Science.gov

Sample records for algal batch reactor

  1. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine.

    PubMed

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.

  2. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    PubMed Central

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  3. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine.

    PubMed

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  4. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR).

    PubMed

    Wang, Meng; Yang, Han; Ergas, Sarina J; van der Steen, Peter

    2015-12-15

    Removal of nitrogen from anaerobically digested swine manure centrate was investigated in a photo-sequencing batch reactor (PSBR) with alternating light and dark periods. Microalgal photosynthesis was shown to provide enough oxygen for complete nitritation during the light period. With addition of an organic carbon source during the dark period, the reactor removed over 90% total nitrogen (TN) without aeration other than by mixing. Overall, 80% of the TN removal was through nitritation/denitritation and the rest was due to biomass uptake. The high concentrations of ammonia and nitrite and low dissolved oxygen concentration in the PSBR effectively inhibited nitrite oxidizing bacteria, resulting in stable nitritation. The hybrid microalgal photosynthesis and shortcut nitrogen removal process has the potential to substantially reduce aeration requirements for treatment of anaerobic digestion side streams. The PSBR also produced well settling biomass with sludge volume index of 62 ± 16 mL mg(-1). PMID:26378730

  5. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR).

    PubMed

    Wang, Meng; Yang, Han; Ergas, Sarina J; van der Steen, Peter

    2015-12-15

    Removal of nitrogen from anaerobically digested swine manure centrate was investigated in a photo-sequencing batch reactor (PSBR) with alternating light and dark periods. Microalgal photosynthesis was shown to provide enough oxygen for complete nitritation during the light period. With addition of an organic carbon source during the dark period, the reactor removed over 90% total nitrogen (TN) without aeration other than by mixing. Overall, 80% of the TN removal was through nitritation/denitritation and the rest was due to biomass uptake. The high concentrations of ammonia and nitrite and low dissolved oxygen concentration in the PSBR effectively inhibited nitrite oxidizing bacteria, resulting in stable nitritation. The hybrid microalgal photosynthesis and shortcut nitrogen removal process has the potential to substantially reduce aeration requirements for treatment of anaerobic digestion side streams. The PSBR also produced well settling biomass with sludge volume index of 62 ± 16 mL mg(-1).

  6. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors. PMID:24960016

  7. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.

  8. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph (a)(1) or...

  9. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Reactor batch process vent provisions... Resins § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph...

  10. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph (a)(1) or...

  11. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph (a)(1) or...

  12. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Reactor batch process vent provisions... Resins § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph...

  13. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  14. No-observed-effect concentrations in batch and continuous algal toxicity tests

    SciTech Connect

    Chao, M.R.; Chen, C.Y.

    2000-06-01

    In this study, the authors compare the no-observed-effect concentrations (NOECs) of Cd, Ni, Zn, Cu, and Pb based on different response parameters, using batch and continuous algal toxicity tests. For both batch and continuous tests, parameters based on total cell volume (TCV) were found to be less sensitive than those related to cell densities. The above observation mainly occurred because, under the stresses from metal toxicants evaluated in this and a previous study, the mean cell volume (MCV) of algae increased considerably. The increase of MCV compensates for the effects brought about by the reduction in cell density and eventually results in less variation in TCVs. This study shows that parameters based on cell density are quite sensitive and ideal for the estimation of NOECs. In addition, comparison of the NOEC values derived from different culture techniques shows that the continuous methods generally yields lower NOEC values than that obtained by the batch tests. The results of this study also indicate that the NOEC provides more protection to the test organism than the effective concentration at 10% growth reduction (EC10). For toxicity test methods that produce small variations among replicates, the NOEC is still a good indicator of low toxic effect. Furthermore, for the continuous algal toxicity test, a relatively simple approach is proposed to determine the NOEC values based on the algal culture's control charts. The proposed method produced identical results as those based on conventional hypothesis-testing methods.

  15. Dynamic Simulation of Batch Photocatalytic Reactor (BPR) for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Dutta, Suman

    2012-08-01

    Reactive dyes discharged from dyehouse causes a serious environmental problem. UV/TiO2 photocatalysis has been employed effectively for these organic dyes removal from dye-house effluent. This process produces less amount of non-toxic final product. In this paper a photocatalytic reactor has been designed for Reactive red 198 (RR198) removal from aqueous solution. The reactor is operating in batch mode. After each batch, TiO2 catalyst has been separated and recycled in the next batch. Mathematical model equation of this batch photocatalytic reactor (BPR) has been developed considering Langmuir-Hinshelwood kinetics. Simulation of BPR has been carried out using fourth order Runge-Kutta (RK) method and fifth order RK method (Butcher method). This simulation results can be used to develop an automatic photocatlytic reactor for industrial wastewater treatment. Catalyst activity decay and its effect on each batch have been incorporated in this model.

  16. Biodenitrification in Sequencing Batch Reactors. Final report

    SciTech Connect

    Silverstein, J.

    1996-01-23

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO{sub 3}{sub {minus}}) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995.

  17. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.

    PubMed

    Iman Shayan, Sahand; Agblevor, Foster A; Bertin, Lorenzo; Sims, Ronald C

    2016-07-01

    Rotating algal biofilm reactor (RABR) technology was successfully employed in an effective strategy to couple the removal of wastewater nutrients with accumulation of valuable bioproducts by grown algae. A secondary stage municipal wastewater was fed to the developed system and the effects of the hydraulic retention time (HRT) parameter on both nutrient removal and bioproduct production were evaluated under fed-batch operation mode. Two sets of bench scale RABRs were designed and operated with HRTs of 2 and 6days in order to provide competitive environment for algal growth. The HRT significantly affected nitrogen and phosphorus uptakes along with lipid and starch accumulations by microalgae in harvested biofilms. Domination of nitrogen removal in 2-day HRT with higher lipid accumulation (20% on dried weight basis) and phosphorus removal in 6-day HRT with higher starch production (27% on dried weight basis) was observed by comparing the performances of the RABRs in duplicate runs. PMID:27038261

  18. Sequencing batch biofilm reactor: from support design to reactor operation.

    PubMed

    Matos, M; Alves, C; Campos, J L; Brito, A G; Nogueira, R

    2011-07-01

    The aim of this work was to improve the overall understanding of sequencing batch biofilm reactors (SBBRs) from support selection (biofilm formation) to reactor operation (carbon and nitrogen removal). Supports manufactured with different materials and geometries were tested in 2.5 L SBBRs and it was observed that biofilm accumulation was favoured on the supports that presented a higher internal surface area. The geometry of the supports and the hydrodynamic conditions established in the SBBRs seemed to play a more important role in biofilm formation than the thermodynamic interaction, expressed as free energy of adhesion (deltaG), between the support material and the biomass. The support that presented the highest biofilm accumulation per unit of surface area (DupUM) was used in a 28 L SBBR and it was observed that, along a typical SBBR cycle, time profiles of nitrogen compounds showed the typical behaviour of nitrification and denitrification reactions. During the fill phase (without aeration) acetate was simultaneously consumed in biomass growth and denitrification. Immediately after the beginning of the aeration phase (without influent addition), acetate was depleted from the liquid phase and stored as poly-beta-hydroxybutyrate that was later on used in the growth of biomass, owing to the high oxygen concentration in the reactor.

  19. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year...

  20. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year...

  1. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Non-reactor batch process vent... Resins § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons...

  2. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year...

  3. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Non-reactor batch process vent... Resins § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons...

  4. Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor

    NASA Astrophysics Data System (ADS)

    Marwan; Suhendrayatna; Indarti, E.

    2015-06-01

    The present work was aimed to study the so-called direct transesterification of microalgae lipids to biodiesel in a batch microwave reactor. As a comparison, preparation of palm oil to biodiesel by alkaline catalyzed ethanolysis was also carried out. Palm oil biodiesel was recovered close to an equilibrium conversion (94-96% yield) under microwave heating for at least 6 min, while the conventional method required more than 45 minutes reaching the same yield. A very short reaction time suggests the benefit of microwave effect over conventional heating method in making biodiesel. FTIR analysis revealed the presence of fatty acid ethyl esters with no undesired chemical groups or compounds formed due to local heat generated by microwave effect, thus the conversion only followed transesterification route. Oil containing microalgae of Chlorella sp. isolated from the local brackish water pond was used as a potential source of biodiesel. High yield of biodiesel (above 0.6 g/g of dried algae) was also attainable for the direct transesterification of microalgae in the microwave reactor. Effect of water content of the algae biomass became insignificant at 11.9%(w/w) or less, related to the algae biomass dried for longer than 6 h. Fast transesterification of the algal oil towards equilibrium conversion was obtained at reaction time of 6 min, and at longer times the biodiesel yield remains unchanged. FAME profile indicates unsaturated fatty acids as major constituents. It was shown that microwave irradiation contributes not only to enhance the transeseterification, but also to assist effective release of fatty acid containing molecules (e.g. triacylglycerol, free fatty acids and phospholipids) from algal cells.

  5. Anaerobic sequencing batch reactor treatment of coal conversion wastewaters

    SciTech Connect

    Ketchum, L.H. Jr.; Earley, J.P.; Shen, Yutao.

    1989-09-01

    The work proposed is a laboratory investigation of the AnSBR (Anaerobic Sequencing Batch Reactors) for treatment of a synthetic coal conversion wastewater. Two different strategies will be pursued. First, an AnSBR will be operated to simulate the Anaerobic Up-flow Sludge Blanket Reactor in an attempt to develop a readily settleable granular sludge. Second, operating strategies will be sought to optimize treatment, without attempting to develop settleable granular sludge. These systems will require development of more elaborate decanting mechanisms, probably including use of tube settler technology. We will use: (1) screening tests to identify compounds which are amenable to anaerobic degradation; (2) to determine those which are toxic or have an inhibitory effect; and (3) to identify the dilution required to achieve anaerobic degradation of the synthetic waste water; acclimation tests of organisms collected from different sources to the synthetic coal conversion wastewater; and Automatic Laboratory AnSBR studies. A 4-liter reactor will be operated to maintain a settleable granular anaerobic sludge when treating the synthetic coal conversion wastewater. 72 refs., 238 figs., 22 tabs.

  6. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).

    PubMed

    Pereira, N S; Zaiat, M

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 degrees C with 8h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3)day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6+/-1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3mg/Lh as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. PMID:18715712

  7. CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR

    EPA Science Inventory


    The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...

  8. Treatment of a petrochemical wastewater in sequencing batch reactors

    SciTech Connect

    Hsu, E.H.

    1986-05-01

    The response of sequencing batch reactors (SBR's) in an industrial application was investigated. Four bench-scale SBR's and a bench-scale conventional activated sludge unit were operated with wastewater from a petrochemical complex. In terms of the degradation of BOD material and nitrification, the performance of the SBR's was comparable or slightly superior to that of the conventional activated sludge unit. However, for high strength wastes with BOD/sub 5/ > 300 mg/l and under organic shock loading conditions, effluent from an SBR may have a high solids content as a result of abundant dispersed-cells growth. The SBR reacted well to a series of phenolic shock loadings; phenols were degraded from initial concentrations ranging from 200 to 950 mg/l to <0.1 mg/l. A model of the SBR, which incorporated the Monod kinetics, was presented as a design aid.

  9. Aerobic degradation of petroleum refinery wastewater in sequential batch reactor.

    PubMed

    Thakur, Chandrakant; Srivastava, Vimal C; Mall, Indra D

    2014-01-01

    The aim of the present work was to study the effect of various parameters affecting the treatment of raw petroleum refinery wastewater (PRW) having chemical oxygen demand (COD) of 350 mg L(-1) and total organic carbon (TOC) of 70 mg L(-1) in sequential batch reactor (SBR). Effect of hydraulic retention time (HRT) was studied in instantaneous fill condition. Maximum COD and TOC removal efficiencies were found to be 80% and 84%, respectively, for fill phase of 2 h and react phase of 2 h with fraction of SBR being filled with raw PRW in each cycle being 0.4. Effect of parameters was studied in terms of settling characteristic of treated slurry. Kinetics of treatment process has been studied. FTIR and UV-visible analysis of PRW before and after treatment have been performed so as to understand the degradation mechanism.

  10. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  11. Sequencing batch biofilter granular reactor for textile wastewater treatment.

    PubMed

    Lotito, Adriana Maria; Di Iaconi, Claudio; Fratino, Umberto; Mancini, Annalisa; Bergna, Giovanni

    2011-12-15

    Textile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal wastewater. The adoption of new technologies for on-site treatment, instead, would be optimal, deeply reducing treatment costs. An innovative technology exhibiting several characteristics appropriate for the attainment of such a goal is sequencing batch biofilter granular reactor (SBBGR). To assess the suitability of this technology, two lab-scale reactors were operated, treating mixed municipal-textile wastewater and a pure textile effluent, respectively. Results have demonstrated that mixed wastewater can be successfully treated with very low hydraulic retention times (less than 10 hours). Furthermore, SBBGR shows to be an effective pre-treatment for textile wastewater for discharge into sewer systems. The economic evaluation of the process showed operative costs of 0.10 and 0.19 € per m(3) of mixed wastewater and textile wastewater, respectively.

  12. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued. PMID:12188548

  13. Treatment of winery wastewater in a sequencing batch biofilm reactor.

    PubMed

    Andreottola, G; Foladori, P; Ragazzi, M; Villa, R

    2002-01-01

    Pilot-scale experiments were carried out applying the SBBR process (Sequencing Batch Biofilm Reactor) for the treatment of winery wastewater. The aim was the evaluation of the SBBR performance and the development of a control strategy based on dissolved oxygen (DO) for the optimisation of the SBBR treatment cycle and the minimisation of the energy supply. The results of the experimentation have confirmed the applicability of the SBBR process pointing out high COD removal efficiencies between 86% and 99%, with applied loads up to 29 gCOD m-2d-1, corresponding to 8.8 kgCOD m-3d-1. The on-line monitoring of DO concentration appeared as a good indicator of the progress in the COD biodegradation. The control strategy for the ending of the SBBR cycles was based on the time derivative of the DO concentration. The optimised control strategy makes it possible to obtain a steady quality of the effluent wastewater with an average daily applied load of 6.3 kgCOD m-3d-1 rather than 3.5 kgCOD m-3d-1 for the non-optimised SBBR cycle. The possibility of optimising the SBBR cycle through a simple control of the DO in the mixed liquor could be an interesting solution for the biological pre-treatment of winery wastewater to be discharged into sewerage or as a single-stage of a combined treatment plant for the discharge into surface water.

  14. Simultaneous anammox and denitrification (SAD) process in sequencing batch reactors.

    PubMed

    Takekawa, Masashi; Park, Giri; Soda, Satoshi; Ike, Michihiko

    2014-12-01

    This study investigated nitrogen removal by the simultaneous anaerobic ammonium oxidation (anammox) and heterotrophic denitrification (SAD) process in a sequencing batch reactor (SBR) inoculated with suspended activated sludge and immobilized anammox sludge at various total organic carbon/nitrate (C/N) ratios. Synthetic wastewater containing nitrate 100mg-NL(-1), ammonium 70mg-NL(-1), and acetate 50-250mg-CL(-1) was fed to the SBR. Nitrite reduced from nitrate by heterotrophic denitrification was accumulated and removed with ammonium in each cycle operation of the SBR. The SAD process removed nitrate and ammonium effectively (T-N removal, 58-94%) by the high anammox contribution (ca. 80-100%) under low C/N ratios (0.5-1.0). At high C/N ratios of 1.2-2.5, the SAD process maintained T-N removal 67-79% with predominance of heterotrophic denitrification instead of anammox reaction. Results demonstrated that the SAD process performs high nitrogen removal effectively from wastewater with widely different C/N ratios.

  15. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor.

    PubMed

    Wolf-Márquez, V E; García-García, E; García-Rivero, M; Aguilar-Osorio, G; Martínez Trujillo, M A

    2015-11-01

    Aspergillus flavipes FP-500 grew up on submerged cultures using lemon peel as the only carbon source, developing several batch and pulsed fed-batch trials on a stirred tank reactor. The effect of carbon source concentration, reducing sugar presence and initial pH on exopectinase and endopectinase production, was analyzed on batch cultures. From this, we observed that the highest substrate concentration favored biomass (X max) but had not influence on the corresponding specific production (q p) of both pectinases; the most acid condition provoked higher endopectinase-specific productions but had not a significant effect on those corresponding to exopectinases; and reducing sugar concentrations higher than 1.5 g/L retarded pectinase production. On the other hand, by employing the pulsed fed-batch operation mode, we observed a prolonged growth phase, and an increase of about twofold on endopectinase production without a significant raise on biomass concentration. So, pulsed fed-batch seems to be a good alternative for obtaining higher endopectinase titers by using high lemon peel quantities without having mixing and repression problems to the system. The usefulness of unstructured kinetic models for explaining, under a theoretic level, the behavior of the fungus along the batch culture with regard to pectinase production was evident.

  16. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor.

    PubMed

    Wolf-Márquez, V E; García-García, E; García-Rivero, M; Aguilar-Osorio, G; Martínez Trujillo, M A

    2015-11-01

    Aspergillus flavipes FP-500 grew up on submerged cultures using lemon peel as the only carbon source, developing several batch and pulsed fed-batch trials on a stirred tank reactor. The effect of carbon source concentration, reducing sugar presence and initial pH on exopectinase and endopectinase production, was analyzed on batch cultures. From this, we observed that the highest substrate concentration favored biomass (X max) but had not influence on the corresponding specific production (q p) of both pectinases; the most acid condition provoked higher endopectinase-specific productions but had not a significant effect on those corresponding to exopectinases; and reducing sugar concentrations higher than 1.5 g/L retarded pectinase production. On the other hand, by employing the pulsed fed-batch operation mode, we observed a prolonged growth phase, and an increase of about twofold on endopectinase production without a significant raise on biomass concentration. So, pulsed fed-batch seems to be a good alternative for obtaining higher endopectinase titers by using high lemon peel quantities without having mixing and repression problems to the system. The usefulness of unstructured kinetic models for explaining, under a theoretic level, the behavior of the fungus along the batch culture with regard to pectinase production was evident. PMID:26304128

  17. Toxic effects of selected industrial solvents in batch and continuous anaerobic reactors

    SciTech Connect

    Schwartz, L.J.

    1991-12-31

    Acetone and ethyl acetate were readily degraded in batch reactors containing anaerobic solids from an industrial reactor at concentrations to 1000 mg/L; isoamyl acetate was degraded at concentrations below 200 mg/L. Xylene was noninhibitory in batch cultures at concentrations of 50 mg/L or less. Batch reactors receiving 45 mg/L methylene chloride (MC) experienced a 60% reduction in gas production, and an increase in volatile fatty acids. Semicontinuously-fed reactors dosed with 20 mg/L MC at the start suffered some loss of anaerobic efficiency, but acclimated well with increased gas production after 20 d. A continuously fed sludge blanket reactor with no previous exposure to MC has acclimated to 20 mg/L MC after initial inhibition at 10 mg/L.

  18. Model-based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fed-batch reactors.

    PubMed

    Johnson, Katja; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2009-09-01

    The production of polyhydroxyalkanoates (PHAs) with mixed microbial cultures is a promising approach for the sustainable production of bioplastics. Usually a two-step process is employed consisting of (i) the enrichment of a PHA producing mixed culture in a sequencing batch reactor (SBR) and (ii) the subsequent PHA production in a fed-batch reactor. Both reactors are highly dynamic systems, particularly if the SBR is working at low sludge residence times (SRTs) or if growth is (partly) permitted in fed-batch systems. Under these conditions the concentrations of substrate, PHA and biomass change rapidly, complicating the identification of biomass specific conversion rates as required for process characterization. We developed a structured approach for the evaluation of such SBR and fed-batch experiments consisting of five steps: (1) Measurement of a sufficiently large set of parameters including off-gas concentrations, (2) Corrections of measurements for effects of sampling and addition of liquids (pH control, substrate), (3) Calculation of oxygen uptake and carbon dioxide evolution rates, the latter including inorganic carbon dissolved in the liquid phase, (4) Balancing of the measured conversions, (5) Evaluation of the measurements by means of a metabolic model. This approach has been successfully applied to a large number of data sets. Steps 1-4 ensured that data sets of high quality were obtained. Step 5 allowed to find the best estimates for all conversions and biomass specific rates for the measured data sets, while complying with material balances. Conversions of the substrate acetate, the nitrogen source ammonia and of the storage polymer PHA (here polyhydroxybutyrate (PHB)) were described very accurately by the model. Modeled off-gas conversions often deviated somewhat from measured conversions, which might be partly due to an inaccurate model stoichiometry. Nonetheless, the described approach proved to be a very useful tool for the evaluation and

  19. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors.

    PubMed

    Huang, Wenli; Li, Bing; Zhang, Chao; Zhang, Zhenya; Lei, Zhongfang; Lu, Baowang; Zhou, Beibei

    2015-03-01

    The effect of algae growth on aerobic granulation and nutrients removal was studied in two identical sequencing batch reactors (SBRs). Sunlight exposure promoted the growth of algae in the SBR (Rs), forming an algal-bacterial symbiosis in aerobic granules. Compared to the control SBR (Rc), Rs had a slower granulation process with granules of loose structure and smaller particle size. Moreover, the specific oxygen uptake rate was significantly decreased for the granules from Rs with secretion of 25.7% and 22.5% less proteins and polysaccharides respectively in the extracellular polymeric substances. Although little impact was observed on chemical oxygen demand (COD) removal, algal-bacterial symbiosis deteriorated N and P removals, about 40.7-45.4% of total N and 44% of total P in Rs in contrast to 52.9-58.3% of TN and 90% of TP in Rc, respectively. In addition, the growth of algae altered the microbial community in Rs, especially unfavorable for Nitrospiraceae and Nitrosomonadaceae.

  20. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    PubMed

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  1. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    PubMed

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions. PMID:20933327

  2. Study on membrane reactors for biodiesel production by phase behaviors of canola oil methanolysis in batch reactors.

    PubMed

    Cheng, Li-Hua; Yen, Shih-Yang; Su, Li-Sheng; Chen, Junghui

    2010-09-01

    In comparison with the general stirring batch reactor, the membrane reactor has been reported to have higher molar ratios of methanol to oil but ultralow catalyst concentration in the biodiesel production. In this research, the methanolysis of canola oil is conducted in a stirring batch reactor in the presence of NaOH as a catalyst. Based on the investigation of the effects of operating conditions, including methanol to oil molar ration, catalyst concentrations and temperatures, the time course of the reaction path for the reactant composition in the ternary phase diagram of oil-FAME-MeOH offers an effective way to understand the operation of membrane reactors in the biodiesel production. The results show that increasing the residence time of the whole reactant system within the two-phase zone is good for the separation operation through the membranes.

  3. Batch and fed-batch production of betalains by red beet (Beta vulgaris) hairy roots in a bubble column reactor.

    PubMed

    Pavlov, Atanas; Georgiev, Milen; Bley, Thomas

    2007-01-01

    Hairy root cultures from red beet (Beta vulgaris L.), which could be used for the commercial production of biologically active betalain pigments, were cultivated in a 3 L bubble column bioreactor in batch mode with various rates of air supply. Both the growth of the roots and betalain volumetric yields were highest (12.7 g accumulated dry biomass/L and 330.5 mg/ L, respectively) with a 10 L/h (0.083 vvm) air supply. The air flow rate also influenced the betacyanins/betaxanthins ratios in the cultures. Growth and betalains production were then examined in two fed-batch regimes (with a 10 L/h air supply), in which nutrient medium was fed just once or on five occasions, designated FBI and FBII, respectively. The root mass accumulation was increased in the FBI feeding regime (to 13.3 g accumulated dry biomass/ L), while in FBII the betalains content was ca. 11% higher (15.1 mg betacyanins/g dry weight and 14.0 mg betaxanthins/g dry weight) than in the most productive batch regime. Data on the time course of the utilization of major components in the medium during both operational modes were also collected. The implications of the information acquired are discussed, and the performance of the hairy roots (in terms of both growth and betalains production) in the bubble column reactor and previously investigated cultivation systems is compared.

  4. Application of multiway ICA for on-line process monitoring of a sequencing batch reactor.

    PubMed

    Yoo, Chang Kyoo; Lee, Dae Sung; Vanrolleghem, Peter A

    2004-04-01

    Multiway principal component analysis has been shown to be a powerful monitoring tool in many industrial batch processes. However, it has the shortcomings that all batch lengths should be equal, the measurement variables must be normally distributed and that future values of the current batch must be estimated to allow on-line monitoring. In this work, it is shown that multiway independent component analysis (MICA) can be used to overcome these drawbacks and obtain better monitoring performance. The on-line MICA monitoring of batch processes is based on a new unfolding method and independent component analysis (ICA). ICA provides better monitoring performance than PCA in cases with non-Gaussian data because it is not based on the assumption that the latent variables are normally distributed. The MICA algorithm does not require any estimation of future batch values and can also be applied to non-equal batch length data sets. This article describes the application of on-line MICA monitoring of a sequencing batch reactor (SBR). It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of disturbance sources with non-Gaussian characteristics. The SBR poses an interesting challenge from the point of process monitoring characterized by non-stationary, batchwise, multiscale, and non-Gaussian characteristics. The results of the bench-scale SBR monitoring clearly showed the power and advantages of MICA monitoring in comparison to conventional monitoring methods.

  5. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield.

  6. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. PMID:23770535

  7. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh.

  8. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. PMID:26802183

  9. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA. PMID:24530948

  10. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA.

  11. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    PubMed

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  12. Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor

    NASA Astrophysics Data System (ADS)

    Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.

  13. Modeling and computational simulation of dilution and biochemical materials balance equations for partially emptied batch reactors.

    PubMed

    Ndon, Udeme J; Zhao, Jin C; Siguan, Marta Larroya

    2007-01-01

    Sequencing batch reactors (SBRs) including aerobic SBRs and anaerobic SBRs (ASBRs) are partially emptied batch reactors that are widely used as bioprocesses in pollution control. We present dilution and biochemical materials balance modeling equations and simulation results for the partially emptied batch reactors, especially for ASBR treatment of low-strength wastewater. The simulated substrate and microbial concentrations for both dilution and materials balance equations follow the same pattern during both feeding and reaction times. However, the results of the materials balance equations show microbial activities during feeding as well as during reaction times and were found to be more appropriate for the biologic system in which substrate removal is associated with microbial growth. Furthermore, the simulation results point to the need to foster high microbial accumulation in the system during startup to optimize the process performance and the need to operate the system at a short reaction time, especially for low substrate concentrations. The results were found to be in agreement with the results of prior laboratory studies.

  14. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.

  15. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    SciTech Connect

    Landi, Carmine; Paciello, Lucia; Alteriis, Elisabetta de; Brambilla, Luca; Parascandola, Palma

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer The paper contributes to fill the gap existing between the basic and applied research. Black-Right-Pointing-Pointer Mathematical model sheds light on the physiology of auxotrophic yeast strains. Black-Right-Pointing-Pointer Yeast behavior in fed-batch is influenced by biological and environmental determinants. Black-Right-Pointing-Pointer Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  16. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  17. Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor.

    PubMed

    Guendouz, J; Buffière, P; Cacho, J; Carrère, M; Delgenes, J-P

    2010-10-01

    A laboratory-scale (40 l) reactor was designed to investigate dry anaerobic digestion. The reactor is equipped with an intermittent paddle mixer, enabling complete mixing in the reactor. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions and compared to operation results obtained on a pilot-scale (21 m(3)) with the same feedstock. Biogas and methane production at the end of the tests were similar (around 200 m(3) CH(4)STP/tVS), and the dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in larger ones. Adaptation of micro-organisms to the waste and operating conditions was also pointed out along the consecutive batches.

  18. Simultaneous removal of nanosilver and fullerene in sequencing batch reactors for biological wastewater treatment.

    PubMed

    Yang, Yu; Wang, Yifei; Hristovski, Kiril; Westerhoff, Paul

    2015-04-01

    Increasing use of engineered nanomaterials (ENMs) inevitably leads to their potential release to the sewer system. The co-removal of nano fullerenes (nC60) and nanosilver as well as their impact on COD removal were studied in biological sequencing batch reactors (SBR) for a year. When dosing nC60 at 0.07-2mgL(-1), the SBR removed greater than 95% of nC60 except for short-term interruptions occurred (i.e., dysfunction of bioreactor by nanosilver addition) when nC60 and nanosilver were dosed simultaneously. During repeated 30-d periods of adding both 2 mg L(-1) nC60 and 2 mg L(-1) nanosilver, short-term interruption of SBRs for 4d was observed and accompanied by (1) reduced total suspended solids in the reactor, (2) poor COD removal rate as low as 22%, and (3) decreased nC60 removal to 0%. After the short-term interruption, COD removal gradually returned to normal within one solids retention time. Except for during these "short-term interruptions", the silver removal rate was above 90%. A series of bottle-point batch experiments was conducted to determine the distribution coefficients of nC60 between liquid and biomass phases. A linear distribution model on nC60 combined with a mass balance equation simulated well its removal rate at a range of 0.07-0.76 mg L(-1) in SBRs. This paper illustrates the effect of "pulse" inputs (i.e., addition for a short period of time) of ENMs into biological reactors, demonstrates long-term capability of SBRs to remove ENMs and COD, and provides an example to predict the removal of ENMs in SBRs upon batch experiments.

  19. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    SciTech Connect

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  20. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  1. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy.

  2. Use of a batch-stirred reactor to rationally tailor biocatalytic polytransesterification

    SciTech Connect

    Kline, B.J.; Lele, S.S.; Lenart, P.J.; Beckman, E.J.; Russell, A.J.

    2000-02-20

    Despite favorable thermodynamics, high-molecular weight and low-dispersity polyesters are difficult to synthesize biocatalytically in organic solvents. The authors have reported previously that the elimination of solvent can improve the kinetics and apparent equilibrium significantly. The authors now present the design and use of a batch-stirred enzyme reactor to control the biocatalytic polymerization. Using the rector, polyester having a molecular weight of 23,400 Da and a polydispersity of 1.69 was synthesized in only 1 h at 60 C. Additional factors like enzyme-deactivation kinetics, enzyme specificity, and initial exothermicity were investigated to develop a better understanding of this complex reaction system.

  3. Cadmium(II) adsorption on Cladophora crispata in batch stirred reactors in series

    SciTech Connect

    Oezer, A.; Oezer, D.; Dursun, G.; Bulak, S.

    1999-06-01

    In this study, the adsorption of cadmium(II) ions onto Cladophora crispata was investigated in a two-staged batch reactor. The sorption phenomenon was expressed by the Freundlich and Langmuir adsorption isotherms and these expressions were used for the calculation of the equilibrium value of the residual cadmium(II) concentration at each stage. The experimental equilibrium values were compared with the values obtained from Freundlich and Langmuir isotherm equations. These results showed that the increase in biomass quantity or the increase of X{sub {omicron}}/V{sub {omicron}} ratios affected the quantities of cadmium removed from aqueous solution.

  4. Biological removal of carbon, nitrogen, and phosphorus in a sequencing batch reactor.

    PubMed

    Akin, Beril S; Ugurlu, Ayenur

    2003-08-01

    In this research the process performance of enhanced biological phosphorus removal was investigated in a sequencing batch reactor (SBR) having a new operational mode. The SBR system used in this study had simultaneous feeding and decanting conditions. The laboratory scale reactor (10 L) was operated for 392 days. The system was operated under 4 different sets each having 2 cycles per day. In each cycle, fill (4 h), anoxic (0.5 h), aerobic (7 h) and settling phases were present. In the fill phase, wastewater was fed from the bottom and the anoxic/anaerobic conditions were established in the settled sludge. During filling, the water left the system by water displacement. The system provided nitrification, denitrification as well as phosphorus and organic removal. High COD (90-98%), PO4-P (77-100%), and NH4-N (90-95%) removals were achieved by this system.

  5. [Characteristics of anaerobic sequencing batch reactor for the treatment of high-solids-content waste].

    PubMed

    Wang, Zhi-jun; Wang, Wei; Zhang, Xi-hui

    2006-06-01

    Based on the experiments of digestion of thermo-hydrolyzed sewage sludge in both mesophilic and thermophilic anaerobic sequencing batch reactors (ASBRs) with 20, 10, 7.5, 5d hydraulic retention time (HRT), operating characteristics of ASBR for treatment of high-solids-content waste were investigated. ASBR can efficiently accumulates suspended solids and keep high concentration solids, however there exists a "critical point" of ASBR, which means the maximum capability to accumulate suspended solids without negative effects on ASBR stability, and beyond which the performance deteriorates. Under steady condition, ASBR can sustains high solid retention time (SRT) and mean cell retention time (MCRT), the SRT and MCRT is 2.53 approximately 3.73 and 2.03 approximately 3.14 times of hydraulic retention time (HRT) when treating thermo-hydrolyzed sludge, respectively. Therefore, compared to traditional continuous-flow stirred tank reactor (CSTR), the efficiency of ASBR enhances about 7.13% approximately 34.68%.

  6. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater.

    PubMed

    Jiang, Yu; Wei, Li; Zhang, Huining; Yang, Kai; Wang, Hongyu

    2016-10-01

    Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition. PMID:27359064

  7. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor.

    PubMed

    He, Qiulai; Zhou, Jun; Wang, Hongyu; Zhang, Jing; Wei, Li

    2016-08-01

    The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor. PMID:27115745

  8. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    PubMed

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results.

  9. Enzymatic saccharification of solid residue of olive mill in a batch reactor.

    PubMed

    Abdi; Hamdache; Belhocine; Grib; Lounici; Piron; Mameri

    2000-12-01

    This paper describes the enzymatic hydrolysis of solid residue of olive mill (OMRS) in a batch reactor with the Trichoderma reesei enzyme. Before enzymatic saccharification, crude lignocellulosic material is submitted to alkaline pre-treatment with NaOH. Optimum conditions of the pre-treatment (temperature of T=100 degrees C and OMRS-NaOH concentration ratio of about R=20) were determined. The optimum enzymatic conditions determined were as follows: pH of about 5, temperature of T=50 degrees C and enzyme to mass substrate mass ratio E/S=0.1g enzyme (g OMRS)(-1). The maximum saccharification yield obtained at optimum experimental conditions was about 50%. The experimental results agree with Lineweaver Burk's formula for low substrate concentrations. At substrate concentrations greater than 40gdm(-3), inhibitory effects were encountered. The kinetic constants obtained for the batch reactor were K(m)=0.1gdm(-3)min(-1) and V(m)=800gdm(-3).

  10. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors.

    PubMed

    Stadler, Lauren B; Su, Lijuan; Moline, Christopher J; Ernstoff, Alexi S; Aga, Diana S; Love, Nancy G

    2015-01-23

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss.

  11. Molecular identification of the microbial diversity in two sequencing batch reactors with activated sludge.

    PubMed

    Denecke, Martin; Eilmus, Sascha; Röder, Nadine; Roesch, Christopher; Bothe, Hermann

    2012-02-01

    The diversity of the microbial community was identified in two lab-scale, ideally mixed sequencing batch reactors which were run for 115 days. One of the reactors was intermittently aerated (2 h aerobically/2 h anaerobically) whereas the other was consistently aerated. The amount of biomass as dry matter, the degradation of organic carbon determined by chemical oxygen demand and nitrogen-degradation activity were followed over the operation of the two reactors and did not show significant differences between the two approaches at the end of the experiment. At this point, the composition of the microbial community was determined by a terminal restriction fragment length polymorphism approach using multiple restriction enzymes by which organisms were retrieved to the lowest taxonomic level. The microbial composition was then significantly different. The species richness was at least five-fold higher in the intermittently aerated reactor than in the permanently kept aerobic approach which is in line with the observation that ecosystem disturbances result in higher diversity. PMID:21786107

  12. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer.

    PubMed

    Lebedev, Artem; Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E; Zhang, Jianzhong; Buchsbaum, Monte S; Kolb, Hartmuth C; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of (18)F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [(18)F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on "split-box architecture", with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [(18)F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880.

  13. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen. PMID:26905769

  14. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen.

  15. Sequencing batch reactor biofilm system for treatment of milk industry wastewater.

    PubMed

    Sirianuntapiboon, Suntud; Jeeyachok, Narumon; Larplai, Rarintorn

    2005-07-01

    A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.

  16. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  17. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    PubMed

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency.

  18. Bio-augmentation as a tool for improving the modified sequencing batch biofilm reactor.

    PubMed

    Yang, Kai; Ji, Bin; Wang, Hongyu; Zhang, Huaiyu; Zhang, Qian

    2014-06-01

    Biological treatment of domestic sewage was accomplished in a pilot-scale modified sequencing batch biofilm reactor (SBBR) bio-augmented with consortium of 5 strains of indigenous bacteria (genus Pseudomonas and Bacillus). The reactor consisted of fibrous filler in the upper and ceramsite filter media in the bottom. It demonstrated to have a short hydraulic residence time (HRT) for 10 h and good quality effluent to cope with low C/N ratio domestic wastewater. The biofilm attached fibrous fillers mainly contributed to contaminants removal. Bio-augmentation dramatically enhanced the removal efficiency of chemical oxygen demand (COD), total phosphorus (TP), and especially total nitrogen (TN), which increased respectively from 80.3%, 58.1% and 41.3% to 83.7%, 67.8% and 58.7%. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) technique indicated the 5 strains' survival in the reactor and that Bacillus cereus strain ZQN2 was the most dominant bacteria.

  19. Treatment of Slaughter House Wastewater in a Sequencing Batch Reactor: Performance Evaluation and Biodegradation Kinetics

    PubMed Central

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4+-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4+-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, Ks, Y, kd) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation. PMID:24027751

  20. Treatment of slaughter house wastewater in a sequencing batch reactor: performance evaluation and biodegradation kinetics.

    PubMed

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4(+)-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4(+)-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, K(s), Y, k(d)) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation.

  1. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production.

    PubMed

    Yu, Yin; Hu, Hong-Ying; Li, Xin; Wu, Yin-Hu; Zhang, Xue; Jia, Sheng-Lan

    2012-04-01

    Algae cultivation is the essential basis for microalgal biofuel production. Soluble algal products (SAP) are significant obstacle to large-scale, high-cell-density cultivation processes. SAP accumulation during batch cultivation of Scenedesmus sp. LX1 (a unique strain accumulating lipid substantially while growing fast under low-nutrient conditions) with different initial nitrogen concentrations (7.4-34.0mgNL(-1)) was investigated. The SAP content varied in the range of 3.4-17.4mgDOCL(-1) at stationary phase, with average yield per cell of 0.5-2.5pgDOCcell(-1). High SAP accumulation up to 15.2-17.4mgDOCL(-1) were observed with initial nitrogen above 20.2mgNL(-1). The maximum SAP production rate per unit culture volume (r(SAP)) was 2.6mgDOC(Ld)(-1) and that per cell (ν(SAP)) was 1.5pgDOC(celld)(-1). The r(SAP) increased with cell growth rate and decreased with cell density linearly. The SAP accumulation was majorly due to the release of growth-associated products.

  2. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.

    PubMed

    Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A

    2004-01-01

    This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.

  3. Treatment of anaerobic digester supernatant and filter press filtrate sidestreams with a sequencing batch reactor

    SciTech Connect

    Bowen, R.B.; Ketchum, L.H. Jr.

    1998-07-01

    The Elkhart, Indiana publicly owned treatment works (POTW) occasionally experiences periods of high effluent ammonia. The POTW currently treats 61,000 m{sup 3}/d (16 MGD), which includes a large industrial component of 15,000 m{sup 3}/d (4 MGD). This industrial component includes frequent periods of high ammonia levels resulting in plant influent ammonia concentrations exceeding 40 mg/L as nitrogen which can upset plant nitrification. The anaerobic digester supernatant and filter press filtrate are returned to the head of the plant. These recycled streams also contain high ammonia, 475 mg/L as nitrogen, and contribute to the influent ammonia problem. This study is an investigation of the use of a sequencing batch reactor (SBR) to biologically nitrify these recycle streams to help mitigate the problem of high effluent ammonia.

  4. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly report, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, H.

    1996-05-01

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives. Much of the previous quarterly report was concerned mainly in the retrograde reactions occurring during the liquefaction process. This report is largely devoted to the kinetics and mechanisms of the liquefaction process itself and the influence of the liquefaction solvents.

  5. Short Contact Time Direct Coal Liquefaction Using a Novel Batch Reactor

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1997-01-30

    The primary objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times and to investigate the role of organic oxygen components of coal and their reaction pathways during coal liquefaction. Many of those objectives have already been achieved. This quarterly report discusses further kinetic studies of the liquefaction in tetralin of a Montana Lignite, Wyodak-Anderson subbituminous coal, Illinois #6 hv bituminous coal, Pittsburgh #8 hv bituminous coals, and Pocohontas lV bituminous coal at short contact times. All of these coals showed a distinct extraction stage. Further work has also been done to attempt to clarify the role of the liquefaction solvent in the direct liquefaction process.

  6. Modeling and experimental validation of hydrodynamics in an ultrasonic batch reactor.

    PubMed

    Ajmal, M; Rusli, S; Fieg, G

    2016-01-01

    Simulation of hydrodynamics in ultrasonic batch reactor containing immobilized enzymes as catalyst is done. A transducer with variable power and constant frequency (24 kHz) is taken as source of ultrasound (US). Simulation comprises two steps. In first step, acoustic pressure field is simulated and in second step effect of this field on particle trajectories is simulated. Simulation results are compared with experimentally determined particle trajectories using PIV Lab (particle image velocimetry). Effect of varying ultrasonic power, positioning and number of ultrasonic sources on particle trajectories is studied. It is observed that catalyst particles tend to orientate according to pattern of acoustic pressure field. An increase in ultrasonic power increases particle velocity and also brings more particles into motion. Simulation results are found to be in agreement with experimentally determined data. PMID:26384902

  7. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor.

    PubMed

    Zhao, Yuanyuan; Park, Hee-Deung; Park, Jeong-Hoon; Zhang, Fushuang; Chen, Chen; Li, Xiangkun; Zhao, Dan; Zhao, Fangbo

    2016-09-01

    The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity. PMID:27318158

  8. Investigation of the gibberellic acid optimization with a statistical tool from Penicillium variable in batch reactor.

    PubMed

    Isa, Nur Kamilah Md; Mat Don, Mashitah

    2014-01-01

    The culture conditions for gibberellic acid (GA3) production by the fungus Penicillium variable (P. variable) was optimized using a statistical tool, response surface methodology (RSM). Interactions of culture conditions and optimization of the system were studied using Box-Behnken design (BBD) with three levels of three variables in a batch flask reactor. Experimentation showed that the model developed based on RSM and BBD had predicted GA3 production with R(2) = 0.987. The predicted GA3 production was optimum (31.57 mg GA3/kg substrate) when the culture conditions were at 7 days of incubation period, 21% v/w of inoculum size, and 2% v/w of olive oil concentration as a natural precursor. The results indicated that RSM and BBD methods were effective for optimizing the culture conditions of GA3 production by P. variable mycelia. PMID:24499362

  9. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure.

    PubMed

    Ma, Jingwei; Yu, Liang; Frear, Craig; Zhao, Quanbao; Li, Xiujin; Chen, Shulin

    2013-03-01

    In this study, a new strategy, improving biomass retention with fiber material present within the dairy manure as biofilm carriers, was evaluated for treating flushed dairy manure in a psychrophilic anaerobic sequencing batch reactor (ASBR). A kinetic study was carried out for process control and design by comparing four microbial growth kinetic models, i.e. first order, Grau, Monod and Chen and Hashimoto models. A volumetric methane production rate of 0.24L/L/d of and a specific methane productivity of 0.19L/gVSloaded were achieved at 6days HRT. It was proved that an ASBR using manure fiber as support media not only improved methane production but also reduced the necessary HRT and temperature to achieve a similar treating efficiency compared with current technologies. The kinetic model can be used for design and optimization of the process.

  10. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  11. Temperature control of bench-scaled batch reactor equipped with a monofluid heating/cooling system

    NASA Astrophysics Data System (ADS)

    Teng, Hai-peng; Song, Yi-ming

    2014-04-01

    An advanced control concept, Predictive Functional Control (PFC), is applied for temperature control of a bench-scaled batch reactor equipped with monofluid heating/cooling system. First principles process models are developed. Based on achieved models, significant process variables, which are difficult or impossible to measure online, are estimated from easily measured variables, and cascade PFC control strategy has been projected and implemented in Matlab R14. The dynamics of individual subunits is explicitly taken into consideration by internal model in the control algorithms, and model uncertainty, various process disturbances are compensated by modification of internal model. The experimental results present an excellent capability of tracking the set point, and the success of PFC technique as a process control paradigm is illustratively demonstrated.

  12. Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors.

    PubMed

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear.

  13. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect

    Wu, Weimin; Criddle, Craig S.

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  14. Nutrient removal in a sequencing batch reactor operated with short anaerobic/aerobic cycles.

    PubMed

    Freitas, F; Temudo, M; Almeida, J S; Reis, M A M

    2003-01-01

    A single sequencing batch reactor operated with short intermittent aeration cycles was used to simultaneously remove carbon, nitrogen and phosphorus. The complete cycle, comprising feeding, anaerobiosis, aerobiosis, settling and decanting, was only 36 minutes long. The system has shown high and stable nutrient removal at 30 degrees C with acetate as carbon source and it has proved to be rather robust and dynamic, efficiently adapting to most of the changes in operating parameters tested: presence of nitrate in the feeding medium, different substrates (propionate and butyrate), temperature and nutrient shock loads. For the optimum conditions used, a removal efficiency of over 90% was obtained for each nutrient. Description of the population kinetics was obtained for each operating condition, by performing batch tests. Kinetic and stoichiometric parameters were used to infer the relative contribution of each group of microorganisms on SBR performance. Compared to the traditional SBR operated with cycles of 6 hours, the use of short intermittent aeration cycles of 36 minutes corresponds to a 40% reduction on aeration time.

  15. Performance of anaerobic sequencing batch reactor in the treatment of pharmaceutical wastewater containing erythromycin and sulfamethoxazole mixture.

    PubMed

    Aydin, S; Ince, B; Cetecioglu, Z; Ozbayram, E G; Shahi, A; Okay, O; Arikan, O; Ince, O

    2014-01-01

    This study evaluates the joint effects of erythromycin-sulfamethoxazole (ES) combinations on anaerobic treatment efficiency and the potential for antibiotic degradation during anaerobic sequencing batch reactor operation. The experiments involved two identical anaerobic sequencing batch reactors. One reactor, as control unit, was fed with synthetic wastewater while the other reactor (ES) was fed with a synthetic substrate mixture including ES antibiotic combinations. The influence of ES antibiotic mixtures on chemical oxygen demand (COD) removal, volatile fatty acid production, antibiotic degradation, biogas production, and composition were investigated. The influent antibiotic concentration was gradually increased over 10 stages, until the metabolic collapse of the reactors, which occurred at 360 days for the ES reactor. The results suggest that substrate/COD utilization and biogas/methane generation affect performance of the anaerobic reactors at higher concentration. In addition, an average of 40% erythromycin and 37% sulfamethoxazole reduction was achieved in the ES reactor. These results indicated that these antibiotics were partly biodegradable in the anaerobic reactor system.

  16. A laboratory batch reactor test for assessing nonspeciated volatile organic compound biodegradation in activated sludge.

    PubMed

    Cano, M L; Saterbak, A; van Compernolle, R; Williams, M P; Huot, M E; Rhodes, I A; Allen, C C

    2003-01-01

    The relative rates of biodegradation and stripping and volatilization of nonspeciated volatile organic compounds (VOCs) in wastewater treated with aerobic activated-sludge processes can be quantified using a newly developed procedure. This method was adapted from the original aerated draft tube reactor test that was developed to measure biodegradation rate constants for specific volatile pollutants of interest. The original batch test has been modified to include solid-phase microextraction (SPME) fibers for sampling in the gas phase. The experimental procedure using SPME fibers does not require specific identification and quantitation of individual pollutants and can be used to evaluate wastewater with multiple VOCs. To illustrate use of this procedure, laboratory experiments were conducted using biomass and wastewater or effluent from three activated-sludge treatment systems. Each experiment consisted of two trials: a stripping-only trial without biomass and a stripping plus biodegradation trial using biomass from the activated-sludge unit of interest. Data from the two trials were used to quantify the rates of biodegradation by difference. The activated-sludge systems tested were a laboratory diffused-air reactor treating refinery wastewater, a full-scale surface aerated reactor treating a petrochemical wastewater, and a full-scale diffused-air reactor treating a variety of industrial effluents. The biodegradation rate constant data from each laboratory batch experiment were used in model calculations to quantify the fraction emitted (fe) and the fraction biodegraded (fbio) for each system. The fe values ranged from a maximum of 0.01 to a maximum of 0.32, whereas fbio values ranged from a minimum of 0.40 to a minimum 0.95. Two of these systems had been previously tested using a more complicated experimental approach, and the current results were in good agreement with previous results. These results indicate that biodegradation rate constant data from this

  17. A laboratory batch reactor test for assessing nonspeciated volatile organic compound biodegradation in activated sludge.

    PubMed

    Cano, M L; Saterbak, A; van Compernolle, R; Williams, M P; Huot, M E; Rhodes, I A; Allen, C C

    2003-01-01

    The relative rates of biodegradation and stripping and volatilization of nonspeciated volatile organic compounds (VOCs) in wastewater treated with aerobic activated-sludge processes can be quantified using a newly developed procedure. This method was adapted from the original aerated draft tube reactor test that was developed to measure biodegradation rate constants for specific volatile pollutants of interest. The original batch test has been modified to include solid-phase microextraction (SPME) fibers for sampling in the gas phase. The experimental procedure using SPME fibers does not require specific identification and quantitation of individual pollutants and can be used to evaluate wastewater with multiple VOCs. To illustrate use of this procedure, laboratory experiments were conducted using biomass and wastewater or effluent from three activated-sludge treatment systems. Each experiment consisted of two trials: a stripping-only trial without biomass and a stripping plus biodegradation trial using biomass from the activated-sludge unit of interest. Data from the two trials were used to quantify the rates of biodegradation by difference. The activated-sludge systems tested were a laboratory diffused-air reactor treating refinery wastewater, a full-scale surface aerated reactor treating a petrochemical wastewater, and a full-scale diffused-air reactor treating a variety of industrial effluents. The biodegradation rate constant data from each laboratory batch experiment were used in model calculations to quantify the fraction emitted (fe) and the fraction biodegraded (fbio) for each system. The fe values ranged from a maximum of 0.01 to a maximum of 0.32, whereas fbio values ranged from a minimum of 0.40 to a minimum 0.95. Two of these systems had been previously tested using a more complicated experimental approach, and the current results were in good agreement with previous results. These results indicate that biodegradation rate constant data from this

  18. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors.

    PubMed

    Pintar, Albin; Batista, Jurka

    2007-10-22

    Pd (1.0 wt.%)-Cu (0.3 wt.%) bimetallic and Pd (1.0 wt.%) monometallic catalysts were synthesized by means of incipient-wetness impregnation technique and deposited on alumina spheres (dp=1.7 mm). The prepared catalysts were tested at T=298 K and p(H2)=1.0 bar in the integrated process of catalytic liquid-phase hydrogenation of aqueous nitrate solutions, in which the denitration step was carried out consecutively in separate, single-flow fixed-bed reactor units operating in a batch-recycle mode. In the first reactor packed with a Pd-Cu bimetallic catalyst, nitrate ions were transformed to nitrites at pH 12.5 with a selectivity as high as 93%; the rest was found in the form of ammonium ions. Liquid-phase nitrite hydrogenation to nitrogen in the second reactor unit packed with a Pd monometallic catalyst was conducted at low pH values of 3.7 and 4.5, respectively. Although these values are well below the pHpzc of examined catalyst (6.1), which assured that the nitrite reduction was carried out over a positively charged catalyst surface, up to 15% (23% in the presence of 5.0 g/l NaCl in the solution) of initial nitrite content was converted to undesired ammonium ions. Since a negligible amount of these species (below 0.5mg/l) was produced at identical operating conditions over a powdered Pd/gamma-Al2O3 catalyst, it is believed that the enhanced production of ammonium ions observed in the second fixed-bed reactor is due to the build-up of pH gradients in liquid-filled pores of spherical catalyst particles. Both Pd-Cu bimetallic and Pd monometallic catalysts were chemically resistant in the investigated range of pH values. PMID:17478039

  19. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer†

    PubMed Central

    Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E.; Zhang, Jianzhong; Buchsbaum, Monte S.; Kolb, Hartmuth C.; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of 18F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [18F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on “split-box architecture”, with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [18F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880. PMID:23135409

  20. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    EPA Science Inventory

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  1. Performance and microbial community of simultaneous anammox and denitrification (SAD) process in a sequencing batch reactor.

    PubMed

    Li, Jin; Qiang, Zhimin; Yu, Deshuang; Wang, Dan; Zhang, Peiyu; Li, Yue

    2016-10-01

    A sequencing batch reactor (SBR) was used to test the simultaneous anammox and denitrification process. Optimal nitrogen removal was achieved with chemical oxygen demand (COD) of 150mg/L, during which almost all of ammonia, nitrite and nitrate could be removed. Organic matter was a key factor to regulate the synergy of anammox and denitrification. Both experimental ΔNO2(-)-N/ΔNH4(+)-N and ΔNO3(-)-N/ΔNH4(+)-N values deviated from their theoretical values with increasing COD. Denitrifying bacteria exhibited good diversity and abundance, but the diversity of anammox bacteria was less abundant. Brocadia sinica was able to grow in the presence of organic matter and tolerate high nitrite concentration. Anammox bacteria were predominant at low COD contents, while denitrifying bacteria dominated the microbial community at high COD contents. Anammox and denitrifying bacteria could coexist in one reactor to achieve the simultaneous carbon and nitrogen removal through the synergy of anammox and denitrification. PMID:27459683

  2. Toxicity removal efficiency of decentralised sequencing batch reactor and ultra-filtration membrane bioreactors.

    PubMed

    Libralato, Giovanni; Volpi Ghirardini, Annamaria; Avezzù, Francesco

    2010-08-01

    As a consequence of the Water Framework Directive and Marine Strategy Framework Directive, there is now more focus on discharges from wastewater treatment plants both to transitional and marine-coastal waters. The constraint to encourage sustainable water policy to prevent water deterioration and reduce or stop discharges has entailed new requirements for existing wastewater treatment plants in the form of advanced wastewater treatment technologies as further suggested by the Integrated Pollution and Prevention Control Bureau. A whole toolbox of physico-chemical and ecotoxicological parameters to investigate commercial and mixed domestic and industrial discharges was considered to check the efficiency of an Activated-Sludge Sequencing Batch Reactor (AS-SBR) and two Ultra-Filtration Membrane Biological Reactors (UF-MBRs) on a small scale decentralised basis. All discharges were conveyed into Venice lagoon (Italy), one of the widest impacted Mediterranean transitional environment. The UF-MBRs were able to provide good quality effluents potentially suitable for non-potable reuse, as well as reducing specific inorganic micro-pollutants concentration (e.g. metals). Conversely, the AS-SBR showed unpredictable and discontinuous removal abilities. PMID:20619431

  3. Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater

    PubMed Central

    Chen, Wenjing; Dai, Xiaohu; Cao, Dawen; Wang, Sha; Hu, Xiaona; Liu, Wenru; Yang, Dianhai

    2016-01-01

    The partial nitrification (PN) performance and the microbial community variations were evaluated in a sequencing batch reactor (SBR) for 172 days, with the stepwise elevation of ammonium concentration. Free ammonia (FA) and low dissolved oxygen inhibition of nitrite-oxidized bacteria (NOB) were used to achieve nitritation in the SBR. During the 172 days operation, the nitrogen loading rate of the SBR was finally raised to 3.6 kg N/m3/d corresponding the influent ammonium of 1500 mg/L, with the ammonium removal efficiency and nitrite accumulation rate were 94.12% and 83.54%, respectively, indicating that the syntrophic inhibition of FA and low dissolved oxygen contributed substantially to the stable nitrite accumulation. The results of the 16S rRNA high-throughput sequencing revealed that Nitrospira, the only nitrite-oxidizing bacteria in the system, were successively inhibited and eliminated, and the SBR reactor was dominated finally by Nitrosomonas, the ammonium-oxidizing bacteria, which had a relative abundance of 83%, indicating that the Nitrosomonas played the primary roles on the establishment and maintaining of nitritation. Followed by Nitrosomonas, Anaerolineae (7.02%) and Saprospira (1.86%) were the other mainly genera in the biomass. PMID:27762325

  4. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  5. The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor.

    PubMed

    Akin, Beril S; Ugurlu, Aysenur

    2004-08-01

    Nitrate can affect phosphate release and lead to reduced efficiency of biological phosphorus removal process. The inhibition effect of remaining nitrate at the anaerobic/anoxic phases was investigated in a lab scale sequencing batch reactor. In this study the influence of denitrification process on reactor performance and phosphorus removal was examined. The experiments were carried out through simultaneous filling and decanting, mixing, mixing-aeration and settling modes. Glucose and acetate were used as carbon sources. The proposed treatment system was capable of removing approximately 80% of the influent PO4-P, 98% NH4-N and 97% COD at a SRT of 25 days. In the fill/decant phase, anoxic and anaerobic conditions prevailed and a large quantity of nitrate was removed in this stage. In the anoxic phase the remaining nitrate concentration was quickly reduced and a considerable amount of phosphate was released. This was attributed to the availability of acetate in this stage. For effective nitrogen and phosphate removal, a short anoxic phase was beneficial before an aerobic phase.

  6. Evaluation of leachate treatment by trickling filter and sequencing batch reactor processes in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, Mynepalli K C

    2013-07-01

    Strong and highly polluting leachate is continuously discharged into Omi stream and its tributaries in Ibadan, southwest Nigeria, from a municipal solid waste landfill. Previous studies have targeted physical and chemical treatment methods, which could not be implemented on site as stand-alone treatment systems. This study explored the bench-scale, trickling filter (TF) and sequencing batch reactor (SBR) treatment processes and assessed the quality of effluents produced. Leachate treatment using TF produced effluents with significant reductions (%) in suspended solids (SS) (73.17%), turbidity (71.96%), biochemical oxygen demand (BOD5) (76.69%) and ammonia (NH3) (59.50%), while SBR produced effluents with reductions in SS (62.28%), BOD5 (84.06%) and NH3 (64.83%). The dissolved oxygen of the reactors was 4.7 and 6.1mg/l, respectively, in TF and SBR. Also, NH3 values reduced marginally; however, nitrification took place significantly, but within permissible limits. The effluents produced by biological treatment processes were better in quality though the mean residual concentrations for colour, SS and dissolved solids; BOD5 and iron were above the national regulatory standards for discharge into surface water bodies. SBR gave a better effluent quality and should be combined with other treatment methods in sequence to produce quality effluents. PMID:23628902

  7. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.

    PubMed

    Wu, Chang-Yong; Peng, Yong-Zhen; Wang, Ran-Deng; Zhou, Yue-Xi

    2012-02-01

    The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L(-1) during the operation.

  8. Is a sequencing batch biofilter granular reactor suitable for textile wastewater treatment?

    PubMed

    Lotito, A M; Fratino, U; Mancini, A; Bergna, G; Di Iaconi, C

    2012-01-01

    The textile industry releases highly polluted and complex wastewaters, which are difficult to treat and require numerous treatment steps. Innovative technologies for on-site treatment at each factory would permit cost reduction. For this reason, we ran a laboratory-scale study to assess the suitability of a sequencing batch biofilter granular reactor (SBBGR) for textile wastewater treatment, testing four different types of wastewater. Results demonstrate that wastewater characteristics greatly affect the reactor efficiency. Hence, a pre-study is advisable to define the best operational conditions and the maximum treatment capability for the wastewater under analysis. Nevertheless, SBBGR is a valuable biological treatment, effective in the reduction of pollutant load with stable performances despite the variability in wastewater composition. Tests with ozone integration have demonstrated that it is possible to dose small quantities of ozone to obtain an effluent suitable for direct discharge. However, a dynamic ozone dosage should be used to optimize the process as the correct ozone dose strongly depends on the wastewater composition.

  9. Model-based design of sequencing batch reactor for removal of biodegradable organics and nitrogen.

    PubMed

    Velmurugan, S; Clarkson, William W; Veenstra, John N

    2010-05-01

    The process design of sequencing batch reactors (SBR) based on mathematical modeling is complex because of the unsteady nature of the process and the large number of kinetic and stoichiometric parameters involved. This paper proposes a model-based design methodology that uses a mathematical model with fewer parameters for removal of organic and nitrogen substrates in the SBR. The resulting mathematical model has been calibrated and validated before its use in model-based design. The data for model calibration and validation were obtained from the operation of a full-scale 836 m3/h (5.3 mgd) SBR system at the City of Tahlequah, Oklahoma. A calibration methodology also was presented to determine unknown kinetic and stoichiometric parameters using an optimization technique called simulated annealing. Model-based design reduced the total volume of the reactor by approximately 11% from the existing design. It also eliminated 0.92 hours of cycle time and 1.07 hours of aeration time per cycle, which would result in a total energy savings of $11,640 per year for the 836 m3/h (5.3 mgd) SBR system.

  10. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor.

    PubMed

    De Clippeleir, Haydée; Vlaeminck, Siegfried E; Carballa, Marta; Verstraete, Willy

    2009-11-01

    Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).

  11. Effects of extracellular polymeric substances on granulation of anoxic sludge in sequencing batch reactor.

    PubMed

    Wang, Binbin; Liu, Shunlian; Zhao, Hongmei; Zhang, Xinyan; Peng, Dangcong

    2012-01-01

    Variations of extracellular polymeric substances (EPS) and its components with sludge granulation were examined in a lab-scale sequencing batch reactor (SBR) which was fed with sodium nitrate and sodium acetate. Ultrasonication plus cation exchange resin (CER) were used as the EPS extraction method. Results showed that after approximately 90 d cultivation, the sludge in the reactor was almost granulated. The content of extracellular polysaccharides increased from 10.36 mg/g-VSS (volatile suspended solids) at start-up with flocculent sludge to 23.18 mg/g-VSS at 91 d with matured granular sludge, while the content of extracellular proteins were almost unchanged. Polysaccharides were the major components of EPS in anoxic granular sludge, accounting for about 70.6-79.0%, while proteins and DNA accounted for about 16.5-18.9% and 4.6-9.9%, respectively. It is proposed that EPS play a positive role in anoxic sludge granulation and polysaccharides might be strongly involved in aggregation of flocs into granules.

  12. Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor.

    PubMed

    Chen, Yao; Jiang, Wenju; Liang, David Tee; Tay, Joo Hwa

    2008-05-01

    Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m(-3) day(-1) in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (muoverall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (kd), observed yield (Yobs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Yobs) is associated with an increased solid retention time, while kd and Y changed insignificantly and can be regarded as constants under different organic loading rates.

  13. Response of biodegradation characteristics of unacclimated activated sludge to moderate pressure in a batch reactor.

    PubMed

    Xu, Rui-Xiao; Li, Bing; Zhang, Yong; Si, Ling; Zhang, Xian-Qiu; Xie, Biao

    2016-04-01

    This study was aimed to investigate the effect of moderate pressure on unacclimated activated sludge. Process of organic degradation, variation of carbon dioxide (CO2) concentration of off-gas and characteristics of extracellular polymeric substances (EPS) of activated sludge were analyzed using pressure-atmospheric comparative experiments in bench-scale batch reactors. It was found that moderate pressure increased the degradation rate more dramatically when the biological process ran under a higher organic load with much more oxygen demand, which illuminated that applications of the pressurized method to high concentration organic wastewaters would be more reasonable and practicable. High oxygen transfer impetus increased utilization of oxygen which not only promoted the biodegradation of organics in wastewater, but also led to more EPS consumption in activated sludge. CO2 concentration of off-gas was lower in the earlier stage due to CO2 being pressed into the liquid phase and converted into inorganic carbon (IC). More CO2 emission was observed during the pressurized aerobic process 160 min later. EPS in pressurized reactor was much lower, which may be an important way of sludge reduction by pressurized technology.

  14. Effect of cycle changes on simultaneous biological nutrient removal in a sequencing batch reactor (SBR).

    PubMed

    Coma, M; Puig, S; Monclús, H; Balaguer, M D; Colprim, J

    2010-03-01

    The destabilization of a microbial population is sometimes hard to solve when different biological reactions are coupled in the same reactor as in sequencing batch reactors (SBRs). This paper will try to guide through practical experiences the recovery of simultaneous nitrogen and phosphorus removal in an SBR after increasing the demand of wastewater treatment by taking advantage of its flexibility. The results demonstrate that the length of phases and the optimization of influent distribution are key factors in stabilizing the system for long-term periods with high nutrient removal (88%, 93% and 99% of carbon, nitrogen and phosphorus, respectively). In order to recover a biological nutrient removal (BNR) system, different interactions such as simultaneous nitrification and denitrification and also phosphorus removal must be taken into account. As a general conclusion, it can be stated there is no such thing as a perfect SBR operation, and that much will depend on the state of the BNR system. Hence, the SBR operating strategy must be based on a dynamic cycle definition in line with process efficiency. PMID:20426270

  15. Effect of Mn2+ augmentation on reinforcing aerobic sludge granulation in a sequencing batch reactor.

    PubMed

    Huang, Lihui; Yang, Tao; Wang, Weiliang; Zhang, Bo; Sun, Yuanyuan

    2012-03-01

    Two sequencing batch reactors were synchronously operated to investigate the effect of manganese (II) (Mn(2+)) augmentation on aerobic granulation. Reactor 1 (R1) was added with 10 mg/L Mn(2+), while there was no Mn(2+) augmentation in reactor 2 (R2). Results showed that R1 had a faster granulation process than R2 and R1 performed better in chemical oxygen demand (COD) and ammonium nitrogen (NH(4)(+)-N) removal efficiencies. Moreover, the mature granules augmented with Mn(2+) behaved better on their physical characteristics and size distributions, and they also had higher production of extracellular polymeric substances (EPS) content. The result of three-dimensional excitation and emission matrix fluorescence showed that Mn(2+) had the function of causing organic material diversity (especially proteins diversity) in EPS fraction from granules. Polymerase chain reaction and denaturing gradient gel electrophoresis techniques were employed to analyze the microbial and genetic characteristics in mature granules. The results exhibited that Mn(2+) augmentation was mainly responsible for the higher microbial diversity of granules from R1 compared with that from R2. Uncultured sludge bacterium A16 (AF234726) and Rhodococcus sp. WTZ-R2 (HM004214) were the major species in R1, while only uncultured sludge bacterium A16 (AF234726) in R2. Moreover, there were eight species of organisms found in both two aerobic granules, and three species were found only in aerobic granules from R1. It could be concluded that Mn(2+) could enhance the sludge granulation process and have a key effect role on the biological properties during the sludge granulation. PMID:21894480

  16. Short contact time direct coal liquefaction using a novel batch reactor. Progress report, January 1, 1994--May 15, 1994

    SciTech Connect

    Klein, M.T.; Calkins, W.H.

    1994-05-31

    The objective for this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for coal liquefaction at short contact times (0.01 to 10 minutes or longer). This reactor is simple enough and low enough in cost to serve as a suitable replacement for the traditional tubing-bomb reactors for many coal liquefaction and other high-pressure, high-temperature reaction studies. The liquefaction of selected Argonne Premium coals and the role of organic oxygen components of the coal and their reaction pathways at very low conversions are being investigated.

  17. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    PubMed Central

    Langone, Michela; Yan, Jia; Haaijer, Suzanne C. M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Andreottola, Gianni

    2014-01-01

    Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale sequencing batch reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8–8.0, respectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high NH3-N (1.9–10 mg NH3-N/L) and low nitrite (3–8 mg TNN/L) are required conditions during the whole SBR cycle. Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α–subunit (amoA) gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the “Ca. Brocadia fulgida” type, able to grow in presence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS) gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus Nitrobacter was detected

  18. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale

    PubMed Central

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E.

    2012-01-01

    Summary Oxygen‐limited autotrophic nitrification/denitrification (OLAND) is a one‐stage combination of partial nitritation and anammox, which can have a challenging process start‐up. In this study, start‐up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l−1 day−1 with minimal nitrite and nitrate accumulation were considered a successful start‐up. SBR A and B were operated at 50% VER with 3 g NaCl l−1 in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start‐up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l−1). Start‐up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10–0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass‐specific nitrogen removal rates (141–220 mg N g−1 VSS day−1). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium‐oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start‐up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. PMID:22236147

  19. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    PubMed

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume <400 mL) and a packed-bed reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days.

  20. The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors.

    PubMed

    Massé, D I; Masse, L

    2001-01-01

    High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C.

  1. Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors.

    PubMed

    Sani, Rajesh K; Peyton, Brent M; Dohnalkova, Alice

    2008-06-01

    To better understand the interactions among metal contaminants, nutrients, and microorganisms in subsurface fracture-flow systems, biofilms of pure culture of Shewanella oneidensis MR-1 were grown in six fracture-flow reactors (FFRs) of different geometries. The spatial and temporal distribution of uranium and bacteria were examined using a tracer dye (brilliant blue FCF) and microscopy. The results showed that plugging by bacterial cells was dependent on the geometry of the reactor and that biofilms grown in FFRs had a limited U(VI)-reduction capacity. To quantify the U(VI)-reduction capacity of biofilms, batch experiments for U(VI) reduction were performed with repetitive U(VI) additions. U(VI)-reduction rates of stationary phase cultures decreased after each U(VI) addition. After the fourth U(VI) addition, stationary phase cultures treated with U(VI) with and without spent medium yielded gray and black precipitates, respectively. These gray and black U precipitates were analyzed using high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Data for randomly selected areas of black precipitates showed that reduced U particles (3-6 nm) were crystalline, whereas gray precipitates were a mixture of crystalline and amorphous solids. Results obtained in this study, including a dramatic limitation of S. oneidensis MR-1 and its biofilms to reduce U(VI) and plugging of FFRs, suggest that alternative organisms should be targeted for stimulation for metal immobilization in subsurface fracture-flow systems. PMID:18468655

  2. Effects of fed-batch and continuous fermentations on human lysozyme production by Kluyveromyces lactis K7 in biofilm reactors.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-12-01

    Lysozyme is a lytic enzyme, which has antimicrobial activity. It has been used for food and pharmaceutical applications. This study was undertaken to evaluate fed-batch and continuous fermentations for the human lysozyme production in biofilm reactor. Results showed that addition of lactose the mid-log phase to make the concentration back to the initial level generates higher lysozyme production (177 U/ml) compared with lactose addition in late-log phase (174 U/ml) (p < 0.05). Moreover, fed-batch fermentation with glucose as initial carbon source and continuous addition of lactose with 0.6 ml/min for 10 h demonstrated significantly higher lysozyme production (187 U/ml) compared to the batch fermentation (173 U/ml) (p < 0.05). In continuous fermentation, biofilm reactor provided significantly higher productivity (7.5 U/ml/h) compared to the maximum productivity in suspended cell bioreactor (4 U/ml/h), because the biofilm reactor provided higher cell density at higher dilution rate compared to suspended cell reactor (p < 0.05).

  3. Partial nitrification in a sequencing batch reactor treating acrylic fiber wastewater.

    PubMed

    Li, Jin; Yu, Deshuang; Zhang, Peiyu

    2013-06-01

    A sequencing batch reactor was employed to treat the acrylic fiber wastewater. The dissolved oxygen and mixed liquor suspended solids were 2-3 and 3,500-4,000 mg/L, respectively. The results showed ammonium oxidizing bacteria (AOB) had superior growth rate at high temperature than nitrite oxidizing bacteria (NOB). Partial nitrification could be obtained with the temperature of 28 °C. When the pH value was 8.5, the nitrite-N accumulation efficiency was 82 %. The combined inhibitions of high pH and free ammonium to NOB devoted to the nitrite-N buildup. Hydraulic retention time (HRT) was a key factor in partial nitrification control, and the optimal HRT was 20 h for nitrite-N buildup in acrylic fiber wastewater treatment. The ammonium oxidation was almost complete and the transformation from nitrite to nitrate could be avoided. AOB and NOB accounted for 2.9 and 4.7 %, respectively, corresponding to the pH of 7.0. When the pH was 8.5, they were 6.7 and 0.9 %, respectively. AOB dominated nitrifying bacteria, and NOB was actually washed out from the system.

  4. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor.

    PubMed

    Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M

    2011-05-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.

  5. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    SciTech Connect

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping Liao, Li

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  6. Combined treatment of landfill leachate with fecal supernatant in sequencing batch reactor*

    PubMed Central

    Zhou, Shao-qi; Zhang, Hong-guo; Shi, Yong

    2006-01-01

    A laboratory-scale sequencing batch reactor (SBR) is used to treat landfill leachate containing high concentration of ammonium nitrogen with municipal fecal supernatant. The SBR system is operated in the following sequential phases: fill period, anoxic period, aeration period, settling period, decant and idle period. The results indicated that the average removal efficiencies of COD, BOD5, TN,NH4 +-N were 93.76%, 98.28%, 84.74% and 99.21%, respectively. The average sludge removal loading rates of COD, BOD5, TN and NH4 +-N were 0.24 kg/(kg SS·d), 0.08 kg/(kg SS·d), 0.04 kg/(kg SS·d) and 0.036 kg/(kg SS·d), respectively. Highly effective simultaneous nitrification and denitrification was achieved in the SBR system. The ratio of nitrification and denitrification was 99% and 84%, respectively. There was partial NO2 − denitrification in the system. PMID:16615171

  7. Modeling and simulation of fructooligosaccharides synthesis in a batch basket reactor.

    PubMed

    Detofol, Maiki Roberto; Aguiar-Oliveira, Elizama; Bustamante-Vargas, Cindy Elena; Soares, Alexandre Batista de Jesus; Soares, Mónica Beatriz Alvarado; Maugeri, Francisco

    2015-09-20

    Fructooligosaccharides (FOS) production was carried out in a batch basket reactor with immobilized fructosyltransferase from Rhodotorula sp. from 500×10(3) g m(-3) of sucrose in 50 mM sodium acetate buffer at pH 6.0, 48 °C at 85 rpm and with an activity of 22.44×10(3) U m(-3). The experimental data were well adjusted to the mathematical model for FOS production using SIMULINK(®) (MATLAB(®)). The highest regression coefficient (R(2)>90%) and the lowest percentual residual standard deviation (%RSD<4.0) and chi-square (χ(2) <1.0) were obtained for sucrose (GF), kestose (GF2) and total FOS. The mass transfer coefficient (kL) was determined as 5.6×10(-5) m h(-1) and the diffusivity (DS) was 2.11×10(-11) m(2) s(-1). The best predicted FOS yield (after 96 h) was 60.62%, with an equivalent productivity of 3.16×10(3) g m(-3) h(-1). These results reaffirm the good potential of this enzyme for industrial application and, in addition, are in conformation to other studies conducted with the same enzyme from the same and different microbial sources.

  8. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length.

  9. Modeling and simulation of fructooligosaccharides synthesis in a batch basket reactor.

    PubMed

    Detofol, Maiki Roberto; Aguiar-Oliveira, Elizama; Bustamante-Vargas, Cindy Elena; Soares, Alexandre Batista de Jesus; Soares, Mónica Beatriz Alvarado; Maugeri, Francisco

    2015-09-20

    Fructooligosaccharides (FOS) production was carried out in a batch basket reactor with immobilized fructosyltransferase from Rhodotorula sp. from 500×10(3) g m(-3) of sucrose in 50 mM sodium acetate buffer at pH 6.0, 48 °C at 85 rpm and with an activity of 22.44×10(3) U m(-3). The experimental data were well adjusted to the mathematical model for FOS production using SIMULINK(®) (MATLAB(®)). The highest regression coefficient (R(2)>90%) and the lowest percentual residual standard deviation (%RSD<4.0) and chi-square (χ(2) <1.0) were obtained for sucrose (GF), kestose (GF2) and total FOS. The mass transfer coefficient (kL) was determined as 5.6×10(-5) m h(-1) and the diffusivity (DS) was 2.11×10(-11) m(2) s(-1). The best predicted FOS yield (after 96 h) was 60.62%, with an equivalent productivity of 3.16×10(3) g m(-3) h(-1). These results reaffirm the good potential of this enzyme for industrial application and, in addition, are in conformation to other studies conducted with the same enzyme from the same and different microbial sources. PMID:26130308

  10. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors.

    PubMed

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-08-01

    Micropowder (20-250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  11. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    PubMed

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  12. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors.

    PubMed

    Lee, Chaeyoung; Lee, Sewook; Han, Sun-Kee; Hwang, Sunjin

    2014-01-01

    This study was performed to investigate the influence of operational pH on dark H(2) fermentation of food waste by employing anaerobic batch reactors. The highest maximum H(2) yield was 1.63 mol H(2)/mol hexoseadded at operational pH 5.3, whereas the lowest maximum H(2) yield was 0.88 mol H(2)/mol hexoseadded at operational pH 7.0. With decreasing operational pH values, the n-butyrate concentration tended to increase and the acetate concentration tended to decrease. The highest hydrogen conversion efficiency of 11.3% was obtained at operational pH 5.3, which was higher than that (8.3%) reported by a previous study (Kim et al. (2011) 'Effect of initial pH independent of operational pH on hydrogen fermentation of food waste', Bioresource Technology 102 (18), 8646-8652). The new result indicates that the dark fermentation of food waste was stable and efficient in this study. Fluorescence in situ hybridization (FISH) analysis showed that Clostridium species Cluster I accounted for 84.7 and 13.3% of total bacteria at operational pH 5.3 and pH 7.0, respectively, after 48 h operation.

  13. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    PubMed Central

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C. PMID:22953055

  14. Effects of idle time on biological phosphorus removal by sequencing batch reactors.

    PubMed

    Gao, Dawen; Yin, Hang; Liu, Lin; Li, Xing; Liang, Hong

    2013-12-01

    Three identical sequencing batch reactors (SBRs) were operated to investigate the effects of various idle times on the biological phosphorus (P) removal. The idle times were set to 3 hr (R1), 10 hr (R2) and 17 hr (R3). The results showed that the idle time of a SBR had potential impact on biological phosphorus removal, especially when the influent phosphorus concentration increased. The phosphorus removal efficiencies of the R2 and R3 systems declined dramatically compared with the stable R1 system, and the P-release and P-uptake rates of the R3 system in particular decreased dramatically. The PCR-DGGE analysis showed that uncultured Pseudomonas sp. (GQ183242.1) and beta-Proteobacteria (AY823971) were the dominant phosphorus removal bacteria for the R1 and R2 systems, while uncultured gamma-Proteobacteria were the dominant phosphorus removal bacteria for the R3 system. Glycogen-accumulating organisms (GAOs), such as uncultured Sphingomonas sp. (AM889077), were found in the R2 and R3 systems. Overall, the R1 system was the most stable and exhibited the best phosphorus removal efficiency. It was found that although the idle time can be prolonged to allow the formation of intracellular polymers when the phosphorus concentration of the influent is low, systems with a long idle time can become unstable when the influent phosphorus concentration is increased.

  15. Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors.

    PubMed

    Van Den Hende, Sofie; Carré, Erwan; Cocaud, Elodie; Beelen, Veerle; Boon, Nico; Vervaeren, Han

    2014-06-01

    Microalgal bacterial flocs in sequencing batch reactors (MaB-floc SBRs) represent a novel approach to wastewater treatment. In this approach, mechanical aeration is replaced by photosynthetic aeration and MaB-floc settling separates the treated wastewater from the produced biomass. However, its technical potential for industrial wastewaters needs to be shown. Therefore, wastewaters of aquaculture, manure treatment, food-processing and chemical industry were treated in MaB-floc SBRs. This treatment resulted in significantly different nutrient removal rates and effluent qualities among wastewaters. A high MaB-floc production was obtained for all wastewaters, ranging from 0.14 to 0.26g total suspended solids Lreactor(-1)day(-1). A major advantage of MaB-flocs is the harvesting via a filter press with a large pore size of 200μm, resulting in MaB-floc recoveries of 79-99% and cakes containing 12-21% dry matter. These results may contribute to evolving MaB-floc SBRs as a valuable remediation strategy, especially for aquaculture and food-processing wastewaters.

  16. Short Contact Time Direct Coal Liquefaction Using a Novel Batch Reactor

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1997-04-03

    The primary objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer) . An additional objective is to study the kinetics of direct coal liquefaction particularly at short reaction times. Both of these objectives have been nearly achieved, however this work has shown the great importance of the liquefaction solvent characteristics and the solvent-catalyst interaction on the liquefaction process. This has prompted us to do a preliminary investigation of solvents and the solvent-catalyst systems in coal liquefaction. SUMMARY AND CONCLUSIONS 1) Conversion vs time data have been extended to 5 coals of ranks from lignite to low volatile bituminous coal. A broad range of reaction rates have been observed with a maximum in the high volatile bituminous range. 2) A series of direct coal liquefaction runs have been made using a range of nitrogen containing solvents that given high liquefaction conversions of coal. These runs are now being analyzed. 3) The coalification process has been shown by TGA to go through an intermediate stage which may account for the greater reactivity of bituminous coals in the direct coal liquefaction process. 4) It was shown that coal rank can be accurately determined by thermogravimetric analysis

  17. Effects of idle time on biological phosphorus removal by sequencing batch reactors.

    PubMed

    Gao, Dawen; Yin, Hang; Liu, Lin; Li, Xing; Liang, Hong

    2013-12-01

    Three identical sequencing batch reactors (SBRs) were operated to investigate the effects of various idle times on the biological phosphorus (P) removal. The idle times were set to 3 hr (R1), 10 hr (R2) and 17 hr (R3). The results showed that the idle time of a SBR had potential impact on biological phosphorus removal, especially when the influent phosphorus concentration increased. The phosphorus removal efficiencies of the R2 and R3 systems declined dramatically compared with the stable R1 system, and the P-release and P-uptake rates of the R3 system in particular decreased dramatically. The PCR-DGGE analysis showed that uncultured Pseudomonas sp. (GQ183242.1) and beta-Proteobacteria (AY823971) were the dominant phosphorus removal bacteria for the R1 and R2 systems, while uncultured gamma-Proteobacteria were the dominant phosphorus removal bacteria for the R3 system. Glycogen-accumulating organisms (GAOs), such as uncultured Sphingomonas sp. (AM889077), were found in the R2 and R3 systems. Overall, the R1 system was the most stable and exhibited the best phosphorus removal efficiency. It was found that although the idle time can be prolonged to allow the formation of intracellular polymers when the phosphorus concentration of the influent is low, systems with a long idle time can become unstable when the influent phosphorus concentration is increased. PMID:24649669

  18. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors.

    PubMed

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-11-01

    In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35±1°C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369-466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000-3000 mgNH4-N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation-emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  19. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  20. On the dynamics and function of ciliates in sequencing batch biofilm reactors.

    PubMed

    Fried, J; Lemmer, H

    2003-01-01

    Ciliates are known to directly influence the performance of wastewater treatment plants mainly by feeding on suspended particles. By monitoring two lab-scale sequencing batch biofilm reactors (SBBR), one filled with expanded shale (clay spheres), the other with "Kaldnes" particles (PE-carriers), the succession of biofilm communities with special emphasis on ciliates was monitored for one year. Ciliates were identified and quantified at the species level and compared to rotifer and nematode abundances. Members of the subclass Peritrichia clearly dominated the community of protozoa. Epistylis cf. coronata and Opercularia asymmetrica were the dominant species within this group. The tree-like structure of their colonies provided a distinctive augmentation of the area available for bacterial colonization. The flux of water, produced by E. cf. coronata due to cilia motility, has been visualized and measured by video processing. This flux of water was still measurable at distances > 500 microm and maximum water currents raised up to 180 microm s(-1). Therefore, the role of ciliates is not only restricted to the ingestion of bacteria and suspended particles. They also alter water flux and carry nutrients to the inner parts of the biofilm. Thus, monitoring biofilm formation in wastewater treatment plants should always consider the impact of protists such as ciliates.

  1. Remediation of chlorophenol- and phenol-contaminated groundwater by a sequencing batch biofilm reactor.

    PubMed

    Farabegoli, G; Chiavola, A; Rolle, E

    2008-01-01

    The paper describes the results of an investigation aimed at evaluating suitability of a lab-scale Sequencing Batch Biofilm Reactor (SBBR) for the remediation of groundwater contaminated by phenol (P) and 2-chlorophenol (2-CP). Kinetics of compound degradation was determined along the bed height in the absence and in presence of effluent recirculation, and with different influent composition (compounds fed separately or in combination in the same stream). SBBR performances with and without recirculation were very satisfactory for all the influent compositions: the system showed 99% removal efficiencies for both phenol and 2-CP and their complete removal was always achieved far before the end of react. In the presence of recirculation, the concentration gradient established during fill was rapidly eliminated and an even biomass distribution along the bed height was formed. Consequently, an acceleration of the elimination process was observed, particularly for phenol that was mostly removed in the first hour of the cycle. When the compounds were fed simultaneously, 2-CP removal kinetics improved probably due to cometabolism. The adsorption phenomena of the toxic compounds on the packing material were studied also, showing about 50% COD removal after 7 hours contact time.

  2. Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain.

    PubMed

    Simeonova, Diliana D; Micheva, Kalina; Muller, Daniel A E; Lagarde, Florence; Lett, Marie-Claire; Groudeva, Veneta I; Lièvremont, Didier

    2005-08-20

    Arsenic is one of the major groundwater contaminants worldwide. It was previously demonstrated that the beta-proteobacterium Cenibacterium arsenoxidans has an efficient As[III] oxidation ability. The present study was conducted to evaluate the performance of alginate-immobilized ULPAs1 in the oxidation of As[III] to As[V] in batch reactors. A two-level full factorial experimental design was applied to investigate the influence of main parameters involved in the oxidation process, i.e., pH (7-8), temperature (4 degrees C-25 degrees C), kind of nutrient media (2%-20% sauerkraut brine), and arsenic concentration (10-100 mg/L). One hundred milligram per liter of As[III] was fully oxidized by calcium-alginate immobilized cells in 1 h. It was found that the temperature as well as the kind of nutrient media used were significant parameters at a 95% confidence interval whereas only temperature was a significant parameter at a 99% confidence interval. The immobilization of the As[III] oxidizing strain in alginate beads offers a promising way to implement new treatment processes in the remediation of arsenic contaminated waters.

  3. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system.

    PubMed

    Lee, D S; Jeon, C O; Park, J M

    2001-11-01

    Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR). Significant amounts of phosphorus-accumulation organisms (PAOs) capable of denitrification could be accumulated in a single sludge system coexisting with nitrifiers. The ratio of the anoxic phosphate uptake to the aerobic phosphate uptake capacity was increased from 11% to 64% by introducing an anoxic phase in an anaerobic aerobic SBR. The (AO)2 SBR system showed stable phosphorus and nitrogen removal performance. Average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%, respectively. It was found that nitrite (up to 10 mg NO2(-)-N/l) was not detrimental to the anoxic phosphate uptake and could serve as an electron acceptor like nitrate. In fact, the phosphate uptake rate was even faster in the presence of nitrite as an electron acceptor compared to the presence of nitrate. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviours of nutrient concentrations (NH4+, NO3-, and PO4(3-)) in the SBR. These on-line sensor values were used as real-time control parameters to adjust the duration of each operational phase in the (AO)2 SBR. The real-time controlled SBR exhibited better performance in the removal of phosphorus and nitrogen than the SBR with fixed-time operation. PMID:12230180

  4. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor.

    PubMed

    Uygur, Ahmet; Kargi, Fikret

    2004-05-01

    Biological treatment of landfill leachate usually results in low nutrient removals because of high chemical oxygen demand (COD), high ammonium-N content and the presence of toxic compounds such as heavy metals. Landfill leachate with high COD content was pre-treated by coagulation-flocculation with lime followed by air stripping of ammonia at pH=12. Nutrient removal from pre-treated leachate was carried out using a lab-scale sequencing batch reactor (SBR). Three different operations consisting of different numbers of steps were tested and their performances were compared. These operations were the three-step anaerobic (An)/anoxic (Ax)/oxic (Ox); the four-step (An/Ox/Ax/Ox), and the five-step (An/Ax/Ox/Ax/Ox) operations with total residence time of seven hours each. Experiments were carried out using three consecutive operations with a total cycle time of 21 h at a constant sludge age of 10 days. The lowest effluent nutrient levels were realized by using the five-step operation which resulted in effluent COD, NH4-N and PO4-P contents of 1,400, 107 and 65 mg l(-1), respectively, at the end of 21 h. Addition of domestic wastewater (1/1, v/v) and powdered activated carbon (PAC, 1 g l(-1)) to the pre-treated leachate improved nutrient removals in the five-step SBR operation, resulting in 75% COD, 44% NH4-N and 44% PO4-P removals after 21 hours of operation.

  5. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed

    Mohn, W W

    1995-06-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Microbiological and performance evaluation of sequencing batch reactor for textile wastewater treatment.

    PubMed

    Ogleni, Nurtac; Arifoglu, Yasemin Damar; Ileri, Recep

    2012-04-01

    This study focused on laboratory-scaled and real-scaled treatment plant performances and microbiological investigations for the optimum treatment of textile industry wastewater performed with sequencing batch reactor (SBR). As a result of experimental studies of laboratory-scaled SBR treatment unit, optimum treatment efficiency was taken from 0.5 h filling to 1.5 h. reaction to 1.5 h. settlement to 0.5 h. discharge-idle periods. Average chemical oxygen demand (COD) removal efficiency of SBR of laboratory-scaled textile industry was 75%, whereas average turbidity and color removal (coloration number [RES, m(-1)] 586 nm) efficiencies were 90% and 75%, respectively. Optimum reaction and settlement periods were used in a real-scaled plant, and plant efficiency was examined for parameters such as COD, phenol, pH, mixed liquor suspended solids (MLSS) and sludge volume index (SVI). In this study, optimum reaction and settlement periods for treatment of textile industry wastewater were determined within a SBR in a laboratory-scaled plant. These reaction and settlement periods were verified with the measurement of COD, color, and turbidity parameters. Floc structure and protozoa-metazoa species of activated sludge in a SBR were also determined. Optimum reaction and settlement times were used in a real-scaled plant, and plant efficiency was examined for COD, Phenol, pH, MLSS, and SVI parameters. The corresponding values were found as appropriate, acceptable, and meaningful because of variance value of statistical analysis. Protozoa and metazoan in the activated sludge in the laboratory-scaled plant were investigated. Peranema sp., Epistylis sp., Didinium sp., Chilodonella sp., Opercularia sp., Vorticella sp. as protozoa species and Habrotrocha sp., Philodina sp. as metazoa species were determined.

  7. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  8. Treatment of fatty solid waste from the meat industry in an anaerobic sequencing batch reactor: start-up period and establishment of the design criteria.

    PubMed

    Martinez-Sosa, D; Torrijos, M; Buitron, G; Sousbie, P; Devillers, P H; Delgenès, J P

    2009-01-01

    An anaerobic sequencing batch reactor (AnSBR) was used to treat the dissolved air flotation skimmings from a cooked pork meat plant. During the start-up period, the reactor was operated in fed-batch mode for 25 days and 7 batches were treated. The SBR was inoculated with sludge taken from a reactor treating distillery vinasse. The results showed that this kind of sludge is a very good source of inoculum for digesters treating residues with a high content in fats and long-chain fatty acids because it was able to adapt very rapidly to the new substrate and, from the second batch on, the sludge was already able to metabolize the fatty residue at quite high rates. The AnSBR was then operated with 5 batches per week for 110 days and the quantity of VS added per batch was regularly increased until the maximum treatment capacity of the reactor (i.e. maximum loading rate) was reached. The maximum organic loading rates were found to be 0.16 g VS/g VSS d, or 0.224 g VS/g VSS.batch when the reactor is fed 5 times a week. The biodegradability of the skimmings was very high, with more than 97% of TS removal, and the methane production was 880+/-90 mL of methane/g of VS(added).

  9. Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite waste streams under solar irradiation

    SciTech Connect

    Priya, R.; Kanmani, S.

    2009-10-15

    In this study, two solar slurry photocatalytic reactors i.e., batch reactor (BR) and batch recycle reactor with continuous supply of inert gas (BRRwCG) were developed for comparing their performance. The performance of the photocatalytic reactors were evaluated based on the generation of hydrogen (H{sub 2}) from water containing sodium sulfide (Na{sub 2}S) and sodium sulfite (Na{sub 2}SO{sub 3}) ions. The photoreactor of capacity 300 mL was developed with UV-vis transparent walls. The catalytic powders ((CdS/ZnS)/Ag{sub 2}S + (RuO{sub 2}/TiO{sub 2})) were kept suspended by means of magnetic stirrer in the BR and gas bubbling and recycling of the suspension in the BRRwCG. The rate constant was found to be 120.86 (einstein{sup -1}) for the BRRwCG whereas, for the BR it was found to be only 10.92 (einstein{sup -1}). The higher rate constant was due to the fast desorption of products and suppression of e{sup -}/h{sup +} recombination. (author)

  10. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time.

    PubMed

    Bagchi, Samik; Tellez, Berenice G; Rao, Hari Ananda; Lamendella, Regina; Saikaly, Pascal E

    2015-03-01

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media. PMID:25326778

  11. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time.

    PubMed

    Bagchi, Samik; Tellez, Berenice G; Rao, Hari Ananda; Lamendella, Regina; Saikaly, Pascal E

    2015-03-01

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  12. Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR).

    PubMed

    Tawfik, A; El-Kamah, H

    2012-01-01

    This study has been carried out to assess the performance of a combined system consisting of an anaerobic hybrid (AH) reactor followed by a sequencing batch reactor (SBR) for treatment of fruit-juice industry wastewater at a temperature of 26 degrees C. Three experimental runs were conducted in this investigation. In the first experiment, a single-stage AH reactor was operated at a hydraulic retention time (HRT) of 10.2 h and organic loading rate (OLR) of 11.8 kg COD m(-3) d(-1). The reactor achieved a removal efficiency of 42% for chemical oxygen demand (COD), 50.8% for biochemical oxygen demand (BOD5), 50.3% for volatile fatty acids (VFA) and 56.4% for total suspended solids (TSS). In the second experiment, two AH reactors connected in series achieved a higher removal efficiency for COD (67.4%), BOD5 (77%), and TSS (71.5%) at a total HRT of 20 h and an OLR of 5.9 kg COD m(-3) d(-1). For removal of the remaining portions of COD, BOD5 and TSS from the effluent of the two-stage AH system, a sequencing batch reactor (SBR) was investigated as a post-treatment unit. The reactor achieved a substantial reduction in total COD, resulting in an average effluent concentration of 50 mg L(-1) at an HRT of 11 h and OLR of 5.3 kg COD m(-3) d(-1). Almost complete removal of total BOD5 and oil and grease was achieved, i.e. 10 mg L(-1) and 1.2 mg L(-1), respectively, remained in the final effluent of the SBR.

  13. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor.

    PubMed

    Daniel, Leonidia Maria Castro; Pozzi, Eloísa; Foresti, Eugenio; Chinalia, Fabio Alexandre

    2009-02-01

    A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24h under intermittent aeration for periods of 1h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24h cycles. PMID:18793833

  14. Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor: concept demonstration, kinetics and modelling.

    PubMed

    Tomei, M Concetta; Annesini, M Cristina; Rita, Sara; Daugulis, Andrew J

    2008-10-01

    The objectives of this work were to demonstrate the potential of a two-phase sequencing batch reactor in degrading xenobiotics and to evaluate the kinetic parameters leading to a mathematical model of the system. 4-Nitrophenol (4NP), a typical representative of substituted phenols, was selected as the target xenobiotic; this compound has never been remediated in a two-phase bioreactor before. Partition tests were conducted to determine the most appropriate partitioning solvent, and among the three investigated solvents (1-undecanol, 2-undecanone and oleyl alcohol), 2-undecanone was chosen because of its favourable partition coefficient and its negligible emulsion-forming tendencies. Moreover, the selected solvent showed satisfactory biocompatibility characteristics with respect to the biomass, with only minor effects on the intrinsic microbial kinetics. Kinetic tests were then performed in a sequencing batch reactor (2-l volume) operated in both conventional one- and two-phase configurations, with the two-phase system showing a significant improvement in the process kinetics in terms of reduced inhibition and increased maximum removal rate. The obtained kinetic parameters suggest that the two-phase sequencing batch system may find full-scale application, as the maximum removal rate k(max) (approximately 3 mg 4NP mgVSS(-1) day(-1)) is of the same order of magnitude of heterotrophic bacteria operating in wastewater treatment plants.

  15. Short contact time direct coal liquefaction using a novel batch reactor. Progress report, September 27, 1993--December 31, 1993

    SciTech Connect

    Klein, M.T.; Calkins, W.H.

    1994-01-19

    The objective for this research is to optimize the design and operation of the bench scale batch reactor (STBR) for coat liquefaction at short contact times (0.01 to 10 minutes). This reactor is simple and low enough in cost to serve as a suitable replacement for the traditional tubing-bomb reactors for coal liquefaction and other high-pressure, high-temperature reaction studies. The details of the reactor system are shown in Figure 2. The heating bath used is a Techne IFB-52 industrial fluidized sand bath, which maintains a reaction temperature of {plus_minus}2{degrees}C. The 30 cm{sup 3} reactor is capable of containing up to 17 MPa (2500 psi) pressure at temperatures up to 550{degrees}C. The tubing used for preheater and precooler was 1/4in. 316 stainless steel with wall thickness of 0.035in. The lengths of the preheater and precooler are selected based on the particular process being studied. Since a gas (e.g. hydrogen or nitrogen) is bubbled through the reaction mixture under pressure and out through a letdown valve, a small water cooled condenser above the reactor before the let-down valve is added to avoid loss of solvent or other low boiling components. Coal liquefaction runs are made by preparing slurries of coal in reagent grade tetralin. Various ratios of tetralin to coal are used, and in some cases, a catalyst such as Ni/Mo on alumina is added.

  16. Nitrous oxide emission and nutrient removal in aerobic granular sludge sequencing batch reactors.

    PubMed

    Quan, Xiangchun; Zhang, Mingchuan; Lawlor, Peadar G; Yang, Zhifeng; Zhan, Xinmin

    2012-10-15

    Application of aerobic granular sludge into wastewater treatment is promising due to its excellent settling ability and high microbial concentrations. However, its spatial structure could induce incomplete denitrification, leading to generation of nitrous oxide (N(2)O) - a potent greenhouse gas. Under the temperature of 14 ± 4 °C, three identical laboratory-scale aerobic granular sludge sequencing batch reactors (SBRs) were established to treat synthetic wastewater simulating a mixture of liquid pig manure digestate and municipal wastewater at three aeration rates (0.2, 0.6 and 1.0 L air/min) and three COD:N ratios (1:0.22, 1:0.15 and 1:0.11). The studies show the proportions of N(2)O emission to the influent nitrogen loading rate at the aeration rates of 0.2, 0.6 and 1.0 L air/min were 8.2%, 6.1% and 3.8% at a COD:N ratio of 1:0.22; 7.0%, 5.1% and 3.5% at a COD:N ratio of 1:0.15; and 4.4%, 2.9% and 2.2% at a COD:N ratio of 1:0.11, respectively. With NO(2)(-) as the only nitrogen source in the liquid phase, the specific N(2)O generation rates via denitrification were 1.7, 1.6 and 1.3 μg N(2)O/(g SS· min) at the aeration rates of 0.2, 0.6 and 1.0 L air/min, respectively, which were 40.9%, 44.8%, 39.9% higher than those with NO(3)(-) as the only nitrogen source, respectively. N(2)O generation by aerobic granular sludge due to NH(4)(+)-N nitrification was not sensitive to the aeration rate, and the average specific N(2)O generation rate was 0.8 ± 0.02 μg N(2)O/(g SS· min).

  17. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.

    PubMed

    Tam, H L S; Tang, D T W; Leung, W Y; Ho, K M; Greenfield, P F

    2004-01-01

    Bench-scale systems, using conventional and compact hybrid activated sludge configurations, were set up to evaluate the systems' nitrification-denitrification performance, operating sludge age/MLSS concentration and sludge settleability at a Hong Kong municipal STW. Configurations tested were the continuous clarifier modified Ludzack Ettinger (MLE) and the sequencing batch reactor (SBR) with and without hybrid suspended biofilm carriers. Results demonstrated that the hybrid SBR and MLE systems consistently achieved close to complete nitrification (effluent NH4-N = 2.4 and 6.9 mg/L) and 75% and 67% removal of nitrogen (N) (effluent NO3-N < 10 mg/L) with an overall hydraulic retention time of only 7.5 hours, operating sludge age as short as 5.2 days, and mixed liquor suspended solids concentration of approximately 1,300 mg/L with a sludge volume index of 109 and 229 mL/g, respectively. The most sensitive and slowest growing nitrifiers attached to the hybrid biofilm carriers. This allowed the hybrid processes to be operated at a sludge age shorter than the critical nitrifying sludge age while still retaining near complete nitrification. In contrast, to achieve complete nitrification, the conventional MLE system needed to be operated at 1.5 to 2.5 times the critical sludge age. These results indicate that the hybrid MLE configuration is a suitable process for use in upgrading existing conventional works for N removal and for increasing hydraulic capacity of existing N removal works, without major civil works modifications, in Hong Kong. For new works, consideration might be given to the use of the hybrid SBR, which shows a more stable N removal performance than the MLE process due to its inherent in-basin equalization capacity and better reaction conditions for nitrification in terms of higher initial NH4-N level. It was also observed that the conventional SBR produced better nitrification performance than the hybrid MLE process tested. Design parameters and operating

  18. The performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage colonized by anoxygenic phototrophic bacteria.

    PubMed

    Sarti, A; Pozzi, E; Chinalia, F A; Zaiat, M; Foresti, E

    2006-03-01

    There are few reports on morphological characterization of microbial population colonizing anaerobic bioreactors and the aim of this work was to access such variable in an anaerobic sequencing batch biofilm reactor treating the University of Sao Paulo (Sao Carlos city, Brazil) domestic sewage. This pilot-scale reactor (1.2m3) has been treating 0.65 m3 of liquid waste under cycles of 8h. The ASBBR has the distinct characteristics of being filled with support material for biomass attachment with the aim of skipping the sedimentation phase during the operational cycles, as it is commonly observed in anaerobic sequencing batch reactors (ASBR). Physical, chemical and physico-chemical variables were accessed in the influent and in the effluent for performance evaluation. Microbial characterization was made by means of direct microscopy and samples were taken over 150 d with a 25 d period interval. The ASBBR attained approximately 60% of COD removal efficiency. Microscopic analysis of biomass showed the presence of anoxygenic phototrophic bacteria probably influencing the ASBBR performance in the domestic sewage treatment. It is very likely that the exclusion of phototrophic sulfur bacteria by efficiently restraining the light would enhance the bioreactor efficiency.

  19. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    PubMed

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. PMID:26298401

  20. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    PubMed

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%.

  1. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells.

    PubMed

    Moraes, B S; Souza, T S O; Foresti, E

    2011-01-01

    Sulfide-oxidizing autotrophic denitrification is an advantageous alternative over heterotrophic denitrification, and may have potential for nitrogen removal of low-strength wastewaters, such as anaerobically pre-treated domestic sewage. This study evaluated the fundamentals and kinetics of this process in batch reactors containing suspended and immobilized cells. Batch tests were performed for different NOx-/S2- ratios and using nitrate and nitrite as electron acceptors. Autotrophic denitrification was observed for both electron acceptors, and NOx-/S2- ratios defined whether sulfide oxidation was complete or not. Kinetic parameter values obtained for nitrate were higher than for nitrite as electron acceptor. Zero-order models were better adjusted to profiles obtained for suspended cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. Results showed that sulfide-oxidizing autotrophic denitrification can be successfully established for low-strength wastewaters and have potential for nitrogen removal from anaerobically pre-treated domestic sewage. PMID:22097054

  2. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    SciTech Connect

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós; Rábai, Gyula

    2015-06-15

    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  3. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    NASA Astrophysics Data System (ADS)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  4. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  5. Effects of bed materials on the performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage.

    PubMed

    Garcia, M L; Lapa, K R; Foresti, E; Zaiat, M

    2008-09-01

    The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR, with a total volume of 7.2L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358+/-110 mg/L. The average effluent COD values were 121+/-31, 208+/-54, 233+/-52, and 227+/-51 mg/L, for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52+/-0.05, 0.37+/-0.05, 0.80+/-0.04, and 0.30+/-0.02 h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor's operational phase. In addition, findings on the microbial community were associated with the reactor's performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found on its surface. Based on the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the most suitable material showing the best performance in terms of efficiency of solids and COD removal.

  6. Wastewater treatment from biodiesel production via a coupled photo-Fenton-aerobic sequential batch reactor (SBR) system.

    PubMed

    Ramírez, Ximena María Vargas; Mejía, Gina Maria Hincapié; López, Kelly Viviana Patiño; Vásquez, Gloria Restrepo; Sepúlveda, Juan Miguel Marín

    2012-01-01

    A coupled system of the photo-Fenton advanced oxidation technique and an aerobic sequential batch reactor (SBR) was used to treat wastewater from biodiesel production using either palm or castor oil. The photo-Fenton reaction and biological process were evaluated individually and were effective at treating the wastewater; nevertheless, each process required longer degradation times for the wastewater pollutants compared with the coupled system. The proposed coupled photo-Fenton/aerobic SBR system obtained a 90% reduction of the chemical oxygen demand (COD) in half of the time required for the biological system individually. PMID:22766873

  7. Kinetics studies of p-cresol biodegradation by using Pseudomonas putida in batch reactor and in continuous bioreactor packed with calcium alginate beads.

    PubMed

    Mathur, A K; Bala, Shashi; Majumder, C B; Sarkar, S

    2010-01-01

    Present study deals with the biodegradation of p-cresol by using Pseudomonas putida in a batch reactor and a continuous bioreactor packed with calcium alginate beads. The maximum specific growth rate of 0.8121 h(-1) was obtained at 200 mg L(-1) concentration of p-cresol in batch reactor. The maximum p-cresol degradation rate was obtained 6.598 mg L(-1) h(-1) at S(o)=200 mg L(-1) and 62.8 mg L(-1) h(-1) at S(o)=500 mg L(-1) for batch reactor and a continuous bioreactor, respectively. The p-cresol degradation rate of continuous bioreactor was 9 to 10-fold higher than those of the batch reactor. It shows that the continuous bioreactor could tolerate a higher concentration of p-cresol. A Haldane model was also used for p-cresol inhibition in batch reactor and a modified equation similar to Haldane model for continuous bioreactor. The Haldane parameters were obtained as µ(max) 0.3398 h(-1), K(s) 110.9574 mg L(-1), and K(I) 497.6169 mg L(-1) in batch reactor. The parameters used in continuous bioreactor were obtained as D(max) 91.801 mg L(-1) h(-1), K(s) 131.292 mg L(-1), and K(I) 1217.7 mg L(-1). The value K(I) of continuous bioreactor is approximately 2.5 times higher than the batch reactor. Higher K(I) value of continuous bioreactor indicates P. putida can grow at high range of p-cresol concentration. The ability of tolerance of higher p-cresol concentrations may be one reason for biofilm attachment on the packed bed in the continuous operation.

  8. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements.

    PubMed

    Dieudé-Fauvel, E; Héritier, P; Chanet, M; Girault, R; Pastorelli, D; Guibelin, E; Baudez, J C

    2014-03-15

    Anaerobic digestion is a significant process leading to biogas production and waste management. Despite this double interest, professionals still face a lack of efficient tools to monitor and manage the whole procedure. This is especially true for rheological properties of the material inside the reactor, which are of major importance for anaerobic digestion management. However, rheological properties can hardly be determined in-situ and it would be very helpful to determine indicators of their evolution. To solve this problem, this paper investigates the evolution of sewage sludge rheological and electrical properties during the anaerobic digestion in a batch reactor. We especially focus on apparent viscosity and complex impedance, measured by electrical impedance spectroscopy. Both of them can be modelled by a linear combination of raw sludge and inoculum properties, weighted by time-dependent coefficients. Thus, by determining digested sludge electrical signature, it is possible to obtain those coefficients and model sludge apparent viscosity. This work offers many theoretical and practical prospects.

  9. REUSABLE ADSORBENTS FOR DILUTE SOLUTIONS SEPARATION. 6. BATCH AND CONTINUOUS REACTORS FOR ADSORPTION AND DEGRADATION OF 1,2-DICHLOROBENZENE FROM DILUTE WASTEWATER STREAMS USING TITANIA AS A PHOTOCATALYST. (R828598C753)

    EPA Science Inventory

    Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...

  10. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  11. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  12. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    PubMed

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  13. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    PubMed

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.

  14. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  15. Effect of agitation on the performance of an anaerobic sequencing batch biofilm reactor in the treatment of dairy effluents.

    PubMed

    Penteado, T Z; Santana, R S S; Dibiazi, A L B; de Pinho, S C; Ribeiro, R; Tommaso, G

    2011-01-01

    Agitation rate is an important parameter in the operation of Anaerobic Sequencing Biofilm Batch Reactors (ASBBRs), and a proper agitation rate guarantees good mixing, improves mass transfer, and enhances the solubility of the particulate organic matter. Dairy effluents have a high amount of particulate organic matter, and their anaerobic digestion presents inhibitory intermediates (e.g., long-chain fatty acids). The importance of studying agitation in such batch systems is clear. The present study aimed to evaluate how agitation frequency influences the anaerobic treatment of dairy effluents. The ASBBR was fed with wastewater from milk pasteurisation process and cheese manufacture with no whey segregation. The organic matter concentration, measured as chemical oxygen demand (COD), was maintained at approximately 8,000 mg/L. The reactor was operated with four agitation frequencies: 500 rpm, 350 rpm, 200 rpm, and no agitation. In terms of COD removal efficiency, similar results were observed for 500 rpm and 350 rpm (around 90%) and for 200 rpm and no agitation (around 80%). Increasing the system's agitation thus not only improved the global efficiency of organic matter removal but also influenced volatile acid production and consumption and clearly modified this balance in each experimental condition. PMID:21411951

  16. Deactivation of titanium dioxide photocatalyst by oxidation of polydimethylsiloxane and silicon sealant off-gas in a recirculating batch reactor.

    PubMed

    Chemweno, Maurice K; Cernohlavek, Leemer G; Jacoby, William A

    2008-01-01

    We have studied deactivation of titanium dioxide (TiO2) photocatalyst by oxidation of polydimethylsiloxane and silicone sealant off-gas in a recirculating batch reactor. Polydimethylsiloxane vapor is a model indoor air pollutant. It does not adsorb strongly on TiO2 in the dark, but undergoes oxidation when the ultraviolet (UV) photons are also present. Commercial silicone (room-temperature vulcanizing) sealant off-gas is an actual indoor air pollutant subject to short-term spikes in concentration. It does adsorb on the TiO2 surface in the dark, but UV photons also catalyze its oxidation. The oxidation of the Si-containing vapors was monitored using a Fourier transform infrared spectroscope equipped with a gas cell. Subsequent to each incremental exposure, a hexane oxidation reaction was performed to track the titania catalyst's activity. The exposures were repeated until substantial deactivation was achieved. We have also documented the regenerative effect of washing the catalyst surface with water. Surface science techniques were used to view the topography of the catalyst and to identify the elements causing the deactivation. Procedural observations of interest in the context of our recirculating batch reactor include the following: the rate of oxidation of hexane was used to assess the activity of a photocatalyst sample; hexane is an appropriate choice of a probe molecule because it does not adsorb in the dark and it undergoes photocatalytic oxidation (PCO) completely, forming CO2; and hexane does not deactivate the photocatalyst surface.

  17. Effect of agitation on the performance of an anaerobic sequencing batch biofilm reactor in the treatment of dairy effluents.

    PubMed

    Penteado, T Z; Santana, R S S; Dibiazi, A L B; de Pinho, S C; Ribeiro, R; Tommaso, G

    2011-01-01

    Agitation rate is an important parameter in the operation of Anaerobic Sequencing Biofilm Batch Reactors (ASBBRs), and a proper agitation rate guarantees good mixing, improves mass transfer, and enhances the solubility of the particulate organic matter. Dairy effluents have a high amount of particulate organic matter, and their anaerobic digestion presents inhibitory intermediates (e.g., long-chain fatty acids). The importance of studying agitation in such batch systems is clear. The present study aimed to evaluate how agitation frequency influences the anaerobic treatment of dairy effluents. The ASBBR was fed with wastewater from milk pasteurisation process and cheese manufacture with no whey segregation. The organic matter concentration, measured as chemical oxygen demand (COD), was maintained at approximately 8,000 mg/L. The reactor was operated with four agitation frequencies: 500 rpm, 350 rpm, 200 rpm, and no agitation. In terms of COD removal efficiency, similar results were observed for 500 rpm and 350 rpm (around 90%) and for 200 rpm and no agitation (around 80%). Increasing the system's agitation thus not only improved the global efficiency of organic matter removal but also influenced volatile acid production and consumption and clearly modified this balance in each experimental condition.

  18. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  19. On the optimal control of fed-batch reactors with substrate-inhibited kinetics.

    PubMed

    Cazzador, L

    1988-05-01

    The optimal feed rate profiles, for fed-batch fermentation that maximizes the biomass production and accounts for time, are analyzed. The solution can be found only if the final arc of the optimal control is a batch arc, since in this case the final concentrations of substrate and biomass can be determined by ulterior conditions on the mass balance and on the final growth rate of biomass and thus it is possible to solve the resulting time optimal problem by using Green's theorem. This evidences the "turnpike property" of the solution, which tries to spend the maximum time on or at least near the singular arc along which the substrate concentration is maintained constant. The optimality of the final batch arc is related to the time operational cost in the performance index. The sequence of the control depends on the initial conditions for which six different regions, with the respective patterns, have been identified, in case the performance index allows the control sequence to have a final batch.

  20. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    PubMed

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  1. Effect of COD/N ratio on cultivation of aerobic granular sludge in a pilot-scale sequencing batch reactor.

    PubMed

    Wei, Dong; Qiao, Zhuangming; Zhang, Yongfang; Hao, Lianjie; Si, Wei; Du, Bin; Wei, Qin

    2013-02-01

    Aerobic granular sludge was successfully cultivated with the effluent of internal circulation reactor in a pilot-scale sequencing batch reactor (SBR). Soy protein wastewater was used as an external carbon source for altering the influent chemical oxygen demand/nitrogen (COD/N) ratios of SBR. Initially, the phenomenon of partial nitrification was observed and depressed by increasing the influent COD/N ratios from 3.32 to 7.24 mg/mg. After 90 days of aerobic granulation, the mixed liquor suspended solids concentration of the reactor increased from 2.80 to 7.02 g/L, while the sludge volumetric index decreased from 105.51 to 42.99 mL/g. The diameters of mature aerobic granules vary in the range of 1.2 to 2.0 mm. The reactor showed excellent removal performances for COD and N₄⁺--N after aerobic granulation, and average removal efficiencies were over 93% and 98%, respectively. The result of this study could provide further information on the development of aerobic granule-based system for full-scale applications.

  2. Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine ▿†

    PubMed Central

    Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.

    2011-01-01

    The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875

  3. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.

    PubMed

    Kim, S-H; Han, S-K; Shin, H-S

    2005-01-01

    This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.

  4. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  5. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  6. Dynamics of a microbial community exposed to several concentrations of 2-chlorophenol in an anaerobic sequencing batch reactor.

    PubMed

    Beristain-Montiel, Lizeth; Martínez-Hernández, Sergio; de María Cuervo-López, Flor; Ramírez-Vives, Florina

    2015-01-01

    The aim of this study was to contribute to the knowledge on the dynamic of the microbial community involved in anaerobic degradation of different concentrations of 2-chlorophenol (2CP, from 28 to 196 mg 2CP-C/L) and a mixture of 2CP and phenol (from 28 to 196 mg phenol-C/L) and its relationship with the respiratory process in two anaerobic sequencing batch reactors (ASBR). The dynamic of the microbial community was evaluated by denaturant gradient gel electrophoresis (DGGE) and ecological indices (S and J indices). The respiratory process was evaluated by means of substrate consumption efficiency, biogas yield, and specific consumption rates as response variables. The high consumption efficiency (90%) and the constant biogas yields obtained at concentrations up to 140 mg C/L may be related with the evenness of microbial populations (J index=0.97±0.2) present in both reactors. Pseudomonas genus was present in all concentrations tested, suggesting a possible relationship with the dehalogenation observed in both reactors. The decrease in specific consumption rate and biogas yield as well as the accumulation of phenol and volatile fatty acids observed in both reactors at 196 mg 2CP-C/L might be associated with the disappearance of the bands related to Caulobacter and Bacillus. At these conditions, the disappearance of fermentative or acetogenic bacteria resulted in reduction of substrates required to carry out methanogenesis, which eventually might cause the declination in methanogenic populations present in the reactors.

  7. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    PubMed

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater.

  8. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content.

    PubMed

    Luo, Gang; Xie, Li; Zhou, Qi

    2009-06-01

    Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m(3) d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.

  9. The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures.

    PubMed

    Guo, Jingbo; Zhang, Lanhe; Chen, Wei; Ma, Fang; Liu, Honglei; Tian, Yu

    2013-04-01

    The performance of a sequencing batch reactor for simultaneous nitrification and denitrification (SBR-SND) was investigated under 5-30°C and strategies against temperature influences were proposed. Aeration of 8, 7, 7 and 6h were sufficient for 5±2, 10±2, 20±2 and 30±2°C, respectively. Further extension was insubstantial, only increased the aeration cost. The adjustment of C/N ratio to offset the temperature impacts was not remarkable. Prolonged sludge retention time lessened the influences of low temperature but deteriorated the system at high temperature. The oxidation reduction potential, the dissolved oxygen concentration, the sludge volume index and the extracellular polymeric substances amount changed with temperature alterations and thus affected the system performance. In conclusion, measures should be taken for temperature oscillations and the regulation and control of the operational parameters could alleviate the influences of temperature on the performances of the SBR-SND system.

  10. Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor.

    PubMed

    He, Qiulai; Zhang, Shilu; Zou, Zhuocheng; Zheng, Li-An; Wang, Hongyu

    2016-11-01

    An aerobic granular sequencing batch reactor (SBR) on an aerobic/oxic/anoxic (AOA) mode was operated for 50days with acetate sodium as the sole carbon source for simultaneous carbon, nitrogen and phosphorus removal. Excellent removal efficiencies for chemical oxygen demand (COD) (94.46±3.59%), nitrogen (96.56±3.44% for ammonia nitrogen (NH4(+)-N) and 93.88±6.78% for total inorganic nitrogen (TIN)) and phosphorus (97.71±3.63%) were obtained over operation. Mechanisms for simultaneous nutrients removal were explored and the results indicated that simultaneous nitrification, denitrification and phosphorus removal (SNDPR) under aerobic conditions was mainly responsible for most of nitrogen and phosphorus removal. Identification and quantification of the granular AOA SBR revealed that higher rates of nutrients removal and more potentials were to be exploited by optimizing the operating conditions including time durations for AOA mode and the feeding compositions. PMID:27599624

  11. Enhanced formation of aerobic granular sludge with yellow earth as nucleating agent in a sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    He, Q. L.; Zhang, S. L.; Zou, Z. C.; Wang, H. Y.

    2016-08-01

    Enhanced formation of aerobic granulation was investigated by adding yellow earth as a nucleating agent in a sequencing batch reactor with a constant setting time of 10 min. As a result, granules with an average diameter over 1 mm were obtained on the 4th day. The mature granules behaved better than the seed sludge in the water content, specific gravity, sludge volume index, settling velocity, and specific oxygen uptake rate. The yellow earth stimulated the secretion of extracellular polymeric substances, especially proteins. Both chemical oxygen demand and ammonia nitrogen had a removal rate over 90%, and more than 80% of the total inorganic nitrogen was removed even under aeration conditions due to simultaneous denitrification. The enhancement effects of the yellow earth might be based on the unique physicochemical characteristics and short settling time. A settling time of 10 min or more turned out not to be a prerequisite for a rapid granulation process.

  12. N2O emission from nitrogen removal via nitrite in oxic-anoxic granular sludge sequencing batch reactor.

    PubMed

    Liang, Hong; Yang, Jiaoling; Gao, Dawen

    2014-03-01

    Bionitrification is considered to be a potential source of nitrous oxide (N2O) emissions, which are produced as a by-product during the nitrogen removal process. To investigate the production of N2O during the process of nitrogen removal via nitrite, a granular sludge was studied using a lab-scale sequence batch reactor operated with real-time control. The total production of N2O generated during the nitrification and denitrification processes were 1.724 mg/L and 0.125 mg/L, respectively, demonstrating that N2O is produced during both processes, with the nitrification phase generating larger amount. In addition, due to the N2O-N mass/oxidized ammonia mass ratio, it can be concluded that nitrite accumulation has a positive influence on N2O emissions. Results obtained from PCR-DGGE analysis demonstrate that a specific Nitrosomonas microorganism is related to N2O emission.

  13. Ecological significance of Synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Militon, Cécile; Hamdi, Olfa; Michotey, Valerie; Fardeau, Marie-Laure; Ollivier, Bernard; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia

    2015-11-01

    Lab-scale 2L-anaerobic sequencing batch reactor was operated under mesothermic conditions. The degradation of protein-rich organic matter was determined by chemical oxygen demand, biogas production, and protein-removal activity over the operation. The structure of the microbial community was determined by qPCR and next-generation sequencing on 16S rRNA genes. At the steady state, a very efficient removal of protein (92%) was observed. Our results demonstrate a decrease of archaeal and bacterial abundance over time. Members of the phylum Synergistetes, with a peculiar emphasis for those pertaining to families Dethiosulfovibrionaceae and Aminiphilaceae, are of major ecological significance regarding the treatment of this industrial wastewater. The prominent role to be played by members of the phylum Synergistetes regarding protein and/or amino acid degradation is discussed.

  14. Short Contact Time Direct Coal Liquefactionn Using a Novel Batch Reactor. Quarterly Report. May 16 - August 15, 1996

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1996-08-30

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times and to investigate the role of organic oxygen components of coal and their reaction pathways during coal liquefaction. Many of those objectives have already been achieved. This quarterly report discusses further kinetic studies of the liquefaction of Illinois #6 bituminous coal, Wyodak-Anderson subbituminous coal, and Pittsburgh #8 bituminous coal. The thermodynamic characteristics of the extraction stage at the start of the liquefaction process in the liquefaction of Illinois #6 coal is also discussed. Further work has also been done to attempt to clarify the role of the liquefaction solvent in the direct liquefaction process.

  15. Ecological significance of Synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Militon, Cécile; Hamdi, Olfa; Michotey, Valerie; Fardeau, Marie-Laure; Ollivier, Bernard; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia

    2015-11-01

    Lab-scale 2L-anaerobic sequencing batch reactor was operated under mesothermic conditions. The degradation of protein-rich organic matter was determined by chemical oxygen demand, biogas production, and protein-removal activity over the operation. The structure of the microbial community was determined by qPCR and next-generation sequencing on 16S rRNA genes. At the steady state, a very efficient removal of protein (92%) was observed. Our results demonstrate a decrease of archaeal and bacterial abundance over time. Members of the phylum Synergistetes, with a peculiar emphasis for those pertaining to families Dethiosulfovibrionaceae and Aminiphilaceae, are of major ecological significance regarding the treatment of this industrial wastewater. The prominent role to be played by members of the phylum Synergistetes regarding protein and/or amino acid degradation is discussed. PMID:26194235

  16. Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature.

    PubMed

    Montañés, Rocío; Solera, Rosario; Pérez, Montserrat

    2015-03-01

    The feasibility of anaerobic co-digestion of sewage sludge (SS) and sugar beet pulp lixiviation (SBPL) was assessed. Mesophilic and thermophilic batch assays of five different SS/SBPL ratios were used to investigate the effect of temperature, providing basic data on methane yield and reduction in total volatiles. Microbe concentrations (Eubacteria and methanogenic Archaea) were linked to traditional parameters, namely biogas production and removal of total volatile solids (TVS). The relationship between Eubacteria and Archaea was analysed. Given equal masses of organic matter, net methane generation was higher in the mesophilic range on the biochemical methane potential (BMP) test. Methane yield, TVS removal data and high levels of volatile fatty acids provided further evidence of the best behaviour of the mesophilic range. At the end of testing the microbial population under of the reactors consisted of Eubacteria and Archaea, with Eubacteria predominant in all cases.

  17. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly progress report, January 1--May 15, 1995

    SciTech Connect

    Klein, M.T.; Calkins, W.H.

    1995-05-31

    The objective of this research is to optimize the design and operation of the bench scale batch reactor for coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Experimental progress is reported for uncatalyzed liquefactions, catalyzed liquefactions, liquefaction in the presence of solvents other than tetralin, and kinetics of gas formation during coal liquefaction. Analytical methods were developed for the determination of the boiling range of coal liquids by thermogravimetric analysis and the determination of phenolic hydroxyl in coal, coal liquids, and coal residues.

  18. Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process.

    PubMed

    Wei, Yun Xia; Ye, Zheng Fang; Wang, Yao Long; Ma, Ming Guang; Li, Yan Feng

    2011-01-01

    Utilizing preferential ion exchange of the modified zeolite, the zeo-sequencing batch reactor (SBR) is recommended for a new nitrogen removal process. In this study, natural zeolite was modified by sodium chloride to enhance sorption capacity for ammoniacal nitrogen. The untreated and treated zeolite was characterized by XPS and XRD techniques. The sorption isotherm tests showed that equilibrium sorption data were better represented by the Langmuir model than by the Freundlich model. Treatment of natural zeolite by sodium chloride increased the sorption capacity for ammoniacal nitrogen removal from aqueous solutions. As a result of the continuous bioregeneration of ammonium saturated zeolite-floc in the SBR, the nitrogen removal efficiency of the zeo-SBR was relatively ideal. Scanning electron microscopy results showed that microbes were abundant in the zeo-SBR process.

  19. Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures.

    PubMed

    Borrega, Marc; Nieminen, Kaarlo; Sixta, Herbert

    2011-11-01

    Hot water extraction of wood at elevated temperatures may be a suitable method to produce hemicellulose-lean pulps and to recover xylan-derived products from the water extract. In this study, water extractions of birch wood were conducted at temperatures between 180 and 240 °C in a batch reactor. Xylan was extensively removed, whereas cellulose was partly degraded only at temperatures above 180 °C. Under severe extraction conditions, acetic acid content in the water extract was higher than the corresponding amount of acetyl groups in wood. In addition to oligo- and monosaccharides, considerable amounts of furfural and 5-hydroxymethylfurfural (HMF) were recovered from the extracts. After reaching a maximum, the furfural yield remained constant with increasing extraction time. This maximum slightly decreased with increasing extraction temperature, suggesting the preferential formation of secondary degradation products from xylose. Kinetic models fitting experimental data are proposed to explain degradation and conversion reactions of xylan and glucan.

  20. Equipment fault diagnosis system of sequencing batch reactors using rule-based fuzzy inference and on-line sensing data.

    PubMed

    Kim, Y J; Bae, H; Poo, K M; Ko, J H; Kim, B G; Park, T J; Kim, C W

    2006-01-01

    The importance of a detection technique to prevent process deterioration is increasing. For the fast detection of this disturbance, a diagnostic algorithm was developed to determine types of equipment faults by using on-line ORP and DO profile in sequencing batch reactors (SBRs). To develop the rule base for fault diagnosis, the sensor profiles were obtained from a pilot-scale SBR when blower, influent pump and mixer were broken. The rules were generated based on the calculated error between an abnormal profile and a normal profile, e(ORP)(t) and e(DO)(t). To provide intermediate diagnostic results between "normal" and "fault", a fuzzy inference algorithm was incorporated to the rules. Fuzzified rules could present the diagnosis result "need to be checked". The diagnosis showed good performance in detecting and diagnosing various faults. The developed algorithm showed its applicability to detect faults and make possible fast action to correct them. PMID:16722090

  1. Anaerobic digestion of corn ethanol thin stillage in batch and by high-rate down-flow fixed film reactors.

    PubMed

    Wilkinson, A; Kennedy, K J

    2012-01-01

    Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.

  2. Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor.

    PubMed

    Jin, Zi; Ntwali, Janvier; Han, Shuang-Yan; Zheng, Sui-Ping; Lin, Ying

    2012-05-31

    Candida antarctica lipase B (CALB) has been employed as an efficient catalyst in the preparation of many flavor esters. A CALB-displaying yeast whole-cell biocatalyst could be an attractive alternative to commercial immobilized CALB because of its low-cost preparation and high enzymatic activity. We investigated the potential application of CALB-displaying Pichia pastoris cells for the production of flavor esters. The optimal conditions for flavor esters synthesis by this biocatalyst were determined in 50-ml shake flasks. Under optimized conditions, the synthesis of 12 kinds flavor esters were scaled up in a 5-l batch stirred reactor. Among these, the mole conversions of 10 exceeded 95% after reactions for 4h. In addition, this biocatalyst showed good tolerance for high substrates concentration and excellent operational stability. Repeated use of the cells in 10 batches resulted in an activity loss of less than 10%. Thus, CALB-displaying P. pastoris whole cells are robust biocatalysts with potential commercial application in the large-scale production of flavor esters in non-aqueous media. PMID:22410080

  3. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    PubMed

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously.

  4. Selenite Reduction by a Denitrifying Culture: Batch- and Packed-Bed- Reactor Studies

    SciTech Connect

    William A. Apel; Sridhar Viamajala; Yared Bereded-Samuel; James N. Petersen

    2006-08-01

    Selenite reduction by a bacterial consortium enriched from an oil refinery waste sludge was studied under denitrifying conditions using acetate as the electron donor. Fed-batch studies with nitrate as the primary electron acceptor showed that accumulation of nitrite led to a decrease in the extent of selenite reduction. Also, when nitrite was added as the primary electron acceptor, rapid selenite reduction was observed only after nitrite was significantly depleted from the medium. These results indicate that selenite reduction was inhibited at high nitrite concentrations. In addition to batch experiments, continuous flow selenite reduction experiments were performed in packed-bed columns using immobilized enrichment cultures. These experiments were carried out in three phases: In phase-I, a continuous nitrate feed with different inlet selenite concentration was applied; in phase-II, nitrate was fed in a pulsed fashion; and in phase-III, nitrate was fed in a continuous mode but at much lower concentrations than the other two phases. During the phase-I experiments, little selenite was removed from the influent. However, when the column was operated in the pulse feed strategy (phase II), or in the continuous mode with low nitrate levels (phase-III), significant quantities of selenium was removed from solution and retained in the immobilization matrix in the column. Thus, immobilized denitrifying cultures can be effective in removing selenium from waste streams, but nitrate-limited operating conditions might be required.

  5. Struvite precipitation in raw and co-digested swine slurries for nutrients recovery in batch reactors.

    PubMed

    Taddeo, Raffaele; Lepistö, Raghida

    2015-01-01

    The release of nitrogen (N) and phosphorus (P) from agro-industrial sources is a major environmental concern. Furthermore, the scarcity of mineable P and the growing demand for food worldwide necessitate that we find an alternative P source. This study applied struvite precipitation for N-P recovery to slurries with high levels of organics and ammonia to achieve environmental protection from excessive nutrients diffusion and to generate a sustainable P source. Batch tests were carried out on raw and co-digested swine slurries to study the feasibility of struvite precipitation and the effect of several parameters, including pH, reaction time, competing ions (Ca²⁺, K⁺), total solids (TS), and alkalinity. The batch assays with raw swine slurries showed high N-P removals (up to 80%), while the anaerobic liquor returned lower recovery efficiency due to the high solids and alkali content. Struvite crystallization was detected at pH values as low as 6, and the characteristics of the recovered struvite matched those of the theoretical. Slight co-precipitation of calcium-phosphates occurred and was dependent on the Ca²⁺/Mg²⁺ ratio rather than on varying pH values. Struvite precipitation was shown to be feasible in complex matrices as agro-industrial effluents, characterized by high NH(4)(+), alkalinity, solids and organic content, and interfering ions such as Ca²⁺ and K⁺. PMID:25812099

  6. Enrichment of Denitrifying Methane-Oxidizing Microorganisms Using Up-Flow Continuous Reactors and Batch Cultures

    PubMed Central

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L−1·day−1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89–91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia. PMID:25545013

  7. Feed frequency in a sequencing batch reactor strongly affects the production of polyhydroxyalkanoates (PHAs) from volatile fatty acids.

    PubMed

    Valentino, Francesco; Beccari, Mario; Fraraccio, Serena; Zanaroli, Giulio; Majone, Mauro

    2014-06-25

    The production of polyhydroxyalkanoates (PHAs) by activated sludge selected in a sequencing batch reactor (SBR) has been investigated. Several SBR runs were performed at the same applied organic load rate (OLR), hydraulic retention time (HRT) and feed concentration (8.5 g COD L(-1) of volatile fatty acids, VFAs) under aerobic conditions. The effect of the feeding time was only evaluated with a cycle length of 8h; for this particular cycle length, an increase in the storage response was observed by increasing the rate at which the substrate was fed into the reactor (at a fixed feeding frequency). Furthermore, a significantly stronger effect was observed by decreasing the cycle length from 8h to 6h and then to 2h, changing the feed frequency or changing the organic load given per cycle (all of the other conditions remained the same): the length of the feast phase decreased from 26 to 20.0 and then to 19.7% of the overall cycle length, respectively, due to an increase in the substrate removal rate. This removal rate was high and similar for the runs with cycle lengths of 2h and 6h in the SBR. This result was due to an increase in the selective pressure and the specific storage properties of the selected biomass. The highest polymer productivity after long-term accumulation batch tests was 1.7 g PHA L(-1)d(-1), with PHA content in the biomass of approximately 50% on a COD basis under nitrogen limitation. The DGGE profiles showed that the good storage performance correlated to the development of Lampropedia hyalina, which was only observed in the SBR runs characterized by a shorter cycle length.

  8. Influence of the type and source of inoculum on the start-up of anammox sequencing batch reactors (SBRs).

    PubMed

    Guerrero, Lorna; Van Diest, Federico; Barahona, Andrea; Montalvo, Silvio; Borja, Rafael

    2013-01-01

    Anammox (anaerobic ammonium oxidation) is an attractive option for the treatment of wastewaters with a low carbon/nitrogen ratio. This is due to its low operating costs when compared to the classical nitrification-denitrification processes. However, one of the main disadvantages of the Anammox process is slow biomass growth, meaning a relatively slow reactor start-up. This becomes even more complicated when Anammox microorganisms are not present in the inoculum. Four inocula were studied for the start-up of Anammox sequencing batch reactors (SBRs) 2 L in volume agitated at 100 rpm, one of them using zeolite as a microbial support. Two inocula were taken from UASB reactors and two from aerobic reactors (activated sludge and SBR). The Anammox SBRs studied were operated at 36 ± 0.5°C. The results showed that the only inoculum that enabled the enrichment of the Anammox biomass came from an activated sludge plant treating wastewaters from a poultry slaughterhouse. This plant was designed for organic matter degradation and nitrogen removal (nitrification). This could explain the presence of Anammox microorganisms. This SBR operated without zeolite and achieved nitrite and ammonium removals of 96.3% and 68.4% respectively, at a nitrogen loading rate (NLR) of 0.1 kg N/m(3)/d in both cases. The lower ammonium removal was due to the fact that a sub-stoichiometric amount of nitrite (1 molar ratio) was fed. The specific Anammox activity (SAA) achieved was 0.18 g N/g VSS/d. PMID:23647121

  9. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    SciTech Connect

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-07-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

  10. Effect of the C:N:P ratio on the denitrifying dephosphatation in a sequencing batch biofilm reactor (SBBR).

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Thornton, Arthur J; Jóźwiak, Tomasz; Szymczyk, Paula

    2015-12-01

    A series of investigations were conducted using sequencing batch biofilm reactor (SBBR) to explore the influence of C:N:P ratio on biological dephosphatation including the denitrifying dephosphatation and the denitrification process. Biomass in the reactor occurred mainly in the form of a biofilm attached to completely submerged disks. Acetic acid was used as the source of organic carbon. C:N:P ratios have had a significant effect on the profiles of phosphate release and phosphate uptake and nitrogen removal. The highest rates of phosphate release and phosphate uptake were recorded at the C:N:P ratio of 140:70:7. The C:N ratio of 2.5:1 ensured complete denitrification. The highest rate of denitrification was achieved at the C:N:P ratio of 140:35:7. The increase of nitrogen load caused an increase in phosphates removal until a ratio C:N:P of 140:140:7. Bacteria of the biofilm exposed to alternate conditions of mixing and aeration exhibited enhanced intracellular accumulation of polyphosphates. Also, the structure of the biofilm encouraged anaerobic-aerobic as well as anoxic-anaerobic and absolutely anaerobic conditions in a SBBR. These heterogeneous conditions in the presence of nitrates may be a significant factor determining the promotion of denitrifying polyphosphate accumulating organism (DNPAO) development. PMID:26702975

  11. Feasibility of bioengineered two-stages sequential batch reactor and filtration-adsorption process for complex agrochemical effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas

    2013-11-01

    In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent.

  12. Stirred anaerobic sequencing batch reactor containing immobilized biomass: a behavior study when submitted to different fill times.

    PubMed

    Borges, A C; Siman, R R; Rodrigues, J A D; Ratusznei, S M; Zaiat, M; Foresti, E; Borzani, W

    2004-01-01

    The effect of the filling stage on the behavior of a mechanically stirred anaerobic sequencing batch reactor containing biomass immobilized on 1 cm polyurethane foam cubes was investigated. The reactor was made of acrylic with a capacity of 6.3 L, treating per cycle 2.5 L synthetic low-strength wastewater with a concentration of 500 mgCOD/L, at 30+/-1 degrees C. Eight-hour cycles (tC) and agitation of 500 rpm were utilized. At the beginning of each cycle 60% of the wastewater volume was treated, sufficient to completely cover the bed. The remaining volume was added at different fill times (tF) of 10, 120, 240, 260 and 480 min. The results obtained showed that ratios of tF/tC < or = 0.5 enabled organic matter removal higher than 75% and 70% for filtered and non-filtered samples, respectively. Ratios of tF/tC > 0.5, despite operation stability, resulted in loss of efficiency and formation of viscous material, similar to extra-cellular polymeric substances. PMID:15303756

  13. Development and optimization of a sequencing batch reactor for nitrogen and phosphorus removal from abattoir wastewater to meet irrigation standards.

    PubMed

    Pijuan, Maite; Yuan, Zhiguo

    2010-01-01

    A sequencing batch reactor (SBR) was used for the treatment of abattoir wastewater to produce effluent with desirable nitrogen and phosphorus levels for irrigation. The SBR cycle consisted of an anaerobic phase with wastewater feeding, a relatively short aerobic period (allowing full ammonium oxidation), a second anoxic period with feeding, followed by settling and decanting. This design of operation allowed biological nitrification and denitrification via nitrite, and therefore with reduced demand for aeration and COD for nitrogen removal. The design also allowed ammonium, rather than oxidized nitrogen, being the primary nitrogen species in the effluent. Biological phosphorus removal was also achieved, with an effluent level desirable for irrigation. A high-level of nitrite accumulation (40 mg N/L) in the reactor caused inhibition to the biological P uptake. This problem was solved through process optimization. The cycle time of the SBR was reduced, with the wastewater load per cycle also reduced, while the daily hydraulic loading maintained. This modification proved to be an effective method to ensure reliable N and P removal. N(2)O accumulation was measured in two experiments simulating the anoxic phase of the SBR and using nitrite and nitrate respectively as electron donors. The estimated N(2)O emissions for both experiments were very low.

  14. Population dynamics in controlled unsteady-state systems: An application to the degradation of glyphosate in a sequencing batch reactor

    SciTech Connect

    Devarakonda, M.S.

    1988-01-01

    Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a system is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.

  15. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors.

    PubMed

    Wagner, Jamile; Weissbrodt, David Gregory; Manguin, Vincent; da Costa, Rejane Helena Ribeiro; Morgenroth, Eberhard; Derlon, Nicolas

    2015-11-15

    The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that

  16. Photocatalytic degradation of bezacryl yellow in batch reactors--feasibility of the combination of photocatalysis and a biological treatment.

    PubMed

    Khenniche, Lamia; Favier, Lidia; Bouzaza, Abdelkrim; Fourcade, Florence; Aissani, Farida; Amrane, Abdeltif

    2015-01-01

    A combined process coupling photocatalysis and a biological treatment was investigated for the removal of Bezacryl yellow (BZY), an industrial-use textile dye. Photocatalytic degradation experiments of BZY were carried out in two stirred reactors, operating in batch mode with internal or external irradiation. Two photocatalysts (TiO2P25 and TiO2PC500) were tested and the dye degradation was studied for different initial pollutant concentrations (10-117 mg L(-1)). A comparative study showed that the photocatalytic degradation led to the highest degradation and mineralization yields in a stirred reactor with internal irradiation in the presence of the P25 catalyst. Regardless of the photocatalyst, discoloration yields up to 99% were obtained for 10 and 20 mg L(-1) dye concentrations in the reactor with internal irradiation. Moreover, the first-order kinetic and Langmuir-Hinshelwood models were examined by using the nonlinear method for different initial concentrations and showed that the two models lead to completely different predicted kinetics suggesting that they were completely different.According to the BOD5/ Chemical oxygen demand (COD) ratio, the non-treated solution (20 mg L(-1) of BZY) was estimated as non-biodegradable. After photocatalytic pretreatment of bezacryl solution containing 20 mg/L of initial dye, the biodegradability test showed a BOD5/COD ratio of 0.5, which is above the limit of biodegradability (0.4). These results were promising regarding the feasibility of combining photocatalysis and biological mineralization for the removal of BZY.

  17. Carbonylation of formaldehyde over ion exchange resin catalysts. 1. Batch reactor studies

    SciTech Connect

    Sang Young Lee; Jae Chang Kim; Jae Sung Lee; Young Gul Kim )

    1993-02-01

    Methyl glycolate was synthesized as a precursor to ethylene glycol from the catalytic carbonylation of formaldehyde followed by esterification with methanol. Various cation exchange polystyrene-sulfonic acid resins showed excellent activity and methyl glycolate selectivity. The perfluorinated sulfonic acid resin Nafion-H showed higher activity per proton site, yet was less effective per weight of the catalyst. The effects of process variables such as pressure, temperature, catalyst loading, and solvent were studied. High CO pressures were required to promote formaldehyde carbonylation relative to side reactions between formaldehyde. The presence of water reduced the reaction rate, yet improved the selectivity to methyl glycolate. 1,4-Dioxane was found to be the best solvent in the presence of water. At 135 C, 3,500 psig, and reactant mole ratio of HCHO:H[sub 2]O:H[sup +] = 10:10:1, complete conversion of formaldehyde was achieved in 2-4 h with selectivities of methyl glycolate better than 80%. Catalysts did not show any significant deterioration in performance in repeated use up to 10 batches.

  18. Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity.

    PubMed

    Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Viviani, Gaspare

    2016-06-01

    In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2gNaClL(-1) per week up to 10gNaClL(-1). The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10gNaClL(-1) due to lower nitrifier activity). Irreversible cake deposition was the predominant fouling mechanism observed during the experiment. Respirometric tests exhibited a stress effect due to salinity, with a reduction in the respiration rates observed (from 8.85mgO2L(-1)h(-1) to 4mgO2L(-1)h(-1)). PMID:26970923

  19. Glycerol upgrading over zeolites by batch-reactor liquid-phase oligomerization: heterogeneous versus homogeneous reaction.

    PubMed

    Krisnandi, Yuni K; Eckelt, Reinhard; Schneider, Matthias; Martin, Andreas; Richter, Manfred

    2008-01-01

    Glycerol upgrading to diglycerols in the presence of basic (Na+ or Cs+) ion-exchanged (FAU or BEA) zeolite catalysts was studied in a liquid-phase batch rector at 260 degrees C under normal pressure. Homogeneous NaHCO3 and CsHCO3 catalysts were studied for comparison. All the catalysts, including NaHCO3 and CsHCO3, displayed the same conversion-selectivity relationship. The selectivity to linear diglycerols decreased at higher conversions/reaction times owing to the consecutive formation of higher oligomers, with preferential further conversion of alpha,alpha'-diglycerol. The maximum yield of linear diglycerols was limited to about 30 %. The activities of the zeolites followed the order X>Y>Beta, independent of the alkali ion present. Catalysis by the zeolites starts with an induction period attributed to a slow leaching of alkaline cations from the zeolite. Thereafter, the reaction is characterized by a progressive loss of the microporous structure of the zeolite and increasing overlap of heterogeneous and homogeneous catalysis, where, primarily, the activity depends on the cation content of the zeolite.

  20. Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor.

    PubMed

    Rodriguez, Nicolas; Hansen, Henrik K; Nunez, Patricio; Guzman, Jaime

    2008-07-01

    This work shows the results of four Electro-Fenton laboratory tests to reduce the chemical oxygen demand (COD) in spent caustic solutions. The treatment consisted of (i) a pH reduction followed by (ii) an Electro-Fenton process, which was analyzed in this work. The Fenton's reagent was produced in a specially designed reactor, where the waste stream flowed through a labyrinth made by ferrous plates. These plates acted as sacrificial anodes-releasing Fe(2 +) cations to the solution, where H(2)O(2) was also added. The Electro-Fenton process was analyzed varying the ferrous ion concentration ([Fe(+ 2)]), the spent caustic's initial temperature and the initial pH. Close to 95% removal of COD (from 8800 mg L(- 1)) was achieved at a pH of 4, a temperature of 40 degrees C and 100 mg L(- 1) of Fe(+ 2) (applying 1 A). Two models were considered to simulate the behavior of the reactor considering (i) axial dispersion and (ii) kinetic rate, respectively. The model that was based on kinetics, proved to be the slightly closest fit to the experimental values. PMID:18569308

  1. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment.

    PubMed

    Mburu, Njenga; Rousseau, Diederik P L; Stein, Otto R; Lens, Piet N L

    2014-02-15

    In this study, a mathematical biofilm reactor model based on the structure of the Constructed Wetland Model No.1 (CWM1) coupled to AQUASIM's biofilm reactor compartment has been used to reproduce the sequence of transformation and degradation of organic matter, nitrogen and sulphur observed in a set of constructed wetland mesocosms and to elucidate the development over time of microbial species as well as the biofilm thickness of a multispecies bacterial biofilm in a subsurface constructed wetland. Experimental data from 16 wetland mesocosms operated under greenhouse conditions, planted with three different plant species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted control were used in the calibration of this mechanistic model. Within the mesocosms, a thin (predominantly anaerobic) biofilm was simulated with an initial thickness of 49 μm (average) and in which no concentration gradients developed. The biofilm density and area, and the distribution of the microbial species within the biofilm were evaluated to be the most sensitive biofilm properties; while the substrate diffusion limitations were not significantly sensitive to influence the bulk volume concentrations. The simulated biofilm density ranging between 105,000 and 153,000 gCOD/m(3) in the mesocosms was observed to vary with temperature, the presence as well as the species of macrophyte. The biofilm modeling was found to be a better tool than the suspended bacterial modeling approach to show the influence of the rhizosphere configuration on the performance of the constructed wetlands.

  2. Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor.

    PubMed

    Gnanapragasam, G; Senthilkumar, M; Arutchelvan, V; Velayutham, T; Nagarajan, S

    2011-01-01

    An anaerobic digestion technique was applied to textile dye wastewater aiming at the colour and COD removal. Pet bottles of 5 L capacity were used as reactor which contains methanogenic sludge of half a liter capacity which was used for the treatment of combined synthetic textile dye and starch wastewater at different mixing ratios of 20:80, 30:70, 40:60, 50:50 and 60:40 with initial COD concentrations as 3520, 3440, 3360, 3264 and 3144 mg L(-1), respectively. The reactor was maintained at room temperature (30±3°C) with initial pH of 7. The maximum COD and colour removal were 81.0% and 87.3% at an optimum mixing ratio of 30:70 of textile dye and starch wastewaters. Both Monod's and Haldane's models were adopted in this study. The kinetic constants of cell growth under Haldane's model were satisfactory when compared to Monod's model. The kinetic constants obtained by Haldane's model were found to be in the range of μmax=0.037-0.146 h(-1), Ks=651.04-1372.88 mg L(-1) and Ki=5681.81-18727.59 mg L(-1).

  3. Effect of fermented wastewaters from butter production on phosphates removal in a sequencing batch reactor.

    PubMed

    Janczukowicz, Wojciech; Rodziewicz, Joanna; Thornton, Arthur; Czaplicka, Kamila

    2012-09-01

    This study determined the potential for fermented wastewaters from butter production plant to act as a carbon source to facilitate phosphates removal. Synthetic dairy wastewaters were treated using SBR, with doses of fermented wastewaters. An increase in the fermented wastewater doses were found to improve the effluent quality in respect of phosphates and nitrates. The lowest concentrations of phosphate and nitrates, respectively 0.10 ± 0.04 mg PO(4)-PL(-1) and 1.03 ± 0.22 mg NO(3)-NL(-1), were noted in the effluent from the reactor fed with fermented wastewaters in a dose of 0.25 L d(-1) per 0.45 L d(-1) of wastewaters fed to the reactor. In the case of the two highest doses, an increase in effluent COD was stated. The higher effectiveness resulted from the fact that the introduction of fermented wastewaters caused an increase in the easily-available carbon compounds content and the predominance of acetic acid amongst VFAs available to dephosphatating and denitrifying bacteria.

  4. The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup.

    PubMed

    Klofutar, B; Golob, J; Likozar, B; Klofutar, C; Zagar, E; Poljansek, I

    2010-05-01

    We have investigated the transesterification of rapeseed (RO) and waste sunflower (SO) oils with methanol in the presence of potassium hydroxide as a catalyst. The transesterification of tri-acylglycerols was first conducted in a batch reactor. The effect of the temperature on the reaction rates was studied at a constant molar ratio of the alcohol to tri-acylglycerols (6:1) and for a constant concentration of the catalyst (1.0wt%). Size-exclusion chromatography and (1)H NMR spectroscopy were used to quantitatively monitor the transesterification reaction. The mass-transfer coefficients of the tri-acylglycerols during the initial transesterification stage were found to be 0.2-1.2x10(-5)mmin(-1), depending on the type of oil and the temperature. Calculated activation energies implied that at higher temperatures the formation of mono-acylglycerols and glycerole was favored for the SO (93kJ/mol for the forward and 48kJ/mol for the backward reaction) and the RO (47kJ/mol for the forward and 36kJ/mol for the backward reaction), respectively. For the continuous industrial reactor/separator setup, the optimum methanol recycle ratio was established as 0.0550.

  5. Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles.

    PubMed

    Anaya, Nelson M; Faghihzadeh, Fatemeh; Ganji, Nasim; Bothun, Geoff; Oyanedel-Craver, Vinka

    2016-09-15

    Continuous and batch reactors were used to assess the effect of the exposure of casein-coated silver nanoparticles (AgNPs) on Escherichia coli (E. coli). Additionally, E. coli membrane extracts, membrane permeability and Langmuir film balance assays were used to determine integrity and changes in lipid composition in response to AgNPs exposure. Results showed that batch conditions were not appropriate for the tests due to the production of exopolymeric substances (EPS) during the growth phase. After 5h of contact between AgNPs and the used growth media containing EPS, the nanoparticles increased in size from 86nm to 282nm reducing the stability and thus limiting cell-nanoparticle interactions. AgNPs reduced E. coli growth by 20% at 1mg/L, in terms of Optical Density 670 (OD670), while no effect was detected at 15mg/L. At 50mg/L of AgNPs was not possible to perform the test due to aggregation and sedimentation of the nanoparticles. Membrane extract assays showed that at 1mg/L AgNPs had a greater change in area (-4.4cm(2)) on bacteria compared to 15mg/L (-4.0cm(2)). This area increment suggested that membrane disruption caused by AgNPs had a stabilizing/rigidifying effect where the cells responded by shifting their lipid composition to more unsaturated lipids to counteract membrane rigidification. In chemostats, the constant inflow of fresh media and aeration resulted in less AgNPs aggregation, thus increased the AgNPs-bacteria interactions, in comparison to batch conditions. AgNPs at 1mg/L, 15mg/L, and 50mg/L inhibited the growth (OD670 reduction) by 0%, 11% and 16.3%, respectively. Membrane extracts exposed to 1mg/L, 15mg/L, and 50mg/L of AgNPs required greater changes in area by -0.5cm(2), 2.7cm(2) and 3.6cm(2), respectively, indicating that the bacterial membranes were disrupted and bacteria responded by synthesizing lipids that stabilize or strengthen membranes. This study showed that the chemostat is more appropriate for the testing of nanotoxicological effects

  6. Nitrous oxide production from sequencing batch reactor sludge under nitrifying conditions: effect of nitrite concentrations.

    PubMed

    Gong, Youkui; Wang, Shuying; Wang, Sai; Peng, Yongzhen

    2012-01-01

    Nitrous oxide (N2O), a greenhouse gas which contributes to the destruction of the stratospheric ozone layer, can be emitted from nitrifying processes during wastewater treatment. The pathway of N2O production was studied using a lab-scale nitrifying reactor. Allylthiourea was used to inhibit NH4+ oxidation and provide information on processes that happen under nitrifying condition. Our study confirmed that besides heterotrophic bacteria, ammonium-oxidizing bacteria could perform denitrification processes, during which NO2- was the electron acceptor and NH4+ was the electron donor, with N2 and N2O as final products. The relative contribution of the heterotrophic denitrification process to total N2O emissions varied from 46.1% to 60.4% depending on NO2(-)-N addition. Correspondingly, 21.8% to 51.5% of total N2O emissions can be attributed to nitrifier denitrification. Little N2O is emitted during the NO2- oxidation process.

  7. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process. PMID:27021584

  8. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    PubMed

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.

  9. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    PubMed

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation. PMID:14682579

  10. SHORT CONTACT TIME DIRECT COAL LIQUEFACTION USING A NOVEL BATCH REACTOR

    SciTech Connect

    Michael T. Klein; William H. Calkins

    1997-10-29

    The overall goal of this research is to develop an understanding of the Direct Coal Liquefaction process at the molecular level. Many approaches have been used to study this process including kinetic studies, study of the liquefaction products, study of the effect of reaction variables, such as temperature, solvent type and composition, the changing nature and composition of the coal during liquefaction, and the distribution in the liquefaction products of the hydrogen consumed. While all these studies have contributed to our growing knowledge of the liquefaction process, an adequate understanding of direct liquefaction still eludes us. This is due to many reasons including: the complexity and variable nature of coal itself and the many different chemical reactions which are occurring simultaneously during direct coal liquefaction. We believe that a study of the liquefaction process at the very early stages will avoid the complexities of secondary reactions associated with free radical high temperature processes that are clearly involved in direct coal liquefaction. This prompted us to devise a reactor system which avoids long heat up and cool-down times associated with previous kinetic studies, and allows kinetic measurements even at as short as the first few seconds of the liquefaction reaction.

  11. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors.

    PubMed

    Weissbrodt, David G; Schneiter, Guillaume S; Fürbringer, Jean-Marie; Holliger, Christof

    2013-12-01

    Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.

  12. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

    PubMed

    Cheong, Dae-Yeol; Hansen, Conly L; Stevens, David K

    2007-02-15

    The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P < 0.05). However, no significant effect (P > 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

  13. Effects of manipulating cyclic duration and pH on fermentative hydrogen production in an anaerobic sequencing batch reactor.

    PubMed

    Won, Seung-Gun; Lau, Anthony K

    2015-01-01

    The effects of cyclic duration and pH on biological hydrogen production were investigated in an anaerobic sequencing batch reactor. Experiments were conducted using cyclic duration of (4, 8, and 12 h) in combination with pH (4, 5, and 6) in a 3 × 3 factorial design, while hydraulic retention time and organic loading rate were maintained at 24 h and 10.3 g COD L(-1).d(-1), respectively. At pH 4, the effect of cyclic duration on hydrogen production was found to be insignificant. However, in runs with pH 5 and 6, a shorter cyclic duration of 4 h led to lower hydrogen productivity. The operational condition (pH 6, cyclic duration 12 h) induced higher hydrogen production rate of 2.3 ± 0.6 L H2/L reactor.d, whereas higher hydrogen yield of 2.2 ± 0.4 mol H2/mol sucrose was achieved at pH 5 and the same 12 h cyclic duration. The differences in hydrogen production were not statistically significant between 8 h and 12 h cyclic duration. Higher hydrogen production rates were associated with biomass (mixed liquor volatile suspended solids) concentration ranging from 8-13 g L(-1), but further increase in biomass growth was not accompanied by increased hydrogen production. Furthermore, a food-to-microorganism ratio of 0.84 was found to result in higher hydrogen production rate.

  14. Batch reactor performance for the enzymatic synthesis of cephalexin: influence of catalyst enzyme loading and particle size.

    PubMed

    Valencia, Pedro; Flores, Sebastián; Wilson, Lorena; Illanes, Andrés

    2012-01-15

    A mathematical model is presented for the kinetically controlled synthesis of cephalexin that describes the heterogeneous reaction-diffusion process involved in a batch reactor with glyoxyl-agarose immobilized penicillin acylase. The model is based on equations considering reaction and diffusion components. Reaction kinetics was considered according to the mechanism proposed by Schroën, while diffusion of the reacting species was described according to Fick's law. Intrinsic kinetic and diffusion parameters were experimentally determined in independent experiments. It was found that from the four kinetic constants, the one corresponding to the acyl-enzyme complex hydrolysis step had the greatest value, as previously reported by other authors. The effective diffusion coefficients of all substances were about 5×10(-10)m(2)/s, being 10% lower than free diffusion coefficients and therefore agreed with the highly porous structure of glyoxyl-agarose particles. Simulations made from the reaction-diffusion model equations were used to evaluate and analyze the impact of internal diffusional restrictions in function of catalyst enzyme loading and particle size. Increasing internal diffusional restrictions decreases the Cex synthesis/hydrolysis ratio, the conversion yield and the specific productivity. A nonlinear relationship between catalyst enzyme loading and specific productivity of Cex was obtained with the implication that an increase in catalyst enzyme loading will not increase the volumetric productivity by the same magnitude as it occurs with the free enzyme. Optimization of catalyst and reactor design should be done considering catalyst enzyme loading and particle size as the most important variables. The approach presented can be extended to other processes catalyzed by immobilized enzymes.

  15. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    PubMed

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed.

  16. Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor.

    PubMed

    Yeshi, Cao; Hong, Kwok Bee; van Loosdrecht, Mark C M; Daigger, Glen T; Yi, Png Hui; Wah, Yuen Long; Chye, Chua Seng; Ghani, Yahya Abd

    2016-01-01

    A laboratory fed-batch reactor has been used to study under controlled conditions the performance of partial nitritation/anammox for the 200,000 m(3)/day step-feed activated sludge process at the Changi Water Reclamation Plant, Singapore. The similarity of the concentrations of NH(4), NO(2), NO(3), PO(4), suspended chemical oxygen demand (sCOD), pH, and alkalinity (ALK) between the on-site process and laboratory reactor illustrates that the laboratory fed-batch reactor can be used to simulate the site performance. The performance of the reactor fed by primary effluent illustrated the existence of anammox and heterotrophic denitrification and apparent excessive biological phosphorus removal as observed from the site. The performance of the reactor fed by final effluent proved the presence of anammox process on site. Both the laboratory reactor and on-site process showed that higher influent 5-day biochemical oxygen demand/total nitrogen (BOD(5)/TN) (COD/TN) ratio increases the nitrogen removal efficiency of the process.

  17. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    PubMed

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors.

  18. Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor.

    PubMed

    Yeshi, Cao; Hong, Kwok Bee; van Loosdrecht, Mark C M; Daigger, Glen T; Yi, Png Hui; Wah, Yuen Long; Chye, Chua Seng; Ghani, Yahya Abd

    2016-01-01

    A laboratory fed-batch reactor has been used to study under controlled conditions the performance of partial nitritation/anammox for the 200,000 m(3)/day step-feed activated sludge process at the Changi Water Reclamation Plant, Singapore. The similarity of the concentrations of NH(4), NO(2), NO(3), PO(4), suspended chemical oxygen demand (sCOD), pH, and alkalinity (ALK) between the on-site process and laboratory reactor illustrates that the laboratory fed-batch reactor can be used to simulate the site performance. The performance of the reactor fed by primary effluent illustrated the existence of anammox and heterotrophic denitrification and apparent excessive biological phosphorus removal as observed from the site. The performance of the reactor fed by final effluent proved the presence of anammox process on site. Both the laboratory reactor and on-site process showed that higher influent 5-day biochemical oxygen demand/total nitrogen (BOD(5)/TN) (COD/TN) ratio increases the nitrogen removal efficiency of the process. PMID:27386982

  19. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. PMID:27371795

  20. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production.

  1. Performance evaluation and microbial community of a sequencing batch biofilm reactor (SBBR) treating mariculture wastewater at different chlortetracycline concentrations.

    PubMed

    Zheng, Dong; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Wang, Sen; Wang, Xuejiao

    2016-11-01

    The effects of chlortetracycline (CTC) on the performance, microbial activity, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater. Low CTC concentration (less than 6 mg/L) had no obvious effect on the SBBR performance, whereas high CTC concentration could inhibit the chemical oxygen demand (COD) and nitrogen removal of the SBBR. The microbial activity of the biofilm in the SBBR decreased with the increase of CTC concentration from 0 to 35 mg/L. The protein (PN) contents were always higher than the PS contents in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) at different CTC concentrations. The chemical compositions of LB-EPS and TB-EPS had obvious variations with the increase of CTC concentration from 0 to 35 mg/L. The high-throughput sequencing revealed the effects of CTC on the microbial communities of the biofilm at phylum, class and genus level. The relative abundances of some genera displayed a decreasing tendency with the increase of CTC concentration from 0 to 35 mg/L, such as Nitrospira, Paracoccus, Hyphomicrobium, Azospirillum. However, the relative abundances of the genera Flavobacterium, Aequorivita, Buchnera, Azonexus and Thioalbus increased with the increase of CTC concentration. PMID:27526087

  2. Biomineralization of azo dye bearing wastewater in periodic discontinuous batch reactor: Effect of microaerophilic conditions on treatment efficiency.

    PubMed

    Naresh Kumar, A; Nagendranatha Reddy, C; Venkata Mohan, S

    2015-01-01

    The present study illustrates the influence of microaerophilic condition on periodic discontinuous batch reactor (PDBR) operation in treating azo dye containing wastewater. The process performance was evaluated with the function of various dye load operations (50-750 mg/l) by keeping the organic load (1.6 kg COD/m(3)-day) constant. Initially, lower dye operation (50mg dye/l) resulted in higher dye [45 mg dye/l (90%)] and COD [SDR: 1.29 kg COD/m(3)-day (92%)] removal efficiencies. Higher dye load operation (750 mg dye/l) also showed non-inhibitory performance with respect to dye [600 mg dye/l (80%)] and COD [1.25 kg COD/m(3)-day (80%)] removal efficiencies. Increment in dye load showed increment in azo reductase and dehydrogenase activities (39.6 U; 4.96 μg/ml; 750 mg/l). UV-Vis spectroscopy (200-800 nm), FTIR and (1)H NMR studies revealed the disappearance of azo bond (-NN-). First derivative cyclic voltammogram supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-C, cytochrome-bc1 and flavoproteins (FAD (H)).

  3. The use of sequencing batch reactor technology for the treatment of high-strength dairy processing waste

    SciTech Connect

    Kolarski, R.; Nyhuis, G.

    1996-11-01

    Mueller Milch, a German dairy, discharged process wastewater to a local municipal treatment plant. However, increasing user fees for industrial discharges and overloading of the local treatment plant forced Mueller Milch to evaluate alternatives for a new wastewater treatment facility. In 1992, after the evaluation of treatment alternatives, Mueller Milch dairy discharged effluent from Europe`s first full scale 0.4 mgd Sequencing Batch Reactor (SBR). In a similar situation was Westmilch dairy, another German milk processor unable to meet new stringent effluent limits requiring nutrient removal with their conventional activated sludge system. Following a construction period of only six weeks, the existing treatment facility was retrofitted to a dual basin 0.19 mgd SBR system with sludge digester, eliminating the need for additional tanks. This paper focuses on the design and performance of the SBR process for the treatment of high-strength dairy process wastewater, and describes the success both Mueller Milch and Westmilch dairy have achieved by utilizing this technology.

  4. Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature.

    PubMed

    Arreola-Vargas, J; Jaramillo-Gante, N E; Celis, L B; Corona-González, R I; González-Álvarez, V; Méndez-Acosta, H O

    2016-01-01

    In recent years, anaerobic digestion has been recognized as a suitable alternative for tequila vinasses treatment due to its high energy recovery and chemical oxygen demand (COD) removal efficiency. However, key factors such as the lack of suitable monitoring schemes and the presence of load disturbances, which may induce unstable operating conditions in continuous systems, have limited its application at full scale. Therefore, the aim of this work was to evaluate the anaerobic sequencing batch reactor (AnSBR) configuration in order to provide a low cost and easy operation alternative for the treatment of these complex effluents. In particular, the AnSBR was evaluated under different pH-temperature combinations: 7 and 32 °C; 7 and 38 °C; 8 and 32 °C and 8 and 38 °C. Results showed that the AnSBR configuration was able to achieve high COD removal efficiencies (around 85%) for all the tested conditions, while the highest methane yield was obtained at pH 7 and 38 °C (0.29 L/g COD added). Furthermore, high robustness was found in all the AnSBR experiments. Therefore, the full-scale application of the AnSBR technology for the treatment of tequila vinasses is quite encouraging, in particular for small and medium size tequila industries that operate under seasonal conditions.

  5. Formation of Aerobic Granular Sludge in Sequencing Batch Reactor: Comparison of Different Divalent Metal Ions as Cofactors

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Dawen; Zhang, Min

    2010-11-01

    The two sequencing batch reactors (SBRs) were operated to investigate the different effect of Ca2+ and Mg2+ augmentation on aerobic granulation. R1 was augmented with Ca2+ at 40 mg/L, while Mg+ was added to R2 with 40 mg/L. Results indicated that R1 had a faster granulation process, and aerobic granulation reached the steady state after 60 cycles in R1 but 80 cycles in R2. The mean diameter of the mature granules in R1 was 1.6 mm which was consistently larger than that (0.8 mm) in R2, and aerobic granules in R1 also showed a higher physical strength. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg2+ addition led to higher microbial diversity in mature granules. In addition, the uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2.

  6. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors.

    PubMed

    Bouallagui, Hassib; Rachdi, Boutheina; Gannoun, Hana; Hamdi, Moktar

    2009-06-01

    Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g(-1) total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).

  7. Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors.

    PubMed

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Ma, Fang; Lv, Bin

    2014-01-01

    Sludge bulking caused by loss of stability is a major problem in aerobic granular sludge systems. This study investigated the feasibility of preventing sludge bulking and enhancing the stability of aerobic granular sludge in a sequencing batch reactor by optimizing operation conditions. Five operation parameters have been studied with the aim to understand their impact on sludge bulking. Increasing dissolved oxygen (DO) by raising aeration rates contributed to granule stability due to the competition advantage of non-filamentous bacteria and permeation of oxygen at high DO concentration. The ratio of polysaccharides to proteins was observed to increase as the hydraulic shear force increased. When provided with high/low organic loading rate (OLR) alternately, large and fluffy granules disintegrated, while denser round-shape granules formed. An increase of biomass concentration followed a decrease at the beginning, and stability of granules was improved. This indicated that aerobic granular sludge had the resistance of OLR. Synthetic wastewater combined highly and slowly biodegradable substrates, creating a high gradient, which inhibited the growth of filamentous bacteria and prevented granular sludge bulking. A lower chemical oxygen demand/N favored the hydrophobicity of granular sludge, which promoted with granule stability because of the lower diffusion rate of ammonia. The influence of temperature indicated a relatively low temperature was more suitable.

  8. Effects of CeO2 nanoparticles on system performance and bacterial community dynamics in a sequencing batch reactor.

    PubMed

    Qiu, Guanglei; Neo, Sin-Yi; Ting, Yen-Peng

    2016-01-01

    The effects of CeO2 nanoparticles (NPs) on the system performance and the bacterial community dynamics in a sequencing batch reactor (SBR) were investigated, along with the fate and removal of CeO2 NPs within the SBR. Significant impact was observed on nitrification; NH4+-N removal efficiency decreased from almost 100% to around 70% after 6 days of continuous exposure to 1.0 mg/L of CeO2 NPs, followed by a gradual recovery until a stable value of around 90% after 20 days. Additionally, CeO2 NPs also led to a significant increase in the protein content in the soluble microbial products, showing the disruptive effects of CeO2 NPs on the extracellular polymeric substance matrix and related activated sludge structure. Denaturing gradient gel electrophoresis analysis showed remarkable changes in the bacterial community structure in the activated sludge after exposure to CeO2 NPs. CeO2 NPs were effectively removed in the SBR mainly via sorption onto the sludge. However, the removal efficiency decreased from 95 to 80% over 30 days. Mass balance evaluation showed that up to 50% of the NPs were accumulated within the activated sludge and were removed with the waste sludge.

  9. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    PubMed

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  10. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786

  11. Simultaneous removal of nutrients from milking parlor wastewater using an AO2 sequencing batch reactor (SBR) system.

    PubMed

    Wu, Xiao; Zhu, Jun

    2015-01-01

    The feasibility of using a lab-scale, anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR) to simultaneously remove biological organics, nitrogen and phosphorus from dairy milking parlor wastewater was investigated in this study. Three hydraulic retention times (HRT = 2.1, 2.7, and 3.5 days) and three mixing-to-process time ratios (TM/TP = 0.43, 0.57, and 0.68) were evaluated as two controlling factors using a 3 × 3 experimental design to determine the optimal combination. Results showed that the HRT of 2.7 days with TM/TP = 0.57 was the best to achieve simultaneous nutrients removal for the influent with initial soluble chemical oxygen demand (SCOD) of about 2000 mg L(-1) (only 0.55 mg L(-1) NH4-N, < 0.1 mg L(-1) nitrate, and 0.14 mg L(-1) soluble phosphorus in the effluent). Good correlations between pH and ORP, and ORP and DO, were also obtained with correlation coefficients all higher than or equal to 0.975. These relationships could be used to develop real-time control strategies to optimize the duration of each operating phase in the (AO)2 SBR system to save energy and enhance treatment efficiency. PMID:25723066

  12. Advanced nitrogen removal from landfill leachate via Anammox system based on Sequencing Biofilm Batch Reactor (SBBR): Effective protection of biofilm.

    PubMed

    Miao, Lei; Wang, Shuying; Cao, Tianhao; Peng, Yongzhen; Zhang, Man; Liu, Zhaoyuan

    2016-11-01

    High levels of organics negatively affect Anammox for treating landfill leachate. To enhance the ability of Anammox to survive against adverse environments, a lab-scale two-stage Anammox system using a Sequencing Biofilm Batch Reactor was applied to treat mature landfill leachate under 35°C. Over 107days, with influent total nitrogen (TN) and chemical oxygen demand (COD) concentrations of 3000±100 and 3000±100mg/L, effluent TN was below 20mg/L. For extracellular polymeric substance (EPS) of Anammox, slime-EPS and loosely-bound-EPS of floccules were both higher than biofilm, while tight-bound-EPS of biofilm was significantly higher, contributing to biofilm formation. Quantitative microbial analysis showed that as influent COD increased, Anammox gene ratios of biofilm increased from 1.34% to 13.28%; the gene ratios of floccule first increased, then decreased to 3.88%. This indicated that Anammox and heterotrophic bacteria could coexist because of the biofilm, leading to stable nitrogen removal performance, even when organics were present. PMID:27552718

  13. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors.

    PubMed Central

    Bond, P L; Hugenholtz, P; Keller, J; Blackall, L L

    1995-01-01

    The bacterial community structures of phosphate- and non-phosphate-removing activated sludges were compared. Sludge samples were obtained from two sequencing batch reactors (SBRs), and 16S rDNA clone libraries of the bacterial sludge populations were established. Community structures were determined by phylogenetic analyses of 97 and 92 partial clone sequences from SBR1 (phosphate-removing sludge) and SBR2 (non-phosphate-removing sludge), respectively. For both sludges, the predominant bacterial group with which clones were affiliated was the beta subclass of the proteobacteria. Other major groups represented were the alpha proteobacterial subclass, planctomycete group, and Flexibacter-Cytophaga-Bacteroides group. In addition, several clone groups unaffiliated with known bacterial assemblages were identified in the clone libraries. Acinetobacter spp., thought to be important in phosphate removal in activated sludge, were poorly represented by clone sequences in both libraries. Differences in community structure were observed between the phosphate- and non-phosphate-removing sludges; in particular, the Rhodocyclus group within the beta subclass was represented to a greater extent in the phosphate-removing community. Such differences may account for the differing phosphate-removing capabilities of the two activated sludge communities. PMID:7544094

  14. Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors.

    PubMed

    Alito, Christina L; Gunsch, Claudia K

    2014-01-21

    Consumer products such as clothing and medical products are increasingly integrating silver and silver nanoparticles (AgNPs) into base materials to serve as an antimicrobial agent. Thus, it is critical to assess the effects of AgNPs on wastewater microorganisms essential to biological nutrient removal. In the present study, pulse and continuous additions of 0.2 and 2 ppm gum arabic and citrate coated AgNPs as well as Ag as AgNO3 were fed into sequencing batch reactors (SBRs) inoculated with nitrifying sludge. Treatment efficiency (chemical oxygen demand (COD) and ammonia removal), Ag dissolution measurements, and 16S rRNA bacterial community analyses (terminal restriction fragment length polymorphism, T-RFLP) were performed to evaluate the response of the SBRs to Ag addition. Results suggest that the AgNPs may have been precipitating in the SBRs. While COD and ammonia removal decreased by as much as 30% or greater directly after spikes, SBRs were able to recover within 24 h (3 hydraulic retention times (HRTs)) and resume removal near 95%. T-RFLP results indicate Ag spiked SBRs were similar in a 16s rRNA bacterial community. The results shown in this study indicate that wastewater treatment could be impacted by Ag and AgNPs in the short term but the amount of treatment disruption will depend on the magnitude of influent Ag. PMID:24364625

  15. Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater.

    PubMed

    Malakahmad, Amirhossein; Hasani, Amirhesam; Eisakhani, Mahdieh; Isa, Mohamed Hasnain

    2011-07-15

    Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03±0.02 mg/L Hg and 15.52±0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg(2+) and 96-98% of Cd(2+). The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg(2+) and Cd(2+) implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge.

  16. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor.

    PubMed

    Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai

    2016-05-01

    The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater.

  17. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor.

    PubMed

    Wei, Dong; Shi, Li; Yan, Tao; Zhang, Ge; Wang, Yifan; Du, Bin

    2014-11-01

    The objective of this study was to evaluate aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor (SBR). After successful aerobic granulation, mixed liquor suspended solids (MLSS) concentrations of the SBR increased from 3.11 to 14.52 g/L, while sludge volume index (SVI) values decreased from 144.61 to 30.32 mL/g. Protein (PN) and polysaccharide (PS) concentrations increased from 60.2 and 12.5 mg/L to 101.1 and 15.8 mg/L, respectively. Simultaneous nitrogen and phosphorus removal was enhanced by altering the influent chemical oxygen demand/nitrogen (COD/N) ratio. At COD/N ratio of 9, total nitrogen (TN) and total phosphorus (TP) removal efficiencies were up to 89.8% and 77.5%, respectively. Three-dimensional excitation-emission matrix (3D-EEM) spectroscopy showed that the chemical compositions of sludge EPS were changed during granulation process. The results could provide useful information to promote nitrogen and phosphorus removal using aerobic granular sludge technology.

  18. Effects of CeO2 nanoparticles on system performance and bacterial community dynamics in a sequencing batch reactor.

    PubMed

    Qiu, Guanglei; Neo, Sin-Yi; Ting, Yen-Peng

    2016-01-01

    The effects of CeO2 nanoparticles (NPs) on the system performance and the bacterial community dynamics in a sequencing batch reactor (SBR) were investigated, along with the fate and removal of CeO2 NPs within the SBR. Significant impact was observed on nitrification; NH4+-N removal efficiency decreased from almost 100% to around 70% after 6 days of continuous exposure to 1.0 mg/L of CeO2 NPs, followed by a gradual recovery until a stable value of around 90% after 20 days. Additionally, CeO2 NPs also led to a significant increase in the protein content in the soluble microbial products, showing the disruptive effects of CeO2 NPs on the extracellular polymeric substance matrix and related activated sludge structure. Denaturing gradient gel electrophoresis analysis showed remarkable changes in the bacterial community structure in the activated sludge after exposure to CeO2 NPs. CeO2 NPs were effectively removed in the SBR mainly via sorption onto the sludge. However, the removal efficiency decreased from 95 to 80% over 30 days. Mass balance evaluation showed that up to 50% of the NPs were accumulated within the activated sludge and were removed with the waste sludge. PMID:26744939

  19. Simultaneous removal of nutrients from milking parlor wastewater using an AO2 sequencing batch reactor (SBR) system.

    PubMed

    Wu, Xiao; Zhu, Jun

    2015-01-01

    The feasibility of using a lab-scale, anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR) to simultaneously remove biological organics, nitrogen and phosphorus from dairy milking parlor wastewater was investigated in this study. Three hydraulic retention times (HRT = 2.1, 2.7, and 3.5 days) and three mixing-to-process time ratios (TM/TP = 0.43, 0.57, and 0.68) were evaluated as two controlling factors using a 3 × 3 experimental design to determine the optimal combination. Results showed that the HRT of 2.7 days with TM/TP = 0.57 was the best to achieve simultaneous nutrients removal for the influent with initial soluble chemical oxygen demand (SCOD) of about 2000 mg L(-1) (only 0.55 mg L(-1) NH4-N, < 0.1 mg L(-1) nitrate, and 0.14 mg L(-1) soluble phosphorus in the effluent). Good correlations between pH and ORP, and ORP and DO, were also obtained with correlation coefficients all higher than or equal to 0.975. These relationships could be used to develop real-time control strategies to optimize the duration of each operating phase in the (AO)2 SBR system to save energy and enhance treatment efficiency.

  20. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    PubMed

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale.

  1. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater.

    PubMed

    Mizzouri, Nashwan Sh; Shaaban, Md Ghazaly

    2013-04-15

    This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSSd at 12.8h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.

  2. Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature.

    PubMed

    Arreola-Vargas, J; Jaramillo-Gante, N E; Celis, L B; Corona-González, R I; González-Álvarez, V; Méndez-Acosta, H O

    2016-01-01

    In recent years, anaerobic digestion has been recognized as a suitable alternative for tequila vinasses treatment due to its high energy recovery and chemical oxygen demand (COD) removal efficiency. However, key factors such as the lack of suitable monitoring schemes and the presence of load disturbances, which may induce unstable operating conditions in continuous systems, have limited its application at full scale. Therefore, the aim of this work was to evaluate the anaerobic sequencing batch reactor (AnSBR) configuration in order to provide a low cost and easy operation alternative for the treatment of these complex effluents. In particular, the AnSBR was evaluated under different pH-temperature combinations: 7 and 32 °C; 7 and 38 °C; 8 and 32 °C and 8 and 38 °C. Results showed that the AnSBR configuration was able to achieve high COD removal efficiencies (around 85%) for all the tested conditions, while the highest methane yield was obtained at pH 7 and 38 °C (0.29 L/g COD added). Furthermore, high robustness was found in all the AnSBR experiments. Therefore, the full-scale application of the AnSBR technology for the treatment of tequila vinasses is quite encouraging, in particular for small and medium size tequila industries that operate under seasonal conditions. PMID:26877037

  3. Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor.

    PubMed

    Wu, Xiao; Lin, Hongjian; Zhu, Jun

    2013-05-01

    This study investigated and optimized the operational conditions for continuous hydrogen production from sugar beet molasses, co-fermented with liquid swine manure in an anaerobic sequencing batch reactor. Results indicated that pH, HRT and total solids content in the swine manure (TS) had significant impact on all the responses such as biogas production rate (BPR), hydrogen content (HC), hydrogen production rate (HPR), and hydrogen yield (HY), although the highest level of each response was achieved at different combination of the three variables. The maximum BPR, HC, HPR and HY of 32.21 L/d, 30.51%, 2.23 L/d/L and 1.57 mol-H2/mol-sugar were estimated at the optimal pH, HRT, and TS of 5.55, 15.78 h, and 0.71% for BPR; 5.22, 12.04, and 0.69 for HC; 5.32, 15.62, and 0.78% for HPR; and 5.36, 17.56, and 0.74% for HY, respectively. Good linear relationships of the predicted and tested results for all the parameters were observed.

  4. User-oriented batch reactor solutions to the homogeneous surface diffusion model for different activated carbon dosages.

    PubMed

    Zhang, Qiong; Crittenden, John; Hristovski, Kiril; Hand, David; Westerhoff, Paul

    2009-04-01

    This paper presents a simplified approach and user-oriented solutions to the homogeneous surface diffusion model (HSDM) equations for determining the surface diffusivity using a batch reactor system. Once the surface diffusivity is known, this model could also be used to estimate the performance of activated carbon (AC) applications as a function of contact time. In addition, fixed-bed performance can be predicted using the user-oriented solutions to the HSDM for fixed beds. The step-by-step procedure for determining surface diffusion coefficients of an activated carbon adsorber, which was initially developed by Hand, Crittenden and Thacker in 1983 for a carbon dose where C(equilibrium)/C(0)=0.5, is modified to allow calculations for different carbon dosages. This modification provides solutions to the HSDM equations for different activated carbon dosages. The solutions to the HSDM framework are provided as simplified algebraic equations suitable for quick and easy estimations of D(S). The excel spread sheet is provided in the supplemental information and a detailed example is discussed. PMID:19249812

  5. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    PubMed

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  6. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    PubMed

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR. PMID:25127066

  7. Effect of chloride concentration on nitrogen removal from landfill leachate in sequencing batch reactor after MAP pretreatment.

    PubMed

    Chen, M; He, S; Yi, Q; Yang, M

    2010-01-01

    Leachate generated from landfill is becoming a great environmental challenge to China as it contains high concentration of COD, ammonium and some other substances. Nitrogen removal through the conventional nitrification-denitrification process is hampered by the low C/N ratio especially for the old age landfill sites and the high energy consumption for aeration. In this study, the combination of magnesium ammonium phosphate (MAP) precipitation and Sequencing batch reactor (SBR) was suggested as a new process for the treatment of high strength ammonium, and the effect of high concentration of Cl⁻ after MAP precipitation because of the use of MgCl₂ was investigated on SBR performance. The practical upper limit of Cl⁻ for nitrification was found to be 12,000 mg/L, above which resulted in significant accumulation of ammonium in SBR system. It is suggested that an ammonium removal of 70% was suitable for the MAP treatment to achieve a balance between increasing the C/N ratio and avoiding detrimental effect from high concentration of Cl⁻ in the succeeding SBR system. DGGE analysis indicated that high diversity of Ammonium oxidizing bacteria (AOB) could be maintained at a Cl⁻ concentration of 12,000 mg/L.

  8. Effects of selected pharmaceutically active compounds on treatment performance in sequencing batch reactors mimicking wastewater treatment plants operations.

    PubMed

    Wang, Shuyi; Gunsch, Claudia K

    2011-05-01

    The impact of four pharmaceutically active compounds (PhACs) introduced both individually and in mixtures was ascertained on the performance of laboratory-scale wastewater treatment sequencing batch reactors (SBRs). When introduced individually at concentrations of 0.1, 1 and 10 μM, no significant differences were observed with respect to chemical oxygen demand (COD) and ammonia removal. Microbial community analyses reveal that although similarity index values generally decreased over time with an increase in PhAC concentrations as compared to the controls, no major microbial community shifts were observed for total bacteria and ammonia-oxidizing bacteria (AOB) communities. However, when some PhACs were introduced in mixtures, they were found to both inhibit nitrification and alter AOB community structure. Ammonia removal decreased by up to 45% in the presence of 0.25 μM gemfibrozil and 0.75 μM naproxen. PhAC mixtures did not however affect COD removal performance suggesting that heterotrophic bacteria are more robust to PhACs than AOB. These results highlight that the joint action of PhACs in mixtures may have significantly different effects on nitrification than the individual PhACs. This phenomenon should be further investigated with a wider range of PhACs so that toxicity effects can more accurately be predicted.

  9. On-site treatment of a motorway service area wastewater using a package sequencing batch reactor (SBR).

    PubMed

    Del Solar, J; Hudson, S; Stephenson, T

    2005-01-01

    A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d(-1) which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.

  10. Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite.

    PubMed

    Dosta, J; Galí, A; Benabdallah El-Hadj, T; Macé, S; Mata-Alvarez, J

    2007-08-01

    The aim of this study was the operation and model description of a sequencing batch reactor (SBR) for biological nitrogen removal (BNR) from a reject water (800-900 mg NH(4)(+)-NL(-1)) from a municipal wastewater treatment plant (WWTP). The SBR was operated with three cycles per day, temperature 30 degrees C, SRT 11 days and HRT 1 day. During the operational cycle, three alternating oxic/anoxic periods were performed to avoid alkalinity restrictions. Oxygen supply and working pH range were controlled to achieve the BNR via nitrite, which makes the process more economical. Under steady state conditions, a total nitrogen removal of 0.87 kg N (m(3)day)(-1) was reached. A four-step nitrogen removal model was developed to describe the process. This model enlarges the IWA activated sludge models for a more detailed description of the nitrogen elimination processes and their inhibitions. A closed intermittent-flow respirometer was set up for the estimation of the most relevant model parameters. Once calibrated, model predictions reproduced experimental data accurately. PMID:17292605

  11. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor.

    PubMed

    Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai

    2016-05-01

    The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. PMID:26906036

  12. Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors.

    PubMed

    Tan, Guangcai; Xu, Nan; Liu, Yong; Hao, Hongshan; Sun, Weiling

    2016-11-01

    The present study investigated the effects of lead on the morphological structure, physical and chemical properties, wastewater treatment performance and microbial community structure of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs). The results showed that at Pb(2+) concentration of 1 mg/L, the mixed liquid suspended solids decreased, the settling velocity increased and the sludge volume index increased sharply. Meanwhile, AGS began to disintegrate and show an irregular shape. In terms of wastewater treatment in an SBR, the phosphorus removal rate was affected only until the Pb(2+) concentration was up to 1 mg/L. The [Formula: see text] removal efficiency began to decline when the Pb(2+) concentration increased to 6 mg/L, while the removal of chemical oxygen demand increased slightly within the Pb(2+) concentration range of 1-6 mg/L. Significant changes were observed in the microbial community structure, especially the dominant bacteria. Compared to the Pb(2+) accumulation on the sludge, the Pb(2+) concentration in the aqueous phase played a more important role in the performance and microbial community of AGS in SBRs. PMID:27012589

  13. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor.

    PubMed

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-10-15

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3+/-0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  14. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    PubMed

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%.

  15. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    PubMed

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR.

  16. Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater.

    PubMed

    Mojiri, Amin; Aziz, Hamidi Abdul; Zaman, Nastaein Q; Aziz, Shuokr Qarani; Zahed, Mohammad Ali

    2014-06-15

    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively. PMID:24662109

  17. Impacts of cell surface characteristics on population dynamics in a sequencing batch yeast reactor treating vegetable oil-containing wastewater.

    PubMed

    Lv, Wenzhou; Hesham, Abd El-Latif; Zhang, Yu; Liu, Xinchun; Yang, Min

    2011-06-01

    Ten yeast strains acquired from different sources and capable of utilizing vegetable oil or related compounds (fatty acid or oleic acid) as sole carbon sources were inoculated into a sequencing batch reactor (SBR) for the treatment of high-strength vegetable oil-containing wastewater. The SBR system stably removed >89% of chemical oxygen demand (COD) and >99% of oil when fed with wastewater containing 15 g/L COD and 10 g/L oil in average. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 26S rRNA genes showed that among the ten yeast strains, only Candida lipolytica, Candida tropicalis, and Candida halophila were dominant in the system. To elucidate the major factors affecting the selection of yeast strains in the SBR system, the three dominant strains were compared with two non-dominant strains in terms of COD removal performance, biomass yield, cell settleability, cell flocculation ability, cell emulsification ability, and surface hydrophobicity. Results showed that hydrophobicity and emulsification ability of yeast cells were the two most important factors determining the selection of yeast strains in the treatment of high-strength oil-containing wastewater.

  18. The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors.

    PubMed

    Lu, Lu; Tan, Hongxin; Luo, Guozhi; Liang, Wenyan

    2012-11-01

    A sequencing batch reactor (SBR) supplied with Bacillus subtilis (treatment group) was employed to treat the sludge from a re-circulating aquaculture system (RAS). The crude protein content of bio-flocs from the treatment group increased from 21.52%±1.5% to 29.65%±13.34%, which was 23.97%±11.62% greater than that of the SBRs without B. subtilis (control group). The removal rate of dissolved inorganic nitrogen (RR(DIN)) for the treatment group was 0.41±0.079 mg L(-1)d(-1), which was 1.17 times greater than that of the control group. The utility rate of total organic nitrogen (UR(TON)) for the treatment group was 1.42±0.33 mg L(-1)d(-1), which was 1.71 times greater than the control. The removal rate of dissolved organic carbon (RR(DOC)) for the treatment group was 138.39±7.77 mg L(-1)d(-1), which was 1.95 times greater than the control. The extra-cellular polymer substance (EPS) was primarily composed of polysaccharides. The flocs volume after 5 min (FV-5 min) reached 22.67%±2.08% at 19 days.

  19. CONTINUOSLY STIRRED TANK REACTOR PARAMETERS THAT AFFECT SLUDGE BATCH 6 SIMULANT PROPERTIES

    SciTech Connect

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-05-28

    The High Level Radioactive Waste (HLW) Sludge in Savannah River Site (SRS) waste tanks was produced over a period of over 60 years by neutralizing the acidic waste produced in the F and H Separations Canyons with sodium hydroxide. The HLW slurries have been stored at free hydroxide concentrations above 1 M to minimize the corrosion of the carbon steel waste tanks. Sodium nitrite is periodically added as a corrosion inhibitor. The resulting waste has been subjected to supernate evaporation to minimize the volume of the stored waste. In addition, some of the waste tanks experienced high temperatures so some of the waste has been at elevated temperatures. Because the waste is radioactive, the waste is transforming through the decay of shorter lived radioactive species and the radiation damage that the decay releases. The goal of the Savannah River National Laboratory (SRNL) simulant development program is to develop a method to produce a sludge simulant that matches both the chemical and physical characteristics of the HLW without the time, temperature profile, chemical or radiation exposure of that of the real waste. Several different approaches have been taken historically toward preparing simulated waste slurries. All of the approaches used in the past dozen years involve some precipitation of the species using similar chemistry to that which formed the radioactive waste solids in the tank farm. All of the approaches add certain chemical species as commercially available insoluble solid compounds. The number of species introduced in this manner, however, has varied widely. All of the simulant preparation approaches make the simulated aqueous phase by adding the appropriate ratios of various sodium salts. The simulant preparation sequence generally starts with an acidic pH and ends up with a caustic pH (typically in the 10-12 range). The current method for making sludge simulant involves the use of a temperature controlled continuously stirred tank reactor (CSTR

  20. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. PMID:26513317

  1. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials.

  2. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis.

    PubMed

    Lim, Yesul; Kim, Dong-Jin

    2014-08-01

    This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method. PMID:24690468

  3. On-line monitoring for control of a pilot-scale sequencing batch reactor using a submersible UV/VIS spectrometer.

    PubMed

    Langergraber, G; Gupta, J K; Pressl, A; Hofstaedter, F; Lettl, W; Weingartner, A; Fleischmann, N

    2004-01-01

    A submersible UV/VIS spectrometer was used to monitor a pilot-scale sequencing batch reactor (SBR). The instrument utilises the whole UV/VIS range between 200 and 750 nm. With just one single instrument nitrate, organic matter and suspended solids can be measured simultaneously. The spectrometer is installed directly in the reactor, measures in real-time, and is equipped with an auto-cleaning system using pressured air. The paper shows the calibration results for measurements in the SBR tank, time series for typical SBR cycles, and proposes possible ways for optimisation of the operation by using these measurements.

  4. Effects of cycle-frequency and temperature on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste.

    PubMed

    Ndegwa, P M; Hamilton, D W; Lalman, J A; Cumba, H J

    2008-04-01

    Anaerobic digestion of animal waste is a technically viable process for the abatement of adverse environmental impacts caused by animal wastes; however, widespread acceptance has been plagued by poor economics. This situation is dismal if the technology is adapted for treating low strength animal slurries because of large digester-volume requirements and a corresponding high energy input. A possible technology to address these constraints is the anaerobic sequencing batch reactor (ASBR). The ASBR technology has demonstrated remarkable potential to improve the economics of treating dilute animal waste effluents. This paper presents preliminary data on the effects of temperature and frequency-cycle on the operation of an ASBR at a fixed hydraulic retention time (HRT). The results suggest that within the parameter range under consideration, temperature did not affect the biogas yield significantly, however, higher cycle-frequency had a negative effect. The biogas quality (%CH(4)) was not significantly affected by temperature nor by the cycle-frequency. The operating principle of the ASBR follows four phases: feed, react, settle, and decant in a cyclic mode. To improve the biogas production in an ASBR, one long react-phase was preferable compared to three shorter react-phases. Treatment of dilute manure slurries in an ASBR at 20 degrees C was more effective than at 35 degrees C; similarly more bio-stable effluents were obtained at low cycle-frequency. The treatment of dilute swine slurries in an ASBR at the lower temperature (20 degrees C) and lower cycle-frequency is, therefore, recommended for the bio-stabilization of dilute swine wastewaters. The results also indicate that significantly higher VFA degradation occurred at 20 degrees C than at 35 degrees C, suggesting that the treatment of dilute swine slurries in ASBRs for odor control might be more favorable at the lower than at the higher temperatures examined in this study. Volatile fatty acid reduction at the two

  5. [Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor].

    PubMed

    Song, Xiao-yan; Liu, Rui; Shui, Yong; Kawagishi, Tomoki; Zhan, Xin-min; Chen, Lu-jun

    2016-05-15

    Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30°C to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg · L⁻1 when the influent COD/TN ratio was 0.8 ± 0.2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18.3% ± 12.2%, 84.2% ± 10.3% and 60.7% ± 10.7%, respectively. By contrast, as the influent COD/ TN ratio was increased to 2.4 ± 0.5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg · L⁻¹ to below 10 mg-L⁻¹, and the removal rates of TN, ammonium nitrogen and TOC were increased to over 90%, 95% and 85%, respectively. Gradually shortened hydraulic retention time ( HRT) reveales that the ammonia load is a restricting factor for nitrogen removal. The ammonia load should be controlled at no more than 0.30 kg · (m³ · d) ⁻¹, or else, the removal rates of TN, ammonium and TOC would be greatly decreased. The nitrite accumulation rate over the whole run was 74.6%-97.8% and the TN removal rate in the stable phase was over 90%. With efficient and stable short-cut nitrification-denitrification in a low COD/TN, moreover, and unnecessary for addition of alkaline, IASBR shows great advantage for treating wastewater with high concentration of ammonia while low COD/TN ratio. PMID:27506043

  6. [Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor].

    PubMed

    Song, Xiao-yan; Liu, Rui; Shui, Yong; Kawagishi, Tomoki; Zhan, Xin-min; Chen, Lu-jun

    2016-05-15

    Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30°C to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg · L⁻1 when the influent COD/TN ratio was 0.8 ± 0.2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18.3% ± 12.2%, 84.2% ± 10.3% and 60.7% ± 10.7%, respectively. By contrast, as the influent COD/ TN ratio was increased to 2.4 ± 0.5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg · L⁻¹ to below 10 mg-L⁻¹, and the removal rates of TN, ammonium nitrogen and TOC were increased to over 90%, 95% and 85%, respectively. Gradually shortened hydraulic retention time ( HRT) reveales that the ammonia load is a restricting factor for nitrogen removal. The ammonia load should be controlled at no more than 0.30 kg · (m³ · d) ⁻¹, or else, the removal rates of TN, ammonium and TOC would be greatly decreased. The nitrite accumulation rate over the whole run was 74.6%-97.8% and the TN removal rate in the stable phase was over 90%. With efficient and stable short-cut nitrification-denitrification in a low COD/TN, moreover, and unnecessary for addition of alkaline, IASBR shows great advantage for treating wastewater with high concentration of ammonia while low COD/TN ratio.

  7. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry.

    PubMed

    Vadapalli, V R K; Zvimba, J N; Mathye, M; Fischer, H; Bologo, L

    2015-01-01

    This study investigated the implications of using two grades of limestone from a paper and pulp industry for neutralization of acid mine drainage (AMD) in a pilot sequencing batch reactor (SBR). In this regard, two grades of calcium carbonate were used to neutralize AMD in a SBR with a hydraulic retention time (including settling) of 100 min and a sludge retention time of 360 min, by simultaneously monitoring the Fe(II) removal kinetics and overall assessment of the AMD after treatment. The Fe(II) kinetics removal and overall AMD treatment were observed to be highly dependent on the limestone grade used, with Fe(II) completely removed to levels lower than 50 mg/L in cycle 1 after 30 min using high quality or pure paper and pulp limestone. On the contrary, the other grade limestone, namely waste limestone, could only achieve a similar Fe(II) removal efficiency after four cycles. It was also noticed that suspended solids concentration plays a significant role in Fe(II) removal kinetics. In this regard, using pure limestone from the paper and pulp industry will have advantages compared with waste limestone for AMD neutralization. It has significant process impacts for the SBR configuration as it allows one cycle treatment resulting in a significant reduction of the feed stock, with subsequent generation of less sludge during AMD neutralization. However, the use of waste calcium carbonate from the paper and pulp industry as a feed stock during AMD neutralization can achieve significant cost savings as it is cheaper than the pure limestone and can achieve the same removal efficiency after four cycles.

  8. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    PubMed

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values. PMID:26923228

  9. Spectrometric characterization of effluent organic matter of a sequencing batch reactor operated at three sludge retention times.

    PubMed

    Esparza-Soto, M; Núñez-Hernández, S; Fall, C

    2011-12-01

    Effluent organic matter (EfOM) from activated sludge systems is composed primarily of influent refractory compounds, residual degradable substrate, intermediate products and soluble microbial products (SMPs). Depending on operational conditions (hydraulic and sludge retention time (SRT)), the quantity and quality of EfOM significantly changes. The main objective of this research was to quantify and characterize the EfOM of a lab-scale activated sludge sequencing batch reactor (SBR), which was operated at three SRTs and fed glucose, an easily biodegradable substrate. EfOM was followed with two direct-quantification methods (chemical oxygen demand (COD) and dissolved organic carbon (DOC)), three spectrometric methods (ultraviolet absorbance at 254 nm (UVA(254)), excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)) and three organic matter (OM) indices (specific UVA(254) (SUVA), SUVA-COD, COD/DOC ratio). The significant increment of UVA(254) and OM indices after treatment indicated an accumulation of refractory high-molecular-weight humic-like compounds in the EfOM, which demonstrated that EfOM was composed mainly by SMPs and not glucose. On the other hand, as the SRT increased, the amount of EfOM decreased, but SUVA, SUVA-COD and fluorescence intensity increased; these trends indicated the accumulation of SMPs of increased molecular weight and aromaticity. Increasing SRT in the SBRs reduced the amount of EfOM, but increased its aromaticity and reactivity. Visual analysis of EfOM EEMs showed two protein- and one humic-like peak, which were attributed to SMPs generated within the SBRs. PARAFAC determined that a two-component model best represented EfOM EEMs. The two-components from PARAFAC were mathematically correlated to the visually identified protein- and humic-like SMPs peaks.

  10. Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment.

    PubMed

    Liu, Yong-Qiang; Moy, Benjamin; Kong, Yun-Hua; Tay, Joo-Hwa

    2010-05-01

    In this study, aerobic granular sludge was successfully developed in a pilot-scale sequencing batch reactor (SBR) installed on site to treat real wastewater using traditional activated sludge as inoculum. Compared with 1 or 2 months required by lab-scale reactor for aerobic granulation, it took about 400 days for activated sludge to transform into granule-dominant sludge in the pilot-scale SBR on site. Although the sludge in the reactor after 400-day operation was a mixture of flocs and granules with floc ratio ranged from 5 to 30%, sludge volume index with 5min settling (SVI5) always maintained at around 30mL/g. The similar microbial community structures represented by denaturing gradient gel electrophoresis (DGGE) between coexisted flocs and granules in the reactor indicated no strong microbial selection after the granules were dominant in the reactor. Chemical oxygen demand (COD) and NH4(+)-N removal efficiencies were above 80 and 98%, respectively, after 50-day operation, and the total inorganic N removal efficiency was about 50%. The results in this study demonstrate that it is feasible to form aerobic granules in pilot-scale SBR reactor and maintain the long-term stability of granular sludge with a high influent quality fluctuation. Meanwhile, stable COD and NH4(+)-N removal efficiencies can be obtained in the reactor.

  11. Anaerobic treatment of sulfate-rich wastewater in an anaerobic sequential batch reactor (AnSBR) using butanol as the carbon source.

    PubMed

    Sarti, Arnaldo; Zaiat, Marcelo

    2011-06-01

    Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5, 1.0, 2.0 and 3.0 g SO(4)(2-) L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-) L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-) L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor. PMID:21277676

  12. A simple kinetic analysis of syngas during steam hydrogasification of biomass using a novel inverted batch reactor with instant high pressure feeding.

    PubMed

    Fan, Xin; Liu, Zhongzhe; Norbeck, Joseph M; Park, Chan S

    2016-01-01

    A newly designed inverted batch reactor equipped with a pressure-driven feeding system was built for investigating the kinetics of syngas during the steam hydrogasification (SHR) of biomass. The system could instantly load the feedstock into the reactor at high temperature and pressure, which simulated the way to transport the feedstock into a hot and pressurized gasifier. Experiments were conducted from 600°C to 700°C. The inverted reactor showed very high heating rate by enhancing the carbon conversion and syngas production. The kinetic study showed that the rates of CH4, CO and CO2 formation during SHR were increased when the gasification temperature went up. SHR had comparatively lower activation energy for CH4 production. The activation energies of CH4, CO and CO2 during SHR were 42.8, 51.8 and 14kJ/mol, respectively.

  13. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.

    PubMed

    Buitrón, Germán; Carvajal, Carolina

    2010-12-01

    The effect of the temperature (25 and 35 degrees C), the hydraulic retention time, HRT, (12 and 24 h) and initial substrate concentration on hydrogen production from Tequila vinasse was studied using a sequencing batch reactor. When 25 degrees C and 12-h HRT were applied, only insignificant biogas quantities were produced; however, using 24 h of HRT and temperatures of 25 and 35 degrees C, biogas containing hydrogen was produced. A maximum volumetric hydrogen production rate of 50.5 mL H(2) L(-1) h(-1) (48 mmol H(2) L(reactor)(-1) d(-1)) and an average hydrogen content in the biogas of 29.2+/-8.8% were obtained when the reactor was fed with 3 g COD L(-1), at 35 degrees C and 12-h HRT. Methane formation was observed when the longer HRT was applied. Results demonstrated the feasibility to produce hydrogen from this waste without a previous pre-treatment.

  14. A simple kinetic analysis of syngas during steam hydrogasification of biomass using a novel inverted batch reactor with instant high pressure feeding.

    PubMed

    Fan, Xin; Liu, Zhongzhe; Norbeck, Joseph M; Park, Chan S

    2016-01-01

    A newly designed inverted batch reactor equipped with a pressure-driven feeding system was built for investigating the kinetics of syngas during the steam hydrogasification (SHR) of biomass. The system could instantly load the feedstock into the reactor at high temperature and pressure, which simulated the way to transport the feedstock into a hot and pressurized gasifier. Experiments were conducted from 600°C to 700°C. The inverted reactor showed very high heating rate by enhancing the carbon conversion and syngas production. The kinetic study showed that the rates of CH4, CO and CO2 formation during SHR were increased when the gasification temperature went up. SHR had comparatively lower activation energy for CH4 production. The activation energies of CH4, CO and CO2 during SHR were 42.8, 51.8 and 14kJ/mol, respectively. PMID:26562689

  15. A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process

    PubMed

    Schilling; Pfefferle; Bachmann; Leuchtenberger; Deckwer

    1999-09-01

    A specially designed model reactor based on a 42-L laboratory fermentor was equipped with six stirrers (Rushton turbines) and five cylindrical disks. In this model reactor, the mixing time, Theta(90), turned out to be 13 times longer compared with the 42-L standard laboratory fermentor fitted with two Rushton turbines and four wall-fixed longitudinal baffles. To prove the suitability of the model reactor for scaledown studies of mixing-time-dependent processes, parallel exponential fed-batch cultivations were carried out with the leucine-auxotrophic strain, Corynebacterium glutamicum DSM 5715, serving as a microbial test system. L&HYPHEN;Leucine, the process-limiting substrate, was fed onto the liquid surface of both reactors. Cultivations were conducted using the same inoculum material and equal oxygen supply. The model reactor showed reduced sugar consumption (-14%), reduced ammonium consumption (-19%), and reduced biomass formation (-7%), which resulted in a decrease in L-lysine formation (-12%). These findings were reflected in less specific enzyme activity, which was determined for citrate synthase (CS), phosphoenolpyruvate carboxylase (PEP-C), and aspartate kinase (AK). The reduced specific activity of CS correlated with lower CO(2) evolution (-36%) during cultivation. The model reactor represents a valuable tool to simulate the conditions of poor mixing and inhomogeneous substrate distribution in bioreactors of industrial scale. Copyright 1999 John Wiley & Sons, Inc. PMID:10404240

  16. A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process

    PubMed

    Schilling; Pfefferle; Bachmann; Leuchtenberger; Deckwer

    1999-09-01

    A specially designed model reactor based on a 42-L laboratory fermentor was equipped with six stirrers (Rushton turbines) and five cylindrical disks. In this model reactor, the mixing time, Theta(90), turned out to be 13 times longer compared with the 42-L standard laboratory fermentor fitted with two Rushton turbines and four wall-fixed longitudinal baffles. To prove the suitability of the model reactor for scaledown studies of mixing-time-dependent processes, parallel exponential fed-batch cultivations were carried out with the leucine-auxotrophic strain, Corynebacterium glutamicum DSM 5715, serving as a microbial test system. L&HYPHEN;Leucine, the process-limiting substrate, was fed onto the liquid surface of both reactors. Cultivations were conducted using the same inoculum material and equal oxygen supply. The model reactor showed reduced sugar consumption (-14%), reduced ammonium consumption (-19%), and reduced biomass formation (-7%), which resulted in a decrease in L-lysine formation (-12%). These findings were reflected in less specific enzyme activity, which was determined for citrate synthase (CS), phosphoenolpyruvate carboxylase (PEP-C), and aspartate kinase (AK). The reduced specific activity of CS correlated with lower CO(2) evolution (-36%) during cultivation. The model reactor represents a valuable tool to simulate the conditions of poor mixing and inhomogeneous substrate distribution in bioreactors of industrial scale. Copyright 1999 John Wiley & Sons, Inc.

  17. Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor.

    PubMed

    Xu, Shengnan; Wu, Donglei; Hu, Zhiqiang

    2014-05-15

    Although solids retention time (SRT) is the key parameter in wastewater treatment design and operation, this study determined the effect of hydraulic retention time (HRT) on biological nutrient removal in a membrane coupled sequencing batch reactor (MSBR) at the fixed SRT of 10 days. During more than 200 days of operation, the HRT of the MSBR were decreased from 24 to 12 and to 6 h while the volumetric exchange ratio in each operating cycle was fixed at 50%. The decrease of HRT led to a proportional increase in biomass concentration at the fixed SRT. The system demonstrated excellent removal of organic matter with the highest COD removal efficiency (97%) achieved at the shortest HRT of 6 h. As HRT was reduced from 24 to 12 h, the total nitrogen removal efficiency improved from 68 ± 5% to 80 ± 4%, but there was no further improvement when HRT decreased to 6 h. Coincidently, similar and higher abundance of nitrifying bacteria was observed in the MSBR operated at the HRTs of 6 and 12 h than that at the HRT of 24 h. The total phosphorus removal efficiencies were 62 ± 15%, 77 ± 4% and 85 ± 3% at the HRTs of 24, 12 and 6 h, respectively. The maximum P release rates for activated sludge at the HRTs of 24, 12 and 6 h were 3.7 ± 0.5, 6.4 ± 0.2 and 8.7 ± 0.1 mg P/h, respectively, while the maximum P uptake rates were 3.2 ± 0.1, 8.6 ± 0.2 and 15.2 ± 0.2 mg P/h, respectively. Contradictory to the theory that effluent water quality is solely SRT dependent, the results suggest that it is also affected by HRT and resultant biomass concentration possibly due to factors such as change in hydrolysis of particulate organic matter, the unique microenvironment and transition between anaerobic and aerobic metabolism at high biomass concentrations in MSBR operation.

  18. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    PubMed Central

    Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L∗d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L∗d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR. PMID:24672398

  19. Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes

    SciTech Connect

    Cisneros, Anselmo T.; Ilas, Dan

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a 3400 MWth fluoride salt cooled high temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical fuel pebbles or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with coated particle fuel in cylindrical and spherical geometries was extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux and composition evolutions across space and time), but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the non-linear reactivity model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms to extrapolate single-batch depletion results to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.

  20. Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes

    SciTech Connect

    Cisneros, Anselmo T.; Ilas, Dan

    2013-01-01

    The Advanced High-Temperature Reactor (AHTR) is a 3400 MWth fluoride-salt-cooled high-temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the Reactivity-Equivalent Physical Transformation (RPT) methodology usually applied in systems with coated-particle fuel in cylindrical and spherical geometries has been extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle (BOEC) composition and sampling different discharge burnups. This Iterative Equilibrium Depletion Search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux, and composition evolutions) but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the Non-Linear Reactivity Model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.

  1. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly technical progress report, September 15, 1995--January 15, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1996-01-26

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) f or coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives.

  2. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP.

    PubMed

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-06-01

    This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the

  3. Equilibrium and kinetic studies of in situ generation of ammonia from urea in a batch reactor for flue gas conditioning of thermal power plants

    SciTech Connect

    Sahu, J.N.; Patwardhan, A.V.; Meikap, B.C.

    2009-03-15

    Ammonia has long been known to be useful in the treatment of flue/tail/stack gases from industrial furnaces, incinerators, and electric power generation industries. In this study, urea hydrolysis for production of ammonia, in different application areas that require safe use of ammonia at in situ condition, was investigated in a batch reactor. The equilibrium and kinetic study of urea hydrolysis was done in a batch reactor at reaction pressure to investigate the effect of reaction temperature, initial feed concentration, and time on ammonia production. This study reveals that conversion increases exponentially with an increase in temperature but with increases in initial feed concentration of urea the conversion decreases marginally. Further, the effect of time on conversion has also been studied; it was found that conversion increases with increase in time. Using collision theory, the temperature dependency of forward rate constant developed from which activation energy of the reaction and the frequency factor has been calculated. The activation energy and frequency factor of urea hydrolysis reaction at atmospheric pressure was found to be 73.6 kJ/mol and 2.89 x 10{sup 7} min{sup -1}, respectively.

  4. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    SciTech Connect

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C.

    2009-01-15

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  5. Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor.

    PubMed

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath; Kumar, Sunil

    2014-01-01

    Wastewater containing high concentration of oxygen-demanding carbonaceous organics and nitrogenous materials (chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN)) as nutrients emanated from small- to large-scale slaughterhouse units cause depletion of dissolved oxygen in water bodies and attributes to the threat of eutrophication. Biological treatment of wastewater is a useful tool through ages for the treatment of wastewater owing to its cost-effectiveness, reliability along with its innocuous output features. This paper deals with the treatment of slaughter house wastewater by conducting a laboratory scale batch reactor with different input characterized samples, and the experimental results were explored for the formulation of feed-forward back-propagation artificial neural network (ANN) to predict the combined removal of COD and TKN. The ANN modelling was carried out using neural network tool box of MATLAB (version 7.0), with the Levenberg-Marquardt training algorithm. Various trials were examined for the training of the ANN model using the number of neurons in the hidden layer varying from 2 to 30. The mean square error function and regression analysis were also applied for performance analysis of the ANN model. All the input data were logged-in after carrying out detailed experiment in the laboratory with a view to examine the performance of the batch reactor for the treatment of slaughterhouse wastewater. The experimental results were used for testing and validating the ANN model.

  6. Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor.

    PubMed

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath; Kumar, Sunil

    2014-01-01

    Wastewater containing high concentration of oxygen-demanding carbonaceous organics and nitrogenous materials (chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN)) as nutrients emanated from small- to large-scale slaughterhouse units cause depletion of dissolved oxygen in water bodies and attributes to the threat of eutrophication. Biological treatment of wastewater is a useful tool through ages for the treatment of wastewater owing to its cost-effectiveness, reliability along with its innocuous output features. This paper deals with the treatment of slaughter house wastewater by conducting a laboratory scale batch reactor with different input characterized samples, and the experimental results were explored for the formulation of feed-forward back-propagation artificial neural network (ANN) to predict the combined removal of COD and TKN. The ANN modelling was carried out using neural network tool box of MATLAB (version 7.0), with the Levenberg-Marquardt training algorithm. Various trials were examined for the training of the ANN model using the number of neurons in the hidden layer varying from 2 to 30. The mean square error function and regression analysis were also applied for performance analysis of the ANN model. All the input data were logged-in after carrying out detailed experiment in the laboratory with a view to examine the performance of the batch reactor for the treatment of slaughterhouse wastewater. The experimental results were used for testing and validating the ANN model. PMID:24701927

  7. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    pathway maps and batch gene identifier conversion. CONCLUSIONS: The Algal Functional Annotation Tool aims to provide an integrated data-mining environment for algal genomics by combining data from multiple annotation databases into a centralized tool. This site is designed to expedite the process of functional annotation and the interpretation of gene lists, such as those derived from high-throughput RNA-seq experiments. The tool is publicly available at http://pathways.mcdb.ucla.edu.

  8. Algal functional annotation tool

    2012-07-12

    KEGG pathway maps and batch gene identifier conversion. CONCLUSIONS: The Algal Functional Annotation Tool aims to provide an integrated data-mining environment for algal genomics by combining data from multiple annotation databases into a centralized tool. This site is designed to expedite the process of functional annotation and the interpretation of gene lists, such as those derived from high-throughput RNA-seq experiments. The tool is publicly available at http://pathways.mcdb.ucla.edu.« less

  9. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    PubMed

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. PMID:22771343

  10. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    PubMed

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  11. A new dual-collimation batch reactor for determination of ultraviolet inactivation rate constants for microorganisms in aqueous suspensions.

    PubMed

    Martin, Stephen B; Schauer, Elizabeth S; Blum, David H; Kremer, Paul A; Bahnfleth, William P; Freihaut, James D

    2016-09-01

    We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k=0.1471cm(2)/mJ (with 95% confidence bounds of 0.1426 to 0.1516).

  12. A new dual-collimation batch reactor for determination of ultraviolet inactivation rate constants for microorganisms in aqueous suspensions.

    PubMed

    Martin, Stephen B; Schauer, Elizabeth S; Blum, David H; Kremer, Paul A; Bahnfleth, William P; Freihaut, James D

    2016-09-01

    We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k=0.1471cm(2)/mJ (with 95% confidence bounds of 0.1426 to 0.1516). PMID:27498232

  13. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  14. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    PubMed

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings.

  15. Powdered activated carbon added biological treatment of pre-treated landfill leachate in a fed-batch reactor.

    PubMed

    Kargi, Fikret; Pamukoglu, M Yunus

    2003-05-01

    Biological treatment of landfill leachate usually results in low treatment efficiencies because of high chemical oxygen demand (COD), high ammonium-N content and also presence of toxic compounds such as heavy metals. A landfill leachate with high COD content was pre-treated by coagulation-flocculation followed by air stripping of ammonia at pH = 12. Pre-treated leachate was biologically treated in an aeration tank operated in fed-batch mode with and without addition of powdered activated carbon (PAC). PAC at 2 g l-1 improved COD and ammonium-N removals resulting in nearly 86% COD and 26% NH4-N removal.

  16. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  17. Treatment of oilfield wastewater containing polymer by the batch activated sludge reactor combined with a zerovalent iron/EDTA/air system.

    PubMed

    Lu, Mang; Wei, Xiaofang

    2011-02-01

    Laboratory-scale experiments were conducted in order to evaluate the performance of a novel treatment process for oilfield wastewater based on combining chemical oxidation, performed by a zerovalent iron (ZVI), ethylenediamine tetraacetic acid (EDTA) and air process, with biological degradation, carried out in a batch activated sludge reactor. The influence of some operating variables was studied. The results showed that the optimum pretreatment conditions were 150 mg/L EDTA, 20 g/L ZVI, and a 180-min reaction time, respectively. Under these conditions, removal efficiencies for hydrolyzed polyacrylamide (HPAM), total petroleum hydrocarbons (TPH), and chemical oxygen demand (COD) were 66%, 59%, and 45%, respectively. During the subsequent 40 h of bioremediation, the concentrations of HPAM, TPH, and COD were decreased to 10, 2 and 85 mg/L, respectively. At the end of experiments, the total removal efficiencies of HPAM, TPH, and COD were 96%, 97% and 92%, respectively.

  18. The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater.

    PubMed

    Shariati, Seyed Ramin Pajoum; Bonakdarpour, Babak; Zare, Nasim; Ashtiani, Farzin Zokaee

    2011-09-01

    The use of membrane sequencing batch reactors, operated at HRT of 8, 16 and 24h, was considered for the treatment of a synthetic petroleum wastewater. Increase in HRT resulted in statistically significant decrease in MLSS. Removal efficiencies higher than 97% were found for the three model hydrocarbon pollutants at all HRTs, with air stripping making a small contribution to overall removal. Particle size distribution (PSD) and microscopic analysis showed reduction in the protozoan populations in the activated sludge with decreasing HRT. PSD analysis also showed a higher proportion of larger and smaller sized particles at the lowest HRT. The rate of membrane fouling was found to increase with decreasing HRT; SMP, especially carbohydrate SMP, and mixed liquor apparent viscosity also showed a pronounced increase with decreasing HRT, whereas the concentration of EPS and its components decreased. FTIR analysis identified organic compounds as the main component of membrane pore fouling.

  19. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  20. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. PMID:23455219

  1. Exploring the controls of soil biogeochemistry in a restored coastal wetland using object-oriented computer simulations of uptake kinetics and thermodynamic optimization in batch reactors

    NASA Astrophysics Data System (ADS)

    Payn, R. A.; Helton, A. M.; Poole, G.; Izurieta, C.; Bernhardt, E. S.; Burgin, A. J.

    2012-12-01

    Many hypotheses have been proposed to predict patterns of biogeochemical redox reactions based on the availability of electron donors and acceptors and the thermodynamic theory of chemistry. Our objective was to develop a computer model that would allow us to test various alternatives of these hypotheses against data gathered from soil slurry batch reactors, experimental soil perfusion cores, and in situ soil profile observations from the restored Timberlake Wetland in coastal North Carolina, USA. Software requirements to meet this objective included the ability to rapidly develop and compare different hypothetical formulations of kinetic and thermodynamic theory, and the ability to easily change the list of potential biogeochemical reactions used in the optimization scheme. For future work, we also required an object pattern that could easily be coupled with an existing soil hydrologic model. These requirements were met using Network Exchange Objects (NEO), our recently developed object-oriented distributed modeling framework that facilitates simulations of multiple interacting currencies moving through network-based systems. An initial implementation of the object pattern was developed in NEO based on maximizing growth of the microbial community from available dissolved organic carbon. We then used this implementation to build a modeling system for comparing results across multiple simulated batch reactors with varied initial solute concentrations, varied biogeochemical parameters, or varied optimization schemes. Among heterotrophic aerobic and anaerobic reactions, we have found that this model reasonably predicts the use of terminal electron acceptors in simulated batch reactors, where reactions with higher energy yields occur before reactions with lower energy yields. However, among the aerobic reactions, we have also found this model predicts dominance of chemoautotrophs (e.g., nitrifiers) when their electron donor (e.g., ammonium) is abundant, despite the

  2. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  3. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation.

    PubMed

    Pagnanelli, Francesca; Cruz Viggi, Carolina; Toro, Luigi

    2010-05-01

    Biosorbing properties of sulphate reducing bacteria were tested to distinguish the amount of cadmium removed by bioprecipitation from that bound onto biomass surface (biosorption). Experimental results of cadmium abatement in batch growth tests (bioprecipitation tests) were then compared with metabolism-independent binding properties of SRB cell wall surface (biosorption tests performed with dead biomass). Experimental results showed that SRB inoculum removed 59 + or - 5% of sulphates in 21 days even in presence of cadmium (0-36 mmol L(-1)), while non-monotonous kinetic effects were observed for increasing Cd concentrations. Comparison between bioprecipitation and biosorption tests denoted a significant contribution of biosorption (77%) in total Cd removal (0.40 + or - 0.01 mmol g(-1)). Characterisation of bacterial acid-base surface properties by potentiometric titrations and mechanistic modelling denoted that carboxylic, phosphate and amino groups of cell wall are the main responsible of metal removal by biosorption mechanism.

  4. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality. PMID:26901715

  5. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.

    PubMed

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-08-01

    Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.

  6. Start-up of simultaneous partial nitrification, anammox and denitrification (SNAD) process in sequencing batch biofilm reactor using novel biomass carriers.

    PubMed

    Daverey, Achlesh; Chen, Yi-Chian; Dutta, Kasturi; Huang, Yu-Tzu; Lin, Jih-Gaw

    2015-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was started-up in a 2.5L sequencing batch biofilm reactor (SBBR) using novel biomass carriers. The SNAD process took only 51d for start-up at nitrogen loading rate (NLR) and organic loading rate (OLR) of 120 and 60g/m(3)-d, respectively. Long-term stable operation of SNAD process was observed at NLR and OLR of 360 and 180g/m(3)-d with average total nitrogen and COD removal efficiencies of >88% and >90%, respectively. The values of conversion ratio [Formula: see text] remained below 0.11 after the start-up period, which further confirmed the long-term stability of SNAD process. Results of polymerase chain reaction (PCR), qualitative PCR, and scanning electron microscopic (SEM) analysis of sludge samples confirmed the co-existence and enrichment of AOB, anammox bacteria and denitrifying bacteria in the reactor and biofilm formation on to the carriers.

  7. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.

  8. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater.

    PubMed

    Ni, Bing-Jie; Xie, Wen-Ming; Liu, Shao-Gen; Yu, Han-Qing; Wang, Ying-Zhe; Wang, Gan; Dai, Xian-Liang

    2009-02-01

    Aerobic granulation of activated sludge was achieved in a pilot-scale sequencing batch reactor (SBR) for the treatment of low-strength municipal wastewater (<200 mg L(-1) of COD, chemical oxygen demand). The volume exchange ratio and settling time of an SBR were found to be two key factors in the granulation of activated sludge grown on the low-strength municipal wastewater. After operation of 300 days, the mixed liquor suspended solids (MLSS) concentration in the SBR reached 9.5 g L(-1) and consisted of approximate 85% granular sludge. The average total COD removal efficiency kept at 90% and NH4+-N was almost completely depleted (approximately 95%) after the formation of aerobic granules. The granules (with a diameter over 0.212 mm) had a diameter ranging from 0.2 to 0.8 mm and had good settling ability with a settling velocity of 18-40 m h(-1). Three bacterial morphologies of rod, coccus and filament coexisted in the granules. Mathematical modeling was performed to get insight into this pilot-scale granule-based reactor. The modified IWA activated sludge model No 3 (ASM3) was able to adequately describe the pilot-scale SBR dynamics during its cyclic operation.

  9. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor.

    PubMed

    Roy, Dhiriti; Hassan, Komi; Boopathy, Raj

    2010-10-01

    The United States Marine Shrimp Farming Program (USMSFP) introduced a new technology for shrimp farming called recirculating raceway system. This is a zero-water exchange system capable of producing high-density shrimp yields. However, this system produces wastewater characterized by high levels of ammonia, nitrite, and nitrate due to 40% protein diet for the shrimp at a high density of 1,000 shrimp per square meter. The high concentrations of nitrate and nitrite (greater than 25 ppm) are toxic to shrimp and cause high mortality. So treatment of this wastewater is imperative in order to make shrimp farming viable. One simple method of treating high-nitrogen wastewater is the use of a sequencing batch reactor (SBR). An SBR is a variation of the activated sludge process, which accomplishes many treatment events in a single reactor. Removal of ammonia and nitrate involved nitrification and denitrification reactions by operating the SBR aerobically and anaerobically in sequence. Initial SBR operation successfully removed ammonia, but nitrate concentrations were too high because of carbon limitation in the shrimp production wastewater. An optimization study revealed the optimum carbon to nitrogen (C:N) ratio of 10:1 for successful removal of all nitrogen species from the wastewater. The SBR operated with a C:N ratio of 10:1 with the addition of molasses as carbon source successfully removed 99% of ammonia, nitrate, and nitrite from the shrimp aquaculture wastewater within 9 days of operation.

  10. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system.

    PubMed

    Jang, J D; Barford, J P; Lindawati; Renneberg, R

    2004-03-15

    A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.

  11. Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment.

    PubMed

    Miqueleto, A P; Dolosic, C C; Pozzi, E; Foresti, E; Zaiat, M

    2010-02-01

    The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil, fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. PMID:19783138

  12. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study.

    PubMed

    Azizi, A; Alavi Moghaddam, M R; Maknoon, R; Kowsari, E

    2015-12-15

    The purpose of this research was to compare three combined sequencing batch reactor (SBR) - Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD=3270 mg/L) at the end of alternating anaerobic-aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV-vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  13. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace.

    PubMed

    Valdez-Vazquez, Idania; Ríos-Leal, Elvira; Carmona-Martínez, Alessandro; Muñoz-Páez, Karla M; Poggi-Varaldo, Héctor M

    2006-05-15

    Headspace of batch minireactors was intermittently vented and gas flushed with N2 in order to enhance H2 production (PH) by anaerobic consortia degrading organic solid wastes. Type of inocula (meso and thermophilic), induction treatment (heat-shock pretreatment, HSP, and acetylene, Ac), and incubation temperature (37 and 55 degrees C) were studied by means of a factorial design. On average, it was found that mesophilic incubation had the most significant positive effect on PH followed by treatment with Ac, although the units with the best performance (high values of PH, initial hydrogen production rate, and short lag time) were those HSP-induced units incubated at 37 degrees C (type of inocula was not significant). In this way, after 720 h of incubation PH was inhibited in those units by H2 partial pressure (pH2) of 0.54 atm. Venting and gas flushing with N2 was efficient to eliminate that inhibition achieving additional hydrogen generation in subsequent incubation cycles although smaller than the first one. Thus, four cycles of PH were obtained from the same substrate with neither addition of inocula nor application of induction treatment obtaining an increment of 100% in the generated H2. In those subsequent cycles there was a positive correlation between PH and organic acids/solvent ratio; maximum values were found in the first cycle. Solventogenesis could be clearly distinguished in third and fourth production cycles, probably due to a metabolic shift originated by high organic acid concentrations.

  14. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    PubMed

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature.

  15. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    PubMed

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature. PMID:25976021

  16. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    PubMed

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively. PMID:26827363

  17. Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol.

    PubMed

    Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R

    2016-01-01

    Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste

  18. Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol.

    PubMed

    Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R

    2016-01-01

    Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste

  19. Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin-film transistor liquid crystal display wastewater.

    PubMed

    Wu, Y J; Whang, L M; Huang, S J; Yang, Y F; Lei, C N; Cheng, S S

    2008-01-01

    In Taiwan, a substantial amount of thin-film transistor liquid crystal display (TFT-LCD) wastewater is produced daily due to an increasing production of the opto-electronic industry in recent years. The main components of TFT-LCD wastewater include dimethyl sulphoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH), which are recognized as non-or slow-biodegradable organic compounds and limited information is available regarding their biological treatablility. This study was conducted to evaluate the long-term performance of two bioreactors, anaerobic-aerobic (A/O) sequencing batch reactor (SBR) and aerobic membrane bioreactor (MBR), treating synthetic TFT-LCD wastewater containing DMSO, MEA, and TMAH with different loadings. For the A/O SBR, the influent wastewater was composed of 800 mg MEA/L, 430 mg DMSO/L, and 90 mg TMAH/L, respectively. After reaching steady-state, SBR was able to achieve more than 99% degradation efficiencies for the three compounds examined. For the case of aerobic MBR, the influent wastewater was composed of 550 mg MEA/L, 270 mg DMSO/L, and 330 mg TMAH/L, respectively, and degradation efficiencies for the three compounds achieved more than 99%. Although both different reactors shared similar and satisfactory degradation efficiencies for DMSO, MEA, and TMAH, the microbial ecology of these two reactors, as elucidated with molecular methods, was apparently different. The 16S rDNA-based cloning/sequencing results indicated that the dominant sequences retrieved from the aerobic MBR, including Hyphomicrobium denitrificans, Hyphomicrobium zavarzinii, Rhodobacter sp., and Methyloversatilis universalis, showed a clear linkage to their physiological properties of DMSO and TMAH degradation. On the other hand, Zoogloea sp., Chlorobium chlorochromatii, Agricultural soil bacterium, and Flavosolibacter ginsengiterrae were proliferated in the A/O SBR Run1, while Thiobacillus sp., Nitrosomonas sp., Thauera aromatica and Azoarcus

  20. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  1. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    PubMed

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.

  2. A pilot scale study of a sequencing batch reactor treating municipal wastewater operated via the UP-PND process.

    PubMed

    Kornaros, M; Marazioti, C; Lyberatos, G

    2008-01-01

    SBRs are usually preferred as small and decentralized wastewater treatment systems. We have demonstrated previously that using a frequent enough switching between aerobic and anoxic conditions and a specific to the treated wastewater aerobic to anoxic phase ratio, it is possible to by-pass the second step of nitrification (i.e. conversion of nitrite to nitrate nitrogen). This innovative process for nitrate by-pass has been branded as UP-PND (University of Patras-Partial Nitrification Denitrification) (WO 2006/129132). The proved methodology was successfully transferred from a lab-scale SBR reactor treating synthetic wastewater to a pilot-scale SBR system treating real wastewater. In this work we present the results from the operation of this pilot-scale SBR, constructed in the Wastewater Treatment Plant of Patras (Greece), using 6-hour, 8-hour and 12-hour cycles. It is demonstrated that three pairs of aerobic/anoxic phases with a relative duration of 1:2 (8-hour cycle) and 2:3 (12-hour cycle) secures the desired by-pass of nitrate production. PMID:18701797

  3. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions.

    PubMed

    Kruglova, Antonina; Kråkström, Matilda; Riska, Mats; Mikola, Anna; Rantanen, Pirjo; Vahala, Riku; Kronberg, Leif

    2016-08-01

    Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants. PMID:27128192

  4. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.

    PubMed

    Moralejo-Gárate, Helena; Palmeiro-Sánchez, Tania; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; van Loosdrecht, Mark C M

    2013-12-01

    PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained.

  5. Performance evaluation, microbial enzymatic activity and microbial community of a sequencing batch reactor under long-term exposure to cerium dioxide nanoparticles.

    PubMed

    Wang, Sen; Gao, Mengchun; Li, Zhiwei; She, Zonglian; Wu, Juan; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Gao, Feng; Wang, Xuejiao

    2016-11-01

    The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) were investigated under long-term exposure to cerium dioxide nanoparticles (CeO2 NPs). The COD removal kept a stable value at 0-5mg/L CeO2 NPs and then decreased at 10-60mg/L CeO2 NPs. The NH4(+)-N removal had no obvious changes at 0-30mg/L CeO2 NPs, and a minor decrease appeared at 60mg/L CeO2 NPs. Compared to 0mg/L CeO2 NPs, the phosphorus removal showed a decrease at 2mg/L CeO2 NPs and slightly increased at 5-60mg/L CeO2 NPs. The nitrogen and phosphorus removal rates had similar variation trends to the microbial enzymatic activities. The variations of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) indicated that high CeO2 NPs concentration could result in the biotoxicity to activated sludge. The presence of CeO2 NPs had obvious effect on the microbial richness and diversity of activated sludge. PMID:27584902

  6. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light.

    PubMed

    Navntoft, C; Ubomba-Jaswa, E; McGuigan, K G; Fernández-Ibáñez, P

    2008-12-11

    Inactivation kinetics are reported for suspensions of Escherichia coli in well-water using compound parabolic collector (CPC) mirrors to enhance the efficiency of solar disinfection (SODIS) for batch reactors under real, solar radiation (cloudy and cloudless) conditions. On clear days, the system with CPC reflectors achieved complete inactivation (more than 5-log unit reduction in bacterial population to below the detection limit of 4CFU/mL) one hour sooner than the system fitted with no CPC. On cloudy days, only systems fitted with CPCs achieved complete inactivation. Degradation of the mirrors under field conditions was also evaluated. The reflectivity of CPC systems that had been in use outdoors for at least 3 years deteriorated in a non-homogeneous fashion. Reflectivity values for these older systems were found to vary between 27% and 72% compared to uniform values of 87% for new CPC systems. The use of CPC has been proven to be a good technological enhancement to inactivate bacteria under real conditions in clear and cloudy days. A comparison between enhancing optics and thermal effect is also discussed. PMID:18835188

  7. Sequencing batch reactor technology: the key to a BP refinery (Bulwer Island) upgraded environmental protection system--a low cost lagoon based retro-fit.

    PubMed

    Hudson, N; Doyle, J; Lant, P; Roach, N; de Bruyn, B; Staib, C

    2001-01-01

    BP Refinery (Bulwer Island) Ltd (BP) located on the eastern Australian coast is currently undergoing a major expansion as a part of the Queensland Clean Fuels Project. The associated wastewater treatment plant upgrade will provide a better quality of treated effluent than is currently possible with the existing infrastructure, and which will be of a sufficiently high standard to meet not only the requirements of imposed environmental legislation but also BP's environmental objectives. A number of challenges were faced when considering the upgrade, particularly; cost constraints and limited plot space, highly variable wastewater, toxicity issues, and limited hydraulic head. Sequencing Batch Reactor (SBR) Technology was chosen for the lagoon upgrade based on the following; SBR technology allowed a retro-fit of the existing earthen lagoon without the need for any additional substantial concrete structures, a dual lagoon system allowed partial treatment of wastewaters during construction, SBRs give substantial process flexibility, SBRs have the ability to easily modify process parameters without any physical modifications, and significant cost benefits. This paper presents the background to this application, an outline of laboratory studies carried out on the wastewater and details the full scale design issues and methods for providing a cost effective, efficient treatment system using the existing lagoon system.

  8. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions.

    PubMed

    Kruglova, Antonina; Kråkström, Matilda; Riska, Mats; Mikola, Anna; Rantanen, Pirjo; Vahala, Riku; Kronberg, Leif

    2016-08-01

    Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants.

  9. Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity.

    PubMed

    Hou, Jun; You, Guoxiang; Xu, Yi; Wang, Chao; Wang, Peifang; Miao, Lingzhan; Ao, Yanhui; Li, Yi; Lv, Bowen

    2015-09-01

    The effects of CeO2 nanoparticles (CeO2 NPs) exposure on biological nitrogen removal in a sequencing batch biofilm reactor (SBBR) were investigated. At low concentration (1 mg/L), no significant effect was observed on total nitrogen (TN) removal. However, at high concentrations (10 and 50 mg/L), the TN removal efficiency reduced from 74.09% to 64.26% and 55.17%, respectively. Scanning electron microscope imaging showed large amounts of CeO2 NPs adsorbed on the biofilm, which increased the production of reactive oxygen species. The exposure at only 50 mg/L CeO2 NPs measurably affected the lactate dehydrogenase release. Confocal laser scanning microscopy showed that high concentrations of CeO2 NPs reduced bacterial viability. Moreover, after a short-term exposure, extracellular polymeric substances (EPS) were observed to increase, forming a compact matrix to protect the bacteria. The activities of nitrate reductase and ammonia monooxygenase were inhibited, but there was no significant impact on the activity of nitrite oxidoreductase.

  10. Reduction of oxidative stress by bioaugmented strain Pseudomonas sp. HF-1 and selection of potential biomarkers in sequencing batch reactor treating tobacco wastewater.

    PubMed

    Shao, Tiejuan; Yang, Guiqin; Wang, Meizhen; Lu, Zhenmei; Min, Hang; Zhao, Long

    2010-08-01

    Oxidative stress induced by toxic pollutants is generally responsible for the poor performance of many sequencing batch reactors (SBRs) treating organic wastewater. In this study, the oxidative stress in two SBR systems that dealt with tobacco wastewater was monitored by measuring four popular biomarkers (superoxide dismutase, SOD; catalase, CAT; glutathione, GSH; and malondialdehyde, MDA). In the non-BA (non-bio-augmented) system, more intense oxidative stress was induced by a higher concentration of nicotine in tobacco wastewater, and excessive oxidative stress was induced by 250 mg/l of nicotine at the final stage. However, when a nicotine-degrading bacterial strain Pseudomonas sp. HF-1 was added to the BA (bio-augmented) system, the oxidative stress was significantly reduced compared to the non-BA system (p < 0.01).These results suggested that the oxidative stress was mainly induced by nicotine in the SBR treatment of tobacco wastewater, and that bioaugmentation with strain HF-1 would be a potential strategy to reduce the oxidative stress and thereby improve the performance in SBRs. Additionally, the positive correlation between the nicotine content and CAT, GSH and MDA activity in both systems implied that these parameters can be used as biomarkers for reflecting the performance of SBR treatment of tobacco wastewater, and in monitoring nicotine environmental pollution. PMID:20396945

  11. Considerations about the enantioselective transformation of polycyclic musks in wastewater, treated wastewater and sewage sludge and analysis of their fate in a sequencing batch reactor plant.

    PubMed

    Berset, J D; Kupper, T; Etter, R; Tarradellas, J

    2004-11-01

    The present work consists of two distinct parts: in the first part enantioselective GC was used to separate the different enantiomeric/diastereomeric polycyclic musks, PCMs (HHCB, AHTN, AHDI, ATII and DPMI) including the main transformation product of HHCB, HHCB-lactone, in wastewater and sewage sludge. After optimization all PCMs were resolved on a cyclodextrin containing Rt-BDEXcst capillary GC column. Enantiomeric ratios of PCMs in a technical mixture were determined and compared to those obtained from enantioselective separation of wastewater and sewage sludge samples. In general, enantiomeric ratios were similar for most materials in influent, effluent and stabilized sewage sludge. However, the ratios for HHCB, AHDI and particularly ATII suggest some stereospecific removal of these compounds. In the second part, a field study was conducted on a wastewater treatment plant comprising a sequencing batch reactor. Concentrations of HHCB, AHTN, ADBI, AHDI, ATII, DPMI and HHCB-lactone were determined by non-enantioselective GC in daily samples of influent, effluent and activated sludge during one week. Mean concentrations in influent were 6900 and 1520 ng/l for HHCB and AHTN, respectively. The other PCMs exhibited contents 200 ng/l. Mean percent removal was between 61% (AHDI) and 87% (HHCB) resulting in mean effluent concentrations below 860 ng/l. HHCB-lactone concentration increased during wastewater treatment with a mean in the influent of 430 ng/l and in the effluent of 900 ng/l, respectively, indicating a degradation of HHCB.

  12. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    PubMed

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.

  13. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example.

    PubMed

    Liu, Xian-Wei; Wang, Yong-Peng; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Zeng, Raymond J; Li, Feng; Dong, Fang; Wang, Shu-Guang; Tong, Zhong-Hua; Yu, Han-Qing

    2011-06-01

    In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen demand (COD) removal. The membrane-less biocathode MFC is integrated with the SBR to recover energy from the aeration in the form of electricity and thus reduce the SBR operation costs. In a lab-scale integrated SBR-MFC system, the maximum power production of the MFC was 2.34 W/m(3) for one typical cycle and the current density reached up to 14 A/m(3) . As a result, the MFC contributed to the 18.7% COD consumption of the integrated system and also recovered energy from the aeration tank with a volume fraction of only 12% of the SBR. Our strategy provides a feasible and effective energy-saving and -recovering solution to upgrade the existing activated sludge processes.

  14. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light.

    PubMed

    Navntoft, C; Ubomba-Jaswa, E; McGuigan, K G; Fernández-Ibáñez, P

    2008-12-11

    Inactivation kinetics are reported for suspensions of Escherichia coli in well-water using compound parabolic collector (CPC) mirrors to enhance the efficiency of solar disinfection (SODIS) for batch reactors under real, solar radiation (cloudy and cloudless) conditions. On clear days, the system with CPC reflectors achieved complete inactivation (more than 5-log unit reduction in bacterial population to below the detection limit of 4CFU/mL) one hour sooner than the system fitted with no CPC. On cloudy days, only systems fitted with CPCs achieved complete inactivation. Degradation of the mirrors under field conditions was also evaluated. The reflectivity of CPC systems that had been in use outdoors for at least 3 years deteriorated in a non-homogeneous fashion. Reflectivity values for these older systems were found to vary between 27% and 72% compared to uniform values of 87% for new CPC systems. The use of CPC has been proven to be a good technological enhancement to inactivate bacteria under real conditions in clear and cloudy days. A comparison between enhancing optics and thermal effect is also discussed.

  15. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.

    PubMed

    Moralejo-Gárate, Helena; Palmeiro-Sánchez, Tania; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; van Loosdrecht, Mark C M

    2013-12-01

    PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained. PMID:23835920

  16. Nitrogen removal from medium-age landfill leachate via post-denitrification driven by PHAs and glycogen in a single sequencing batch reactor.

    PubMed

    Li, Zhongming; Wang, Shuying; Zhang, Weitang; Miao, Lei; Cao, Tianhao; Peng, Yongzhen

    2014-10-01

    An anaerobic/aerobic/anoxic (AOA) process in a sequencing batch reactor (SBR) was proposed to treat typical medium-age landfill leachate without extra carbon addition. In a steady-state, the average removal efficiencies of NH4(+)-N, total nitrogen (TN) and COD were 99.7 ± 0.1%, 98.3 ± 0.3% and 89.8 ± 1.4%, when influent NH4(+)-N, TN and COD were 1025-1327 mg/L, 1346-1854 mg/L and 6430-9372 mg/L, respectively. In the anaerobic stage, dissolved organic matter was taken up partially and stored as polyhydroxyalkanoates (PHAs) with concomitant consumption of glycogen. In the aerobic stage, PHAs was oxidized and glycogen was replenished in the bacterial cells, when TN of 75.4 mg/L was removed via simultaneous nitrification and denitrification (SND). The residual nitrate and nitrite were denitrified completely by utilizing residual PHAs and glycogen as electron donors in the anoxic phase. Denitrifying glycogen accumulating organisms (GAOs) were considered to be playing the major role in the process.

  17. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days). PMID:26289773

  18. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    PubMed

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  19. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Gao, Mengchun; She, Zonglian; Zheng, Dong; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Li, Zhiwei; Wang, Xuejiao

    2016-09-01

    The performance, microbial activity, and microbial community of a sequencing batch reactor (SBR) were investigated under the long-term exposure of ZnO nanoparticles (ZnO NPs). Low ZnO NPs concentration (less than 5mg/L) had no obvious effect on the SBR performance, whereas the removals of COD, NH4(+)-N, and phosphorus were affected at 10-60mg/L ZnO NPs. The variation trend of nitrogen and phosphorus removal rate was similar to that of microbial enzymatic activity with the increase of ZnO NPs concentrations. The richness and diversity of microbial community showed obvious variations at different ZnO NPs concentrations. ZnO NPs appeared on the surface and cell interior of activated sludge, and the Zn contents in the effluent and activated sludge increased with the increase of ZnO NPS concentration. The present results provide use information to understand the effect of ZnO NPS on the performance of wastewater biological treatment systems. PMID:27262098

  20. Effect of a hydrolytic/acidogenic pre-stage on the organic matter content of wastewater treated in a sequencing batch reactor for biological phosphorous removal.

    PubMed

    Colmenarejo, M F; Bustos, A; Garcia, G; Borja, R

    2001-01-01

    An increase of 52.7% in acetate concentration was observed when urban wastewater was used to feed a pilot-scale upflow-type, fixed-bed fermentor under a hydraulic retention time of 0.78 h. The fermentor influent and effluent were successively used to feed a laboratory-scale sequencing batch reactor (SBR) using similar operational variables of wastewater volume, sludge purging volume and retention times during the anaerobic and aerobic phase, giving a nominal 4 h hydraulic retention time. The fermentor effluent contained an organic substrate, with a volatile fatty acid content higher than 50mg L(-1), which was appropriate for the growth of the type of microorganisms characteristically found in biological phosphorous removal (BPR) systems, and showed the behaviour of an easily and rapidly biodegradable wastewater. The specific rate of phosphorous release at the anaerobic stage was found to be higher than 0.04mg Pr g VSS(-1) min(-1), when the fermentor effluent is used as feed of the SBR, which demonstrated its favourable conditions for an efficient processing in this type of systems.

  1. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  2. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  3. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.

    PubMed

    Franca, Rita D G; Vieira, Anabela; Mata, Ana M T; Carvalho, Gilda S; Pinheiro, Helena M; Lourenço, Nídia D

    2015-11-15

    This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule

  4. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  5. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    PubMed

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  6. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor.

    PubMed

    Fudala-Ksiazek, S; Luczkiewicz, A; Fitobor, K; Olanczuk-Neyman, K

    2014-06-01

    The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10% by volume). The results indicate that landfill leachate addition of up to 10% (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r(2) = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm(3) and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm(3) in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.

  7. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta

    2007-10-01

    Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.

  8. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    PubMed

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite.

  9. Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4.

    PubMed

    Tsutsui, Hirofumi; Anami, Yasutaka; Matsuda, Masami; Hashimoto, Kurumi; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko

    2013-06-01

    Plasmid-mediated bioaugmentation was demonstrated using sequencing batch reactors (SBRs) for enhancing 2,4-dichlorophenoxyacetic acid (2,4-D) removal by introducing Cupriavidus necator JMP134 and Escherichia coli HB101 harboring 2,4-D-degrading plasmid pJP4. C. necator JMP134(pJP4) can mineralize and grow on 2,4-D, while E. coli HB101(pJP4) cannot assimilate 2,4-D because it lacks the chromosomal genes to degrade the intermediates. The SBR with C. necator JMP134(pJP4) showed 100 % removal against 200 mg/l of 2,4-D just after its introduction, after which 2,4-D removal dropped to 0 % on day 7 with the decline in viability of the introduced strain. The SBR with E. coli HB101(pJP4) showed low 2,4-D removal, i.e., below 10 %, until day 7. Transconjugant strains of Pseudomonas and Achromobacter isolated on day 7 could not grow on 2,4-D. Both SBRs started removing 2,4-D at 100 % after day 16 with the appearance of 2,4-D-degrading transconjugants belonging to Achromobacter, Burkholderia, Cupriavidus, and Pandoraea. After the influent 2,4-D concentration was increased to 500 mg/l on day 65, the SBR with E. coli HB101(pJP4) maintained stable 2,4-D removal of more than 95 %. Although the SBR with C. necator JMP134(pJP4) showed a temporal depression of 2,4-D removal of 65 % on day 76, almost 100 % removal was achieved thereafter. During this period, transconjugants isolated from both SBRs were mainly Achromobacter with high 2,4-D-degrading capability. In conclusion, plasmid-mediated bioaugmentation can enhance the degradation capability of activated sludge regardless of the survival of introduced strains and their 2,4-D degradation capacity.

  10. Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure.

    PubMed

    Zhang, Mingchuan; Lawlor, Peadar G; Wu, Guangxue; Lynch, Brendan; Zhan, Xinmin

    2011-11-01

    The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD(5)) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD(5):COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD(5) of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m(3) d) and a nitrogen loading rate of 0.38 kg N/(m(3) d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71-79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.

  11. Treatment of wastewater by batches saves money

    SciTech Connect

    Not Available

    1985-01-21

    This paper examines the Sequencing Batch Reactor which treats up to 6 million gal/d of wastewater in the batch mode rather than in the continuous stirred-tank reactor typical of biologically-based systems. It offers several advantages, chief of which is greater control over the biological reaction. The fully automatic system can quickly adapt to changing flow conditions, thereby contributing to the lower operating cost.

  12. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  13. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part I. Optimal condition for lactic acid fermentation using a microaerobic sequencing batch reactor (microaerobic SBR) with immobilized Lactobacillus plantarum TISTR 2265 and microbial communities.

    PubMed

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-05-18

    Cheese whey contains a high organic content and causes serious problems if it is released into the environment when untreated. This study aimed to investigate the optimum condition of lactic acid production using the microaerobic sequencing batch reactor (microaerobic SBR) in a nonsterile system. The high production of lactic acid was achieved by immobilized Lactobacillus plantarum TISTR 2265 to generate an acidic pH condition below 4.5 and then to support single-cell protein (SCP) production in the second aerobic sequencing batch reactor (aerobic SBR). A hydraulic retention time (HRT) of 4 days and a whey concentration of 80% feeding gave a high lactic acid yield of 12.58 g/L, chemical oxygen demand (COD) removal of 62.38%, and lactose utilization of 61.54%. The microbial communities in the nonsterile system were dominated by members of lactic acid bacteria, and it was shown that the inoculum remained in the system up to 330 days. PMID:26178366

  14. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  15. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  16. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  17. Full-scale validation of a model of algal productivity.

    PubMed

    Béchet, Quentin; Shilton, Andy; Guieysse, Benoit

    2014-12-01

    While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.

  18. Treatment of Common Effluent Treatment Plant Wastewater in a Sequential Anoxic-Oxic Batch Reactor by Developed Bacterial Consortium VN11.

    PubMed

    Chattaraj, Sananda; Purohit, Hemant J; Sharma, Abhinav; Jadeja, Niti B; Madamwar, Datta

    2016-06-01

    A laboratory-scale anoxic-oxic sequential reactor system was seeded with acclimatized mixed microbial consortium for the treatment of common effluent treatment plant (CETP) wastewater having 7000-7400 mg L(-1) of COD and 3000-3400 mg L(-1) of BOD. Initially, CETP wastewater was treated under anoxic reactor at 5000 mg L(-1) of MLSS concentrations, 5.26 ± 0.27 kg COD m(-3) day(-1) of organic loading rate (OLR) and 36 h of hydraulic retention time (HRT). Further, the effluent of anoxic reactor was treated in oxic reactor with an OLR of 6.6 ± 0.31 kg COD m(-3) day(-1) and 18 h HRT. Maximum color and COD removal were found to be 72 and 85 % at total HRT of 2.25 days under anoxic-oxic sequential reactor at 37 °C and pH 7.0. The UV-VIS, FTIR, NMR and GCMS studies showed that majority of peaks observed in untreated wastewater were either shifted or disappeared after sequential treatment. Phytotoxicity study with the seeds of Vigna radiata and Triticum aestivum showed more sensitivity toward the CETP wastewater, while the products obtained after sequential treatment does not have any inhibitory effects. The results demonstrated that the anoxic-oxic reactor fed with bacterial consortium VN11 could bring about efficient bioremediation of industrial wastewaters.

  19. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  20. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  1. The competition between flocculent sludge and aerobic granules during the long-term operation period of granular sludge sequencing batch reactor.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2012-12-01

    The long-term operational stability of aerobic granular sludge reactor was investigated in this study. It was found that the fraction of flocculent sludge fluctuated from 5 to 35%, even with a settling time of less than 5 minutes and manual discharge of flocculent sludge during a steady state of more than 400 days. Although the microbial community structure of flocculent sludge was similar to that of granular sludge co-existing in the reactor, the specific growth rate, the observed biomass yield and the specific oxygen consumption rate of flocculent sludge were much higher than those of granular sludge with identical microbial community structures. Therefore, the presence offlocculent sludge in the granular sludge reactor is mainly because of the kinetic superiority of flocculent sludge over granular sludge, rather than microbial competition. Increasing mass transfer in the feast period or discharging excess flocculent sludge could enhance the growth of granular sludge and improve the stability of the long-term operation of the granular sludge reactor.

  2. Short-term algal toxicity test based on phosphate uptake.

    PubMed

    Kaneko, H Hidehiro; Shimada, Akiko; Hirayama, Kimiaki

    2004-04-01

    In order to develop a short-term algal toxicity test, the growth of and the phosphate uptake by the green alga Selenastrum capricornutum during batch culture were observed. In the control medium, S. capricornutum took up phosphate earlier than it grew. It was also observed that the phosphate uptake was inhibited by the presence of a toxicant. From these results, phosphate uptake was considered as one of the useful effect parameters for a short-term algal toxicity test. As the removal rate of phosphate from the medium is a function of the amount of algal cell initially inoculated, the test period is variable. The relationship between the amount of inoculation and phosphate uptake was examined and the test conditions suitable for a 3-h toxicity test were established as one example. According to this test procedure, the inhibitory effect of some toxicants on the phosphate uptake was determined. For comparison, a conventional algal assay based on algal growth was also performed. The EC50s for both tests were close. This indicated that the algal toxicity test method proposed in this paper would be useful for the uses where rapidity is required. PMID:15087199

  3. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. PMID:26773951

  4. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.

  5. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season.

  6. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  7. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  8. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  9. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  10. Hydrogenotrophic denitrification process efficiency and the number of denitrifying bacteria (MPN) in the sequencing batch biofilm reactor (SBBR) with platinum and carbon anodes.

    PubMed

    Kłodowska, Izabella; Rodziewicz, Joanna; Janczukowicz, Wojciech; Gotkowska-Płachta, Anna; Cydzik-Kwiatkowska, Agnieszka

    2016-01-01

    This work reports on the effect of electric current density and anode material (platinum, carbon) on the concentration of oxidized and mineral forms of nitrogen, on physical parameters (pH, redox potential, electrical conductivity) and the number of denitrifying bacteria in the biofilm (MPN). Experiments were conducted under anaerobic conditions without and with the flow of electric current (with density of 79 mA · m(-2) and 132 mA · m(-2)). Results obtained in the study enabled concluding that increasing density of electric current caused a decreasing concentration of nitrate in the reactor with platinum anode (R1) and carbon anode (R2). Its concentration depended on anode material. The highest hydrogenotrophic denitrification efficiency was achieved in R2 in which the process was aided by inorganic carbon (CO2) that originated from carbon anode oxidation and the electrical conductivity of wastewater increased as a result of the presence of HCO3(-) and CO3(2-) ions. Strong oxidizing properties of the platinum anode (R1) prevented the accumulation of adverse forms of nitrogen, including nitrite and ammonia. The increase in electric current density affected also a lower number of denitrifying bacteria (MPN) in the biofilm in both reactors (R1 and R2). Metal oxides accumulated on the surface of the cathode had a toxic effect upon microorganisms and impaired the production of a hydrogen donor.

  11. Hydrogenotrophic denitrification process efficiency and the number of denitrifying bacteria (MPN) in the sequencing batch biofilm reactor (SBBR) with platinum and carbon anodes.

    PubMed

    Kłodowska, Izabella; Rodziewicz, Joanna; Janczukowicz, Wojciech; Gotkowska-Płachta, Anna; Cydzik-Kwiatkowska, Agnieszka

    2016-01-01

    This work reports on the effect of electric current density and anode material (platinum, carbon) on the concentration of oxidized and mineral forms of nitrogen, on physical parameters (pH, redox potential, electrical conductivity) and the number of denitrifying bacteria in the biofilm (MPN). Experiments were conducted under anaerobic conditions without and with the flow of electric current (with density of 79 mA · m(-2) and 132 mA · m(-2)). Results obtained in the study enabled concluding that increasing density of electric current caused a decreasing concentration of nitrate in the reactor with platinum anode (R1) and carbon anode (R2). Its concentration depended on anode material. The highest hydrogenotrophic denitrification efficiency was achieved in R2 in which the process was aided by inorganic carbon (CO2) that originated from carbon anode oxidation and the electrical conductivity of wastewater increased as a result of the presence of HCO3(-) and CO3(2-) ions. Strong oxidizing properties of the platinum anode (R1) prevented the accumulation of adverse forms of nitrogen, including nitrite and ammonia. The increase in electric current density affected also a lower number of denitrifying bacteria (MPN) in the biofilm in both reactors (R1 and R2). Metal oxides accumulated on the surface of the cathode had a toxic effect upon microorganisms and impaired the production of a hydrogen donor. PMID:26809836

  12. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.

    PubMed

    Santiago, Aníbal Fonseca; Calijuri, Maria Lucia; Assemany, Paula Peixoto; Calijuri, Maria do Carmo; dos Reis, Alberto José Delgado

    2013-01-01

    Algal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor- HRAP -and the second received UASB effluent pre-disinfected by UV radiation-(UV)HRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The (UV)HRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the (UV)HRAP were 0.95 +/- 0.65% and 1.58 +/- 0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSSm(-2) day(-1)) compared with the (UV)HRAP (9.3 gVSSm(-2) day(-1)). Mean pH values were 7.7 +/- 0.7 in the HRAP and 8.1 +/- 1.0 in the (UV)HRAP, and mean values of DO percent saturation were 87 +/- 26% and 112 +/- 31% for the HRAP and the (UV)HRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.

  13. Algal sensory photoreceptors.

    PubMed

    Hegemann, Peter

    2008-01-01

    Only five major types of sensory photoreceptors (BLUF-proteins, cryptochromes, phototropins, phytochromes, and rhodopsins) are used in nature to regulate developmental processes, photosynthesis, photoorientation, and control of the circadian clock. Sensory photoreceptors of algae and protists are exceptionally rich in structure and function; light-gated ion channels and photoactivated adenylate cyclases are unique examples. During the past ten years major progress has been made with respect to understanding the function, photochemistry, and structure of key sensory players of the algal kingdom.

  14. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  15. Batch-to-batch reproducibility of Transferon™.

    PubMed

    Medina-Rivero, Emilio; Merchand-Reyes, Giovanna; Pavón, Lenin; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Velasco-Velázquez, Marco; Pérez-Tapia, Sonia Mayra

    2014-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that modulate immune responses in various diseases. Due their complexity, standardized methods to identify their physicochemical properties and determine that production batches are biologically active must be established. We aimed to develop and validate a size exclusion ultra performance chromatographic (SE-UPLC) method to characterize Transferon™, a DLE that is produced under good manufacturing practices (GMPs). We analyzed an internal human DLE standard and 10 representative batches of Transferon™, all of which had a chromatographic profile characterized by 8 main peaks and a molecular weight range between 17.0 and 0.2kDa. There was high homogeneity between batches with regard to retention times and area percentages, varying by less than 0.2% and 30%, respectively, and the control chart was within 3 standard deviations. To analyze the biological activity of the batches, we studied the ability of Transferon™ to stimulate IFN-γ production in vitro. Transferon™ consistently induced IFN-γ production in Jurkat cells, demonstrating that this method can be included as a quality control step in releasing Transferon™ batches. Because all analyzed batches complied with the quality attributes that were evaluated, we conclude that the DLE Transferon™ is produced with high homogeneity. PMID:24099727

  16. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C.

    PubMed

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin

    2015-04-01

    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.

  17. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

  18. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor.

    PubMed

    Strayer, R F; Finger, B W; Alazraki, M P; Cook, K; Garland, J L

    2002-09-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  19. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  20. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  1. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  2. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance.

  3. 12 Batch coalescing studies

    SciTech Connect

    Kourbanis, I.; Wildman, D.; /Fermilab

    1995-01-01

    The purpose of the study was to identify and correct the problems in the 12 batch coalescing. The final goal is to be able to coalesce 12 booster batches of 11 bunches each into 12 bunches spaced at 21 buckets apart with an average intensity of 200 E9 ppb.

  4. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  5. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  6. Software for batch farms

    SciTech Connect

    Ian Bird; Bryan Hess; Andy Kowalski

    2000-02-01

    Over the past few years, LSF has become a standard for job management on batch farms. However, there are many instances where it cannot be deployed for a variety of reasons. In large farms the cost may be prohibitive for the set of features actually used; small university groups who wish to clone the farms and software of larger laboratories often have constraints which preclude the use of LSF. This paper discusses a generic interface developed at Jefferson Lab to provide a set of common services to the user, while using any one of a variety of underlying batch management software products. Initially the system provides an interface to LSF and an alternative--Portable Batch System (PBS) developed by NASA and freely available in source form. It is straightforward to extend this to other systems. Such a generic interface allows users to move from one location to another and run their jobs with no modification, and by extension provides a framework for a ''global'' batch system where jobs submitted at one site may be transparently executed at another. The interface also provides additional features not found in the underlying batch software. Being written in Java, the client can be easily installed anywhere and allows for authenticated remote job submission and manipulation, including a web interface. This paper will also discuss the problem of keeping a large batch farm occupied with work without waiting for slow tape access. The use of file caching, pre-staging of files from tape and the interconnection with the batch system will be discussed. As well as automated techniques, the provision of appropriate information to the user to allow optimization should not be overlooked.

  7. Debiasing Crowdsourced Batches

    PubMed Central

    Zhuang, Honglei; Parameswaran, Aditya; Roth, Dan; Han, Jiawei

    2015-01-01

    Crowdsourcing is the de-facto standard for gathering annotated data. While, in theory, data annotation tasks are assumed to be attempted by workers independently, in practice, data annotation tasks are often grouped into batches to be presented and annotated by workers together, in order to save on the time or cost overhead of providing instructions or necessary background. Thus, even though independence is usually assumed between annotations on data items within the same batch, in most cases, a worker's judgment on a data item can still be affected by other data items within the batch, leading to additional errors in collected labels. In this paper, we study the data annotation bias when data items are presented as batches to be judged by workers simultaneously. We propose a novel worker model to characterize the annotating behavior on data batches, and present how to train the worker model on annotation data sets. We also present a debiasing technique to remove the effect of such annotation bias from adversely affecting the accuracy of labels obtained. Our experimental results on both synthetic data and real-world data demonstrate the effectiveness of our proposed method. PMID:26713175

  8. Production of fructosyltransferase by Aureobasidium sp. ATCC 20524 in batch and two-step batch cultures.

    PubMed

    Salinas, Martín A; Perotti, Nora I

    2009-01-01

    A comparison of fructosyltransferase (EC 2.4.1.9) production by Aureobasidium sp. ATCC 20524 in batch and two step batch cultures was investigated in a 1-l stirred tank reactor using a sucrose supply of 200 g/l. Results showed that the innovative cultivation in two step of Aureobasidium sp. produced more fructosyltransferase (FFase) than the single batch culture at the same sucrose concentration with a maximal enzyme production of 523 U/ml, which was 80.5% higher than the one obtained in the batch culture. The production of fructooligosaccharides (FOSs) was also analyzed; their concentration reached a maximum value of 160 g/l the first day in the two-step culture and 127 g/l in the single-batch mode. The use of the two-step batch culture with Aureobasidium sp. ATCC 20524 in allowing the microorganism to grow up prior to the induction of sucrose (second step), proved to be a powerful method for producing fructosyltransferase and FOSs. PMID:18810518

  9. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  10. Biosorption of fluoride from aqueous phase onto algal Spirogyra IO1 and evaluation of adsorption kinetics.

    PubMed

    Venkata Mohan, S; Ramanaiah, S V; Rajkumar, B; Sarma, P N

    2007-03-01

    Non-viable algal Spirogyra IO1 was studied for its fluoride sorption potential in batch studies. The results demonstrated the ability of the biosorbent for fluoride removal. The sorption interaction of fluoride on to non-viable algal species obeyed the pseudo-first-order rate equation. The intraparticle diffusion of fluoride molecules within the Spirogyra was identified to be the rate-limiting step. It was also found that the adsorption isotherm followed the rearranged Langmuir isotherm adsorption model. Fluoride sorption was dependent on the aqueous phase pH and the fluoride uptake was greater at lower pH.

  11. GIDEP Batching Tool

    NASA Technical Reports Server (NTRS)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  12. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.

    PubMed

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Leal, Lucia Hernandez; Fernandes, Tânia V; Langenhoff, Alette; Zeeman, Grietje

    2016-03-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied. Biodegradation and photolysis led to 60-100% removal of diclofenac, ibuprofen, paracetamol and metoprolol. Removal of carbamazepine and trimethoprim was incomplete and did not exceed 30% and 60%, respectively. Sorption to algal biomass accounted for less than 20% of the micropollutant removal. Furthermore, the presence of micropollutants did not inhibit C. sorokiniana growth at applied concentrations. Algal treatment systems allow simultaneous removal of micropollutants and recovery of nutrients from source separated wastewater. Nutrient rich algal biomass can be harvested and applied as fertilizer in agriculture, as lower input of micropollutants to soil is achieved when algal biomass is applied as fertilizer instead of urine. PMID:26546707

  13. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format.

  14. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.

    PubMed

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E

    2015-08-01

    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors.

  15. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. PMID:26716890

  16. Characteristic time scales of mixing, mass transfer and biomass growth in a Taylor vortex algal photobioreactor.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2015-12-01

    Recently it has been demonstrated that algal biomass yield can be enhanced using fluid flow patterns known as Taylor vortices. It has been suggested that these growth rate improvements can be attributed to improved light delivery as a result of rapid transport of microorganisms between light and dark regions of the reactor. However, Taylor vortices also strongly impact fluid mixing and interphase (gas-liquid) mass transport, and these in turn may also explain improvements in biomass productivity. To identify the growth-limiting factor in a Taylor vortex algal photobioreactor, experiments were performed to determine characteristic time scales for mixing and mass transfer. By comparing these results with the characteristic time scale for biomass growth, it is shown that algal growth rate in Taylor vortex reactors is not limited by fluid mixing or interphase mass transfer, and therefore the observed biomass productivity improvements are likely attributable to improved light utilization efficiency.

  17. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  18. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. PMID:27008510

  19. Flow-batch miniaturization.

    PubMed

    Monte-Filho, Severino S; Lima, Marcelo B; Andrade, Stéfani I E; Harding, David P; Fagundes, Yebá N M; Santos, Sergio R B; Lemos, Sherlan G; Araújo, Mario C U

    2011-10-30

    This study introduces the first micro-flow-batch analyzer (μFBA). A simple, low-cost, deep urethane-acrylate photo-resist ultraviolet-lithographic technique was used in its development. Details of the microfabrication process are presented including; the use of two superimposed photo-masks to improve the micro-channel and stop chamber border definition, as well as integration of an LED/phototransistor photometric pair, while using an open nylon-thread (fishing line) micro-mixing system for solutions homogenization. The system was used for photometric determination of Fe(II) in oral solution iron supplements employing the well-known 1,10-phenanthroline method, with instantaneously prepared micro-chamber calibration solutions. All analytical processes were accomplished by simply changing the timing parameters in the control software. It must be emphasized here that there was no outside preparation of the standard calibration solutions; the mixing was all done in-chamber/in-line, with all solutions maintained flowing while being proportioned for the measurement processes. The μFBA results were acceptable when compared to the reference method, and comparable to normal flow-batch systems. It was possible both to project and build a low-cost probe with high sample throughput (about 120 h(-1)), low relative standard deviations (about 1.1%), and reduced reagent consumption (30 times less than the reference method). The μFBA system based on urethane-acrylate presented satisfactory physical and chemical properties while keeping the flexibility, versatility, robustness, and multi-task characteristics of normal flow-batch analyzers. The μFBA system contributes to the advance of micro-analytical instrumentation, while realizing the basic principles of "Green Chemistry". PMID:22063532

  20. Batch Studies of Sodium Tetraphenylborate Decomposition on Reduced Palladium Catalyst

    SciTech Connect

    Barnes, M.J.

    2001-02-13

    In these batch experiments we obtained preliminary information on palladium based catalytic decomposition of sodium tetraphenylborate (NaTPB). These preliminary data provide necessary data to design subsequent catalytic decomposition experiments for NaTPB using a continuous stirred tank reactor (CSTR).

  1. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  2. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  3. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  4. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  5. Repeated-batch fermentative for bio-hydrogen production from.

    PubMed

    Sangyoka, Suksaman; Reungsang, Alissara; Moonamart, Samart

    2007-06-01

    Anaerobic hydrogen production from cassava wastewater by heat-treated UASB granules was conducted in a 10 L bioreactor with a working volume of 8 L at room temperature and pH 6.0 by batch and repeated-batch fermentations. Specific hydrogen production potential, hydrogen yield and the maximum hydrogen production rate of 39, 304.81 mL, 0.22 mL mg-COID(-1) and 851.84 mL h(-1), respectively, were obtained in a batch reactor. A repeated-batch was conducted when the glucose concentration in fermentative broth was depleted to 150-250 mg L(-1) which equivalent to 10-15% of initial glucose concentration. Repeated-batch reactor was operated at 3 different feed-in/feed-out rates i.e., 25, 50 and 75%. Results revealed that a suitable feed-in/feed out rate for production of hydrogen from cassava wastewater was at 75%. This was indicated by the highest hydrogen yield, the highest potential maximal amount of hydrogen produced, a relatively high maximum hydrogen production rate, a relatively high maximum specific hydrogen production rate and a relatively short lag time of 0.0094 mL mg-COD(-1), 12,532.80 mL, 540.46 mL h(-1), 3.5 mL g-VSS(-1) h and 5.31 h, respectively. Major soluble metabolites were acetic and butyric acids. Our results indicated that repeated batch fermentation was more effective in producing hydrogen from cassava wastewater than batch fermentation.

  6. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  7. Batch versus flow photochemistry: a revealing comparison of yield and productivity.

    PubMed

    Elliott, Luke D; Knowles, Jonathan P; Koovits, Paul J; Maskill, Katie G; Ralph, Michael J; Lejeune, Guillaume; Edwards, Lee J; Robinson, Richard I; Clemens, Ian R; Cox, Brian; Pascoe, David D; Koch, Guido; Eberle, Martin; Berry, Malcolm B; Booker-Milburn, Kevin I

    2014-11-10

    The use of flow photochemistry and its apparent superiority over batch has been reported by a number of groups in recent years. To rigorously determine whether flow does indeed have an advantage over batch, a broad range of synthetic photochemical transformations were optimized in both reactor modes and their yields and productivities compared. Surprisingly, yields were essentially identical in all comparative cases. Even more revealing was the observation that the productivity of flow reactors varied very little to that of their batch counterparts when the key reaction parameters were matched. Those with a single layer of fluorinated ethylene propylene (FEP) had an average productivity 20% lower than that of batch, whereas three-layer reactors were 20% more productive. Finally, the utility of flow chemistry was demonstrated in the scale-up of the ring-opening reaction of a potentially explosive [1.1.1] propellane with butane-2,3-dione.

  8. Mathematical modeling of maltose hydrolysis in different types of reactor.

    PubMed

    Findrik, Zvjezdana; Presecki, Ana Vrsalović; Vasić-Racki, Durda

    2010-03-01

    A commercial enzyme Dextrozyme was tested as catalyst for maltose hydrolysis at two different temperatures: 40 and 65 degrees C at pH 5.5. Its operational stability was studied in different reactor types: batch, repetitive batch, fed-batch and continuously operated enzyme membrane reactor. Dextrozyme was more active at 65 degrees C, but operational stability decay was observed during the prolonged use in the reactor at this temperature. The reactor efficiencies were compared according to the volumetric productivity, biocatalyst productivity and enzyme consumption. The best reactor type according to the volumetric productivity for maltose hydrolysis is batch and the best reactor type according to the biocatalyst productivity and enzyme consumption is continuously operated enzyme membrane reactor. The mathematical model developed for the maltose hydrolysis in the different reactors was validated by the experiments at both temperatures. The Michaelis-Menten kinetics describing maltose hydrolysis was used.

  9. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  10. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms. PMID:25682049

  11. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  12. Nutrient removal using algal-bacterial mixed culture.

    PubMed

    Ashok, Vaishali; Shriwastav, Amritanshu; Bose, Purnendu

    2014-12-01

    Simultaneous nitrate (N), phosphate (P), and COD removal was investigated in photobioreactors containing both algae and bacteria. The reactors were operated in the semi-batch mode with a hydraulic retention time of 2 days. Reactors were operated in two phases, (1) with 33 % biomass recycle and (2) with no biomass recycle. In both phases, more than 90 % of N and P and 80 % of COD present in synthetic wastewaters with initial N and P concentrations of up to 110 and 25 mg/L, respectively, and initial COD of 45 mg/L could be removed. Biomass growth in reactors did not increase with the increase in initial N and P concentration in either phase. However, biomass growth was slightly more in reactors operated with no biomass recycle. In both phases, N and P uptake was greater in reactors with greater initial N and P concentrations. Also in all cases, N and P uptake in the reactors was far in excess of the stoichiometric requirements for the observed biomass growth. This "luxury uptake" of nitrogen and phosphorus by biomass was responsible for excellent nitrogen and phosphorus removal as observed. However, based on the results of this study, no advantage of biomass recycling could be demonstrated. PMID:25293638

  13. Data-driven batch schuduling

    SciTech Connect

    Bent, John; Denehy, Tim; Arpaci - Dusseau, Remzi; Livny, Miron; Arpaci - Dusseau, Andrea C

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  14. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  15. Adaptive Batch Mode Active Learning.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  16. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  17. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.

  18. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels. PMID:22324757

  19. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  20. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  1. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  2. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  3. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  4. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  5. Microflotation performance for algal separation.

    PubMed

    Hanotu, James; Bandulasena, H C Hemaka; Zimmerman, William B

    2012-07-01

    The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm. In contrast, continuous air flow at the same rate through the same diffusers yielded an average bubble size of 1,059 µm, 28 times larger than the pore size. Following microbubble generation, the separation of algal cells under fluidic oscillator generated microbubbles was investigated by varying metallic coagulant types, concentration and pH. Best performances were recorded at the highest coagulant dose (150 mg/L) applied under acidic conditions (pH 5). Amongst the three metallic coagulants studied, ferric chloride yielded the overall best result of 99.2% under the optimum conditions followed closely by ferric sulfate (98.1%) and aluminum sulfate with 95.2%. This compares well with conventional dissolved air flotation (DAF) benchmarks, but has a highly turbulent flow, whereas microflotation is laminar with several orders of magnitude lower energy density.

  6. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems.

  7. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  8. MBASIC batch processor architectural overview

    NASA Technical Reports Server (NTRS)

    Reynolds, S. M.

    1978-01-01

    The MBASIC (TM) batch processor, a language translator designed to operate in the MBASIC (TM) environment is described. Features include: (1) a CONVERT TO BATCH command, usable from the ready mode; and (2) translation of the users program in stages through several levels of intermediate language and optimization. The processor is to be designed and implemented in both machine-independent and machine-dependent sections. The architecture is planned so that optimization processes are transparent to the rest of the system and need not be included in the first design implementation cycle.

  9. Influence of semi-batch operation on the precipitation of natrojarosite particles from sulfate solutions

    NASA Astrophysics Data System (ADS)

    Sandré, Anne-Laure; Gaunand, Alain

    2012-03-01

    The precipitation of natrojarosite from iron sodium sulfate solutions has been investigated at temperatures close to the atmospheric boiling point, in batch and semi-batch conditions. Semi-batch conditions make it possible to maintain a weaker iron concentration in the stirred reactor, leading to lower supersaturations, closer to those in continuous and possibly seeded MSMPRs or tanks—in series units. In these reactors, primary and secondary nucleations are few, allowing the growth of pure mono-crystalline particles of controlled size and size dispersion. Both modi operandi lead to agglomerates made of crystals of cubic habit. The surface of cauliflower-like particles from the batch modus operandi displays overlaying crystals, of size between 100 and 400 nm. The particles from the semi-batch mode, with moderate iron addition, are rougher and show bigger intergrown constitutive crystals of size up to a few microns, which denotes lesser secondary nucleation and more growth. A model is developed to characterize iron(III) and sulfate speciation with non-ideal behavior in the mother solution. It is used to compare the variations of supersaturation in the reactor between the batch and the semi-batch conditions. During the first 500 min, the supersaturation resulting from a moderate addition of iron is 10,000-10 times lower than during batch kinetics, which agrees with the reduction of secondary nucleation suggested by scanning electron micrographs. The semi-batch technique, which can be combined with the addition of support particles, is worth further work, aiming to reduce secondary nucleation and to determine the crystallite growth rate expression of natrojarosite as a function of supersaturation, using the model of solution developed in this work.

  10. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  11. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  12. Sterol phylogenesis and algal evolution.

    PubMed Central

    Nes, W D; Norton, R A; Crumley, F G; Madigan, S J; Katz, E R

    1990-01-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like micro-organisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and 1H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecycloartanol, ergosterol, protothecasterol, 4alpha-methylergostanol, 4alpha-methylclionastanol, clionastanol, 24beta-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I [2-3H]lanosterol, [2-3H]cycloartenol, [24-3H]lanosterol, and [methyl-2H3]methionine and by feeding to II [methyl-2H3]methionine. The results demonstrate that the 24beta configuration is formed by different alkylation routes in I and II. The Delta25(27) route operates in I while the Delta24(28) route operates in II. Based on what is known in the literature regarding sterol distribution and phylogenesis together with our findings that the stereochemical outcome of squalene oxide cyclization leads to the production of cycloartenol rather than lanosterol (characteristic of the fungal genealogy) and the chirality of the C-24 alkyl group is similar in the two nonphotosynthetic microbes (beta oriented), we conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors. PMID:11607106

  13. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  14. NDA BATCH 2002-02

    SciTech Connect

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  15. Simulated Batch Production of Penicillin

    ERIC Educational Resources Information Center

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  16. Physicochemical Characteristics of Transferon™ Batches.

    PubMed

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  17. Physicochemical Characteristics of Transferon™ Batches

    PubMed Central

    Pérez-Sánchez, Gilberto; Favari, Liliana; Estrada-Parra, Sergio

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  18. Physicochemical Characteristics of Transferon™ Batches.

    PubMed

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  19. Batching System for Superior Service

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  20. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  1. Batch manufacturing: Six strategic needs

    SciTech Connect

    Ash, R.H.; Chappell, D.A.

    1995-08-01

    Since the advent of industrial digital control systems in the mid-1970s, industry has had the promise of integrated, configurable digital batch control systems to replace the morass of electromechanical devices like relays and stepping switches, recorders, and indicators which comprised the components of previous generations of batch control systems - the {open_quotes}monolithic monsters{close_quotes} of the 1960s and earlier. To help fulfill that promise, there have been many wide-ranging proprietary automation solutions for batch control since 1975, many of them technically excellent. However, even the best examples suffered from the lack of a common language and unifying concept permitting separate systems to be interconnected and work together. Today, some 20 years after the digital revolution began, industry has microprocessors, memory chips, data highways, and other marvelous technology to help automate the control of discontinuous processes. They also are on the way to having an accepted standard for batch automation, ISA S88. Batching systems are at once conceptually simple but executionally complex. The notion of adding ingredients one at a time to a vat, mixing, and then processing into final form is as old as the stone age. Every homemaker on earth, male or female, is familiar with how to follow a recipe to create some sumptuous item of culinary delight. Food recipes, so familiar and ubiquitous, are really just microcosms of the S88 recipe standard. They contain the same components: (1) Header (name and description of item being prepared, sometimes serving size); (2) Formula (list and amount of ingredients); (3) Equipment requirements (pans, mixing and cooking equipment); (4) Procedure (description of order of ingredient addition, mixing and other processing steps, baking/cooling time, and other processing steps); and (5) Other information (safety, cautions, and other miscellaneous instructions).

  2. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  3. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  4. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling.

  5. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors.

    PubMed

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2012-08-01

    The influence of biotic (algal inoculum concentration) and abiotic factors (illumination cycle, mixing velocity and nutrient strength) on the treatment efficiency, biomass generation and settleability were investigated with selected mixed algal culture. Dark condition led to poor nutrient removal efficiency. No significant difference in the N, P removal and biomass settleability between continuous and alternating illumination was observed, but a higher biomass generation capability for the continuous illumination was obtained. Different mixing velocity led to similar phosphorus removal efficiencies (above 98%) with different retention times. The reactor with 300 rpm mixing velocity had the best N removal capability. For the low strength wastewater, the N rates were 5.4±0.2, 9.1±0.3 and 10.8±0.3 mg/l/d and P removal rates were 0.57±0.03, 0.56±0.03 and 0.72±0.05 mg/l/d for reactors with the algal inoculum concentration of 0.2, 0.5 and 0.8 g/l, respectively. Low nutrient removal efficiency and poor biomass settleability were obtained for high strength wastewater.

  6. NDA Batch 2002-13

    SciTech Connect

    Hollister, R

    2009-09-17

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewer and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.

  7. Using hyperspectral imagery to monitor algal persence

    SciTech Connect

    Anderson, J.M.; Monk, J.; Yan, Gu; Brignal, W.

    1997-08-01

    This paper illustrates how an inexpensive and easily deployable imaging spectrometer can be used to monitor and identify algal blooms at short notice, thus making practical the addition of airborne data to the usual in-situ measurements. Two examples are described, one in the Irish Sea and the other in a reservoir system in the London area.

  8. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis.

    PubMed

    Hong, Jinglan; Ma, Hua; Otaki, Masahiro

    2005-06-01

    In the treatment of synthetic dye wastewater by photosynthetic bacteria under optical irradiation, excessive algal growth and adhesion on the walls of the reactor are serious problems. The adverse effects of excessive algal growth on photosynthetic bacterial activity are significantly greater than those of the decreased optical irradiation of the solution. In this report, we investigated the effects of photocatalysis on the growth of algae (Chroococcus sp.) and photosynthetic bacteria. The different sensitivities of Chroococcus sp. and photosynthetic bacteria to photocatalysis were observed by an ATP assay. Moreover, from microscopy findings, some algae were damaged by TiO2 with UV. We suggested that some algae suffered from membrane damage and consequently cell substances were released, resulting in the increase of dissolved material following treatment using TiO2 with UV.

  9. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions. PMID:21977667

  10. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  11. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  12. Textile dyeing wastewater treatment in a sequencing batch reactor system.

    PubMed

    Vives, M T; Balaguer, M D; García, S; García, R; Colprim, J

    2003-01-01

    This study was undertaken to examine the feasibility of treating biologically textile wastewater for organic carbon removal. The study was conducted over a lab scale SBR equipped with an in-house developed data acquisition and control software. From monitored operation of SBR and dissolved oxygen values, together with a simple compressed air ON/OFF control scheme, on-line Oxygen Uptake Rate (OUR) profiles during aerobic reaction periods were obtained. Due to the high variability of wastewater characteristics, periodical analyses of textile wastewater were conducted and thus characterized for pH, conductivity, total and volatile solids, COD, ammonia, and TKN. After an initial period of activated sludge adaptation to textile wastewater, the SBR was operated at step-feed strategy to reduce the effluent biodegradable matter presents in the wastewater by SBR water change ratio modification and feeding strategy.

  13. PHYTO-REMOVAL OF TRINITROTOLUENE FROM WATER WITH BATCH KINETIC STUDIES

    EPA Science Inventory

    A series of batch reactor studies were conducted to obtain kinetic data for optimizing phyto-treatment of water contaminated with trinitrotoluene (TNT). A plant screening study indicated that stonewort and parrotfeather were the most effective among the plants tested; parrotfeath...

  14. Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds.

    PubMed

    Stevenson, Louise M; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A; McCauley, Edward; Nisbet, Roger M

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles.

  15. Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds

    PubMed Central

    Stevenson, Louise M.; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A.; McCauley, Edward; Nisbet, Roger M.

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles. PMID:24086348

  16. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  17. Improved algal harvesting using suspended air flotation.

    PubMed

    Wiley, Patrick E; Brenneman, Kristine J; Jacobson, Arne E

    2009-07-01

    Current methods to remove algae from a liquid medium are energy intensive and expensive. This study characterized algae contained within a wastewater oxidation pond and sought to identify a more efficient harvesting technique. Analysis of oxidation pond wastewater revealed that algae, consisting primarily of Chlorella and Scenedesmus, composed approximately 80% of the solids inventory during the study period. Results demonstrated that suspended air flotation (SAF) could harvest algae with a lower air:solids (A/S) ratio, lower energy requirements, and higher loading rates compared to dissolved air flotation (DAF) (P < 0.001). Identification of a more efficient algal harvesting system may benefit wastewater treatment plants by enabling cost effective means to reduce solids content of the final effluent. Furthermore, use of SAF to harvest commercially grown Chlorella and Scenedesmus may reduce manufacturing costs of algal-based products such as fuel, fertilizer, and fish food.

  18. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  19. Algal diseases: spotlight on a black box.

    PubMed

    Gachon, Claire M M; Sime-Ngando, Télesphore; Strittmatter, Martina; Chambouvet, Aurélie; Kim, Gwang Hoon

    2010-11-01

    Like any other living organisms, algae are plagued by diseases caused by fungi, protists, bacteria or viruses. As aquaculture continues to rise worldwide, pathogens of nori or biofuel sources are becoming a significant economic burden. Parasites are also increasingly being considered of equal importance with predators for ecosystem functioning. Altered disease patterns in disturbed environments are blamed for sudden extinctions, regime shifts, and spreading of alien species. Here we review the biodiversity and impact of pathogens and parasites of aquatic primary producers in freshwater and marine systems. We also cover recent advances on algal defence reactions, and discuss how emerging technologies can be used to reassess the profound, multi-faceted, and so far broadly-overlooked influence of algal diseases on ecosystem properties.

  20. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  1. Adding coal dust to coal batch

    SciTech Connect

    V.S. Shved; A.V.Berezin

    2009-05-15

    The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

  2. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  3. Synthesis of azeotropic batch distillation separation systems

    SciTech Connect

    Safrit, B.T.; Westerberg, A.W.

    1997-05-01

    The sequencing of batch distillation systems, in particular batch distillation columns, can be complicated by the existence of azeotropes in the mixture. These azeotropes can form batch distillation regions where, depending on the initial feed to the batch column, the types of feasible products and separations are limited. It is very important that these distillation regions are known while attempting to synthesize sequences of batch columns so infeasible designs can be eliminated early on in the design phase. The distillation regions also give information regarding the feasible products that can be obtained when the mixture is separated by using a variety of batch column configurations. The authors will show how a tool for finding the batch distillation regions of a particular mixture can be used in the synthesis of batch distillation column sequences. These sequences are determined by the initial feed composition to the separation network. The network of all possible sequences will be generated by using state-task networks when batch rectifying, stripping, middle vessel, and extractive middle vessel columns are allowed. The authors do not determine which sequence is the best, as the best sequence will depend on the particular application to which one is applying the algorithms. They show an example problem for illustration of this technique.

  4. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  5. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  6. In-depth characterization of wastewater bacterial community in response to algal growth using pyrosequencing.

    PubMed

    Lee, Jangho; Lee, Juyoun; Lee, Tae Kwon; Woo, Sung-Geun; Baek, Gyu Seok; Park, Joonhong

    2013-10-28

    Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment. PMID:23867704

  7. Mechanism and challenges in commercialisation of algal biofuels.

    PubMed

    Singh, Anoop; Nigam, Poonam Singh; Murphy, Jerry D

    2011-01-01

    Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.

  8. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  9. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  10. Computer Batch Files Shorten Many Complicated Procedures.

    ERIC Educational Resources Information Center

    Deppa, Joan

    1987-01-01

    Defines "batch files," claiming that they can shorten many complicated computer procedures. Describes how batch file was created using the computer program "PC-Write" to streamline the process of creating a work disk and increase students' computer literacy. Lists and discusses each element in the file. Provides references for more information.…

  11. Method and apparatus for melting glass batch

    DOEpatents

    Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  12. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  13. [Governmental batch sample testing of allergen products].

    PubMed

    Bartel, D; Führer, F; Vieths, S

    2012-03-01

    Allergen products for specific immunotherapy of type I allergies were first authorized for the German market in the 1970s. In addition to finished products manufactured in advance and in batches, so-called named patient products have recently been defined as Medicinal Products by the German Medicinal Products Act ("Arzneimittelgesetz", AMG 14th Revision 2005). Some allergen products previously marketed as named patient products are now required to obtain marketing authorization according to the German ordinance for therapy allergens. Products have to be batch released by the competent German Federal Agency, the Paul-Ehrlich-Institut (PEI). Samples of product batches are delivered to the PEI in order to perform experimental quality controls. With regard to named patient products, PEI tests batch samples of the bulk extract preparations used for manufacturing of the respective, named patient products. The institute releases approximately 2,800 allergen product batches annually.

  14. Algal Lipids as Quantitative Paleosalinity Proxies

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Shinneman, A.; Hemeon, K.; Sachs, J. P.

    2012-12-01

    The tropics play an important role in driving climate. However it is difficult to uncover past changes in tropical precipitation due to a lack of tree ring records and low accumulation rates of marine sediments. Hydrogen isotope ratios of algal lipids preserved in lacustrine and marine sediments have been used to qualitatively reconstruct tropical paleohydrology. Changes in the hydrologic balance are reflected in salinity and in lake water D/H ratios, which are closely tracked by lipid D/H ratios of algal biomarkers. While useful for determining past periods of "wetter" or "drier" conditions, variability in isotope fractionation in algal lipids during lipid biosynthesis can be exploited to more quantitatively determine how much wetter or drier conditions were in the past. The estuarine diatom, Thalassiosira pseudonnana, was grown in continuous cultures under controlled light, temperature, nutrient, and growth rate conditions to assess the influence of salinity (9-40 PSU) on D/H fractionation between lipids and source water. Three fatty acids, 24-methylcholesta-5,24(28)-dien-3B-ol, and phytol show decreasing fractionation between lipid and source water as salinity increases with 0.8-1.3‰ change in fractionation per salinity unit. These results compliment field-based empirical observations of dinosterol in Chesapeake Bay suspended particles that change 0.99‰ per salinity unit and lipid biomarkers from hyper-saline ponds on Christmas Island that change 0.7-1.1‰ per salinity unit. Biological pathways responsible for the inverse relationship between fractionation and salinity will be discussed.

  15. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  16. Batch Scheduling a Fresh Approach

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    The Network Queueing System (NQS) was designed to schedule jobs based on limits within queues. As systems obtain more memory, the number of queues increased to take advantage of the added memory resource. The problem now becomes too many queues. Having a large number of queues provides users with the capability to gain an unfair advantage over other users by tailoring their job to fit in an empty queue. Additionally, the large number of queues becomes confusing to the user community. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new approach to batch job scheduling. This new method reduces the number of queues required by eliminating the need for queues based on resource limits. The scheduler examines each request for necessary resources before initiating the job. Also additional user limits at the complex level were added to provide a fairness to all users. Additional tools which include user job reordering are under development to work with the new scheduler. This paper discusses the objectives, design and implementation results of this new scheduler

  17. A strategy for urban outdoor production of high-concentration algal biomass for green biorefining.

    PubMed

    Lim, Chun Yong; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-05-01

    The present study was to investigate the feasibility of carrying out effective microalgae cultivation and high-rate tertiary wastewater treatment simultaneously in a vertical sequencing batch photobioreactor with small areal footprint, suitable for sustainable urban microalgae production. For 15 consecutive days, Chlorella sorokiniana was cultivated in synthetic wastewater under various trophic conditions. A cycle of 12-h heterotrophic: 12-h mixotrophic condition produced 0.98 g l(-1) d(-1) of algal biomass in tandem with a 94.7% removal of 254.4 mg l(-1) C-acetate, a 100% removal of 84.7 mg l(-1) N-NH4 and a removal of 15.0 mg l(-1) P-PO4. The cells were harvested via cost-effective chitosan flocculation with multiple dosing (3 times) applying established chitosan:cell ratio (1:300 w/w) and pH control (6.3-6.8). Reproducible flocculation efficiencies of greater than 99% and high-concentration algal broths (>20% solids) were achieved. PMID:23186659

  18. Population dynamics of an algal bacterial cenosis in closed ecological system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  19. Population dynamics of an algal-bacterial cenosis in closed ecological system.

    PubMed

    Pisman, T I; Galayda, Ya V; Loginova, N S

    2005-01-01

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data. PMID:16175685

  20. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being