation step prior to the AnSBR was observed to be useful, since more than 75% of polyphenols could be removed by ozone. The integrated process was shown to be a suitable treatment technology as the following advantages compared to the single AnSBR treatment were observed: greater polyphenols and color removals, higher COD and TOC removal rates thus enabling the process to effectively operate at higher OLR, higher degree of biomethanation, and good stability with less risk of acidification.

  8. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    PubMed

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. GIDEP Batching Tool

    NASA Technical Reports Server (NTRS)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  10. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cynthia S.; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  11. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.

    PubMed

    Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun

    2017-08-01

    In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.

  12. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  13. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    PubMed

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  14. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed Central

    Van Dolah, F M

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729

  15. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.

    PubMed

    Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas

    2014-10-01

    The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    PubMed

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors

    PubMed Central

    Jiang, Cong; Hu, Haidong; Ma, Haijun; Gao, Xingsheng; Ren, Hongqiang

    2017-01-01

    This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs. PMID:28640897

  18. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors.

    PubMed

    Jiang, Cong; Geng, Jinju; Hu, Haidong; Ma, Haijun; Gao, Xingsheng; Ren, Hongqiang

    2017-01-01

    This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs.

  19. Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol.

    PubMed

    Buitrón, Germán; Moreno-Andrade, Iván; Arellano-Badillo, Víctor M; Ramírez-Amaya, Víctor

    2014-01-01

    The membrane fouling of an aerobic granular reactor coupled with a submerged membrane in a sequencing batch reactor (SBR) was evaluated. The fouling analysis was performed by applying microscopy techniques to determine the morphology and structure of the fouling layer on a polyvinylidene fluoride membrane. It was found that the main cause of fouling was the polysaccharide adsorption on the membrane surface, followed by the growth of microorganisms to form a biofilm.

  20. Hydrogen production from algal biomass - Advances, challenges and prospects.

    PubMed

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing,more » Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.« less

  2. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    PubMed

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge.

  3. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  5. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    PubMed

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.

  6. 7 CFR 58.728 - Cooking the batch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the optional...

  7. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  8. The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater.

    PubMed

    Shariati, Seyed Ramin Pajoum; Bonakdarpour, Babak; Zare, Nasim; Ashtiani, Farzin Zokaee

    2011-09-01

    The use of membrane sequencing batch reactors, operated at HRT of 8, 16 and 24h, was considered for the treatment of a synthetic petroleum wastewater. Increase in HRT resulted in statistically significant decrease in MLSS. Removal efficiencies higher than 97% were found for the three model hydrocarbon pollutants at all HRTs, with air stripping making a small contribution to overall removal. Particle size distribution (PSD) and microscopic analysis showed reduction in the protozoan populations in the activated sludge with decreasing HRT. PSD analysis also showed a higher proportion of larger and smaller sized particles at the lowest HRT. The rate of membrane fouling was found to increase with decreasing HRT; SMP, especially carbohydrate SMP, and mixed liquor apparent viscosity also showed a pronounced increase with decreasing HRT, whereas the concentration of EPS and its components decreased. FTIR analysis identified organic compounds as the main component of membrane pore fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  10. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  11. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Carpenter, K.D.; Waite, I.R.

    2000-01-01

    Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.

  12. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase

    DOE PAGES

    Wang, Jun; Liu, Xi; Wang, Xu -Dong; ...

    2016-08-18

    Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7 °C) and decrease ofmore » crystallizing point (3 °C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from 212.3 to 14.6 per batch with the microreactor. Altogether, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.« less

  13. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Xi; Wang, Xu -Dong

    Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7 °C) and decrease ofmore » crystallizing point (3 °C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from 212.3 to 14.6 per batch with the microreactor. Altogether, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.« less

  14. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase.

    PubMed

    Wang, Jun; Liu, Xi; Wang, Xu-Dong; Dong, Tao; Zhao, Xing-Yu; Zhu, Dan; Mei, Yi-Yuan; Wu, Guo-Hua

    2016-11-01

    Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7°C) and decrease of crystallizing point (3°C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from $212.3 to $14.6 per batch with the microreactor. Overall, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; ...

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  16. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  17. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  18. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  19. [Effects of outbreak and extinction of algal blooms on the microbial community structure in sediments of Chaohu Lake].

    PubMed

    Diao, Xiao-jun; Li, Yi-wei; Wang, Shu-guang

    2015-01-01

    Although impacts of algal bloom on the physicochemical and biological properties of water and sediment in many lakes have been largely studied, less attention is paid to the impact of outbreak and extinction of algal blooms on the microbial community structure in sediment. In this study, outbreak and extinction of algal blooms and their effects on the microbial community structure in sediment of Chaohu Lake were studied by PCR-DGGE method. The results showed that algal blooms formed between May 15 and June 20, sustained from June 20 to September 5, and then went into extinction. In the region without algal blooms, PCR-DGGE analysis showed that microbial species, Shannon-Wiener diversity index and Simpson dominance index changed slightly over time; moreover, the microbial community structure had high similarity during the whole study. Temperature may be the main factor affecting the fluctuation of the microbial community structure in this region. In the region with algal blooms, however, microbial species and Shannon-Wiener diversity index were higher during the formation and extinction of algal blooms and lower in the sustaining blooms stage than those in the region without algal blooms. But the Simpson dominance index showed the opposite trend over time. In addition, the microbial community structure had low similarity during the whole study. The results suggested that outbreak and extinction of algal blooms produced different effects on the microbial community structure and the dominant microbial species, which may be related to the variation of water properties caused by temperature and algal blooms. This study showed that outbreak and extinction of algal blooms caused different effects on microbes in lake sediment, and this is significantly important to deeply evaluate the effects of algal bloom on the aquatic ecosystem of the lake and effectively control algal blooms using sediment microbes.

  20. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  1. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  2. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  3. NDA BATCH 2002-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits.more » The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.« less

  4. Batch Model for Batched Timestamps Data Analysis with Application to the SSA Disability Program

    PubMed Central

    Yue, Qingqi; Yuan, Ao; Che, Xuan; Huynh, Minh; Zhou, Chunxiao

    2016-01-01

    The Office of Disability Adjudication and Review (ODAR) is responsible for holding hearings, issuing decisions, and reviewing appeals as part of the Social Security Administration’s disability determining process. In order to control and process cases, the ODAR has established a Case Processing and Management System (CPMS) to record management information since December 2003. The CPMS provides a detailed case status history for each case. Due to the large number of appeal requests and limited resources, the number of pending claims at ODAR was over one million cases by March 31, 2015. Our National Institutes of Health (NIH) team collaborated with SSA and developed a Case Status Change Model (CSCM) project to meet the ODAR’s urgent need of reducing backlogs and improve hearings and appeals process. One of the key issues in our CSCM project is to estimate the expected service time and its variation for each case status code. The challenge is that the systems recorded job departure times may not be the true job finished times. As the CPMS timestamps data of case status codes showed apparent batch patterns, we proposed a batch model and applied the constrained least squares method to estimate the mean service times and the variances. We also proposed a batch search algorithm to determine the optimal batch partition, as no batch partition was given in the real data. Simulation studies were conducted to evaluate the performance of the proposed methods. Finally, we applied the method to analyze a real CPMS data from ODAR/SSA. PMID:27747132

  5. Novel duplex vapor: Electrochemical method for silicon solar cells. [chemical reactor for a silicon sodium reaction system

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Sancier, K.

    1979-01-01

    The scaled up chemical reactor for a SiF4-Na reaction system is examined for increased reaction rate and production rate. The reaction system which now produces 5 kg batches of mixed Si and NaF is evaluated. The reactor design is described along with an analysis of the increased capacity of the Na chip feeder. The reactor procedure is discussed and Si coalescence in the reaction products is diagnosed.

  6. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.

    PubMed

    Lam, Alan Tin-Lun; Li, Jian; Toh, Jessica Pei-Wen; Sim, Eileen Jia-Hui; Chen, Allen Kuan-Liang; Chan, Jerry Kok-Yen; Choolani, Mahesh; Reuveny, Shaul; Birch, William R; Oh, Steve Kah-Weng

    2017-03-01

    Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm 3 ) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm 3 ) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 10 4 cells/cm 2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 10 4 cells/cm 2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with

  7. Managing variability in algal biomass production through drying and stabilization of feedstock blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.

    The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and

  8. Managing variability in algal biomass production through drying and stabilization of feedstock blends

    DOE PAGES

    Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.; ...

    2017-03-22

    The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and

  9. How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.

    2016-12-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the

  10. Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor.

    PubMed

    Wang, Jingyin; Rong, Hongwei; Zhang, Chaosheng

    2018-05-01

    The effect of dissolved oxygen concentration (DO) during simultaneous nitrification and denitrification (SND) was investigated in a sequencing batch biofilm reactor (SBBR). In addition, the removal rates of nitrogen and bacterial communities were investigated under different concentrations of DO (1.5, 3.5, and 4.5 mg/L). When the SND rate was 95.22%, the chemical oxygen demand and nitrogen removal was 92.22% and 84.15%, respectively, at 2.5 mg/L DO. The denitrification was inhibited by the increase of oxygen concentration. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.0 mm to 2.7 mm when the DO concentration increased from 1.5 mg/L to 5.5 mg/L. The current location of the aerobic and anaerobic layers in the biofilm was determined for analysis of the microbial community. High-throughput sequencing analysis revealed the communities of the biofilm approached similar structure and composition. Uliginosibacterium species, biofilm-forming bacteria Zoogloea species and Acinetobacter species were dominant. In the aerobic layer, phyla Betaproteobacteria and Saprospirae were predominant, the major phyla were shifted from Proteobacteria followed by Firmicutes and Bacteroidetes, which comprised 82% of the total sequences during the SND period. Anaerolineae was dominated in the anaerobic layer. The high abundance of Nitrospira in the aerobic biofilm provides evidence of the SND system performing better at ammonia oxidization. In addition, real-time PCR indicated that the amount of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) matched the Nitrospirales and Nitrosomonadales abundance well. Collectively, this study demonstrated the dynamics of key bacterial communities in the SND system were highly influenced by the DO concentration. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms.

    PubMed

    Pendashteh, A R; Fakhru'l-Razi, A; Chuah, T G; Radiah, A B Dayang; Madaeni, S S; Zurina, Z A

    2010-10-01

    Produced water or oilfield wastewater is the largest volume ofa waste stream associated with oil and gas production. The aim of this study was to investigate the biological pretreatment of synthetic and real produced water in a sequencing batch reactor (SBR) to remove hydrocarbon compounds. The SBR was inoculated with isolated tropical halophilic microorganisms capable of degrading crude oil. A total sequence of 24 h (60 min filling phase; 21 h aeration; 60 min settling and 60 min decant phase) was employed and studied. Synthetic produced water was treated with various organic loading rates (OLR) (0.9 kg COD m(-3) d(-1), 1.8 kg COD m(-3) d(-1) and 3.6 kg COD m(-3) d(-1)) and different total dissolved solids (TDS) concentration (35,000 mg L(-1), 100,000 mg L(-1), 150,000 mg L(-1), 200,000 mg L(-1) and 250,000 mg L(-1)). It was found that with an OLR of 0.9 kg COD m(-3) d(-1) and 1.8 kg COD m(-3) d(-1), average oil and grease (O&G) concentrations in the effluent were 7 mg L(-1) and 12 mg L(-1), respectively. At TDS concentration of 35,000 mg L(-1) and at an OLR of 1.8 kg COD m(-3)d(-1), COD and O&G removal efficiencies were more than 90%. However, with increase in salt content to 250,000 mg L(-1), COD and O&G removal efficiencies decreased to 74% and 63%, respectively. The results of biological treatment of real produced water showed that the removal rates of the main pollutants of wastewater, such as COD, TOC and O&G, were above 81%, 83%, and 85%, respectively.

  12. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    NASA Astrophysics Data System (ADS)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  13. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L.

  14. Algal Data from Selected Sites in the Upper Colorado River Basin, Colorado, Water Years 1996-97

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2001-01-01

    Algal community samples were collected at 15 sites in the Upper Colorado River Basin in Colorado as part of the National Water-Quality Assessment Program during water years 1996-97. Sites sampled were located in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateaus, and represented agricultural, mining, urban, and mixed land uses and background conditions. Algal samples were collected once per year during low-flow conditions. Quantitative algal samples were collected within two targeted instream habitat types including a taxonomically richest-targeted habitat and a depositional-targeted habitat. This report presents the algal community data collected at the fixed sites in the Upper Colorado River Basin study unit. Algal data include densities (abundance of cells per square centimeter of substrate) and biovolumes (cubic micrometers of cells per square centimeter of substrate) for the two habitat types. Quality-assurance and quality-control results for algal samples indicate that the largest sampling variability tends to occur in samples from small streams.

  15. Early detection of protozoan grazers in algal biofuel cultures.

    PubMed

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range <20->80 μm in length) in the presence of algae. Detection limits were <10 cells ml(-1) for both "large" and "small" model grazers, Euplotes vannus (80 × 45 μm) and an unidentified holotrichous ciliate (~18 × 8 μm) respectively. Furthermore, the system can distinguish the presence of ciliates in N. oculata cultures with biotechnologically relevant cell densities; i.e. >1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days).

  17. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    USDA-ARS?s Scientific Manuscript database

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  18. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    DTIC Science & Technology

    2017-07-28

    report is to review and evaluate available information regarding reservoir operation strategies for management of harmful algal ERDC/EL TR-17-11 2...health. Resource managers are challenged to consider de- tailed information such as algal growth patterns, environmental conditions, dominant...need to be specifically tailored to the situa- tion at hand and managers must be flexible in their approach, taking into consideration new information

  19. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance.

    PubMed

    Lee, Sang Myeon; Park, Kwang Hyun; Jung, Seungon; Park, Hyesung; Yang, Changduk

    2018-05-14

    For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (M w ) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high M w and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.

  1. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.

    PubMed

    Türker, Onur Can; Yakar, Anıl; Gür, Nurcan

    2017-02-15

    The present study assesses ability of Lemna gibba L. using a batch reactor approach to bioaccumulation boron (B) from irrigation waters which were collected from a stream in largest borax reserve all over the world. The important note that bioaccumulation of B from irrigation water was first analyzed for first time in a risk assessment study using a Lemna species exposed to various B concentrations. Boron toxicity was evaluated through plant growth and biomass production during phytoremediation process. The result from the present experiment indicated that L. gibba was capable of removing 19-63% B from irrigation water depending upon contaminated level or initial concentration. We also found that B was removed from aqueous solution following pseudo second order kinetic model and Langmuir isotherm model better fitted equilibrium obtained for B phytoremediation. Maximum B accumulation in L. gibba was determined as 2088mgkg -1 at average inflow B concentration 17.39mgL -1 at the end of the experiment. Conversely, maximum bioconcentration factor obtained at lowest inflow B concentrations were 232 for L. gibba. The present study suggested that L. gibba was very useful B accumulator, and thus L. gibba-based techniques could be a reasonable phytoremediation option to remove B directly from water sources contaminated with B. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. EMISSIONS REDUCTION OF COMMERCIAL GLASSMAKING USING SELECTIVE BATCHING

    EPA Science Inventory

    The vertical bubble populations of selectively batched melts were compared to the vertical bubble populations of conventionally batched melts. “Conventional” refers to the use of a powdered batch. Bubble position and diameter measurements were taken on 24 crucibles...

  3. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.

  4. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  5. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates

  6. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth.

  7. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Bauter, M; Marone, P

    2012-10-01

    DHA-rich algal oil ONC-T18, tested in a battery of in vitro and in vivo genotoxicity tests, did not show mutagenic or genotoxic potential. The acute oral LD50 in rats has been estimated to be greater than 5000 mg/kg of body weight. In a 90-day subchronic dietary study, administration of DHA-rich algal oil at concentrations of 0, 10,000, 25,000, and 50,000 ppm in the diet for 13 weeks did not produce any significant toxicologic manifestations. The algal oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral endpoints, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, or necropsy findings. The no observed adverse effect level (NOAEL) was the highest level fed of 50,000 ppm which is equivalent to 3,305 and 3,679 mg/kg bw/day, for male and female rats, respectively. The studies were conducted as part of an investigation to examine the safety of DHA-rich algal oil. The results confirm that it possesses a toxicity profile similar to other currently marketed algal oils and support the safety of DHA-rich algal oil for its proposed use in food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in R with batch.

    PubMed

    Hoffmann, Thomas J

    2011-03-01

    It is often useful to rerun a command line R script with some slight change in the parameters used to run it - a new set of parameters for a simulation, a different dataset to process, etc. The R package batch provides a means to pass in multiple command line options, including vectors of values in the usual R format, easily into R. The same script can be setup to run things in parallel via different command line arguments. The R package batch also provides a means to simplify this parallel batching by allowing one to use R and an R-like syntax for arguments to spread a script across a cluster or local multicore/multiprocessor computer, with automated syntax for several popular cluster types. Finally it provides a means to aggregate the results together of multiple processes run on a cluster.

  9. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    PubMed

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    PubMed

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  11. Long-term effects of nickel oxide nanoparticles on performance, microbial enzymatic activity, and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao

    2017-02-01

    The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  13. Transformation products of clindamycin in moving bed biofilm reactor (MBBR).

    PubMed

    Ooi, Gordon T H; Escola Casas, Monica; Andersen, Henrik R; Bester, Kai

    2017-04-15

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs applied in the effluent of conventional wastewater treatment plants to remove clindamycin. First, a batch experiment was executed with a high initial concentration of clindamycin to identify the transformation products. It was shown that clindamycin can be removed from wastewater by MBBR and the treatment process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments using MBBR carriers from polishing and nitrifying reactors. Additionally, the presence of these two metabolites in biofilm-free wastewater effluent was studied. The nitrifying biofilm reactor had a higher biological activity with k-value of 0.1813 h -1 than the reactor with polishing biofilm (k = 0.0161 h -1 ) which again has a much higher biological activity for removal of clindamycin than of the suspended bacteria (biofilm-free control). Clindamycin sulfoxide was the main transformation product which was found in concentrations exceeding 10% of the initial clindamycin concentration after 1 day of MBBR treatment. Thus, MBBRs should not necessarily be considered as reactors mineralizing clindamycin as they perform transformation reactions at least to some extent. Copyright

  14. [Batch release of immunoglobulin and monoclonal antibody products].

    PubMed

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  15. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor.

    PubMed

    Betancur, Manuel J; Moreno-Andrade, Iván; Moreno, Jaime A; Buitrón, Germán; Dochain, Denis

    2008-06-01

    The degradation of toxic compounds in Sequencing Batch Reactors (SBRs) poses inhibition problems. Time Optimal Control (TOC) methods may be used to avoid such inhibition thus exploiting the maximum capabilities of this class of reactors. Biomass and substrate online measurements, however, are usually unavailable for wastewater applications, so TOC must use only related variables as dissolved oxygen and volume. Although the standard mathematical model to describe the reaction phase of SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better details are needed to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for a reasonable complexification tradeoff. Additionally, a new way to look at the Haldane K-parameters (micro(o),K(I),K(S)) is described, the S-parameters (micro*,S*,S(m)). These parameters do have a clear physical meaning and, unlike the K-parameters, allow for the statistical treatment to find a single model to fit data from multiple experiments.

  17. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  18. PROCESS INTENSIFICATION: OXIDATION OF BENZYL ALCOHOL USING A CONTINUOUS ISOTHERMAL REACTOR UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...

  19. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  20. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  1. Progress on lipid extraction from wet algal biomass for biodiesel production.

    PubMed

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    NASA Astrophysics Data System (ADS)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  3. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genomemore » sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  4. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  5. Harmful algal blooms and public health.

    PubMed

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom-related illnesses are ciguatera poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning, and diarrhetic shellfish poisoning. Although these exposures result from exposure to different toxins or toxin congeners, these clinical syndromes have much in common. Exposure occurs through the consumption of fish, shellfish, or through exposure to aerosolized NSP toxins. Routine clinical tests are not available for the diagnosis of harmful algal bloom related illnesses, there is no known antidote for exposure, and the risk of these illnesses can negatively impact local fishing and tourism industries. The absence of exposure risk or diagnostic certainty can also precipitate a chain of events that results in considerable psychological distress for coastal populations. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, further transdisciplinary research, close communication and collaboration are needed among HAB scientists, public health researchers, and local, state and tribal health departments at academic, community outreach, and policy levels. Copyright © 2016. Published by Elsevier B.V.

  6. 40 CFR 63.1321 - Batch process vents provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1321 Batch process vents..., owners and operators of new and existing affected sources with batch process vents shall comply with the... applicable reporting requirements in § 63.1327. (b) New SAN batch affected sources. Owners and operators of...

  7. Reeling in the damages: Harmful algal blooms' impact on Lake Erie's recreational fishing industry.

    PubMed

    Wolf, David; Georgic, Will; Klaiber, H Allen

    2017-09-01

    Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars in benefits each year to recreationalists, homeowners and local governments. The ecosystem services provided by Lake Erie, however, are under threat due to harmful algal blooms. This paper provides recreational damage estimates using spatially and temporally varying algae measures and monthly fishing permit sales collected between 2011 and 2014. Results indicate that fishing license sales drop between 10% and 13% when algal conditions surpass the World Health's Organization's moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 3600 fewer fishing licenses issued and approximately $2.25 million to $5.58 million in lost fishing expenditures. Our results show a discrete jump in reduced angling activity upon crossing this threshold, with limited additional impacts associated with more severe algal blooms. This suggests that policies aimed at eliminating, rather than mitigating, algal levels are most beneficial to the Ohio angling industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    PubMed Central

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  9. The One Health Approach to Harmful Algal Blooms

    EPA Pesticide Factsheets

    An article by EPA researcher Betsy Hilborn describes how using a One Health approach could help address and reduce the risks associated with harmful algal blooms on human, animal, and environmental health.

  10. Batching System for Superior Service

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  11. Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.

    2018-02-01

    We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.

  12. Microchannel Reactor System for Catalytic Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal; Woo Lee; Ron Besser

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less

  13. Harmful algal bloom smart device application: using image analysis and machine learning techniques for classification of harmful algal blooms

    EPA Science Inventory

    Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...

  14. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  15. Microbial ureolysis in the seawater-catalysed urine phosphorus recovery system: Kinetic study and reactor verification.

    PubMed

    Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao

    2015-12-15

    Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Photos of Lakes Before and After Algal Blooms

    EPA Pesticide Factsheets

    Nutrient pollution can cause algal blooms that are sometimes toxic and always unsightly. The photos on this page show lakes and ponds around the country that have been impacted by this environmental problem.

  17. Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers.

    PubMed

    Lee, Yeonjung; Lee, Bomi; Hur, Jin; Min, Jun-Oh; Ha, Sun-Yong; Ra, Kongtae; Kim, Kyung-Tae; Shin, Kyung-Hoon

    2016-05-01

    In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with (13)C and (15)N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.

  18. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.

    PubMed

    Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B

    2005-06-01

    This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.

  19. A trait-based framework for stream algal communities.

    PubMed

    Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David

    2016-01-01

    The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a

  20. Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor.

    PubMed

    Rodriguez, Nicolas; Hansen, Henrik K; Nunez, Patricio; Guzman, Jaime

    2008-07-01

    This work shows the results of four Electro-Fenton laboratory tests to reduce the chemical oxygen demand (COD) in spent caustic solutions. The treatment consisted of (i) a pH reduction followed by (ii) an Electro-Fenton process, which was analyzed in this work. The Fenton's reagent was produced in a specially designed reactor, where the waste stream flowed through a labyrinth made by ferrous plates. These plates acted as sacrificial anodes-releasing Fe(2 +) cations to the solution, where H(2)O(2) was also added. The Electro-Fenton process was analyzed varying the ferrous ion concentration ([Fe(+ 2)]), the spent caustic's initial temperature and the initial pH. Close to 95% removal of COD (from 8800 mg L(- 1)) was achieved at a pH of 4, a temperature of 40 degrees C and 100 mg L(- 1) of Fe(+ 2) (applying 1 A). Two models were considered to simulate the behavior of the reactor considering (i) axial dispersion and (ii) kinetic rate, respectively. The model that was based on kinetics, proved to be the slightly closest fit to the experimental values.

  1. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.

    PubMed

    Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P

    2003-01-01

    Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.

  2. DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & MANUFACTURING COMPANY. BATCH STORAGE SILOS IN BACKGROUND - Chambers Window Glass Company, Batch Plant, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA

  3. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls.

    PubMed

    Yu, Xiaoqi; Cai, Guanjing; Wang, Hui; Hu, Zhong; Zheng, Wei; Lei, Xueqian; Zhu, Xiaoying; Chen, Yao; Chen, Qiuliang; Din, Hongyan; Xu, Hong; Tian, Yun; Fu, Lijun; Zheng, Tianling

    2018-01-05

    To find the potential algicidal microorganisms and apply them to prevent and terminate harmful algal blooms (HABs), we isolated an actinomycete U3 from Mangrove, which had a potent algicidal effect on the harmful alga Heterosigma akashiwo. It could completely lyse the algal cells by producing active compounds, which were highly sensitive to high temperature and strong alkaline, but resistant to acid. One μg/mL of crude extract of the fermentation supernatant could kill 70% of H. akashiwo cells in 3 d. Unlike most of the other known algicidal Streptomyces, U3 showed strong ability of proliferation with the algal inclusion as the nutrient source. The washed mycelial pellets also gradually exhibited significant algicidal effect during the visible growth in the algal culture. It suggests that U3 could efficiently absorb nutrients from algal culture to support its growth and produce algicidal compounds that might cause the autophagy of algal cells. Therefore, applying U3, as a long-term and environmentally friendly bio-agent to control the harmful blooms of H. akashiwo, would be effective and promising. And the decrease of bioavailable DOM and increase of bio-refractory DOM during the algicidal process of U3 provided new insights into the ecological influence of algicial microorganisms on marine ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of C/N ratio on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor treating saline wastewater.

    PubMed

    Wang, Zichao; Gao, Mengchun; Xin, Yanjun; Ma, Dong; She, Zonglian; Wang, Zhe; Sun, Changqing; Ren, Yun

    2014-01-01

    The effect of C/N ratio on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR) treating saline wastewater. The protein (PN) and protein/polysaccharide (PN/PS) ratio in the loosely bound EPS (LB-EPS) increased with the decrease of C/N ratio, whereas the PS in the LB-EPS decreased. The PS, PN and PN/PS ratio in the tightly bound EPS (TB-EPS) were independent of C/N ratio. Two fluorescence peaks in the LB-EPS and TB-EPS were identified at excitation/emission (Ex/Em) wavelengths of 275-280/335-340 nm and 220-225/330-340 nm by three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, respectively. These peaks in LB-EPS and TB-EPS were, respectively, associated with tryptophan protein-like substances and aromatic protein-like substances. The tryptophan protein-like fluorescence peaks in LB-EPS showed blue shift along the Ex axis and red shift along the Em axis with the decrease of C/N ratio. Fourier transform infrared spectra suggested that the variation of C/N ratio had more distinct effect on the functional groups of protein in the LB-EPS than those in the TB-EPS. The sludge volume index value decreased with the increase of LB-EPS, but there was no correlation between SVI and TB-EPS.

  6. Recycling of the Electronic Waste Applying the Plasma Reactor Technology

    NASA Astrophysics Data System (ADS)

    Lázár, Marián; Jasminská, Natália; Čarnogurská, Mária; Dobáková, Romana

    2016-12-01

    The following paper discusses a high-temperature gasification process and melting of electronic components and computer equipment using plasma reactor technology. It analyses the marginal conditions of batch processing, as well as the formation of solid products which result from the procedure of waste processing. Attention is also paid to the impact of the emerging products on the environment.

  7. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms

    EPA Science Inventory

    The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...

  8. Batch manufacturing: Six strategic needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ash, R.H.; Chappell, D.A.

    1995-08-01

    Since the advent of industrial digital control systems in the mid-1970s, industry has had the promise of integrated, configurable digital batch control systems to replace the morass of electromechanical devices like relays and stepping switches, recorders, and indicators which comprised the components of previous generations of batch control systems - the {open_quotes}monolithic monsters{close_quotes} of the 1960s and earlier. To help fulfill that promise, there have been many wide-ranging proprietary automation solutions for batch control since 1975, many of them technically excellent. However, even the best examples suffered from the lack of a common language and unifying concept permitting separate systemsmore » to be interconnected and work together. Today, some 20 years after the digital revolution began, industry has microprocessors, memory chips, data highways, and other marvelous technology to help automate the control of discontinuous processes. They also are on the way to having an accepted standard for batch automation, ISA S88. Batching systems are at once conceptually simple but executionally complex. The notion of adding ingredients one at a time to a vat, mixing, and then processing into final form is as old as the stone age. Every homemaker on earth, male or female, is familiar with how to follow a recipe to create some sumptuous item of culinary delight. Food recipes, so familiar and ubiquitous, are really just microcosms of the S88 recipe standard. They contain the same components: (1) Header (name and description of item being prepared, sometimes serving size); (2) Formula (list and amount of ingredients); (3) Equipment requirements (pans, mixing and cooking equipment); (4) Procedure (description of order of ingredient addition, mixing and other processing steps, baking/cooling time, and other processing steps); and (5) Other information (safety, cautions, and other miscellaneous instructions).« less

  9. Responding to Harmful Algal Blooms in Wyoming and on Tribal Lands in EPA Region 8

    EPA Pesticide Factsheets

    The Harmful Algal Blooms – Special Sampling and Response Actions webpage contains information about Background on Harmful Algae in Surface Waters and What to Do if Your System Has Indicators of an Algal Bloom.

  10. Batch Proving and Proof Scripting in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2007-01-01

    The batch execution modes of PVS are powerful, but highly technical, features of the system that are mostly accessible to expert users. This paper presents a PVS tool, called ProofLite, that extends the theorem prover interface with a batch proving utility and a proof scripting notation. ProofLite enables a semi-literate proving style where specification and proof scripts reside in the same file. The goal of ProofLite is to provide batch proving and proof scripting capabilities to regular, non-expert, users of PVS.

  11. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  12. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  13. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams.

    PubMed

    Black, Robert W; Moran, Patrick W; Frankforter, Jill D

    2011-04-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria.

  14. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  15. Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor.

    PubMed

    Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario

    2007-01-01

    The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.

  16. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    PubMed

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Feeding schemes and C/N ratio of a laboratory-scale step-fed sequencing batch reactor for liquid swine manure treatment.

    PubMed

    Wu, Sarah Xiao; Zhu, Jun; Chen, Lide

    2017-07-03

    This study was undertaken to investigate the effect of two split feeding schemes (600 mL/200 mL and 400 mL/400 mL, designated as FS1 and FS2, respectively) on the performance of a step-fed sequencing batch reactor (SBR) in treating liquid swine manure for nutrient removal. The SBR was run on an 8-h cycle with a repeated pattern of anaerobic/anoxic/aerobic phases in each cycle and the two feedings always occurred at the beginning of each anaerobic phase. A low-level aeration was used (1.0 L/m 3 .sec) for the anoxic/aerobic phase to facilitate nitrification and phosphorus uptake while reducing the energy consumption. The results showed that FS1 reduced NH 4 + -N by 98.7% and FS2 by 98.3%. FS1 had 12.3 mg/L NO 3 -N left in the effluent, while FS2 had 4.51 mg/L. For soluble phosphorus removal, FS1 achieved 95.2%, while FS2 reached only 68.5%. Both feeding schemes achieved ≥ 95% removal of COD. A good power regression was observed between total nitrogen (sum of all three nitrogen species) and the carbon to nitrogen (C/N) ratio, with the correlation coefficients of 0.9729 and 0.9542 for FS1 and FS2, respectively, based on which it was concluded that higher C/N ratios were required to achieve higher nitrogen removal efficiencies.

  18. Physicochemical Characteristics of Transferon™ Batches.

    PubMed

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  19. Physicochemical Characteristics of Transferon™ Batches

    PubMed Central

    Pérez-Sánchez, Gilberto; Favari, Liliana; Estrada-Parra, Sergio

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  20. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.