Science.gov

Sample records for algal biofuel production

  1. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  2. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  3. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  4. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  5. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE PAGES

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  6. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; Seider, Warren D.

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  7. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    SciTech Connect

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; Seider, Warren D.

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  8. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  9. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions. PMID:21977667

  10. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  11. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  12. Environmental indicators for sustainable production of algal biofuels

    DOE PAGES

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as themore » growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.« less

  13. Hybrid life-cycle assessment of algal biofuel production.

    PubMed

    Malik, Arunima; Lenzen, Manfred; Ralph, Peter J; Tamburic, Bojan

    2015-05-01

    The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1 million tonnes of bio-crude will generate almost 13,000 new jobs and 4 billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative.

  14. Hybrid life-cycle assessment of algal biofuel production.

    PubMed

    Malik, Arunima; Lenzen, Manfred; Ralph, Peter J; Tamburic, Bojan

    2015-05-01

    The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1 million tonnes of bio-crude will generate almost 13,000 new jobs and 4 billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative. PMID:25465782

  15. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-05-01

    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.

  16. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways.

  17. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. PMID:24015819

  18. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.

  19. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  20. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    PubMed

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs.

  1. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    PubMed

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. PMID:27039331

  2. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  3. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  4. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  5. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    PubMed

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.

  6. Cost structures and life cycle impacts of algal biomass and biofuel production

    NASA Astrophysics Data System (ADS)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  7. Production of Algal-based Biofuel from Non-fresh Water Sources

    NASA Astrophysics Data System (ADS)

    Sun, A. C.; Reno, M. D.

    2008-12-01

    A system dynamics model is developed to assess the availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual framework is based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The simulation framework contains an algal growth module, a dairy module, an oil production module, and a gas production module. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil and gas produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

  8. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  9. Production of algal-based biofuel using non-fresh water sources.

    SciTech Connect

    Sun, Amy Cha-Tien; Reno, Marissa Devan

    2007-09-01

    The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual simulation framework and historical data are based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The overall water balance ignores both transportation options and water chemistry and is broken down by county level. The resulting model contains an algal growth module, a dairy module, an oil production module, and a gas production module. A user interface is also created for controlling the adjustable parameters in the model. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil- and gas-produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

  10. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  11. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels. PMID:22324757

  12. Energy return on investment for algal biofuel production coupled with wastewater treatment.

    PubMed

    Beal, Colin M; Stillwell, Ashlynn S; King, Carey W; Cohen, Stuart M; Berberoglu, Halil; Bhattarai, Rajendra P; Connelly, Rhykka L; Webber, Michael E; Hebner, Robert E

    2012-09-01

    This study presents a second-order energy return on investment analysis to evaluate the mutual benefits of combining an advanced wastewater treatment plant (WWTP) (with biological nutrient removal) with algal biofuel production. With conventional, independently operated systems, algae production requires significant material inputs, which require energy directly and indirectly, and the WWTP requires significant energy inputs for treatment of the waste streams. The second-order energy return on investment values for independent operation of the WWTP and the algal biofuels production facility were determined to be 0.37 and 0.42, respectively. By combining the two, energy inputs can be reduced significantly. Consequently, the integrated system can outperform the isolated system, yielding a second-order energy return on investment of 1.44. Combining these systems transforms two energy sinks to a collective (second-order) energy source. However, these results do not include capital, labor, and other required expenses, suggesting that profitable deployment will be challenging. PMID:23012769

  13. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGES

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  14. Exploiting diversity and synthetic biology for the production of algal biofuels.

    PubMed

    Georgianna, D Ryan; Mayfield, Stephen P

    2012-08-16

    Modern life is intimately linked to the availability of fossil fuels, which continue to meet the world's growing energy needs even though their use drives climate change, exhausts finite reserves and contributes to global political strife. Biofuels made from renewable resources could be a more sustainable alternative, particularly if sourced from organisms, such as algae, that can be farmed without using valuable arable land. Strain development and process engineering are needed to make algal biofuels practical and economically viable.

  15. Optical microplates for photonic high throughput screening of algal photosynthesis and biofuel production.

    PubMed

    Mertiri, Taulant; Chen, Meng; Holland, Thomas; Basu, Amar S

    2011-01-01

    Biological systems respond not only to chemical stimuli (drugs, proteins) but also to physical stimuli (light, heat, stress). Though there are many high throughput tools for screening chemical stimuli, no such tool exists for screening of physical stimuli. This paper presents a novel instrument for photonic high throughput screening of photosynthesis, a light-driven bioprocess. The optical microplate has a footprint identical to a standard 96 well plate, and it provides temporal and intensity control of light in each individual well. Intensity control provides 128 dimming levels (7-bit resolution), with maximum intensity 120 mE/cm(2). Temporal modulation, used for studying dynamics and regulation of photosynthesis, can be as low as 10 μs. We used photonic screening for high throughput studies of algal growth rates and photosynthetic efficiency, using the model organism Dunaliella tertiolecta, a lipid producing algae of interest in biofuel production. Due to the ability to conduct 96 studies in parallel, experiments that would require 2 years using conventional tools can be completed in 1 week. This instrument opens up novel high throughput protocols for photobiology and the growing field of phenomics.

  16. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-01

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  17. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-01

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored. PMID:25220843

  18. Opportunities for Switzerland to Contribute to the Production of Algal Biofuels: the Hydrothermal Pathway to Bio-Methane.

    PubMed

    Bagnoud-Velásquez, Mariluz; Refardt, Dominik; Vuille, François; Ludwig, Christian

    2015-01-01

    Microalgae have a significant potential to be a sustainable source of fuel and thus are of interest in the transition to a sustainable energy system, in particular for resource-dependent countries such as Switzerland. Independence of fossil fuels, considerable reduction of CO(2) emissions, and abandoning nuclear energy may be possible with an integrated system approach including the sourcing of biofuels from different types of biomass. Today, a full carbon-to-fuel conversion is possible, and has been recently demonstrated with an advanced hydrothermal technology. The potential to develop algal biofuels is viewed as high thanks to the possibility they offer to uncouple bioenergy from food production. Nevertheless, technological breakthroughs must take place before commercial production becomes a reality, especially to meet the necessary cost savings and efficiency gains in the algae cultivation structure. In addition, an integrated management of waste resources to promote the nutrient recovery appears today as imperative to further improve the economic viability and the environmental sustainability of algal production. We provide here a review that includes the global technological status of both algae production and their conversion into biofuels in order to understand first the added value of algal energy in general before we focus on the potential of algae to contribute specifically to the Swiss energy system to the horizon 2050. In this respect, the hydrothermal conversion pathway of microalgal biomass into synthetic natural gas (SNG) is emphasized, as research into this technology has received considerable attention in Switzerland during the last decade. In addition, SNG is a particularly relevant fuel in the Swiss context due to the existing gas grid and to the opportunity it offers to cover a wide spectrum of energy applications, in particular cogeneration of heat and electricity or use as a transport fuel in the growing gas car fleet. PMID:26598406

  19. Opportunities for Switzerland to Contribute to the Production of Algal Biofuels: the Hydrothermal Pathway to Bio-Methane.

    PubMed

    Bagnoud-Velásquez, Mariluz; Refardt, Dominik; Vuille, François; Ludwig, Christian

    2015-01-01

    Microalgae have a significant potential to be a sustainable source of fuel and thus are of interest in the transition to a sustainable energy system, in particular for resource-dependent countries such as Switzerland. Independence of fossil fuels, considerable reduction of CO(2) emissions, and abandoning nuclear energy may be possible with an integrated system approach including the sourcing of biofuels from different types of biomass. Today, a full carbon-to-fuel conversion is possible, and has been recently demonstrated with an advanced hydrothermal technology. The potential to develop algal biofuels is viewed as high thanks to the possibility they offer to uncouple bioenergy from food production. Nevertheless, technological breakthroughs must take place before commercial production becomes a reality, especially to meet the necessary cost savings and efficiency gains in the algae cultivation structure. In addition, an integrated management of waste resources to promote the nutrient recovery appears today as imperative to further improve the economic viability and the environmental sustainability of algal production. We provide here a review that includes the global technological status of both algae production and their conversion into biofuels in order to understand first the added value of algal energy in general before we focus on the potential of algae to contribute specifically to the Swiss energy system to the horizon 2050. In this respect, the hydrothermal conversion pathway of microalgal biomass into synthetic natural gas (SNG) is emphasized, as research into this technology has received considerable attention in Switzerland during the last decade. In addition, SNG is a particularly relevant fuel in the Swiss context due to the existing gas grid and to the opportunity it offers to cover a wide spectrum of energy applications, in particular cogeneration of heat and electricity or use as a transport fuel in the growing gas car fleet.

  20. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  1. Evaluating the relative impacts of operational and financial factors on the competitiveness of an algal biofuel production facility.

    PubMed

    Hise, Adam M; Characklis, Gregory W; Kern, Jordan; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D; Vadlamani, Agasteswar

    2016-11-01

    Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production facility into which novel techniques are incorporated. Two such techniques, related to algal growth and dewatering, are evaluated in representative operating and financing scenarios using an integrated techno-economic model. Results suggest that these techniques can be valuable under specified conditions, but also that investment subsidies influence cost competitive facility design by incentivizing development of more capital intensive facilities (e.g., favoring hydrothermal liquefaction over transesterification-based facilities). Evaluating novel techniques under a variety of operational and financial scenarios highlights the set of site-specific conditions in which technical advances are most valuable, while also demonstrating the influence of subsidies linked to capital intensity. PMID:27584903

  2. Evaluating the relative impacts of operational and financial factors on the competitiveness of an algal biofuel production facility.

    PubMed

    Hise, Adam M; Characklis, Gregory W; Kern, Jordan; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D; Vadlamani, Agasteswar

    2016-11-01

    Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production facility into which novel techniques are incorporated. Two such techniques, related to algal growth and dewatering, are evaluated in representative operating and financing scenarios using an integrated techno-economic model. Results suggest that these techniques can be valuable under specified conditions, but also that investment subsidies influence cost competitive facility design by incentivizing development of more capital intensive facilities (e.g., favoring hydrothermal liquefaction over transesterification-based facilities). Evaluating novel techniques under a variety of operational and financial scenarios highlights the set of site-specific conditions in which technical advances are most valuable, while also demonstrating the influence of subsidies linked to capital intensity.

  3. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel.

    PubMed

    Letcher, Peter M; Lopez, Salvador; Schmieder, Robert; Lee, Philip A; Behnke, Craig; Powell, Martha J; McBride, Robert C

    2013-01-01

    Mass culture of algae for the production of biofuels is a developing technology designed to offset the depletion of fossil fuel reserves. However, large scale culture of algae in open ponds can be challenging because of incidences of infestation with algal parasites. Without knowledge of the identity of the specific parasite and how to control these pests, algal-based biofuel production will be limited. We have characterized a eukaryotic parasite of Scenedesmus dimorphus growing in outdoor ponds used for biofuel production. We demonstrated that as the genomic DNA of parasite FD01 increases, the concentration of S. dimorphus cells decreases; consequently, this is a highly destructive pathogen. Techniques for culture of the parasite and host were developed, and the endoparasite was identified as the Aphelidea, Amoeboaphelidium protococcarum. Phylogenetic analysis of ribosomal sequences revealed that parasite FD01 placed within the recently described Cryptomycota, a poorly known phylum based on two species of Rozella and environmental samples. Transmission electron microscopy demonstrated that aplanospores of the parasite produced filose pseudopodia, which contained fine fibers the diameter of actin microfilaments. Multiple lipid globules clustered and were associated with microbodies, mitochondria and a membrane cisternae, an arrangement characteristic of the microbody-lipid globule complex of chytrid zoospores. After encystment and attachment to the host cells, the parasite injected its protoplast into the host between the host cell wall and plasma membrane. At maturity the unwalled parasite occupied the entire host cell. After cleavage of the protoplast into aplanospores, a vacuole and lipids remained in the host cell. Amoeboaphelidium protococcarum isolate FD01 is characteristic of the original description of this species and is different from strain X-5 recently characterized. Our results help put a face on the Cryptomycota, revealing that the phylum is more

  4. Mechanism and challenges in commercialisation of algal biofuels.

    PubMed

    Singh, Anoop; Nigam, Poonam Singh; Murphy, Jerry D

    2011-01-01

    Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.

  5. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling. PMID:24759425

  6. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

  7. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment.

    PubMed

    Drexler, Ivy L C; Joustra, Caryssa; Prieto, Ana; Bair, Robert; Yeh, Daniel H

    2014-02-01

    AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).

  8. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  9. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  10. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process.

    PubMed

    Tu, Qingshi; Lu, Mingming; Thiansathit, Worrarat; Keener, Tim C

    2016-01-01

    Although water is one of the most critical factors affecting the sustainable development of algal biofuels, it is much less studied as compared to the extensive research on algal biofuel production technologies. This paper provides a review of the recent studies on water consumption of the algae biofuel process and presents the water conservation technologies applicable at different stages of the algal biofuel process. Open ponds tend to have much higher water consumption (216 to 2000 gal/gal) than photobioreactors (25 to 72 gal/gal). Algae growth accounts for the highest water consumption (165 to 2000 gal/gal) in the open pond system. Water consumption during harvesting, oil extraction, and biofuel conversion are much less compared with the growth stage. Potential water conservation opportunities include technology innovations and better management practices at different stages of algal biofuel production.

  11. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process.

    PubMed

    Tu, Qingshi; Lu, Mingming; Thiansathit, Worrarat; Keener, Tim C

    2016-01-01

    Although water is one of the most critical factors affecting the sustainable development of algal biofuels, it is much less studied as compared to the extensive research on algal biofuel production technologies. This paper provides a review of the recent studies on water consumption of the algae biofuel process and presents the water conservation technologies applicable at different stages of the algal biofuel process. Open ponds tend to have much higher water consumption (216 to 2000 gal/gal) than photobioreactors (25 to 72 gal/gal). Algae growth accounts for the highest water consumption (165 to 2000 gal/gal) in the open pond system. Water consumption during harvesting, oil extraction, and biofuel conversion are much less compared with the growth stage. Potential water conservation opportunities include technology innovations and better management practices at different stages of algal biofuel production. PMID:26803023

  12. A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES

    SciTech Connect

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2013-03-15

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

  13. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production.

    PubMed

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-11-17

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office's (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes.

  14. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production

    PubMed Central

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W.; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office’s (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes. PMID:26593899

  15. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production.

    PubMed

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office's (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes. PMID:26593899

  16. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  17. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States.

    PubMed

    Venteris, Erik R; Skaggs, Richard L; Coleman, Andre M; Wigmosta, Mark S

    2013-05-01

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a partial techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply (constrained to less than 5% of mean annual flow per watershed) and costs, and cost-distance models for supplying seawater and saline groundwater. We estimate that, combined, these resources can support 9.46 × 10(7) m(3) yr(-1) (25 billion gallons yr(-1)) of renewable biodiesel production in the coterminous United States. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Despite the addition of freshwater supply constraints and saline water resources, the geographic conclusions are similar to our previous results. Freshwater availability and saline water delivery costs are most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate. As a whole, the barren and scrub lands of the southwestern U.S. have limited freshwater supplies, and large net evaporation rates greatly increase the cost of saline alternatives due to the added makeup water required to maintain pond salinity. However, this and similar analyses are particularly sensitive to knowledge gaps in algae growth/lipid production performance and the proportion of freshwater resources available, key topics for future investigation. PMID:23495893

  18. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States.

    PubMed

    Venteris, Erik R; Skaggs, Richard L; Coleman, Andre M; Wigmosta, Mark S

    2013-05-01

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a partial techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply (constrained to less than 5% of mean annual flow per watershed) and costs, and cost-distance models for supplying seawater and saline groundwater. We estimate that, combined, these resources can support 9.46 × 10(7) m(3) yr(-1) (25 billion gallons yr(-1)) of renewable biodiesel production in the coterminous United States. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Despite the addition of freshwater supply constraints and saline water resources, the geographic conclusions are similar to our previous results. Freshwater availability and saline water delivery costs are most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate. As a whole, the barren and scrub lands of the southwestern U.S. have limited freshwater supplies, and large net evaporation rates greatly increase the cost of saline alternatives due to the added makeup water required to maintain pond salinity. However, this and similar analyses are particularly sensitive to knowledge gaps in algae growth/lipid production performance and the proportion of freshwater resources available, key topics for future investigation.

  19. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  20. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production.

    PubMed

    Yu, Yin; Hu, Hong-Ying; Li, Xin; Wu, Yin-Hu; Zhang, Xue; Jia, Sheng-Lan

    2012-04-01

    Algae cultivation is the essential basis for microalgal biofuel production. Soluble algal products (SAP) are significant obstacle to large-scale, high-cell-density cultivation processes. SAP accumulation during batch cultivation of Scenedesmus sp. LX1 (a unique strain accumulating lipid substantially while growing fast under low-nutrient conditions) with different initial nitrogen concentrations (7.4-34.0mgNL(-1)) was investigated. The SAP content varied in the range of 3.4-17.4mgDOCL(-1) at stationary phase, with average yield per cell of 0.5-2.5pgDOCcell(-1). High SAP accumulation up to 15.2-17.4mgDOCL(-1) were observed with initial nitrogen above 20.2mgNL(-1). The maximum SAP production rate per unit culture volume (r(SAP)) was 2.6mgDOC(Ld)(-1) and that per cell (ν(SAP)) was 1.5pgDOC(celld)(-1). The r(SAP) increased with cell growth rate and decreased with cell density linearly. The SAP accumulation was majorly due to the release of growth-associated products.

  1. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.

    PubMed

    Mishra, Sanjeev; Singh, Neetu; Sarma, Anil Kumar

    2015-08-01

    A novel microalgae strain Chlamydomonas debaryana (KJ210856) was isolated from a freshwater lake of Punjab, India, and cultivated considering climatic sustainability and inherent adaptability concern. C. debaryana was grown in a 30-L indoor photobioreactor to study the mass cultivation prospect and biofuel potential. Physicochemical characterization of biomass and the lipid was performed with effect to nitrogen stress. It showed a higher biomass yield (1.58 ± 0.02 g L(-1), dry weight) and twofold increase in lipid yield (552.78 ± 9 mg L(-1)) with 34.2 ± 0.19 % lipid content under nitrogen deficient condition. Strikingly, increase in triglycerides achieved with nitrogen depletion containing over 96 % of total fatty acids (C 14, C 16, and C 18). Proximate and ultimate analysis suggested the presence of relatively higher volatile matter and carbon-hydrogen ratio. Furthermore, lower moisture and ash content signified C. debaryana biomass has promising features towards biofuel applications. The pyrolytic behavior of the whole biomass was also studied using thermogravimetric analyzer (TGA) and kinetic parameters were estimated using different methods. Promising growth rate and lipid yield leading to feasible biofuel feed stock production in indoor photobioreactor along with autosediment potential of cells validates C. debaryana NIREMACC03, a potential strain for mass cultivation.

  2. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.

    PubMed

    Mishra, Sanjeev; Singh, Neetu; Sarma, Anil Kumar

    2015-08-01

    A novel microalgae strain Chlamydomonas debaryana (KJ210856) was isolated from a freshwater lake of Punjab, India, and cultivated considering climatic sustainability and inherent adaptability concern. C. debaryana was grown in a 30-L indoor photobioreactor to study the mass cultivation prospect and biofuel potential. Physicochemical characterization of biomass and the lipid was performed with effect to nitrogen stress. It showed a higher biomass yield (1.58 ± 0.02 g L(-1), dry weight) and twofold increase in lipid yield (552.78 ± 9 mg L(-1)) with 34.2 ± 0.19 % lipid content under nitrogen deficient condition. Strikingly, increase in triglycerides achieved with nitrogen depletion containing over 96 % of total fatty acids (C 14, C 16, and C 18). Proximate and ultimate analysis suggested the presence of relatively higher volatile matter and carbon-hydrogen ratio. Furthermore, lower moisture and ash content signified C. debaryana biomass has promising features towards biofuel applications. The pyrolytic behavior of the whole biomass was also studied using thermogravimetric analyzer (TGA) and kinetic parameters were estimated using different methods. Promising growth rate and lipid yield leading to feasible biofuel feed stock production in indoor photobioreactor along with autosediment potential of cells validates C. debaryana NIREMACC03, a potential strain for mass cultivation. PMID:26093613

  3. Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  4. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar

    2013-04-01

    The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.

  5. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  6. Towards Sustainable Production of Biofuels from Microalgae

    PubMed Central

    Patil, Vishwanath; Tran, Khanh-Quang; Giselrød, Hans Ragnar

    2008-01-01

    Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel. PMID:19325798

  7. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  8. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  9. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka T.; et al

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  10. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Han, Jeongwoo; Palou-Rivera, Ignasi; Elgowainy, Amgad; Wang, Michael Q.

    2012-03-01

    Researchers around the world are developing sustainable plant-based liquid transportation fuels (biofuels) to reduce petroleum consumption and greenhouse gas emissions. Algae are attractive because they promise large yields per acre compared to grasses, grains and trees, and because they produce oils that might be converted to diesel and gasoline equivalents. It takes considerable energy to produce algal biofuels with current technology; thus, the potential benefits of algal biofuels compared to petroleum fuels must be quantified. To this end, we identified key parameters for algal biofuel production using GREET, a tool for the life-cycle analysis of energy use and emissions in transportation systems. The baseline scenario produced 55 400 g CO2 equivalent per million BTU of biodiesel compared to 101 000 g for low-sulfur petroleum diesel. The analysis considered the potential for greenhouse gas emissions from anaerobic digestion processes commonly used in algal biofuel models. The work also studied alternative scenarios, e.g., catalytic hydrothermal gasification, that may reduce these emissions. The analysis of the nitrogen recovery step from lipid-extracted algae (residues) highlighted the importance of considering the fate of the unrecovered nitrogen fraction, especially that which produces N2O, a potent greenhouse gas with global warming potential 298 times that of CO2.

  11. An Assessment of Land Availability and Price in the Coterminous United States for Conversion to Algal Biofuel Production

    SciTech Connect

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2012-12-01

    Realistic economic assessment of land-intensive alternative energy sources (e.g., solar, wind, and biofuels) requires information on land availability and price. Accordingly, we created a comprehensive, national-scale model of these parameters for the United States. For algae-based biofuel, a minimum of 1.04E+05 km2 of land is needed to meet the 2022 EISA target of 2.1E+10 gallons year-1. We locate and quantify land types best converted. A data-driven model calculates the incentive to sell and a fair compensation value (real estate and lost future income). 1.02E+6 km2 of low slope, non-protected land is relatively available including croplands, pasture/ grazing, and forests. Within this total there is 2.64E+5 km2 of shrub and barren land available. The Federal government has 7.68E+4 km2 available for lease. Targeting unproductive lands minimizes land costs and impacts to existing industries. However, shrub and barren lands are limited by resources (water) and logistics, so land conversion requires careful consideration.

  12. Toward nitrogen neutral biofuel production.

    PubMed

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements.

  13. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  14. Cyanobacterial biofuel production.

    PubMed

    Machado, Iara M P; Atsumi, Shota

    2012-11-30

    The development of new technologies for production of alternative fuel became necessary to circumvent finite petroleum resources, associate rising costs, and environmental concerns due to rising fossil fuel CO₂ emissions. Several alternatives have been proposed to develop a sustainable industrial society and reduce greenhouse emissions. The idea of biological conversion of CO₂ to fuel and chemicals is receiving increased attention. In particular, the direct conversion of CO₂ with solar energy to biofuel by photosynthetic microorganisms such as microalgae and cyanobacteria has several advantages compared to traditional biofuel production from plant biomass. Photosynthetic microorganisms have higher growth rates compared with plants, and the production systems can be based on non-arable land. The advancement of synthetic biology and genetic manipulation has permitted engineering of cyanobacteria to produce non-natural chemicals typically not produced by these organisms in nature. This review addresses recent publications that utilize different approaches involving engineering cyanobacteria for production of high value chemicals including biofuels. PMID:22446641

  15. Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to avert carbon starvation in microalgae.

    PubMed

    Akita, Tetsuya; Kamo, Masashi

    2015-09-01

    Microalgae-derived oil is considered as a feasible alternative to fossil-derived oil. To produce more algal biomass, both algal population size and oil accumulation in algae must be maximized. Most of the previous studies have concentrated on only one of these issues, and relatively little attention has been devoted to considering the tradeoff between them. In this paper, we first theoretically investigated evolutionary reasons for oil accumulation and then by coupling population and evolutionary dynamics, we searched for conditions that may provide better yields. Using our model, we assume that algae allocate assimilated carbon to growth, maintenance, and carbon accumulation as biofuel and that the amount of essential materials (carbon and nitrate) are strongly linked in fixed proportions. Such stoichiometrically explicit models showed that (i) algae with more oil show slower population growth; therefore, the use of such algae results in lower total yields of biofuel and (ii) oil accumulation in algae is caused by carbon and not nitrate starvation. The latter can be interpreted as a strategy for avoiding the risk of increased death rate by carbon starvation. Our model also showed that both strong carbon starvation and moderately limited nitrate will promote total biofuel production. Our results highlight considering the life-history traits for a higher total yields of biofuel, which leads to insight into both establishing a prolonged culture and collection of desired strains from a natural environment.

  16. Recycling produced water for algal cultivation for biofuels

    SciTech Connect

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.; Steichen, Seth A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  17. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production.

    PubMed

    Igou, Thomas; Van Ginkel, Steven W; Penalver-Argueso, Patricia; Fu, Hao; Doi, Shusuke; Narode, Asmita; Cheruvu, Sarasija; Zhang, Qian; Hassan, Fariha; Woodruff, Frazier; Chen, Yongsheng

    2014-12-01

    The latest research shows that algal biofuels, at the production levels mandated in the Energy Independence and Security Act of 2007, will place significant demands on water and compete with agriculture meant for food production. Thus, there is a great need to recycle water while producing algal biofuels. This study shows that when using a synthetic medium, soluble algal products, bacteria, and other inhibitors can be removed by centrifugation and enable water recycling. Average water recovery reached 84% and water could be recycled at least 10 times without reducing algal growth.

  18. Algal Biofuels Strategy. Proceedings from the March 26-27, 2014, Workshop, Charleston, South Carolina

    SciTech Connect

    None, None

    2014-06-01

    This report is based on the proceedings of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s Algal Biofuel Strategy Workshop on March 26-27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  19. Advanced biofuel production in microbes.

    PubMed

    Peralta-Yahya, Pamela P; Keasling, Jay D

    2010-02-01

    The cost-effective production of biofuels from renewable materials will begin to address energy security and climate change concerns. Ethanol, naturally produced by microorganisms, is currently the major biofuel in the transportation sector. However, its low energy content and incompatibility with existing fuel distribution and storage infrastructure limits its economic use in the future. Advanced biofuels, such as long chain alcohols and isoprenoid- and fatty acid-based biofuels, have physical properties that more closely resemble petroleum-derived fuels, and as such are an attractive alternative for the future supplementation or replacement of petroleum-derived fuels. Here, we review recent developments in the engineering of metabolic pathways for the production of known and potential advanced biofuels by microorganisms. We concentrate on the metabolic engineering of genetically tractable organisms such as Escherichia coli and Saccharomyces cerevisiae for the production of these advanced biofuels.

  20. Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell.

    PubMed

    Venkata Mohan, S; Srikanth, S; Chiranjeevi, P; Arora, Somya; Chandra, Rashmi

    2014-08-01

    Replacement of energy intensive mechanical aeration with sustainable oxygenic photosynthesis by microalgae at cathode was studied in dual-chambered microbial fuel cell (MFC). The synergistic association between bacterial fermentation at anode and the oxygenic photosynthesis of microalgae at cathode facilitated good power output as well as treatment efficiency. However, MFC operation during spring showed higher bioelectrogenic activity (57.0 mW/m(2)) over summer (1.1 mW/m(2)) due to the higher oxygenic photosynthetic activity of microalgae and respective dissolved oxygen (DO) levels. This can be attributed to RuBisCO inactivation under high temperatures and light intensity of summer, which prevented rich algal biomass growth as well as their photosynthetic activity. Unlike abiotic cathode, the algal cathode potential increased with operation time due to the algal biomass growth during spring but was negligible during summer. The catalytic currents on voltammetric signatures and the bioprocess parameters also corroborated well with the observed power output.

  1. Full-scale validation of a model of algal productivity.

    PubMed

    Béchet, Quentin; Shilton, Andy; Guieysse, Benoit

    2014-12-01

    While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.

  2. Algal cell disruption using microbubbles to localize ultrasonic energy for biofuel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel; Sch, Lance; King, Daniel; Freund, Jonathan

    2014-11-01

    Cell disruption is a critical step in the production of algal-based biofuels, but current mechanical disruption methods require significant energy, typically more than actually available in the cell's oil. We propose and investigate an ultrasound disruption process using ultrasound contrast agents to localize the delivered energy. Experiments in a flow cell with focused ultrasound show a significant benefit. The degree of disruption increases with increasing peak rarefactional ultrasound pressure for pressures between 1.90 and 3.07 MPa and increasing microbubble concentration up to 12 . 5 ×107 bubbles/ml. Estimates suggest the energy of this method is less than one fourth of the energy of other industrial mechanical disruption techniques and comparable with theoretical disruption estimates. The increase in efficiency would make this technique viable for bioenergy applications.

  3. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  4. Biofuel production from microalgae as feedstock: current status and potential.

    PubMed

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  5. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system.

    PubMed

    Batan, Liaw Y; Graff, Gregory D; Bradley, Thomas H

    2016-11-01

    This study focuses on the characterization of the technical and economic feasibility of an enclosed photobioreactor microalgae system with annual production of 37.85 million liters (10 million gallons) of biofuel. The analysis characterizes and breaks down the capital investment and operating costs and the production cost of unit of algal diesel. The economic modelling shows total cost of production of algal raw oil and diesel of $3.46 and $3.69 per liter, respectively. Additionally, the effects of co-products' credit and their impact in the economic performance of algal-to-biofuel system are discussed. The Monte Carlo methodology is used to address price and cost projections and to simulate scenarios with probabilities of financial performance and profits of the analyzed model. Different markets for allocation of co-products have shown significant shifts for economic viability of algal biofuel system.

  6. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system.

    PubMed

    Batan, Liaw Y; Graff, Gregory D; Bradley, Thomas H

    2016-11-01

    This study focuses on the characterization of the technical and economic feasibility of an enclosed photobioreactor microalgae system with annual production of 37.85 million liters (10 million gallons) of biofuel. The analysis characterizes and breaks down the capital investment and operating costs and the production cost of unit of algal diesel. The economic modelling shows total cost of production of algal raw oil and diesel of $3.46 and $3.69 per liter, respectively. Additionally, the effects of co-products' credit and their impact in the economic performance of algal-to-biofuel system are discussed. The Monte Carlo methodology is used to address price and cost projections and to simulate scenarios with probabilities of financial performance and profits of the analyzed model. Different markets for allocation of co-products have shown significant shifts for economic viability of algal biofuel system. PMID:27475330

  7. Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.

    PubMed

    Davis, Ryan E; Fishman, Daniel B; Frank, Edward D; Johnson, Michael C; Jones, Susanne B; Kinchin, Christopher M; Skaggs, Richard L; Venteris, Erik R; Wigmosta, Mark S

    2014-05-20

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr(-1) (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and interannual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, but economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  8. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale

    SciTech Connect

    Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

    2014-04-21

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  9. Land availability for biofuel production.

    PubMed

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  10. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances

    SciTech Connect

    Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M; Seibert, M.; Darzins, A.

    2008-01-01

    Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.

  11. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  13. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  14. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    NASA Astrophysics Data System (ADS)

    Roberts, Griffin William

    significant portion of algae biomass total weight; wastewater treatment using nitrification requires significant daily additions of buffers, most commonly lime or calcium hydroxide. Accumulation of these ions and metals in wastewater-cultivated algae results in a biomass with substantial amount of inorganic ash content. The cultivated biomass was converted to a carbon-rich biocrude, similar to petroleum crude oil, through a process called hydrothermal liquefaction (abbreviated as HTL), which uses subcritical water (water just below its supercritical point) as the chemical driving force for conversion. Biomass HTL produces four product fractions; liquid biocrude, solids (referred to as biochar), an aqueous product (referred to as aqueous co-product; abbreviated as ACP), and gasses. Many factors contribute to the overall viability of using algae HTL biocrude as a petroleum displacement, particularly yield and quality are important for overall economics and ability to utilize existing refining infrastructure, respectively. The HTL product distribution and quality of wastewater-cultivated algae has been found to be extremely unique with significant advantageous over controlled fertilized growth strategies. Biocrude yields of were typically lower but substantially higher quality with lower oxygen content and higher amounts of direct fuel distillate fractions. This phenomenon is contributed to the fact that large amounts of pure-phase substituted hydroxyapatite (a calcium orthophosphate material) are synthesized in-situ, providing catalytically active sites. Hydroxyapatite (abbreviated HA) is a widely studied material for bone (and dental) tissue regeneration purposes and its acid-base catalytic properties. The specific HA produced during HTL of wastewater-cultivated algae presents unique characteristics for performance and tunability in each respective application, providing novel economic value streams for the production of algal biofuels. The overall work of this dissertation

  15. Synthetic Biology Guides Biofuel Production

    PubMed Central

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  16. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production.

    PubMed

    Guo, Zhen; Liu, Yuan; Guo, Haiyan; Yan, Song; Mu, Jun

    2013-12-01

    Microalgae as a main feedstock has attracted much attention in recent years but is still not economically feasible due to high algal culture cost. The objective of this study was to develop a comprehensive eco-friendly technology for cultivating microalgae Platymonas subcordiformis using aquaculture wastewater as growth medium for biomass and biofuel production. Platymonas subcordiformis was grown in pretreated flounder aquaculture wastewaters taken from different stages. Each of wastewater contained different levels of nutrients. The biomass yield of microalgae and associated nitrogen and phosphorous removal were investigated. The results showed that algal cell density increased 8.9 times than the initial level. Platymonas subcordiformis removed nitrogen and phosphorus from wastewater with an average removal efficiency of 87%-95% for nitrogen and 98%-99% for phosphorus. It was feasible to couple the removal of nitrogen and phosphorus from wastewater to algal biomass and biofuel production. However, further studies are required to make this technologies economically viable for algae biofuel production.

  17. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  18. First-principles flocculation as the key to low energy algal biofuels processing.

    SciTech Connect

    Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O'Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi; Hu, Qiang; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton

    2012-09-01

    This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

  19. Modifying plants for biofuel and biomaterial production.

    PubMed

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel.

  20. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.

    PubMed

    Misra, Namrata; Patra, Mahesh Chandra; Panda, Prasanna Kumar; Sukla, Lala Bihari; Mishra, Barada Kanta

    2013-03-01

    engineered high oil-yielding microalgal strains for biofuel production.

  1. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled.

  2. Constructed wetlands as biofuel production systems

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  3. In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae.

    PubMed

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-01-01

    The current fascination with algal biofuel production stems from a high lipid biosynthetic capacity and little conflict with land plant cultivation. However, the mechanisms which enable algae to accumulate massive oil remain elusive. An enzyme for triacylglycerol (TAG) biosynthesis in Chlamydomonas reinhardtii, CrDGTT2, can produce a large amount of TAG when expressed in yeast or higher plants, suggesting a unique ability of CrDGTT2 to enhance oil production in a heterologous system. Here, we performed metabolic engineering in Saccharomyces cerevisiae by taking advantage of CrDGTT2. We suppressed membrane phospholipid biosynthesis at the log phase by mutating OPI3, enhanced TAG biosynthetic pathway at the stationary phase by overexpressing PAH1 and CrDGTT2, and suppressed TAG hydrolysis on growth resumption from the stationary phase by knocking out DGK1. The resulting engineered yeast cells accumulated about 70-fold of TAG compared with wild type cells. Moreover, TAG production was sustainable. Our results demonstrated the enhanced and sustainable TAG production in the yeast synthetic platform. PMID:26913021

  4. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling.

  5. Impacts of Climate Change on Biofuels Production

    SciTech Connect

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  6. A resilience perspective on biofuel production.

    PubMed

    Mu, Dongyan; Seager, Thomas P; Rao, P Suresh C; Park, Jeryang; Zhao, Fu

    2011-07-01

    The recent investment boom and collapse of the corn ethanol industry calls into question the long-term sustainability of traditional approaches to biofuel technologies. Compared with petroleum-based transportation fuels, biofuel production systems are more closely connected to complex and variable natural systems. Especially as biofeedstock production itself becomes more independent of fossil fuel-based supports, stochasticity will become an increasingly important, inherent feature of biofuel feedstock production systems. Accordingly, a fundamental change in design philosophy is necessary to ensure the long-term viability of the biofuels industry. To respond effectively to unexpected disruptions, the new approach will require systems to be designed for resilience (indicated by diversity, efficiency, cohesion, and adaptability) rather than more narrowly defined measures of efficiency. This paper addresses important concepts in the design of coupled engineering-ecological systems (resistance, resilience, adaptability, and transformability) and examines biofuel conversion technologies from a resilience perspective. Conversion technologies that can accommodate multiple feedstocks and final products are suggested to enhance the diversity and flexibility of the entire industry.

  7. Chlamydomonas as a model for biofuels and bio-products production.

    PubMed

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field.

  8. Chlamydomonas as a model for biofuels and bio-products production.

    PubMed

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. PMID:25641390

  9. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation.

    PubMed

    Agbakpe, Michael; Ge, Shijian; Zhang, Wen; Zhang, Xuezhi; Kobylarz, Patricia

    2014-08-01

    There is a pressing need to develop efficient and sustainable separation technologies to harvest algae for biofuel production. In this work, two bacterial species (Escherichia coli and Rhodococus sp.) were used as biocoagulants to harvest Chlorella zofingiensis and Scenedesmus dimorphus. The influences of UV irradiation and polyethylenimine (PEI)-coating on the algal harvesting efficiency were investigated. Results showed that the UV irradiation could slightly enhance bacteria-algae biocoagulation and algal harvesting efficiency. In contrast, the PEI-coated E. coli cells noticeably increased the harvesting efficiencies from 23% to 83% for S. dimorphus when compared to uncoated E. coli cells. Based on the soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, an energy barrier existed between uncoated E. coli cells and algal cells, whereas the PEI coating on E. coli cells eliminated the energy barrier, thereby the biocoagulation was significantly improved. Overall, this work presented groundwork toward the potential use of bacterial biomass for algal harvesting from water.

  10. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  11. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  12. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions.

  13. Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies

    SciTech Connect

    Coons, James E.; Kalb, Daniel M.; Dale, Taraka; Marrone, Babetta L.

    2014-08-31

    Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologies Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.

  14. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  15. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.

  16. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels. PMID:27023246

  17. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  18. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  19. National microalgae biofuel production potential and resource demand

    NASA Astrophysics Data System (ADS)

    Wigmosta, Mark S.; Coleman, André M.; Skaggs, Richard J.; Huesemann, Michael H.; Lane, Leonard J.

    2011-03-01

    Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced. Our study suggests that under current technology, microalgae have the potential to generate 220 × 109 L yr-1 of oil, equivalent to 48% of current U.S. petroleum imports for transportation. However, this level of production requires 5.5% of the land area in the conterminous United States and nearly three times the water currently used for irrigated agriculture, averaging 1421 L water per liter of oil. Optimizing the locations for microalgae production on the basis of water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, southeastern seaboard, and Great Lakes shows a 75% reduction in consumptive freshwater use to 350 L per liter of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target and utilizing some 25% of the current irrigation demand. With proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  20. Health impact assessment of liquid biofuel production.

    PubMed

    Fink, Rok; Medved, Sašo

    2013-01-01

    Bioethanol and biodiesel as potential substitutes for fossil fuels in the transportation sector have been analyzed for environmental suitability. However, there could be impacts on human health during the production, therefore adverse health effects have to be analyzed. The aim of this study is to analyze to what health risk factors humans are exposed to in the production of biofuels and what the size of the health effects is. A health impact assessment expressed as disability adjusted life years (DALYs) was conducted in SimaPro 7.1 software. The results show a statistically significant lower carcinogenic impact of biofuels (p < 0.05) than fossil fuels. Meanwhile, the impact of organic respirable compounds is smaller for fossil fuels (p < 0.05) than for biofuels. Analysis of inorganic compounds like PM₁₀,₂.₅, SO₂ or NO(x) shows some advantages of sugar beet bioethanol and soybean biodiesel production (p < 0.05), although production of sugarcane bioethanol shows larger impacts of respirable inorganic compounds than for fossil fuels (p < 0.001). Although liquid biofuels are made of renewable energy sources, this does not necessary mean that they do not represent any health hazards. PMID:22774773

  1. Environmental impacts of biofuel production and use

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...

  2. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    PubMed

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards.

  3. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    PubMed

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards. PMID:18261147

  4. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World.

    PubMed

    Rai, Vineeta; Karthikaichamy, Anbarasu; Das, Debasish; Noronha, Santosh; Wangikar, Pramod P; Srivastava, Sanjeeva

    2016-07-01

    Current momentum of microalgal research rests extensively in tapping the potential of multi-omics methodologies in regard to sustainable biofuels. Microalgal biomass is fermented to bioethanol; while lipids, particularly triacylglycerides (TAGs), are transesterified to biodiesels. Biodiesel has emerged as an ideal biofuel candidate; hence, its commercialization and use are increasingly being emphasized. Abiotic stresses exaggerate TAG accumulation, but the precise mechanisms are yet to be known. More recently, comprehensive multi-omics studies in microalgae have emerged from the biofuel perspective. Genomics and transcriptomics of microalgae have provided crucial leads and basic understanding toward lipid biosynthesis. Proteomics and metabolomics are now complementing "algal omics" and offer precise functional insights into the attendant static and dynamic physiological contexts. Indeed, the field has progressed from shotgun to targeted approaches. Notably, targeted proteomics studies in microalga are not yet reported. Several multi-omics tools and technologies that may be used to dig deeper into the microalgal physiology are examined and highlighted in this review. The article therefore aims to both introduce various available high-throughput biotechnologies and applications of "omics" in microalgae, and enlists a compendium of the emerging cutting edge literature. We suggest that a strategic and thoughtful combination of data streams from different omics platforms can provide a system-wide overview. The algal omics warrants closer attention in the future, with a view to technical, economic, and societal impacts that are anticipated in the current postgenomics era. PMID:27315140

  5. Growing duckweed for biofuel production: a review.

    PubMed

    Cui, W; Cheng, J J

    2015-01-01

    Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels.

  6. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.

    PubMed

    Santiago, Aníbal Fonseca; Calijuri, Maria Lucia; Assemany, Paula Peixoto; Calijuri, Maria do Carmo; dos Reis, Alberto José Delgado

    2013-01-01

    Algal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor- HRAP -and the second received UASB effluent pre-disinfected by UV radiation-(UV)HRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The (UV)HRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the (UV)HRAP were 0.95 +/- 0.65% and 1.58 +/- 0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSSm(-2) day(-1)) compared with the (UV)HRAP (9.3 gVSSm(-2) day(-1)). Mean pH values were 7.7 +/- 0.7 in the HRAP and 8.1 +/- 1.0 in the (UV)HRAP, and mean values of DO percent saturation were 87 +/- 26% and 112 +/- 31% for the HRAP and the (UV)HRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.

  7. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass

    PubMed Central

    O'Neil, Gregory W.; Williams, John R.; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M.

    2016-01-01

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product. PMID:27404113

  8. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass.

    PubMed

    O'Neil, Gregory W; Williams, John R; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M

    2016-01-01

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product. PMID:27404113

  9. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass.

    PubMed

    O'Neil, Gregory W; Williams, John R; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M

    2016-06-24

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.

  10. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production.

    PubMed

    Guo, Zhen; Liu, Yuan; Guo, Haiyan; Yan, Song; Mu, Jun

    2013-12-01

    Microalgae as a main feedstock has attracted much attention in recent years but is still not economically feasible due to high algal culture cost. The objective of this study was to develop a comprehensive eco-friendly technology for cultivating microalgae Platymonas subcordiformis using aquaculture wastewater as growth medium for biomass and biofuel production. Platymonas subcordiformis was grown in pretreated flounder aquaculture wastewaters taken from different stages. Each of wastewater contained different levels of nutrients. The biomass yield of microalgae and associated nitrogen and phosphorous removal were investigated. The results showed that algal cell density increased 8.9 times than the initial level. Platymonas subcordiformis removed nitrogen and phosphorus from wastewater with an average removal efficiency of 87%-95% for nitrogen and 98%-99% for phosphorus. It was feasible to couple the removal of nitrogen and phosphorus from wastewater to algal biomass and biofuel production. However, further studies are required to make this technologies economically viable for algae biofuel production. PMID:25078847

  11. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors. PMID:24960016

  12. Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies

    DOE PAGES

    Coons, James E.; Kalb, Daniel M.; Dale, Taraka; Marrone, Babetta L.

    2014-08-31

    Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologiesmore » Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.« less

  13. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  14. Challenges in engineering microbes for biofuels production.

    PubMed

    Stephanopoulos, Gregory

    2007-02-01

    Economic and geopolitical factors (high oil prices, environmental concerns, and supply instability) have been prompting policy-makers to put added emphasis on renewable energy sources. For the scientific community, recent advances, embodied in new insights into basic biology and technology that can be applied to metabolic engineering, are generating considerable excitement. There is justified optimism that the full potential of biofuel production from cellulosic biomass will be obtainable in the next 10 to 15 years.

  15. Plant biotechnology for lignocellulosic biofuel production.

    PubMed

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production. PMID:25330253

  16. Plant biotechnology for lignocellulosic biofuel production.

    PubMed

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.

  17. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  18. A High-Resolution National Microalgae Biofuel Production and Resource Assessment

    NASA Astrophysics Data System (ADS)

    Wigmosta, M.; Coleman, A.; Skaggs, R.; Venteris, E.

    2012-12-01

    Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on available resources. We present a high-resolution national-scale spatiotemporal assessment that begins to answer fundamental questions of where sustainable production can occur, what types and quantities of water, land, and nutrients are required, and how much energy is produced. A series of coupled model components were developed at a high spatiotemporal scale on the basis of the dominant biophysical processes affecting algal growth. Land suitable for open pond microalgae production consisting of 1200 acres per unit farm is identified using a multi-criteria land suitability model. Physics-based biomass growth and pond temperature models are then are used with location-specific meteorological and topographic data at 89,756 suitable unit farms to estimate 30-years of hourly biofuel production, nutrient requirements, and multi-source consumptive water demand. These resource requirements are compared with available resource supply and transport constraints to prioritize potential locations for sustainable microalgae feedstock production and evaluate the associated tradeoffs between production, resources, and economics.

  19. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies.

  20. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920

  1. A Survey of Biofuel Production potentials in Russia

    NASA Astrophysics Data System (ADS)

    Lykova, Natalya; Gustafsson, Jan-Erik

    2010-01-01

    Due to the abundance of fossil fuel resources in Russia, the development of the renewable energy market there was delayed. Recent technological advancement has led to an increasing interest in biofuel production. The aim of research was to evaluate how biofuels are introduced into the current energy scheme of the country. The potential production of biofuels was estimated based on sustainable approaches which provide solution for carbon emission reduction and environmental benefits. Russia still requires biofuel policy to make biofuels compatible with traditional fossil fuels.

  2. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems.

  3. Scope of algae as third generation biofuels.

    PubMed

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  4. Scope of algae as third generation biofuels.

    PubMed

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  5. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  6. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  7. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar

    2013-11-01

    Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production.

  8. Agrigenomics for Microalgal Biofuel Production: An Overview of Various Bioinformatics Resources and Recent Studies to Link OMICS to Bioenergy and Bioeconomy

    PubMed Central

    Misra, Namrata; Parida, Bikram Kumar

    2013-01-01

    Abstract Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other “omic” approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of “omics” in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of “omic” approaches in the metabolic pathway studies for microalgal biofuel production. PMID:24044362

  9. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation. PMID:26808868

  10. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation.

  11. Effects of Escherichia coli on Mixotrophic Growth of Chlorella minutissima and Production of Biofuel Precursors

    PubMed Central

    Higgins, Brendan T.; VanderGheynst, Jean S.

    2014-01-01

    Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23–737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up. PMID:24805253

  12. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  13. Limitation of Biofuel Production in Europe from the Forest Market

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  14. Metabolic engineering of microbial pathways for advanced biofuels production.

    PubMed

    Zhang, Fuzhong; Rodriguez, Sarah; Keasling, Jay D

    2011-12-01

    Production of biofuels from renewable resources such as cellulosic biomass provides a source of liquid transportation fuel to replace petroleum-based fuels. This endeavor requires the conversion of cellulosic biomass into simple sugars, and the conversion of simple sugars into biofuels. Recently, microorganisms have been engineered to convert simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, alkanes, and terpenes, with high titers and yields. Here, we review recently engineered biosynthetic pathways from the well-characterized microorganisms Escherichia coli and Saccharomyces cerevisiae for the production of several advanced biofuels.

  15. Genetically Engineered Materials for Biofuels Production

    NASA Astrophysics Data System (ADS)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  16. Rapid saccharification for production of cellulosic biofuels.

    PubMed

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis.

  17. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research

  18. Biofuels

    NASA Video Gallery

    What’s green, slimy and packed full of energy? Algae, of course! This biofuel is just one of the many renewable energies NASA studies. Biofuels could generate and store energy for long-term human...

  19. An efficient and scalable extraction and quantification method for algal derived biofuel.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Halverson, Luke; Macur, Richard E; Peyton, Brent M; Gerlach, Robin

    2013-09-01

    Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids from live cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC-FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC-MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived from the residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae; the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris

  20. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  1. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  2. Downstream Processing of Synechocystis for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  3. Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal by-product meals from the Hawaiian biofuels industry were evaluated as protein ingredients in diets for juveniles of Nile tilapia (Oreochromis niloticus). Four experimental diets were formulated to contain 40% protein and were made with fish meal, soybean meal, whole diatom (Nanofrustulum sp.)...

  4. Phenolic content and antioxidant capacity in algal food products.

    PubMed

    Machu, Ludmila; Misurcova, Ladislava; Ambrozova, Jarmila Vavra; Orsavova, Jana; Mlcek, Jiri; Sochor, Jiri; Jurikova, Tunde

    2015-01-01

    The study objective was to investigate total phenolic content using Folin-Ciocalteu's method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g-1 GAE; 7.53 µmol AA·g-1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols. PMID:25587787

  5. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds.

    PubMed

    Li, Jingjing; Liu, Ying; Cheng, Jay J; Mos, Michal; Daroch, Maurycy

    2015-12-25

    Microalgae abundance and diversity in China shows promise for identifying suitable strains for developing algal biorefinery. Numerous strains of microalgae have already been assessed as feedstocks for bioethanol and biodiesel production, but commercial scale algal biofuel production is yet to be demonstrated, most likely due to huge energy costs associated with algae cultivation, harvesting and processing. Biorefining, integrated processes for the conversion of biomass into a variety of products, can improve the prospects of microalgal biofuels by combining them with the production of high value co-products. Numerous microalgal strains in China have been identified as producers of various high value by-products with wide application in the medicine, food, and cosmetics industries. This paper reviews microalgae resources in China and their potential in producing liquid biofuels (bioethanol and biodiesel) and high value products in an integrated biorefinery approach. Implementation of a 'high value product first' principle should make the integrated process of fuels and chemicals production economically feasible and will ensure that public and private interest in the development of microalgal biotechnology is maintained.

  6. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock.

    PubMed

    Tanadul, Orn-U-Ma; VanderGheynst, Jean S; Beckles, Diane M; Powell, Ann L T; Labavitch, John M

    2014-07-01

    Cultured microalgae are viewed as important producers of lipids and polysaccharides, both of which are precursor molecules for the production of biofuels. This study addressed the impact of elevated carbon dioxide (CO2) on Chlorella sorokiniana production of starch and on several properties of the starch produced. The production of C. sorokiniana biomass, lipid and starch were enhanced when cultures were supplied with 2% CO2. Starch granules from algae grown in ambient air and 2% CO2 were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The granules from algae grown in 2% CO2 were disk-shaped and contained mainly stromal starch; granules from cultures grown in ambient air were cup-shaped with primarily pyrenoid starch. The granules from cells grown in 2% CO2 had a higher proportion of the accumulated starch as the highly branched, amylopectin glucan than did granules from cells grown in air. The rate of hydrolysis of starch from 2% CO2-grown cells was 1.25 times greater than that from air-grown cells and 2-11 times higher than the rates of hydrolysis of starches from cereal grains. These data indicate that culturing C. sorokiniana in elevated CO2 not only increases biomass yield but also improves the structure and composition of starch granules for use in biofuel generation. These modifications in culture conditions increase the hydrolysis efficiency of the starch hydrolysis, thus providing potentially important gains for biofuel production.

  7. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production

    PubMed Central

    Flynn, K. J.; Mitra, A.; Greenwell, H. C.; Sui, J.

    2013-01-01

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation. PMID:24427510

  8. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production.

    PubMed

    Flynn, K J; Mitra, A; Greenwell, H C; Sui, J

    2013-02-01

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.

  9. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  10. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost. PMID:27295924

  11. Turbulence and nutrient interactions that control benthic algal production in an engineered cultivation raceway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow turbulence can be a controlling factor to the growth of benthic algae, but few studies have quantified this relationship in engineered cultivation systems. Experiments were performed to understand the limiting role of turbulence to algal productivity in an algal turf scrubber for benthic algal...

  12. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production.

    PubMed

    Parisutham, Vinuselvi; Kim, Tae Hyun; Lee, Sung Kuk

    2014-06-01

    Lignocelluloses are rich sugar treasures, which can be converted to useful commodities such as biofuel with the help of efficient combination of enzymes and microbes. Although several bioprocessing approaches have been proposed, biofuel production from lignocelluloses is limited because of economically infeasible technologies for pretreatment, saccharification and fermentation. Use of consolidated bioprocessing (CBP) microbes is the most promising method for the cost-effective production of biofuels. However, lignocelluloses are obtained from highly diverse environment and hence are heterogeneous in nature. Therefore, it is necessary to develop and integrate tailor-designed pretreatment processes and efficient microbes that can thrive on many different kinds of biomass. In this review, the progress towards the construction of consolidated bioprocessing microbes, which can efficiently convert heterogeneous lignocellulosic biomass to bioenergy, has been discussed; in addition, the potential and constraints of current bioprocessing technologies for cellulosic biofuel production have been discussed.

  13. Systems-Level Synthetic Biology for Advanced Biofuel Production

    SciTech Connect

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall; Meserole, Stephen; Tallant, David

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  14. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    PubMed

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production.

  15. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    PubMed

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. PMID:26928758

  16. Exergy-based efficiency and renewability assessment of biofuel production.

    PubMed

    Dewulf, J; Van Langenhove, H; Van De Velde, B

    2005-05-15

    This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy.

  17. Exergy-based efficiency and renewability assessment of biofuel production.

    PubMed

    Dewulf, J; Van Langenhove, H; Van De Velde, B

    2005-05-15

    This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy. PMID:15952399

  18. Microbial engineering for the production of advanced biofuels.

    PubMed

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  19. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. PMID:23628723

  20. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  1. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production.

    PubMed

    Mutanda, T; Ramesh, D; Karthikeyan, S; Kumari, S; Anandraj, A; Bux, F

    2011-01-01

    Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20-50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The main focus of bioprospecting for microalgae is to identify unique high lipid producing microalgae from different habitats. Indigenous species of microalgae with high lipid yields are especially valuable in the biofuel industry. Isolation, purification and identification of natural microalgal assemblages using conventional techniques is generally time consuming. However, the recent use of micromanipulation as a rapid isolating tool allows for a higher screening throughput. The appropriate media and growth conditions are also important for successful microalgal proliferation. Environmental parameters recorded at the sampling site are necessary to optimize in vitro growth. Identification of species generally requires a combination of morphological and genetic characterization. The selected microalgal strains are grown in upscale systems such as raceway ponds or photobireactors for biomass and lipid production. This paper reviews the recent methodologies adopted for site selection, sampling, strain selection and identification, optimization of cultural conditions for superior lipid yield for biofuel production. Energy generation routes of microalgal lipids and biomass are discussed in detail.

  2. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). PMID:27007038

  3. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  4. The potential of C4 grasses for cellulosic biofuel production

    PubMed Central

    van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628

  5. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    SciTech Connect

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  6. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    SciTech Connect

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  7. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production.

    PubMed

    Anemaet, Ida G; Bekker, Martijn; Hellingwerf, Klaas J

    2010-11-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO₂ into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO₂ into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps--after acid hydrolysis--as a complex, animal-free serum for growth of mammalian cells in vitro.

  8. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    PubMed Central

    Anemaet, Ida G.; Bekker, Martijn

    2010-01-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid hydrolysis—as a complex, animal-free serum for growth of mammalian cells in vitro. PMID:20640935

  9. Managing water resources for biomass production in a biofuel economy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of our national security policy is to become more energy independent using biofuels. The expanded production of agricultural crops for bioenergy production has introduced new challenges for management of water. Water availability has been widely presumed in the discussion of bioenergy crop ...

  10. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    ERIC Educational Resources Information Center

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  11. Oxygen sensitivity of algal H{sub 2}-production

    SciTech Connect

    Ghirardi, M.L.; Seibert, M.; Togasaki, R.K.

    1997-12-31

    Photoproduction of H{sub 2} by green algae utilizes electrons originating from the photosynthetic oxidation of water and does not require metabolic intermediates. However, algal hydrogenases are extremely sensitive to O{sub 2}, which limits their usefulness in future commercial H{sub 2}-production systems. We designed an experimental technique for the selection of O{sub 2}tolerant, H{sub 2}-producing variants of Chlamydomonas reinhardtii based on the ability of wild-type cells to survive a short (20 min) exposure to metronidazole in the presence of controlled concentrations of O{sub 2}. The number of survivors depends on the metronidazole concentration, light intensity, preinduction of the hydrogenase, and the presence or absence of O{sub 2}. Finally, we demonstrate that some of the selected survivors in fact exhibit H{sub 2}-production capacity that is less sensitive to O{sub 2} than the original wild-type population. 17 refs., 1 tab.

  12. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  13. Trade-offs between agricultural production and biodiversity for biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing energy demands and concerns for climate change have pushed forward the time line for biofuel production. However, the effect of large-scale biofuel production in the U.S. on the agricultural industry, primarily responsible for food production and livestock feed, and biodiversity levels of ma...

  14. Sustainability of biofuels and renewable chemicals production from biomass.

    PubMed

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well.

  15. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  16. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges

    PubMed Central

    Banerjee, Chiranjib; Dubey, Kashyap K.; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering. PMID:27065986

  17. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering. PMID:27065986

  18. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.

    PubMed

    Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

    2014-02-01

    Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH₃-N, TN, COD, and PO₄-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study. PMID:24203276

  19. Advances in microalgae engineering and synthetic biology applications for biofuel production.

    PubMed

    Gimpel, Javier A; Specht, Elizabeth A; Georgianna, D Ryan; Mayfield, Stephen P

    2013-06-01

    Among the technologies being examined to produce renewable fuels, microalgae are viewed by many in the scientific community as having the greatest potential to become economically viable. Algae are capable of producing greater than 50,000 kg/acre/year of biomass [1]. Additionally, most algae naturally accumulate energy-dense oils that can easily be converted into transportation fuels. To reach economic parity with fossil fuels there are still several challenges. These include identifying crop protection strategies, improving harvesting and oil extraction processes, and increasing biomass productivity and oil content. All of these challenges can be impacted by genetic, molecular, and ultimately synthetic biology techniques, and all of these technologies are being deployed to enable algal biofuels to become economically competitive with fossil fuels.

  20. Spatially Explicit Life Cycle Assessment of Biofuel Feedstock Production

    EPA Science Inventory

    Biofuels derived from renewable resources have gained increased research and development priority due to increasing energy demand and national security concerns. In the US, the Energy Independence and Security Act (EISA) of 2007 mandated the annual production of 56.8 billion L of...

  1. Biofuels production on abandoned and marginal agriculture lands in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Lobell, D. B.; Field, C. B.

    2008-12-01

    The location of biofuels agriculture land is a critical parameter for predicting biomass feedstock yields, land use emissions, and optimal plant varieties. Using abandoned and marginal agriculture lands to grow feedstocks for second-generation biofuels could provide a sustainable alternative to conventional biofuels production. These marginal areas are in a state of flux in the Midwestern U.S. where a 2007 surge in biofuels has contributed to competing land use demands including conventional biofuels crops, food agriculture, and conservation. Here we apply land use and agriculture data to consider the extent and productivity of abandoned and marginal lands in the Midwestern U.S. for production of second-generation biofuels.

  2. Laccase applications in biofuels production: current status and future prospects.

    PubMed

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy. PMID:24841120

  3. Laccase applications in biofuels production: current status and future prospects.

    PubMed

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  4. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGES

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  5. Microalgal cultivation with biogas slurry for biofuel production.

    PubMed

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. PMID:27599623

  6. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  7. Microalgal cultivation with biogas slurry for biofuel production.

    PubMed

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward.

  8. Microalgae as a raw material for biofuels production.

    PubMed

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  9. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  10. Metabolic engineering for isoprenoid-based biofuel production.

    PubMed

    Gupta, P; Phulara, S C

    2015-09-01

    Sustainable economic and industrial growth is the need of the hour and it requires renewable energy resources having better performance and compatibility with existing fuel infrastructure from biological routes. Isoprenoids (C ≥ 5) can be a potential alternative due to their diverse nature and physiochemical properties similar to that of petroleum based fuels. In the past decade, extensive research has been done to utilize metabolic engineering strategies in micro-organisms primarily, (i) to overcome the limitations associated with their natural and non-natural production and (ii) to develop commercially competent microbial strain for isoprenoid-based biofuel production. This review briefly describes the engineered isoprenoid biosynthetic pathways in well-characterized microbial systems for the production of several isoprenoid-based biofuels and fuel precursors.

  11. Methods and materials for deconstruction of biomass for biofuels production

    SciTech Connect

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  12. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    PubMed Central

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. PMID:21318120

  13. Molecular breeding of advanced microorganisms for biofuel production.

    PubMed

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  14. Genetic Engineering of Algae for Enhanced Biofuel Production

    PubMed Central

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  15. Bioreactor technology for production of valuable algal products

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Cai; Cao, Ying

    1998-03-01

    Bioreactor technology has long been employed for the production of various (mostly cheap) food and pharmaceutical products. More recently, research has been mainly focused on the development of novel bioreactor technology for the production of high—value products. This paper reports the employment of novel bioreactor technology for the production of high-value biomass and metabolites by microalgae. These high-value products include microalgal biomass as health foods, pigments including phycocyanin and carotenoids, and polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. The processes involved include heterotrophic and mixotrophic cultures using organic substrates as the carbon source. We have demonstrated that these bioreactor cultivation systems are particularly suitable for the production of high-value products from various microalgae. These cultivation systems can be further modified to improve cell densities and productivities by using high cell density techniques such as fed-batch and membrane cell recycle systems. For most of the microalgae investigated, the maximum cell concentrations obtained using these bioreactor systems in our laboratories are much higher than any so far reported in the literature.

  16. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.

  17. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  18. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  19. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  20. Alternatives to Trichoderma reesei in biofuel production.

    PubMed

    Gusakov, Alexander V

    2011-09-01

    Mutant strains of Trichoderma reesei are considered indisputable champions in cellulase production among biomass-degrading fungi. So, it is not surprising that most R&D projects on bioethanol production from lignocellulosics have been based on using T. reesei cellulases. The present review focuses on whether any serious alternatives to T. reesei enzymes in cellulose hydrolysis exist. Although not widely accepted, more and more data have been accumulated that demonstrate that fungi belonging to the genera Penicillium, Acremonium and Chrysosporium might represent such alternatives because they are competitive to T. reesei on some important parameters, such as protein production level, cellulase hydrolytic performance per unit of activity or milligram of protein.

  1. Assessing extension and outreach education levels for biofuel feedstock production in the Western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...

  2. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity...

  3. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  4. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  5. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  6. Tailoring lignin biosynthesis for efficient and sustainable biofuel production.

    PubMed

    Liu, Chang-Jun; Cai, Yuanheng; Zhang, Xuebin; Gou, Mingyue; Yang, Huijun

    2014-12-01

    Increased global interest in a bio-based economy has reinvigorated the research on the cell wall structure and composition in plants. In particular, the study of plant lignification has become a central focus, with respect to its intractability and negative impact on the utilization of the cell wall biomass for producing biofuels and bio-based chemicals. Striking progress has been achieved in the last few years both on our fundamental understanding of lignin biosynthesis, deposition and assembly, and on the interplay of lignin synthesis with the plant growth and development. With the knowledge gleaned from basic studies, researchers are now able to invent and develop elegant biotechnological strategies to sophisticatedly manipulate the quantity and structure of lignin and thus to create economically viable bioenergy feedstocks. These concerted efforts open an avenue for the commercial production of cost-competitive biofuel to meet our energy needs.

  7. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  8. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  9. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    PubMed

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  10. Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn-based fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat. The fact that several demonstration-...

  11. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  12. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    SciTech Connect

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operating costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John Wiley

  13. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE PAGES

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John

  14. Downgrading recent estimates of land available for biofuel production.

    PubMed

    Fritz, Steffen; See, Linda; van der Velde, Marijn; Nalepa, Rachel A; Perger, Christoph; Schill, Christian; McCallum, Ian; Schepaschenko, Dmitry; Kraxner, Florian; Cai, Ximing; Zhang, Xiao; Ortner, Simone; Hazarika, Rubul; Cipriani, Anna; Di Bella, Carlos; Rabia, Ahmed H; Garcia, Alfredo; Vakolyuk, Mar'yana; Singha, Kuleswar; Beget, Maria E; Erasmi, Stefan; Albrecht, Franziska; Shaw, Brian; Obersteiner, Michael

    2013-02-01

    Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. These estimates were generated from four scenarios regarding the types of land suitable for bioenergy production using coarse-resolution inputs of soil productivity, slope, climate, and land cover. In this paper, these maps of land availability were assessed using high-resolution satellite imagery. Samples from these maps were selected and crowdsourcing of Google Earth images was used to determine the type of land cover and the degree of human impact. Based on this sample, a set of rules was formulated to downward adjust the original estimates for each of the four scenarios that were previously used to generate the maps of land availability for bioenergy production. The adjusted land availability estimates range from 56 to 1035 million ha depending upon the scenario and the ruleset used when the sample is corrected for bias. Large forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for biofuel production when using coarse-resolution inputs with implications for further policy development. PMID:23308357

  15. Downgrading recent estimates of land available for biofuel production.

    PubMed

    Fritz, Steffen; See, Linda; van der Velde, Marijn; Nalepa, Rachel A; Perger, Christoph; Schill, Christian; McCallum, Ian; Schepaschenko, Dmitry; Kraxner, Florian; Cai, Ximing; Zhang, Xiao; Ortner, Simone; Hazarika, Rubul; Cipriani, Anna; Di Bella, Carlos; Rabia, Ahmed H; Garcia, Alfredo; Vakolyuk, Mar'yana; Singha, Kuleswar; Beget, Maria E; Erasmi, Stefan; Albrecht, Franziska; Shaw, Brian; Obersteiner, Michael

    2013-02-01

    Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. These estimates were generated from four scenarios regarding the types of land suitable for bioenergy production using coarse-resolution inputs of soil productivity, slope, climate, and land cover. In this paper, these maps of land availability were assessed using high-resolution satellite imagery. Samples from these maps were selected and crowdsourcing of Google Earth images was used to determine the type of land cover and the degree of human impact. Based on this sample, a set of rules was formulated to downward adjust the original estimates for each of the four scenarios that were previously used to generate the maps of land availability for bioenergy production. The adjusted land availability estimates range from 56 to 1035 million ha depending upon the scenario and the ruleset used when the sample is corrected for bias. Large forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for biofuel production when using coarse-resolution inputs with implications for further policy development.

  16. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  17. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  18. [Application of systems biology and synthetic biology in strain improvement for biofuel production].

    PubMed

    Zhao, Xinqing; Bai, Fengwu; Li, Yin

    2010-07-01

    Biofuels are renewable and environmentally friendly, but high production cost makes them economically not competitive, and the development of robust strains is thus one of the prerequisites. In this article, strain improvement studies based on the information from systems biology studies are reviewed, with a focus on their applications on stress tolerance improvement. Furthermore, the contribution of systems biology, synthetic biology and metabolic engineering in strain development for biofuel production is discussed, with an expectation for developing more robust strains for biofuel production.

  19. Microwave-assisted pyrolysis of biomass for liquid biofuels production.

    PubMed

    Yin, Chungen

    2012-09-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by "microwave dielectric heating" effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass pretreatment to bio-oil collection. The existing efforts are summarized in a table, providing a handy overview of the activities (e.g., feedstock and pretreatment, reactor/pyrolysis conditions) and findings (e.g., pyrolysis products) of various investigations.

  20. Algae biofuels: versatility for the future of bioenergy.

    PubMed

    Jones, Carla S; Mayfield, Stephen P

    2012-06-01

    The world continues to increase its energy use, brought about by an expanding population and a desire for a greater standard of living. This energy use coupled with the realization of the impact of carbon dioxide on the climate, has led us to reanalyze the potential of plant-based biofuels. Of the potential sources of biofuels the most efficient producers of biomass are the photosynthetic microalgae and cyanobacteria. These versatile organisms can be used for the production of bioethanol, biodiesel, biohydrogen, and biogas. In fact, one of the most economic methods for algal biofuels production may be the combined biorefinery approach where multiple biofuels are produced from one biomass source.

  1. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  2. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect

    Zhang, X; Izaurralde, R. C.; Manowitz, D.; West, T. O.; Thomson, A. M.; Post, Wilfred M; Bandaru, Vara Prasad; Nichols, Jeff; Williams, J.

    2010-10-01

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  3. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  4. The impact of extreme drought on the biofuel feedstock production

    NASA Astrophysics Data System (ADS)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  5. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  6. Research, development, and demonstration of algal production raceway (APR) systems for the production of hydrocarbon resources

    SciTech Connect

    Laws, E.A.

    1984-02-01

    A fractional factorial experimental design was used to determine the maximum production and photosynthetic efficiency that could be achieved in shallow algal mass culture systems (SAMCS) of the marine diatom Phaeodactylum tricornutum. Dilution rate and CO/sub 2/ supply were found to be the most important system parameters. Maximum production was found to be about 25 g dry wt m/sup -2/d/sup -1/. This production corresponded to a photosynthetic efficiency of 5.6%. These figures are 50 to 100% better than the production rates achieved in earlier P. tricornutum cultures using conventional culture techniques. The results are consistent with a theoretical model of the impact of the flashing light effect on algal mass culture production. This model predicts that at the typical irradiances in Hawaii, full utilization of the flashing light effect should enhance production by 70% to over 200%. It was concluded that the use of foil arrays in the experimental flume creates systematic vertical mixing on a time scale suitable for utilizing the flashing light effect. Production of P. tricornutum culture is probably limited by temperature. P. tricornutum cannot survive at temperatures in excess of 25/sup 0/C in outdoor mass cultures. Growth of mesophilic species in the temperature range 30 to 35/sup 0/C may well result in even higher production than that achieved with P. tricornutum.

  7. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants.

    PubMed

    Fortier, Marie-Odile P; Sturm, Belinda S M

    2012-10-16

    Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited. PMID:22970803

  8. Recent trends in nanomaterials immobilised enzymes for biofuel production.

    PubMed

    Verma, Madan L; Puri, Munish; Barrow, Colin J

    2016-01-01

    Application of nanomaterials as novel supporting materials for enzyme immobilisation has generated incredible interest in the biotechnology community. These robust nanostructured forms, such as nanoparticles, nanofibres, nanotubes, nanoporous, nanosheets, and nanocomposites, possess a high surface area to volume ratios that can cause a high enzyme loading and facilitate reaction kinetics, thus improving biocatalytic efficiency for industrial applications. In this article, we discuss research opportunities of nanoscale materials in enzyme biotechnology and highlight recent developments in biofuel production using advanced material supports for enzyme immobilisation and stabilisation. Synthesis and functionalisation of nanomaterial forms using different methods are highlighted. Various simple and effective strategies designed to result in a stable, as well as functional protein-nanomaterial conjugates are also discussed. Analytical techniques confirming enzyme loading on nanomaterials and assessing post-immobilisation changes are discussed. The current status of versatile nanomaterial support for biofuel production employing cellulases and lipases is described in details. This report concludes with a discussion on the likely outcome that nanomaterials will become an integral part of sustainable bioenergy production.

  9. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.

  10. The role of biochemical engineering in the production of biofuels from microalgae.

    PubMed

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae.

  11. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific

  12. Water quality under increased biofuel production and future climate change and uncertainty

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  13. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    NASA Astrophysics Data System (ADS)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits

  14. Promise and Challenges of Microalgal-Derived Biofuels

    SciTech Connect

    Pienkos, P. T.; Darzins, A.

    2009-01-01

    Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality.

  15. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  16. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  17. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-01-01

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  18. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-01-01

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area. PMID:26938514

  19. Life cycle and landscape impacts of biofuel production

    NASA Astrophysics Data System (ADS)

    Hill, J.

    2012-12-01

    Achieving the biofuel volumes mandated in the Renewable Fuels Standard of the United States Energy Independence and Security Act of 2007 will require large amounts of biomass such as crop residues and dedicated bioenergy crops. Growing sufficient amounts of these feedstocks would greatly transform the agricultural landscape of the United States, and depending on where and how they are grown, may have vastly different implications for the sustainability of the biofuels industry. This presentation describes ongoing research into how biomass can best be produced on the landscape so as to benefit rural economies and provide ecosystem services such as greenhouse gas mitigation and improved air quality. The focus is on newly developed methods for integrating spatial and temporal information into life cycle assessment so as to both allow for more detailed impact assessment and to provide insight into how to improve efficiency along bioenergy production supply chains. Results will benefit stakeholders both by offering recommendations for guiding sustainable growth of the emerging bioeconomy and by advancing understanding of the inherent tradeoffs among alternate scenarios.

  20. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  1. Landscape considerations of perennial biofuel feedstock production in conservation buffers of the Georgia Coastal Plain, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With global increases in the production of cellulosic biomass for fuel, or “biofuel,” concerns over potential negative effects of using land for biofuel production have promoted attention to concepts of agricultural landscape design that sustainably balance tradeoffs between food, fuel, fiber, and c...

  2. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    PubMed

    Park, Sichoon; Van Ginkel, Steven W; Pradeep, Priya; Igou, Thomas; Yi, Christine; Snell, Terry; Chen, Yongsheng

    2016-01-01

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC(50) for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC(50) for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes.

  3. Fuel from Wastewater - Harnessing a Potential Energy Source in Canada through the Co-location of Algae Biofuel Production to Sources of Effluent, Heat and CO2

    NASA Astrophysics Data System (ADS)

    Klise, G. T.; Roach, J. D.; Passell, H. D.; Moreland, B. D.; O'Leary, S. J.; Pienkos, P. T.; Whalen, J.

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the “production” footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada’s NRC. Results from the NREL / NRC collaboration including specific

  4. Development of biological platform for the autotrophic production of biofuels

    NASA Astrophysics Data System (ADS)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  5. Engineering of plant cell walls for enhanced biofuel production.

    PubMed

    Loqué, Dominique; Scheller, Henrik V; Pauly, Markus

    2015-06-01

    The biomass of plants consists predominately of cell walls, a sophisticated composite material composed of various polymer networks including numerous polysaccharides and the polyphenol lignin. In order to utilize this renewable, highly abundant resource for the production of commodity chemicals such as biofuels, major hurdles have to be surpassed to reach economical viability. Recently, major advances in the basic understanding of the synthesis of the various wall polymers and its regulation has enabled strategies to alter the qualitative composition of wall materials. Such emerging strategies include a reduction/alteration of the lignin network to enhance polysaccharide accessibility, reduction of polymer derived processing inhibitors, and increases in polysaccharides with a high hexose/pentose ratio.

  6. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  7. Primary production of edaphic algal communities in a Mississippi salt marsh

    SciTech Connect

    Sullivan, M.J.; Moncreiff, C.A.

    1988-03-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by /sup 14/C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m/sup 2/ in Juncus roemerianus Scheele to a high of 163 mg C/m/sup 2/ beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R/sup 2/; however, virtually all variables selected were diatom taxa. R/sup 2/ was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m/sup 2/) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes.

  8. Complete Genome Sequence of Enterococcus faecalis Strain W11 Isolated from an Algal Food Product

    PubMed Central

    Takizawa, Noboru

    2016-01-01

    Here, we report the complete genome sequence of Enterococcus faecalis strain W11 isolated from an algal food product in Japan. This study should facilitate the identification of a novel mechanism of glycerol metabolic control in lactic acid bacteria. PMID:27688337

  9. Complete Genome Sequence of Enterococcus faecalis Strain W11 Isolated from an Algal Food Product.

    PubMed

    Doi, Yuki; Takizawa, Noboru

    2016-01-01

    Here, we report the complete genome sequence of Enterococcus faecalis strain W11 isolated from an algal food product in Japan. This study should facilitate the identification of a novel mechanism of glycerol metabolic control in lactic acid bacteria. PMID:27688337

  10. Algal biomass and primary production within a temperate zone sandstone

    SciTech Connect

    Bell, R.A.; Sommerfeld, M.R. )

    1987-02-01

    The use of dimethyl sulfoxide (DMSO) to extract chlorophyll a and {sup 14}C-labelled photosynthate from endolithic algae of sparsely vegetated, cold temperate grasslands on the Colorado Plateau in Arizona has yielded the first estimates of biomass and photosynthesis for this unusual community. These subsurface microorganisms are found widespread in exposed Coconino Sandstone, a predominant formation in this cold temperate region. The endolithic community in Coconino Sandstone, composed primarily of coccoid blue-green and coccoid/sarcinoid green algae, yielded a biomass value (as chlorophyll a content) of 87 mg m{sup {minus}2} rock surface area and a photosynthetic rate of 0.37 mg CO{sub 2} dm{sup {minus}2} hr{sup {minus}1} or 0.48 mg CO{sub 2} mg{sup {minus}1} chl a hr{sup {minus}1}. The endolithic algal community contributes moderate biomass (5-10%) and substantial photosynthesis (20-80%) to the sparse grassland ecosystem.

  11. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata.

  12. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    PubMed

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production. PMID:26883347

  13. Use of tamarisk as a potential feedstock for biofuel production.

    SciTech Connect

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  14. Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First-generation (ie., corn-based) fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of second-generation biofuel processes from lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat....

  15. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    PubMed

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production.

  16. Anomalous rise in algal production linked to lakewater calcium decline through food web interactions

    PubMed Central

    Korosi, Jennifer B.; Burke, Samantha M.; Thienpont, Joshua R.; Smol, John P.

    2012-01-01

    Increased algal blooms are a threat to aquatic ecosystems worldwide, although the combined effects of multiple stressors make it difficult to determine the underlying causes. We explore whether changes in trophic interactions in response to declining calcium (Ca) concentrations, a water quality issue only recently recognized in Europe and North America, can be linked with unexplained bloom production. Using a palaeolimnological approach analysing the remains of Cladocera (herbivorous grazers) and visual reflectance spectroscopically inferred chlorophyll a from the sediments of a Nova Scotia (Canada) lake, we show that a keystone grazer, Daphnia, declined in the early 1990s and was replaced by a less effective grazer, Bosmina, while inferred chlorophyll a levels tripled at constant total phosphorus (TP) concentrations. The decline in Daphnia cannot be attributed to changes in pH, thermal stratification or predation, but instead is linked to declining lakewater [Ca]. The consistency in the timing of changes in Daphnia and inferred chlorophyll a suggests top-down control on algal production, providing, to our knowledge, the first evidence of a link between lakewater [Ca] decline and elevated algal production mediated through the effects of [Ca] decline on Daphnia. [Ca] decline has severe implications for whole-lake food webs, and presents yet another mechanism for potential increases in algal blooms. PMID:21957138

  17. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    PubMed

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process. PMID:24337249

  18. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used

  19. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production.

    PubMed

    Schlesinger, Ami; Eisenstadt, Doron; Bar-Gil, Amicam; Carmely, Hilla; Einbinder, Shai; Gressel, Jonathan

    2012-01-01

    There are two major energy and cost constraints to bulk production of single cell microalgae for biofuels or feed: expensive culture systems with high capital costs and high energy requirements for mixing and gas exchange; and the cost of harvesting using high-speed continuous centrifugation for dewatering. This report deals with the latter; harvesting by flocculation where theory states that alkaline flocculants neutralize the repelling surface charge of algal cells, allowing them to coalesce into a floc. It had been assumed that with such electrostatic flocculation, the more cells to be flocculated, the more flocculant needed, in a linear stoichiometric fashion, rendering flocculation overly expensive. Counter to theory of electrostatic flocculation, we find that the amount of alkaline flocculant needed is a function of the logarithm of cell density, with dense cultures requiring an order of magnitude less base than dilute suspensions, with flocculation occurring at a lower pH. Various other theories abound that flocculation can be due to multi-valent cross-linking, or co-precipitation with phosphate or with magnesium and calcium, but are clearly not relevant with the flocculants we used. Monovalent bases that cannot cross-link or precipitate phosphate work with the same log-linear stoichiometry as the divalent bases, obviating those theories, leaving electrostatic flocculation as the only tenable theory of flocculation with the materials used. The cost of flocculation of dense cultures with this procedure should be below $1.00/T algae for mixed calcium:magnesium hydroxides.

  20. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up

    PubMed Central

    Hollinshead, Whitney; He, Lian; Tang, Yinjie J.

    2014-01-01

    Metabolic engineering has developed microbial cell factories that can convert renewable carbon sources into biofuels. Current molecular biology tools can efficiently alter enzyme levels to redirect carbon fluxes toward biofuel production, but low product yield and titer in large bioreactors prevent the fulfillment of cheap biofuels. There are three major roadblocks preventing economical biofuel production. First, carbon fluxes from the substrate dissipate into a complex metabolic network. Besides the desired product, microbial hosts direct carbon flux to synthesize biomass, overflow metabolites, and heterologous enzymes. Second, microbial hosts need to oxidize a large portion of the substrate to generate both ATP and NAD(P)H to power biofuel synthesis. High cell maintenance, triggered by the metabolic burdens from genetic modifications, can significantly affect the ATP supply. Thereby, fermentation of advanced biofuels (such as biodiesel and hydrocarbons) often requires aerobic respiration to resolve the ATP shortage. Third, mass transfer limitations in large bioreactors create heterogeneous growth conditions and micro-environmental fluctuations (such as suboptimal O2 level and pH) that induce metabolic stresses and genetic instability. To overcome these limitations, fermentation engineering should merge with systems metabolic engineering. Modern fermentation engineers need to adopt new metabolic flux analysis tools that integrate kinetics, hydrodynamics, and 13C-proteomics, to reveal the dynamic physiologies of the microbial host under large bioreactor conditions. Based on metabolic analyses, fermentation engineers may employ rational pathway modifications, synthetic biology circuits, and bioreactor control algorithms to optimize large-scale biofuel production. PMID:25071754

  1. Development of biological platform for the autotrophic production of biofuels

    NASA Astrophysics Data System (ADS)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  3. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  4. The economic prospects of cellulosic biomass for biofuel production

    NASA Astrophysics Data System (ADS)

    Kumarappan, Subbu

    Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be

  5. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  6. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  7. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    PubMed Central

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  8. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission.

  9. Protein engineering in designing tailored enzymes and microorganisms for biofuels production.

    PubMed

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-08-01

    Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performance of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field.

  10. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  11. Growth of Heterotrophic Bacteria and Algal Extracellular Products in Oligotrophic Waters

    PubMed Central

    McFeters, Gordon A.; Stuart, Sidney A.; Olson, Susan B.

    1978-01-01

    The unexpected observation of 200 to 400 coliform bacteria per 100 ml in an unpolluted pristine stream was studied within Grand Teton National Park, Wyo. The high numbers of waterborne bacteria occurred in mid- to late summer at a location where there was a coincidental bloom of an algal mat community. Periphyton samplers were used to measure the algal growth that coincided with the increase in number of bacteria. Laboratory studies followed the growth of various coliform bacteria in the supernatant obtained from a Chlorella culture isolated from the mat community. Mixed natural bacterial populations from the stream and pure cultures of water-isolated fecal and nonfecal coliforms increased by two to three orders of magnitude at 13°C when grown in the algal supernatant. Radioactive algal products were obtained by feeding an axenic Chlorella culture 14C-labeled bicarbonate under laboratory cultivation at 13°C with illumination. Radioactive organic material from the algae became incorporated into the particulate fraction of pure cultures of coliform bacteria as they reproduced and was later released as they died. PMID:16345278

  12. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  13. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  14. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE PAGES

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  15. Engineering ionic liquid-tolerant cellulases for biofuels production.

    PubMed

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes. PMID:26819239

  16. Membranes with artificial free-volume for biofuel production

    PubMed Central

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-01-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity. PMID:26104672

  17. Membranes with artificial free-volume for biofuel production

    NASA Astrophysics Data System (ADS)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

  18. Membranes with artificial free-volume for biofuel production

    SciTech Connect

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

  19. Membranes with artificial free-volume for biofuel production

    DOE PAGES

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the termmore » artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.« less

  20. Engineering ionic liquid-tolerant cellulases for biofuels production.

    PubMed

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes.

  1. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  2. Effect of process variables on photosynthetic algal hydrogen production.

    PubMed

    Hahn, John J; Ghirardi, Maria L; Jacoby, William A

    2004-01-01

    Chlamydomonas reinhardtii is a green alga that can use the sun's energy to split water into O(2) and H(2). This is accomplished by means of a two-phase cycle, an aerobic growth phase followed by an anaerobic hydrogen production phase. The effects of process variables on hydrogen production are examined here. These variables include cell concentration, light intensity, and reactor design parameters that affect light transport and mixing. An optimum cell concentration and light intensity are identified, and two reactor designs are compared. The maximum hydrogen production observed in this study was 0.29 mL of hydrogen per milliliter of suspension. This was measured at atmospheric pressure during a 96 h production cycle. This corresponds to an average hydrogen production rate of 0.12 mmol/mL.h. PMID:15176910

  3. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent.

    PubMed

    Lee, Kwan Yin; Ng, Tsz Wai; Li, Guiying; An, Taicheng; Kwan, Ka Ki; Chan, King Ming; Huang, Guocheng; Yip, Ho Yin; Wong, Po Keung

    2015-10-30

    The phycoremediation process has great potential for effectively addressing environmental pollution. To explore the capabilities of simultaneous algal nutrient removal, CO2 mitigation and biofuel feedstock production from spent water resources, a Chlorogonium sp. isolated from a tilapia pond in Hong Kong was grown in non-sterile saline sewage effluent for a bioremediation study. With high removal efficiencies of NH3-N (88.35±14.39%), NO3(-)-N (85.39±14.96%), TN (93.34±6.47%) and PO4(3-)-P (91.80±17.44%), Chlorogonium sp. achieved a CO2 consumption rate of 58.96 mg L(-1) d(-1), which was optimised by the response surface methodology. Under optimised conditions, the lipid content of the algal biomass reached 24.26±2.67%. Overall, the isolated Chlorogonium sp. showed promising potential in the simultaneous purification of saline sewage effluent in terms of tertiary treatment and CO2 sequestration while delivering feedstock for potential biofuel production in a waste-recycling manner.

  4. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed. PMID:26420094

  5. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided.

  6. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  7. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed.

  8. Relationships between primary production and irradiance in coral reef algal communities

    SciTech Connect

    Not Available

    1985-07-01

    Shallow water algal turf communities are the major primary producers on coral reefs. High rates of primary production are maintained despite extremely high light intensities and exposure to ultraviolet wavelengths. The relationships between the light intensity and primary production in these assemblages are typical of algae adapted to a high light environment (low ..cap alpha.. (initial slope), high I/sub k/ (saturating light intensity), and high I/sub c/ (compensation point light intensity)). Seasonal variations in algal standing crop due to herbivory and daylength result in some characteristic photoadaptive changes in ..cap alpha.. I/sub k/, and I/sub c/ and changes in Pnet/sub max/ rates (maximum net photosynthetic rate achieved at light saturation) on both a chlorophyll ..cap alpha.. and an areal basis. Exposure to UV wavelength results in significantly higher respiration rates but no changes in ..cap alpha.., Pnet/sub max/, or I/sub k/, when compared with these parameters for the same algal communities incubated at the same light intensities without UV wavelengths. The apparent lack of photoinhibition in these algae allows calculation of the daily integrated production from the P vs. I parameters. This integrated production is highest in July (3.1 +/- 0.2 g C m/sup -2/d/sup -1/) and is reduced by 30% from this maximum in December (2.1 +/- 0.1 g C m/sup -2/d/sup -1/).

  9. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  10. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.

    PubMed

    Iman Shayan, Sahand; Agblevor, Foster A; Bertin, Lorenzo; Sims, Ronald C

    2016-07-01

    Rotating algal biofilm reactor (RABR) technology was successfully employed in an effective strategy to couple the removal of wastewater nutrients with accumulation of valuable bioproducts by grown algae. A secondary stage municipal wastewater was fed to the developed system and the effects of the hydraulic retention time (HRT) parameter on both nutrient removal and bioproduct production were evaluated under fed-batch operation mode. Two sets of bench scale RABRs were designed and operated with HRTs of 2 and 6days in order to provide competitive environment for algal growth. The HRT significantly affected nitrogen and phosphorus uptakes along with lipid and starch accumulations by microalgae in harvested biofilms. Domination of nitrogen removal in 2-day HRT with higher lipid accumulation (20% on dried weight basis) and phosphorus removal in 6-day HRT with higher starch production (27% on dried weight basis) was observed by comparing the performances of the RABRs in duplicate runs. PMID:27038261

  11. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  12. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. PMID:25479688

  13. Improved photobiological H2 production in engineered green algal cells.

    PubMed

    Kruse, Olaf; Rupprecht, Jens; Bader, Klaus-Peter; Thomas-Hall, Skye; Schenk, Peer Martin; Finazzi, Giovanni; Hankamer, Ben

    2005-10-01

    Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e-), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e- to drive hydrogen (H2) production via the chloroplast hydrogenases HydA1 and A2 (H2 ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H2 production in Chlamydomonas, we have developed a new approach to increase H+ and e- supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e- transfer around photosystem I, eliminating possible competition for e- with H2ase. Selected strains were further screened for increased H2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves (i.e. enhanced substrate availability), and a low dissolved O2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H2 production rates of Stm6 were 5-13 times that of the control WT strain over a range of conditions (light intensity, culture time, +/- uncoupler). Typically, approximately 540 ml of H2 liter(-1) culture (up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) (efficiency = approximately 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H2 production systems. PMID:16100118

  14. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  15. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    PubMed

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  16. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    PubMed

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  17. Intentions of UK farmers toward biofuel crop production: implications for policy targets and land use change.

    PubMed

    Mattison, Elizabeth H A; Norris, Ken

    2007-08-15

    The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets depends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have not yet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or large-scale changes in land use.

  18. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    PubMed

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  19. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    PubMed Central

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  20. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  1. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    SciTech Connect

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  2. Methodology for calculation of carbon balances for biofuel crops production

    NASA Astrophysics Data System (ADS)

    Gerlfand, I.; Hamilton, S. K.; Snapp, S. S.; Robertson, G. P.

    2012-04-01

    Understanding the carbon balance implications for different biofuel crop production systems is important for the development of decision making tools and policies. We present here a detailed methodology for assessing carbon balances in agricultural and natural ecosystems. We use 20 years of data from Long-term Ecological Research (LTER) experiments at the Kellogg Biological Station (KBS), combined with models to produce farm level CO2 balances for different management practices. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; and (5) continuous alfalfa (Medicago sativa). In addition we use an abandoned agricultural field (successionnal ecosystem) as reference system. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). In addition to measurements, we model carbon offsets associated with the use of bioenergy from agriculturally produced crops. Our analysis shows the importance of establishing appropriate system boundaries for carbon balance calculations. We explore how different assumptions regarding production methods and emission factors affect overall conclusions on carbon balances of different agricultural systems. Our results show management practices that have major the most important effects on carbon balances. Overall, agricultural management with conventional tillage was found to be a net CO2 source to the atmosphere, while agricultural management under reduced tillage, low input, or organic management sequestered carbon at rates of 93, -23, -51, and -14 g CO2e m-2 yr-1, respectively for conventionally tilled, no-till, low-input, and organically managed ecosystems. Perennial systems (alfalfa and the successionnal fields) showed net carbon

  3. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.

    PubMed

    Mulbry, Walter; Kondrad, Shannon; Pizarro, Carolina; Kebede-Westhead, Elizabeth

    2008-11-01

    Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m2 each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants. PMID:18487042

  4. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  5. Unraveling water quality and quantity effects of biofuels production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing a sustainable biofuels industry is crucial for several reasons, but what impact will it have on soil water quantity and quality? This popular press article for ISU alumni, teachers, middle/high school students and others is written to help them understand the complexity of this seemingly ...

  6. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  7. Perspective assessment of algae-based biofuel production using recycled nutrient sources: the case of Japan.

    PubMed

    Wang, Tunyen; Yabar, Helmut; Higano, Yoshiro

    2013-01-01

    In this study, an upper limit in the solar energy conversion efficiency which can be translated to a maximum potential algal yield of a large-scale culture is calculated based on the algal productivity model in which light and nutrient are made the growth rate limiting factors, and taking the design characteristics of the cultivation system into account. Our results indicate that for the production of low-cost biodiesel within the limits of the wastewater quality standards, that the culturing of high lipid content algae within a raceway pond would provide an appropriate solution for manufacturing biodiesel from algae. However, due to inefficient sunlight utilization and due to the large amount of fertilizer required in raceway ponds, a greater effluent recycle rate would have to be implemented to reduce the amount of fertilizer discharge to meet the wastewater quality standards and to maximize the attainable productivity of algal biomass.

  8. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus--a potential strain for bio-fuel production.

    PubMed

    George, Basil; Pancha, Imran; Desai, Chahana; Chokshi, Kaumeel; Paliwal, Chetan; Ghosh, Tonmoy; Mishra, Sandhya

    2014-11-01

    Media composition, light intensity and photoperiod significantly affect the algal growth and productivity and their optimization is important for the commercialization of microalgae based biofuels. In the present study, effects of different culture medium, light intensity and photoperiod were studied on growth, biomass productivity, and biochemical composition of a fresh water microalgae Ankistrodesmus falcatus in batch culture. The results revealed that A. falcatus could yield more than 35% of total lipid (containing around 65.74% neutral lipid) along with optimal growth (0.20 μ) and biomass productivity (7.9 mg/L/day) in the BG-11 medium under a light intensity of 60 μmol m(-2) s(-1) and 12:12 (Light: Dark) cycle. The highest total lipid yield of 67.2% (containing 72.68% of neutral lipid) was observed in Zarrouk's medium grown culture but with altered cell morphology and ultra-structural changes.

  9. Biofuel production from palm oil with supercritical alcohols: effects of the alcohol to oil molar ratios on the biofuel chemical composition and properties.

    PubMed

    Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Bunyakiat, Kunchana; Ngamprasertsith, Somkiat

    2011-11-01

    Biofuel production from palm oil with supercritical methanol (SCM) and supercritical ethanol (SCE) at 400 °C and 15 MPa were evaluated. At the optimal alcohol to oil molar ratios of 12:1 and 18:1 for the SCM and SCE processes, respectively, the biofuel samples were synthesized in a 1.2-L reactor and the resulting biofuel was analyzed for the key properties including those for the diesel and biodiesel standard specifications. Biofuel samples derived from both the SCM and SCE processes could be used as an alternative fuel after slight improvement in their acid value and free glycerol content. The remarkable advantages of this novel process were: the additional fuel yield of approximately of 5% and 10% for SCM and SCE, respectively; the lower energy consumption for alcohol preheating, pumping and recovering than the biodiesel production with supercritical alcohols that use a high alcohol to oil molar ratio of 42:1.

  10. Determining the global maximum biofuel production potential without conflicting with food and feed consumption

    NASA Astrophysics Data System (ADS)

    Pumkaew, Watcharapol

    This study tries to resolve the competition between food and biofuel by balancing the allocation between food and feed areas and biofuel areas for the entire world. The maximum energy production is calculated by determining the theoretical amount of energy that can be grown, once food and feed consumption is taken into account, based on the assumption that unprotected grass and woody lands and forest lands can be converted into cultivated lands. The total optimum land area for biofuel energy, 4,926.49 Mha, consists of corn, rapeseed, sugar beet, sugar cane, and grasses. When considering energy conversion efficiency, the maximum energy production is 520.5 EJ. Of this amount, 5.9 EJ can be identified with food and feed energy and 514.6 EJ can be identified with biofuel energy. This result is a theoretical value to illustrate the potential global land area for biofuel. The biofuel energy production per area of land in this study is calculated to be 0.12 EJ/Mha. With regards to the limitation in the degree of invasion by grass and woody land and forest land areas, if it is not more than 10 percent, the biofuel energy production can serve about 76 percent of energy demand for transportation in 2009. The total optimum land area is about 45 percent of global cultivated land area. Sensitivity analysis shows that the land area of corn, sweet sorghum, sugarcane, grass, and woody crops is sensitive to energy content. The land area of sweet sorghum and soybeans is sensitive to the land area for food and feed consumption. Also, the land area of corn, sugar beet, and sugarcane is sensitive to the potential crop land area. This study, done at the global level, can also apply in a local area by using local constraints.

  11. Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

  12. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  13. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

    PubMed

    Ma, Ruoshui; Xu, Yan; Zhang, Xiao

    2015-01-01

    Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel.

  14. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

    PubMed

    Ma, Ruoshui; Xu, Yan; Zhang, Xiao

    2015-01-01

    Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel. PMID:25272962

  15. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways. PMID:21662987

  16. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  17. Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream

    USGS Publications Warehouse

    Kent, R.; Belitz, K.; Burton, C.A.

    2005-01-01

    This study examined algal productivity and nitrate assimilation in a 2.85 km reach of Cucamonga Creek, California, a concrete lined channel receiving treated municipal wastewater. Stream nitrate concentrations observed at two stations indicated nearly continuous loss throughout the diel study. Nitrate loss in the reach was approximately 11 mg/L/d or 1.0 g/m2/d as N, most of which occurred during daylight. The peak rate of nitrate loss (1.13 mg/l/hr) occurred just prior to an afternoon total CO2 depletion. Gross primary productivity, as estimated by a model using the observed differences in dissolved oxygen between the two stations, was 228 mg/L/d, or 21 g/m2/d as O2. The observed diel variations in productivity, nitrate loss, pH, dissolved oxygen, and CO2 indicate that nitrate loss was primarily due to algal assimilation. The observed levels of productivity and nitrate assimilation were exceptionally high on a mass per volume basis compared to studies on other streams; these rates occurred because of the shallow stream depth. This study suggests that concrete-lined channels can provide an important environmental service: lowering of nitrate concentrations similar to rates observed in biological treatment systems.

  18. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  19. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    SciTech Connect

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.

  20. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    DOE PAGES

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-stepmore » in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.« less

  1. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  2. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    SciTech Connect

    Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen; Kwon, Ho-young; Wander, Michelle M.; Wang, Michael

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  3. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  4. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  5. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    PubMed

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study.

  6. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.

    PubMed

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe

    2015-06-01

    The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale.

  7. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077.

  8. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    PubMed

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism. PMID:27026253

  9. Application of orange peel waste in the production of solid biofuels and biosorbents.

    PubMed

    Santos, Carolina Monteiro; Dweck, Jo; Viotto, Renata Silva; Rosa, André Henrique; de Morais, Leandro Cardoso

    2015-11-01

    This work aimed to study the potential use of pyrolyzed orange peels as solid biofuels and biosorption of heavy metals. The dry biomass and the biofuel showed moderate levels of carbon (44-62%), high levels of oxygen (30-47%), lower levels of hydrogen (3-6%), nitrogen (1-2.6%), sulfur (0.4-0.8%) and ash with a maximum of 7.8%. The activation energy was calculated using Kissinger method, involving a 3 step process: volatilization of water, biomass degradation and volatilization of the degradation products. The calorific value obtained was 19.3MJ/kg. The studies of metal biosorption based on the Langmuir model obtained the best possible data fits. The results obtained in this work indicated that the potential use of waste orange peel as a biosorbent and as a solid biofuel are feasible, this product could be used in industrial processes, favoring the world economy.

  10. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    PubMed

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism.

  11. Tree legumes as feedstock for sustainable biofuel production: Opportunities and challenges.

    PubMed

    Biswas, Bandana; Scott, Paul T; Gresshoff, Peter M

    2011-11-01

    Concerns about future fossil fuel supplies and the environmental effects of their consumption have prompted the search for alternative sources of liquid fuels, specifically biofuels. However, it is important that the sources of such biofuel have minimal impact on global food supplies, land use, and commodity prices. Many legume trees can be grown on so-called marginal land with beneficial effects to the environment through their symbiotic interaction with "Rhizobia" and the associated process of root nodule development and biological nitrogen fixation. Once established legume trees can live for many years and some produce an annual yield of oil-rich seeds. For example, the tropical and sub-tropical legume tree Pongamia pinnata produces large seeds (∼1.5-2g) that contain about 40% oil, the quality and composition of which is regarded as highly desirable for sustainable biofuel production. Here we consider the benefits of legume trees as future energy crops, particularly in relation to their impact on nitrogen inputs and the net energy balance for biofuel production, and also ways in which these as yet fully domesticated species may be further improved for optimal use as biofuel feedstock. PMID:21715045

  12. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.

    PubMed

    Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang

    2015-12-01

    This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.

  13. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.

    PubMed

    Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang

    2015-12-01

    This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms. PMID:26433384

  14. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.

    PubMed

    Yang, Xiaorui; Xu, Mengmeng; Yang, Shang-Tian

    2015-11-01

    Production of cellulosic biofuels has drawn increasing attention. However, currently no microorganism can produce biofuels, particularly butanol, directly from cellulosic biomass efficiently. Here we engineered a cellulolytic bacterium, Clostridium cellulovorans, for n-butanol and ethanol production directly from cellulose by introducing an aldehyde/alcohol dehydrogenase (adhE2), which converts butyryl-CoA to n-butanol and acetyl-CoA to ethanol. The engineered strain was able to produce 1.42 g/L n-butanol and 1.60 g/L ethanol directly from cellulose. Moreover, the addition of methyl viologen as an artificial electron carrier shifted the metabolic flux from acid production to alcohol production, resulting in a high biofuel yield of 0.39 g/g from cellulose, comparable to ethanol yield from corn dextrose by yeast fermentation. This study is the first metabolic engineering of C. cellulovorans for n-butanol and ethanol production directly from cellulose with significant titers and yields, providing a promising consolidated bioprocessing (CBP) platform for biofuel production from cellulosic biomass.

  15. Development of an efficient algal H{sub 2}-production system

    SciTech Connect

    Ghirardi, M.L.; Flynn, T.; Forestier, M.; Seibert, M.

    1998-08-01

    Two major problems facing the development of a commercial photobiological algal H{sub 2}-producing system are the low rates of H{sub 2} evolution and the sensitivity of the H{sub 2}-evolving enzyme system to O{sub 2}, a by-product of the photosynthetic water-splitting process. The objective of this project is to generate O{sub 2}-tolerant mutants from the green alga Chlamydomonas reinhardtii that are high producers of H{sub 2} for use in a photobiological water-splitting, H{sub 2}-producing system that is cost effective, renewable, scalable, and non-polluting. The authors are currently employing a dual approach to address the O{sub 2}-sensitivity problem. The first approach, based on classical mutagenesis and selection procedures, depends on the ability of a mutagenized population of algal cells to survive under conditions that require them to either produce (H{sub 2}-production selection) or consume (photoreductive selection) H{sub 2} in the presence of controlled amounts of O{sub 2}. The second approach, based on molecular genetic strategies, involves the cloning of the hydrogenase gene from C. reinhardtii and identification of expression factors required for optimal H{sub 2}-evolution activity. The latter approach will complement the first in the future goal of generating a commercial organism suitable for use in the private sector.

  16. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    NASA Astrophysics Data System (ADS)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  17. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

    PubMed Central

    2013-01-01

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847

  18. Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2012-01-01

    Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil. PMID:23032611

  19. Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions.

    PubMed

    Ponnusamy, Sundaravadivelnathan; Reddy, Harvind Kumar; Muppaneni, Tapaswy; Downes, Cara Meghan; Deng, Shuguang

    2014-10-01

    A life cycle assessment study is performed for the energy requirements and greenhouse gas emissions in an algal biodiesel production system. Subcritical water (SCW) extraction was applied for extracting bio-crude oil from algae, and conventional transesterification method was used for converting the algal oil to biodiesel. 58MJ of energy is required to produce 1kg of biodiesel without any co-products management, of which 36% was spent on cultivation and 56% on lipid extraction. SCW extraction with thermal energy recovery reduces the energy consumption by 3-5 folds when compared to the traditional solvent extraction. It is estimated that 1kg of algal biodiesel fixes about 0.6kg of CO2. An optimized case considering the energy credits from co-products could further reduce the total energy demand. The energy demand for producing 1kg of biodiesel in the optimized case is 28.23MJ.

  20. Modeling Regional Groundwater Implications of Biofuel Crop Production in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Parish, A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2013-12-01

    In response to a growing call for renewable sources of energy that do not compete directly with food resources, the use of second-generation 'cellulosic' biofuel feedstocks has gained much attention in recent years. The push to advance the technologies that would make such a transformation possible is motivated by the United States Renewable Fuel Standard mandate to produce 36 billion gallons of biofuels by 2022, an increase of 334 percent from 2009. Many different crops, including maize, miscanthus, switchgrass, and poplar have shown promise as cellulosic feedstocks, and in an attempt to supply the needed biomass to meet the 2022 mandate, production of these crops have been on the rise. Yet little is known about the sustainability of large-scale conversion of land to cellulosic biofuel crop production; more research is needed to understand the effects that these crops will have on the quality and quantity of groundwater. This study presents a model scale-up approach to address three questions: What are the hydrologic and nutrient demands of the primary biofuel crops? Which biofuel crops are more water efficient in terms of demand verses energy produced? What are the types and availabilities of land to expand production of these biofuel crops? To answer these questions, we apply a point-based crop dynamics model in combination with a regional-scale hydrologic model, parameterized using stream discharge and chemistry data collected from two representative watersheds in Wisconsin. Approximately 17 stream sites in each watershed are selected for data collection for model parameterization, including stream discharge, nutrient concentrations, and basic chemical characteristics. We then use the System Approach to Land Use Sustainability (SALUS) model, which predicts crop growth under varying soil and climate conditions, to drive vegetation dynamics and groundwater transport of nutrients within the Integrated Landscape Hydrology Model (ILHM). ILHM predictions of stream

  1. Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes.

    PubMed

    da Silva, Teresa Lopes; Roseiro, José Carlos; Reis, Alberto

    2012-04-01

    Conventional microbiology methods used to monitor microbial biofuels production are based on off-line analyses. The analyses are, unfortunately, insufficient for bioprocess optimization. Real time process control strategies, such as flow cytometry (FC), can be used to monitor bioprocess development (at-line) by providing single cell information that improves process model formulation and validation. This paper reviews the current uses and potential applications of FC in biodiesel, bioethanol, biomethane, biohydrogen and fuel cell processes. By highlighting the inherent accuracy and robustness of the technique for a range of biofuel processing parameters, more robust monitoring and control may be implemented to enhance process efficiency.

  2. A strategy for urban outdoor production of high-concentration algal biomass for green biorefining.

    PubMed

    Lim, Chun Yong; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-05-01

    The present study was to investigate the feasibility of carrying out effective microalgae cultivation and high-rate tertiary wastewater treatment simultaneously in a vertical sequencing batch photobioreactor with small areal footprint, suitable for sustainable urban microalgae production. For 15 consecutive days, Chlorella sorokiniana was cultivated in synthetic wastewater under various trophic conditions. A cycle of 12-h heterotrophic: 12-h mixotrophic condition produced 0.98 g l(-1) d(-1) of algal biomass in tandem with a 94.7% removal of 254.4 mg l(-1) C-acetate, a 100% removal of 84.7 mg l(-1) N-NH4 and a removal of 15.0 mg l(-1) P-PO4. The cells were harvested via cost-effective chitosan flocculation with multiple dosing (3 times) applying established chitosan:cell ratio (1:300 w/w) and pH control (6.3-6.8). Reproducible flocculation efficiencies of greater than 99% and high-concentration algal broths (>20% solids) were achieved. PMID:23186659

  3. 75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ..., ``Production Incentives for Cellulosic Biofuels; Reverse Auction Procedures and Standards,'' (74 FR 52867... Office of Biomass Program, in the Office of Energy Efficiency and Renewable Energy, intends to conduct a... directed to: Mr. Neil Rossmeissl, Office of the Biomass Program, U.S. Department of Energy, Mailstop...

  4. Switchgrass Production in Washington – Part II of Biofuel Feedstocks in Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrated Cropping Systems group at Prosser, WA made up of WSU and USDA-ARS personnel have been evaluating production aspects of a number of irrigated biofuel crops that can be planted in rotation with high value vegetables: oilseeds for biodiesel (safflower, soybeans, mustard, canola/rapeseed...

  5. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  6. Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....

  7. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions.

    PubMed

    Alvarado-Morales, Merlin; Boldrin, Alessio; Karakashev, Dimitar B; Holdt, Susan L; Angelidaki, Irini; Astrup, Thomas

    2013-02-01

    The use of algae for biofuel production is expected to play an important role in securing energy supply in the next decades. A consequential life cycle assessment (LCA) and an energy analysis of seaweed-based biofuel production were carried out in Nordic conditions to document and improve the sustainability of the process. Two scenarios were analyzed for the brown seaweed (Laminaria digitata), namely, biogas production (scenario 1) and bioethanol+biogas production (scenario 2). Potential environmental impact categories under investigation were Global Warming, Acidification and Terrestrial Eutrophication. The production of seaweed was identified to be the most energy intensive step. Scenario 1 showed better performance compared to scenario 2 for all impact categories, partly because of the energy intensive bioethanol separation process and the consequently lower overall efficiency of the system. For improved environmental performance, focus should be on optimization of seaweed production, bioethanol distillation, and management of digestate on land.

  8. Fish Sound Production in the Presence of Harmful Algal Blooms in the Eastern Gulf of Mexico

    PubMed Central

    Wall, Carrie C.; Lembke, Chad; Hu, Chuanmin; Mann, David A.

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements. PMID:25551564

  9. Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico.

    PubMed

    Wall, Carrie C; Lembke, Chad; Hu, Chuanmin; Mann, David A

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.

  10. Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico.

    PubMed

    Wall, Carrie C; Lembke, Chad; Hu, Chuanmin; Mann, David A

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements. PMID:25551564

  11. Cultivation and Characterization of Cynara Cardunculus for Solid Biofuels Production in the Mediterranean Region

    PubMed Central

    Grammelis, Panagiotis; Malliopoulou, Anastasia; Basinas, Panagiotis; Danalatos, Nicholas G.

    2008-01-01

    Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop'sproduction potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality. PMID:19325802

  12. Cultivation and characterization of Cynara Cardunculus for solid biofuels production in the Mediterranean region.

    PubMed

    Grammelis, Panagiotis; Malliopoulou, Anastasia; Basinas, Panagiotis; Danalatos, Nicholas G

    2008-06-01

    Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop'sproduction potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality.

  13. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  14. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms.

    PubMed

    Cray, Jonathan A; Stevenson, Andrew; Ball, Philip; Bankar, Sandip B; Eleutherio, Elis C A; Ezeji, Thaddeus C; Singhal, Rekha S; Thevelein, Johan M; Timson, David J; Hallsworth, John E

    2015-06-01

    Fermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.4, 174kJ kg(-1)m(-1) respectively). Use of low temperatures and/or stabilizing (kosmotropic) substances, and other approaches, can reduce, neutralize or circumvent product-chaotropicity. However, there may be limits to the alcohol concentrations that cells can tolerate; e.g. for ethanol tolerance in the most robust Saccharomyces cerevisiae strains, these are close to both the solubility limit (<25%, w/v ethanol) and the water-activity limit of the most xerotolerant strains (0.880). Nevertheless, knowledge-based strategies to mitigate or neutralize chaotropicity could lead to major improvements in rates of product formation and yields, and also therefore in the economics of biofuel production.

  15. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  16. Economic evaluation of technology for a new generation biofuel production using wastes.

    PubMed

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production. PMID:26492169

  17. Identification and microbial production of a terpene-based advanced biofuel

    PubMed Central

    Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D.; Lee, Taek Soon

    2011-01-01

    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217

  18. The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production

    PubMed Central

    Colin, Verónica Leticia; Rodríguez, Analía; Cristóbal, Héctor Antonio

    2011-01-01

    Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel. PMID:22028591

  19. Economic evaluation of technology for a new generation biofuel production using wastes.

    PubMed

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production.

  20. Environmental, economic and social impact of aviation biofuel production in Brazil.

    PubMed

    Cremonez, Paulo André; Feroldi, Michael; de Jesus de Oliveira, Carlos; Teleken, Joel Gustavo; Alves, Helton José; Sampaio, Silvio Cézar

    2015-03-25

    The Brazilian aviation industry is currently developing biofuel technologies that can maintain the operational and energy demands of the sector, while reducing the dependence on fossil fuels (mainly kerosene) and greenhouse gas emissions. The aim of the current research was to identify the major environmental, economic and social impacts arising from the production of aviation biofuels in Brazil. Despite the great potential of these fuels, there is a significant need for improved routes of production and specifically for lower production costs of these materials. In addition, the productive chains of raw materials for obtaining these bioenergetics can be linked to environmental impacts by NOx emissions, extensive use of agricultural land, loss of wildlife and intensive water use, as well as economic, social and political impacts.

  1. Identification and microbial production of a terpene-based advanced biofuel.

    PubMed

    Peralta-Yahya, Pamela P; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D; Lee, Taek Soon

    2011-01-01

    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l(-1). We produce bisabolene in Saccharomyces cerevisiae (>900 mg l(-1)), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217

  2. Zymomonas mobilis as a model system for production of biofuels and biochemicals

    DOE PAGES

    Yang, Shihui; Fei, Qiang; Zhang, Yaoping; Contreras, Lydia M.; Utturkar, Sagar M.; Brown, Steven D.; Himmel, Michael E.; Zhang, Min

    2016-09-15

    Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. Lastly, this review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.

  3. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture.

    PubMed

    Formighieri, Cinzia; Franck, Fabrice; Bassi, Roberto

    2012-11-30

    An increasing number of investors is looking at algae as a viable source of biofuels, beside cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modelling-based predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity. PMID:22426090

  4. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world.

    PubMed

    Subhadra, Bobban

    2011-01-15

    Food and fuel production are intricately interconnected. In a carbon-smart society, it is imperative to produce both food and fuel sustainably. Integration of the emerging biorefinery concept with other industries can bring many environmental deliverables while mitigating several sustainability-related issues with respect to greenhouse gas emissions, fossil fuel usage, land use change for fuel production and future food insufficiency. A new biorefinery-based integrated industrial ecology encompasses the different value chain of products, coproducts, and services from the biorefinery industries. This paper discusses a framework to integrate the algal biofuel-based biorefinery, a booming biofuel sector, with other industries such as livestock, lignocellulosic and aquaculture. Using the USA as an example, this paper also illustrates the benefits associated with sustainable production of fuel and food. Policy and regulatory initiatives for synergistic development of the algal biofuel sector with other industries can bring many sustainable solutions for the future existence of mankind.

  5. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world.

    PubMed

    Subhadra, Bobban

    2011-01-15

    Food and fuel production are intricately interconnected. In a carbon-smart society, it is imperative to produce both food and fuel sustainably. Integration of the emerging biorefinery concept with other industries can bring many environmental deliverables while mitigating several sustainability-related issues with respect to greenhouse gas emissions, fossil fuel usage, land use change for fuel production and future food insufficiency. A new biorefinery-based integrated industrial ecology encompasses the different value chain of products, coproducts, and services from the biorefinery industries. This paper discusses a framework to integrate the algal biofuel-based biorefinery, a booming biofuel sector, with other industries such as livestock, lignocellulosic and aquaculture. Using the USA as an example, this paper also illustrates the benefits associated with sustainable production of fuel and food. Policy and regulatory initiatives for synergistic development of the algal biofuel sector with other industries can bring many sustainable solutions for the future existence of mankind. PMID:20981716

  6. Sea-ice algal primary production and nitrogen uptake rates off East Antarctica

    NASA Astrophysics Data System (ADS)

    Roukaerts, Arnout; Cavagna, Anne-Julie; Fripiat, François; Lannuzel, Delphine; Meiners, Klaus M.; Dehairs, Frank

    2016-09-01

    Antarctic pack ice comprises about 90% of the sea ice in the southern hemisphere and plays an important structuring role in Antarctic marine ecosystems, yet measurements of ice algal primary production and nitrogen uptake rates remain scarce. During the early austral spring of 2012, measurements for primary production rates and uptake of two nitrogen substrates (nitrate and ammonium) were conducted at 5 stations in the East Antarctic pack ice (63-66°S, 115-125°E). Carbon uptake was low (3.52 mg C m-2 d-1) but a trend of increased production was observed towards the end of the voyage suggesting pre-bloom conditions. Significant snow covers reaching, up to 0.8 m, induced strong light limitation. Two different regimes were observed in the ice with primarily nitrate based 'new' production (f-ratio: 0.80-0.95) at the bottom of the ice cover, due to nutrient-replete conditions at the ice-water interface, and common for pre-bloom conditions. In the sea-ice interior, POC:PN ratios (20-70) and higher POC:Chl a ratios suggested the presence of large amounts of detrital material trapped in the ice and here ammonium was the prevailing nitrogen substrate. This suggests that most primary production in the sea-ice interior was regenerated and supported by a microbial food web, recycling detritus.

  7. Algal cell disruption using microbubbles to localize ultrasonic energy

    PubMed Central

    Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.

    2015-01-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188

  8. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    PubMed

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. PMID:21640583

  9. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    PubMed Central

    Hemme, Christopher L.; Mouttaki, Housna; Lee, Yong-Jin; Zhang, Gengxin; Goodwin, Lynne; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Glavina del Rio, Tijana; Tice, Hope; Saunders, Elizabeth; Brettin, Thomas; Detter, John C.; Han, Cliff S.; Pitluck, Sam; Land, Miriam L.; Hauser, Loren J.; Kyrpides, Nikos; Mikhailova, Natalia; He, Zhili; Wu, Liyou; Van Nostrand, Joy D.; Henrissat, Bernard; He, Qiang; Lawson, Paul A.; Tanner, Ralph S.; Lynd, Lee R.; Wiegel, Juergen; Fields, Matthew W.; Arkin, Adam P.; Schadt, Christopher W.; Stevenson, Bradley S.; McInerney, Michael J.; Yang, Yunfeng; Dong, Hailiang; Xing, Defeng; Ren, Nanqi; Wang, Aijie; Huhnke, Raymond L.; Mielenz, Jonathan R.; Ding, Shi-You; Himmel, Michael E.; Taghavi, Safiyh; van der Lelie, Daniël; Rubin, Edward M.; Zhou, Jizhong

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology. PMID:20889752

  10. Offshore Membrane Enclosure for Growing Algai (Omega) System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  11. Offshore Membrane Enclosures for Growing Algae (OMEGA: A System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  12. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    SciTech Connect

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  13. Organisms for biofuel production: natural bioresources and methodologies for improving their biosynthetic potentials.

    PubMed

    Hu, Guangrong; Ji, Shiqi; Yu, Yanchong; Wang, Shi'an; Zhou, Gongke; Li, Fuli

    2015-01-01

    In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.

  14. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    SciTech Connect

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.; Raymer, Michelle; Collins, Aaron M.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing, Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.

  15. Biofuel, dairy production and beef in Brazil: competing claims on land use in São Paulo state.

    PubMed

    Novo, André Luiz Monteiro; Jansen, Kees; Slingerland, Maja; Giller, Ken

    2010-01-01

    This paper examines the competing claims on land use resulting from the expansion of biofuel production. Sugarcane for biofuel drives agrarian change in So Paulo state, which has become the major ethanol-producing region in Brazil. We analyse how the expansion of sugarcane-based ethanol in So Paulo state has impacted dairy and beef production. Historical changes in land use, production technologies, and product and land prices are described, as well as how these are linked to changing policies in Brazil. We argue that sugarcane/biofuel expansion should be understood in the context of the dynamics of other agricultural sectors and the long-term national political economy rather than as solely due to recent global demand for biofuel. This argument is based on a meticulous analysis of changes in three important sectors - sugarcane, dairy farming, and beef production - and the mutual interactions between these sectors.

  16. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.

    PubMed

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-12-01

    When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge.

  17. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.

    PubMed

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-12-01

    When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge. PMID:25189477

  18. Genetic resources for advanced biofuel production described with the Gene Ontology

    PubMed Central

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727

  19. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE PAGES

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  20. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  1. Importance of systems biology in engineering microbes for biofuel production

    SciTech Connect

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  2. Biofuels Issues and Trends

    EIA Publications

    2012-01-01

    This report presents data on biofuels consumption, production, imports and exports, including data collected by others than the U.S. Energy Information Administration. It also discusses important developments in biofuels markets.

  3. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    PubMed

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator.

  4. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  5. From fields to fuels: recent advances in the microbial production of biofuels.

    PubMed

    Kung, Yan; Runguphan, Weerawat; Keasling, Jay D

    2012-11-16

    Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.

  6. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  7. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  8. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    PubMed

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges.

  9. The challenge of enzyme cost in the production of lignocellulosic biofuels.

    PubMed

    Klein-Marcuschamer, Daniel; Oleskowicz-Popiel, Piotr; Simmons, Blake A; Blanch, Harvey W

    2012-04-01

    With the aim of understanding the contribution of enzymes to the cost of lignocellulosic biofuels, we constructed a techno-economic model for the production of fungal cellulases. We found that the cost of producing enzymes was much higher than that commonly assumed in the literature. For example, the cost contribution of enzymes to ethanol produced by the conversion of corn stover was found to be $0.68/gal if the sugars in the biomass could be converted at maximum theoretical yields, and $1.47/gal if the yields were based on saccharification and fermentation yields that have been previously reported in the scientific literature. We performed a sensitivity analysis to study the effect of feedstock prices and fermentation times on the cost contribution of enzymes to ethanol price. We conclude that a significant effort is still required to lower the contribution of enzymes to biofuel production costs.

  10. Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean bio...

  11. Measured and modelled carbon and water fluxes in hybrid willows grown for biofuel production

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; LeBauer, D.; Volk, T.; Long, S.; Leakey, A. D.

    2014-12-01

    Biofuels have the potential to meet future energy needs. Worldwide, up to 75% of biofuels produced are derived from woody sources. Coppiced hybrid willow is among the most promising woody biofuel sources due to its ability to rapidly regenerate after cutting, high biomass yields, low nutrient requirements and ability to be grown on marginal land, abandoned land and land easily erodible under annual cultivation. However, models used to assess the potential viability and sustainability of commercial biomass production by willow in the northeastern, northern and northwestern USA remain unsophisticated and lack key parameterization data. Most significantly, models do not explicitly represent the coppiced growth form. This study tests the ability of a canopy model to predict carbon and water fluxes in two highly productive, but structurally distinct hybrid willows (Salix miyabeana and Salix purpurea) grown in central NY. S. miyaneana has only a few, large diameter stems per stool prior to harvest, while S. purpurea maintains numerous, small diameter stems until harvest. Canopy structure also varies substantially within a growing season. For example, in S. miyabeana stem number decreased by 40% while total basal area increased by 50% within year 2 of the third coppice cycle. Model predictions of water use are compared with stand transpiration measured by sap flow. Model predictions of biomass production are compared to destructive harvest data. Sensitivity of predicted fluxes to variation between genotypes in key physiological parameters is also tested.

  12. Oil crop biomass residue-based media for enhanced algal lipid production.

    PubMed

    Wang, Zhen; Ma, Xiaochen; Zhou, Wenguang; Min, Min; Cheng, Yanling; Chen, Paul; Shi, Jian; Wang, Qin; Liu, Yuhuan; Ruan, Roger

    2013-10-01

    The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

  13. Coral–algal phase shifts alter fish communities and reduce fisheries production

    PubMed Central

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  14. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species.

  15. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  16. The effect of cellulosic biofuel production on water resources at a regional scale

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Scheonholtz, S. H.; Nettles, J. E.

    2012-12-01

    The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water resources impacts associated with annual crops. There are data sets and models that have been used to evaluate effects of agriculturally-based biofuel options on water quantity and quality, but the evaluation - from instrumentation through data analysis - is designed for these more disturbed systems and is not appropriate for the more subtle changes anticipated from a pine/switchgrass systems. Currently, there is no known hydrologic model that can explicitly assess the effect of intercropping on water resources. However, these models can evaluate the effects of growing switchgrass on water resources and would be useful in identifying the "worst case scenario". We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine effects of large scale conversion of pine plantations to switchgrass biofuel production on water resources in the ~ 5 mil ha Tombigbee Watershed in the southeastern U.S. Publically available datasets were used as input to the model and for calibration. To improve calibration statistics, five tree age classes were added to the model to more appropriately represent existing forested systems in the region, which are not included within the standard model set-up. Results suggest land use conversions result in 4 and

  17. Lactobacillus casei as a biocatalyst for biofuel production.

    PubMed

    Vinay-Lara, Elena; Wang, Song; Bai, Lina; Phrommao, Ekkarat; Broadbent, Jeff R; Steele, James L

    2016-09-01

    Microbial fermentation of sugars from plant biomass to alcohols represents an alternative to petroleum-based fuels. The optimal biocatalyst for such fermentations needs to overcome hurdles such as high concentrations of alcohols and toxic compounds. Lactic acid bacteria, especially lactobacilli, have high innate alcohol tolerance and are remarkably adaptive to harsh environments. This study assessed the potential of five Lactobacillus casei strains as biocatalysts for alcohol production. L. casei 12A was selected based upon its innate alcohol tolerance, high transformation efficiency and ability to utilize plant-derived carbohydrates. A 12A derivative engineered to produce ethanol (L. casei E1) was compared to two other bacterial biocatalysts. Maximal growth rate, maximal optical density and ethanol production were determined under conditions similar to those present during alcohol production from lignocellulosic feedstocks. L. casei E1 exhibited higher innate alcohol tolerance, better growth in the presence of corn stover hydrolysate stressors, and resulted in higher ethanol yields. PMID:27312380

  18. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa.

    PubMed

    Shukla, Rishikesh; Kumar, Manoj; Chakraborty, Subhojit; Gupta, Rishi; Kumar, Savindra; Sahoo, Dinabandhu; Kuhad, Ramesh Chander

    2016-11-01

    The algal biomass of different species of Gracilaria were collected from coasts of Orissa and Tamil Nadu, India and characterized biochemically. Among various species, G. verrucosa was found to be better in terms of total carbohydrate content (56.65%) and hence selected for further studies. The agar was extracted from algal biomass and the residual pulp was enzymatically hydrolyzed. The optimization of algal pulp hydrolysis for various parameters revealed a maximum sugar release of 75.8mg/ml with 63% saccharification yield. The fermentation of enzymatic hydrolysate of algal pulp was optimized and 8% (v/v) inoculum size, 12h inoculum age, pH 5.0 were found to be optimum parameters for maximum ethanol concentration (27.2g/L) after 12h. The process of enzymatic hydrolysis and fermentation were successfully scaled up to 2L bioreactor scale. PMID:27619709

  19. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa.

    PubMed

    Shukla, Rishikesh; Kumar, Manoj; Chakraborty, Subhojit; Gupta, Rishi; Kumar, Savindra; Sahoo, Dinabandhu; Kuhad, Ramesh Chander

    2016-11-01

    The algal biomass of different species of Gracilaria were collected from coasts of Orissa and Tamil Nadu, India and characterized biochemically. Among various species, G. verrucosa was found to be better in terms of total carbohydrate content (56.65%) and hence selected for further studies. The agar was extracted from algal biomass and the residual pulp was enzymatically hydrolyzed. The optimization of algal pulp hydrolysis for various parameters revealed a maximum sugar release of 75.8mg/ml with 63% saccharification yield. The fermentation of enzymatic hydrolysate of algal pulp was optimized and 8% (v/v) inoculum size, 12h inoculum age, pH 5.0 were found to be optimum parameters for maximum ethanol concentration (27.2g/L) after 12h. The process of enzymatic hydrolysis and fermentation were successfully scaled up to 2L bioreactor scale.

  20. Designer synthetic media for studying microbial-catalyzed biofuel production

    DOE PAGES

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie; Chundawat, Shishir; Chambliss, Charles; Lau, Ming W; Xiao, Zeyi; Dale, Bruce E; Balan, Venkatesh

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). Themore » SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast

  1. Designer synthetic media for studying microbial-catalyzed biofuel production

    SciTech Connect

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie; Chundawat, Shishir; Chambliss, Charles; Lau, Ming W; Xiao, Zeyi; Dale, Bruce E; Balan, Venkatesh

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation

  2. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a "tearing" cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  3. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    PubMed

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil. PMID:25463806

  4. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells.

    PubMed

    Efremenko, E N; Nikolskaya, A B; Lyagin, I V; Senko, O V; Makhlis, T A; Stepanov, N A; Maslova, O V; Mamedova, F; Varfolomeev, S D

    2012-06-01

    The purpose of this work was to study the possible use of pretreated biomass of various microalgae and cyanobacteria as substrates for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum cells immobilized into poly(vinyl alcohol) cryogel. To this end, the biochemical composition of photosynthetic microorganisms cultivated under various conditions was studied. The most efficient technique for pretreating microalgal biomass for its subsequent conversion into biofuels appeared to be thermal decomposition at 108 °C. For the first time the maximum productivity of the ABE fermentation in terms of hydrogen (8.5 mmol/L medium/day) was obtained using pretreated biomass of Nannochloropsis sp. Maximum yields of butanol and ethanol were observed with Arthrospira platensis biomass used as the substrate. Immobilized Clostridium cells were demonstrated to be suitable for multiple reuses (for a minimum of five cycles) in ABE fermentation for producing biofuels from pretreated microalgal biomass.

  5. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    PubMed

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil.

  6. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production.

    PubMed

    Fast, Alan G; Schmidt, Ellinor D; Jones, Shawn W; Tracy, Bryan P

    2015-06-01

    Mass yields of biofuels and chemicals from sugar fermentations are limited by the decarboxylation reactions involved in Embden-Meyerhof-Parnas (EMP) glycolysis. This paper reviews one route to recapture evolved CO2 using the Wood-Ljungdahl carbon fixation pathway (WLP) in a process called anaerobic, non-photosynthetic (ANP) mixotrophic fermentation. In ANP mixotrophic fermentation, the two molecules of CO2 and eight electrons produced from glycolysis are used by the WLP to generate three molecules of acetyl-CoA from glucose, rather than the two molecules that are produced by typical fermentation processes. In this review, we define the bounds of ANP mixotrophy, calculate the potential metabolic advantages, and discuss the viability in a number of host organisms. Additionally, we highlight recent accomplishments in the field, including the recent discovery of electron bifurcation in acetogens, and close with recommendations to realize mixotrophic biofuel and biochemical production.

  7. Processing of Brassica seeds for feedstock in biofuels production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  8. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans.

  9. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    SciTech Connect

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  10. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. PMID:27598569

  11. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  12. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting.

    PubMed

    Wang, Hui; Hill, Russell T; Zheng, Tianling; Hu, Xiaoke; Wang, Bin

    2016-01-01

    Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.

  13. CO{sub 2} capture and biofuels production with microalgae

    SciTech Connect

    Benemann, J.R.

    1995-11-01

    Microalgae cultivation in large open ponds is the only biological process capable of directly utilizing power plant flue gas CO{sub 2} for production of renewable fuels, such as biodiesel, thus mitigating the potential for global warming. Past and recent systems studies have concluded that in principle this concept could be economically feasible, but that this technology still requires both fundamental and applied long-term R&D.

  14. Design of a Nutrient Reclamation System for the Cultivation of Microalgae for Biofuel Production and Other Industrial Applications

    NASA Astrophysics Data System (ADS)

    Sandefur, Heather Nicole

    Microalgal biomass has been identified as a promising feedstock for a number of industrial applications, including the synthesis of new pharmaceutical and biofuel products. However, there are several economic limitations associated with the scale up of existing algal production processes. Critical economic studies of algae-based industrial processes highlight the high cost of supplying essential nutrients to microalgae cultures. With microalgae cells having relatively high nitrogen contents (4 to 8%), the N fertilizer cost in industrial-scale production is significant. In addition, the disposal of the large volumes of cell residuals that are generated during product extraction stages can pose other economic challenges. While waste streams can provide a concentrated source of nutrients, concerns about the presence of biological contaminants and the expense of heat treatment pose challenges to processes that use wastewater as a nutrient source in microalgae cultures. The goal of this study was to evaluate the potential application of ultrafiltration technology to aid in the utilization of agricultural wastewater in the cultivation of a high-value microalgae strain. An ultrafiltration system was used to remove inorganic solids and biological contaminants from wastewater taken from a swine farm in Savoy, Arkansas. The permeate from the system was then used as the nutrient source for the cultivation of the marine microalgae Porphyridium cruentum. During the ultrafiltration system operation, little membrane fouling was observed, and permeate fluxes remained relatively constant during both short-term and long-term tests. The complete rejection of E. coli and coliforms from the wastewater was also observed, in addition to a 75% reduction in total solids, including inorganic materials. The processed permeate was shown to have very high concentrations of total nitrogen (695.6 mg L-1) and total phosphorus (69.1 mg L-1 ). In addition, the growth of P. cruentum was analyzed in

  15. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  16. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  17. Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell.

    PubMed

    He, Huanhuan; Zhou, Minghua; Yang, Jie; Hu, Youshuang; Zhao, Yingying

    2014-05-01

    A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 10(6) cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m(3) and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C.

  18. The benefits of biofuels

    SciTech Connect

    Hinman, N.D.

    1997-07-01

    This article discusses the economic, environmental, and national security advantages of using biofuels instead of petroleum products in vehicles. Smog and carbon monoxide, two of the most trouble-some urban air pollutants, are largely caused by combustion of conventional petroleum based fuels. Topics include sustainable transportation fuels, emphasis on ethanol, the process of producing biofuels, and the growing market for biofuels. 1 tab.

  19. Consuming algal products: trophic interactions of bacteria and a diatom species determined by RNA stable isotope probing

    NASA Astrophysics Data System (ADS)

    Sapp, Melanie; Gerdts, Gunnar; Wellinger, Marco; Wichels, Antje

    2008-09-01

    Heterotrophic marine bacteria utilise a wide range of carbon sources. Recently, techniques were developed to link bacterial identity and physiological capacity of microorganisms within natural communities. One of these methods is stable isotope probing (SIP) which allows an identification of active microorganisms using particular growth substrates. In this study, we present the first attempt to analyse bacterial communities associated with microalgae by rRNA-SIP. This approach was used to analyse bacterial populations consuming algal products of Thalassiosira rotula by applying SIP followed by reverse transcription of 16S rRNA and denaturing gradient gel electrophoresis. Generally, our results indicate that bacteria which consume algal products can be detected by isotope arrays coupled with fingerprinting methods.

  20. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals.

    PubMed

    Mukhopadhyay, Aindrila

    2015-08-01

    During microbial production of solvent-like compounds, such as advanced biofuels and bulk chemicals, accumulation of the final product can negatively impact the cultivation of the host microbe and limit the production levels. Consequently, improving solvent tolerance is becoming an essential aspect of engineering microbial production strains. Mechanisms ranging from chaperones to transcriptional factors have been used to obtain solvent-tolerant strains. However, alleviating growth inhibition does not invariably result in increased production. Transporters specifically have emerged as a powerful category of proteins that bestow tolerance and often improve production but are difficult targets for cellular expression. Here we review strain engineering, primarily as it pertains to bacterial solvent tolerance, and the benefits and challenges associated with the expression of membrane-localized transporters in improving solvent tolerance and production.

  1. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids.

    PubMed

    Beller, Harry R; Lee, Taek Soon; Katz, Leonard

    2015-09-23

    Although natural products are best known for their use in medicine and agriculture, a number of fatty acid-derived and isoprenoid natural products are being developed for use as renewable biofuels and bio-based chemicals. This review summarizes recent work on fatty acid-derived compounds (fatty acid alkyl esters, fatty alcohols, medium- and short-chain methyl ketones, alkanes, α-olefins, and long-chain internal alkenes) and isoprenoids, including hemiterpenes (e.g., isoprene and isopentanol), monoterpenes (e.g., limonene), and sesquiterpenes (e.g., farnesene and bisabolene).

  2. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  3. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  4. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    PubMed

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles.

  5. Quantifying the regional water footprint of biofuel production by incorporating hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Wu, M.; Chiu, Y.; Demissie, Y.

    2012-10-01

    A spatially explicit life cycle water analysis framework is proposed, in which a standardized water footprint methodology is coupled with hydrologic modeling to assess blue water, green water (rainfall), and agricultural grey water discharge in the production of biofuel feedstock at county-level resolution. Grey water is simulated via SWAT, a watershed model. Evapotranspiration (ET) estimates generated with the Penman-Monteith equation and crop parameters were verified by using remote sensing results, a satellite-imagery-derived data set, and other field measurements. Crop irrigation survey data are used to corroborate the estimate of irrigation ET. An application of the concept is presented in a case study for corn-stover-based ethanol grown in Iowa (United States) within the Upper Mississippi River basin. Results show vast spatial variations in the water footprint of stover ethanol from county to county. Producing 1 L of ethanol from corn stover growing in the Iowa counties studied requires from 4.6 to 13.1 L of blue water (with an average of 5.4 L), a majority (86%) of which is consumed in the biorefinery. The county-level green water (rainfall) footprint ranges from 760 to 1000 L L-1. The grey water footprint varies considerably, ranging from 44 to 1579 L, a 35-fold difference, with a county average of 518 L. This framework can be a useful tool for watershed- or county-level biofuel sustainability metric analysis to address the heterogeneity of the water footprint for biofuels.

  6. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  7. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. PMID:26896823

  8. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation.

  9. Production of biofuels, limonene and pectin from citrus wastes.

    PubMed

    Pourbafrani, Mohammad; Forgács, Gergely; Horváth, Ilona Sárvári; Niklasson, Claes; Taherzadeh, Mohammad J

    2010-06-01

    Production of ethanol, biogas, pectin and limonene from citrus wastes (CWs) by an integrated process was investigated. CWs were hydrolyzed by dilute-acid process in a pilot plant reactor equipped with an explosive drainage. Hydrolysis variables including temperature and residence time were optimized by applying a central composite rotatable experimental design (CCRD). The best sugar yield (0.41g/g of the total dry CWs) was obtained by dilute-acid hydrolysis at 150 degrees C and 6min residence time. At this condition, high solubilization of pectin present in the CWs was obtained, and 77.6% of total pectin content of CWs could be recovered by solvent recovery. Degree of esterification and ash content of produced pectin were 63.7% and 4.23%, respectively. In addition, the limonene of the CWs was effectively removed through flashing of the hydrolyzates into an expansion tank. The sugars present in the hydrolyzates were converted to ethanol using baker's yeast, while an ethanol yield of 0.43g/g of the fermentable sugars was obtained. Then, the stillage and the remaining solid materials of the hydrolyzed CWs were anaerobically digested to obtain biogas. In summary, one ton of CWs with 20% dry weight resulted in 39.64l ethanol, 45m(3) methane, 8.9l limonene, and 38.8kg pectin. PMID:20149643

  10. Perennial grass production for biofuels: Soil conversion considerations

    SciTech Connect

    McLaughlin, S.B.; Bransby, D.I.; Parrish, D.

    1994-10-01

    The increased use of renewable fuels for energy offers the United States a mechanism for significantly reducing national dependency on imported oil, reducing greenhouse gas emissions, and improving regional agricultural economies. As mandated by law, a wide range of issues have been raised regarding the net environmental impacts of implementation of these new technologies. While uncertainties regarding both positive and negative environmental influences still exist in many areas of this new technology, it is now possible to address with substantial certainty the positive aspects of perennial herbaceous energy crops on several important soil conservation issues. Past experience with forage grasses and recent research with switchgrass. A warm season perennial forage grass selected as one of the model bioenergy species, indicates that important benefits will be gained in the area of soil conservation as grasses replace energy-intensive annual row crops. These include reduced erosion, improved conservation of water and nutrients, and increased productivity of soils by the deep and vigorous rooting systems of perennial warm-season gasses.

  11. Understanding and engineering enzymes for enhanced biofuel production.

    SciTech Connect

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  12. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    PubMed

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions.

  13. Limits to biofuels

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  14. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  15. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  16. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  17. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  18. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    SciTech Connect

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5

  19. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  20. Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms

    SciTech Connect

    Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross; Miller, Charles D.; Peyton, Brent; Cooksey, Keith; Gardner, Robert D.; Sims, Ronald C.

    2014-03-01

    Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis, respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.

  1. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.

    2014-01-01

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.

  2. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands.

    PubMed

    Vuichard, Nicolas; Ciais, Philippe; Wolf, Adam

    2009-11-15

    Although the CO(2) mitigation potential of biofuels has been studied by extrapolation of small-scale studies, few estimates exist of the net regional-scale carbon balance implications of biofuel cultivations programs, either growing conventional biofuel crops or applying new advanced technologies. Here we used a spatially distributed process-driven model over the 20 Mha of recently abandoned agricultural lands of the Former Soviet Union to quantify the GHG mitigation by biofuel production from Low Input/High Diversity (LIHD) grass-legume prairies and to compare this GHG mitigation with the one of soil C sequestration as it currently occurs. LIHD has recently received a lot of attention as an emerging opportunity to produce biofuels over marginal lands leading to a good energy efficiency with minimal adverse consequences on food security and ecosystem services. We found that, depending on the time horizon over which one seeks to maximize the GHG benefit, the optimal time for implementing biofuel production shifts from "never" (short-term horizon) to "as soon as possible" (longer-term horizon). These results highlight the importance of reaching agreement a priori on the target time interval during which biofuels are expected to play a role within the global energy system, to avoid deploying biofuel technology over a time interval for which it has a detrimental impact on the GHG mitigation objective. The window of opportunity for growing LIHD also stresses the need to reduce uncertainties in soil C inputs, turnover, and soil organic matter stability under current and future climate and management practices.

  3. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  4. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  5. Projecting future grassland productivity to assess the sustainability of potential biofuel feedstock areas in the Greater Platte River Basin

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phyual, Khem

    2014-01-01

    This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.

  6. Versatile microbial surface-display for environmental remediation and biofuels production

    SciTech Connect

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  7. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  8. Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer Complexes.

    PubMed

    Xie, Yinjun; Ben-David, Yehoshoa; Shimon, Linda J W; Milstein, David

    2016-07-27

    A highly efficient ruthenium pincer-catalyzed Guerbet-type process for the production of biofuel from ethanol has been developed. It produces the highest conversion of ethanol (73.4%, 0.02 mol% catalyst) for a Guerbet-type reaction, including significant amounts of C4 (35.8% yield), C6 (28.2% yield), and C8 (9.4% yield) alcohols. Catalyst loadings as low as 0.001 mol% can be used, leading to a record turnover number of 18 209. Mechanistic studies reveal the likely active ruthenium species and the main deactivation process. PMID:27399841

  9. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.

    PubMed

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2012-11-01

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed.

  10. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    PubMed

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  11. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.

    PubMed

    Tippmann, Stefan; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2013-12-01

    Isoprenoids denote the largest group of chemicals in the plant kingdom and are employed for a wide range of applications in the food and pharmaceutical industry. In recent years, isoprenoids have additionally been recognized as suitable replacements for petroleum-derived fuels and could thus promote the transition towards a more sustainable society. To realize the biofuel potential of isoprenoids, a very efficient production system is required. While complex chemical structures as well as the low abundance in nature demonstrate the shortcomings of chemical synthesis and plant extraction, isoprenoids can be produced by genetically engineered microorganisms from renewable carbon sources. In this article, we summarize the development of isoprenoid applications from flavors and pharmaceuticals to advanced biofuels and review the strategies to design microbial cell factories, focusing on Saccharomyces cerevisiae for the production of these compounds. While the high complexity of biosynthetic pathways and the toxicity of certain isoprenoids still denote challenges that need to be addressed, metabolic engineering has enabled large-scale production of several terpenoids and thus, the utilization of these compounds is likely to expand in the future.

  12. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  13. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    SciTech Connect

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  14. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    DOE PAGES

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced inmore » tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.« less

  15. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene.

    PubMed

    Phelan, Ryan M; Sekurova, Olga N; Keasling, Jay D; Zotchev, Sergey B

    2015-04-17

    The past decade has witnessed a large influx of research toward the creation of sustainable, biologically derived fuels. While significant effort has been exerted to improve production capacity in common hosts, such as Escherichia coli or Saccharomyces cerevisiae, studies concerning alternate microbes comparatively lag. In an effort to expand the breadth of characterized hosts for fuel production, we map the terpene biosynthetic pathway in a model actinobacterium, Streptomyces venezuelae, and further alter secondary metabolism to afford the advanced biofuel precursor bisabolene. Leveraging information gained from study of the native isoprenoid pathway, we were able to increase bisabolene titer nearly 5-fold over the base production strain, more than 2 orders of magnitude greater than the combined terpene yield in the wild-type host. We also explored production on carbon sources of varying complexity to, notably, define this host as one able to perform consolidated bioprocessing.

  16. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels.

  17. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed.

  18. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  19. Raman microspectroscopy based sensor of algal lipid unsaturation

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  20. Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass.

    PubMed

    Kim, Pung-Ho; Nam, Hee-Geun; Park, Chanhun; Wang, Nien-Hwa Linda; Chang, Yong Keun; Mun, Sungyong

    2015-08-01

    The economically-efficient separation of galactose, levulinic acid (LA), and 5-hydroxymethylfurfural (5-HMF) in acid hydrolyzate of agarose has been a key issue in the area of biofuel production from marine biomass. To address this issue, an optimal simulated moving bed (SMB) process for continuous separation of the three agarose-hydrolyzate components with high purities, high yields, and high throughput was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each component on the qualified adsorbent were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. Finally, the optimized SMB process was tested experimentally using a self-assembled SMB unit with four zones. The SMB experimental results and the relevant computer simulations verified that the developed process in this study was quite successful in the economically-efficient separation of galactose, LA, and 5-HMF in a continuous mode with high purities and high yields. It is thus expected that the developed SMB process in this study will be able to serve as one of the trustworthy ways of improving the economic feasibility of biofuel production from marine biomass.

  1. Optimization of Biofuel and Biochar Production from the Slow Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Fang, J.; Gao, B.; Nsf Reu in Water Resources

    2010-12-01

    Slow pyrolysis was performed on biomass samples (i.e., energy cane and air potato) to determine the most energy efficient conditions for producing biofuel and biochar. The potential of air potato as a source of fuel and char was also investigated. Dry biomass samples of 10, 15 and 20 g were heated in a reactor at a final temperatures of 300, 450, or 600 °C, and the minimum amount of time required to complete pyrolysis was recorded. Maximum biochar yield was obtained at 300°C for both energy cane and air potato at all masses, and maximum bio-oil yield was obtained at 450°C for all samples. Pyrolysis required the least amount of time at 450°C. Bio-oil yields for air potato were slightly lower than that of energy cane, while biochar yield was slightly higher. Since air potato showed similar product yields to energy cane, this indicates it has potential to be a good feedstock for biofuel and biochar productions.

  2. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    SciTech Connect

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

    2011-02-24

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  3. Comparative Proteomics Analysis of Engineered Saccharomyces cerevisiae with Enhanced Biofuel Precursor Production

    PubMed Central

    Tang, Xiaoling; Feng, Huixing; Zhang, Jianhua; Chen, Wei Ning

    2013-01-01

    The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production. PMID:24376832

  4. Microalgae Recovery from Water for Biofuel Production Using CO2-Switchable Crystalline Nanocellulose.

    PubMed

    Ge, Shijian; Champagne, Pascale; Wang, Haidong; Jessop, Philip G; Cunningham, Michael F

    2016-07-19

    There is a pressing need to develop efficient and sustainable approaches to harvesting microalgae for biofuel production and water treatment. CO2-switchable crystalline nanocellulose (CNC) modified with 1-(3-aminopropyl)imidazole (APIm) is proposed as a reversible coagulant for harvesting microalgae. Compared to native CNC, the positively charged APIm-modified CNC, which dispersed well in carbonated water, showed appreciable electrostatic interaction with negatively charged Chlorella vulgaris upon CO2-treatment. The gelation between the modified CNC, triggered by subsequent air sparging, can also enmesh adjacent microalgae and/or microalgae-modified CNC aggregates, thereby further enhancing harvesting efficiencies. Moreover, the surface charges and dispersion/gelation of APIm-modified CNC could be reversibly adjusted by alternatively sparging CO2/air. This CO2-switchability would make the reusability of redispersed CNC for further harvesting possible. After harvesting, the supernatant following sedimentation can be reused for microalgal cultivation without detrimental effects on cell growth. The use of this approach for harvesting microalgae presents an advantage to other current methods available because all materials involved, including the cellulose, CO2, and air, are natural and biocompatible without adverse effects on the downstream processing for biofuel production. PMID:27314988

  5. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production.

    PubMed

    Wohlbach, Dana J; Kuo, Alan; Sato, Trey K; Potts, Katlyn M; Salamov, Asaf A; Labutti, Kurt M; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L; Lindquist, Erika A; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E; Jeffries, Thomas W; Zinkel, Robert; Barry, Kerrie W; Grigoriev, Igor V; Gasch, Audrey P

    2011-08-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  6. Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production.

    PubMed

    Bezergianni, Stella; Kalogianni, Aggeliki; Vasalos, Iacovos A

    2009-06-01

    Hydrocracking of vacuum gas oil (VGO)--vegetable oil mixtures is a prominent process for the production of biofuels. In this work both pre-hydrotreated and non-hydrotreated VGO are assessed whether they are suitable fossil components in a VGO-vegetable oil mixture as feed-stocks to a hydrocracking process. This assessment indicates the necessity of a VGO pre-hydrotreated step prior to hydrocracking the VGO-vegetable oil mixture. Moreover, the comparison of two different mixing ratios suggests that higher vegetable oil content favors hydrocracking product yields and qualities. Three commercial catalysts of different activity are utilized in order to identify a range of products that can be produced via a hydrocracking route. Finally, the effect of temperature on hydrocracking VGO-vegetable oil mixtures is studied in terms of conversion and selectivity to diesel, jet/kerosene and naphtha.

  7. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus.

    PubMed

    Sohel, M Imroz; Jack, Michael W

    2011-02-01

    The aim of this paper is to present an exergy analysis of bioethanol production process from lignocellulosic feedstock via a biochemical process to asses the overall thermodynamic efficiency and identify the main loss processes. The thermodynamic efficiency of the biochemical process was found to be 35% and the major inefficiencies of this process were identified as: the combustion of lignin for process heat and power production and the simultaneous scarification and co-fermentation process accounting for 67% and 27% of the lost exergy, respectively. These results were also compared with a previous analysis of a thermochemical process for producing biofuel. Despite fundamental differences, the biochemical and thermochemical processes considered here had similar levels of thermodynamic efficiency. Process heat and power production was the major contributor to exergy loss in both of the processes. Unlike the thermochemical process, the overall efficiency of the biochemical process largely depends on how the lignin is utilized. PMID:21036607

  8. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus.

    PubMed

    Sohel, M Imroz; Jack, Michael W

    2011-02-01

    The aim of this paper is to present an exergy analysis of bioethanol production process from lignocellulosic feedstock via a biochemical process to asses the overall thermodynamic efficiency and identify the main loss processes. The thermodynamic efficiency of the biochemical process was found to be 35% and the major inefficiencies of this process were identified as: the combustion of lignin for process heat and power production and the simultaneous scarification and co-fermentation process accounting for 67% and 27% of the lost exergy, respectively. These results were also compared with a previous analysis of a thermochemical process for producing biofuel. Despite fundamental differences, the biochemical and thermochemical processes considered here had similar levels of thermodynamic efficiency. Process heat and power production was the major contributor to exergy loss in both of the processes. Unlike the thermochemical process, the overall efficiency of the biochemical process largely depends on how the lignin is utilized.

  9. Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels.

    PubMed

    Work, Victoria H; D'Adamo, Sarah; Radakovits, Randor; Jinkerson, Robert E; Posewitz, Matthew C

    2012-06-01

    To improve bioenergy production from photosynthetic microorganisms it is necessary to optimize an extensive network of highly integrated biological processes. Systematic advances in pathway engineering and culture modification have resulted in strains with increased yields of biohydrogen, lipids, and carbohydrates, three bioenergy foci. However, additional improvements in photosynthetic efficiency are necessary to establish a viable system for biofuel production. Advances in optimizing light capture, energy transfer, and carbon fixation are essential, as the efficiencies of these processes are the principal determinants of productivity. However, owing to their regulatory, catalytic, and structural complexities, manipulating these pathways poses considerable challenges. This review covers novel developments in the optimization of photosynthesis, carbon fixation, and metabolic pathways for the synthesis of targeted bioenergy carriers.

  10. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production.

  11. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  12. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth.

    PubMed

    Uday, Uma Shankar Prasad; Choudhury, Payel; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath

    2016-01-01

    Xylanases are classified under glycoside hydrolase families which represent one of the largest groups of commercial enzymes. Depolymerizing xylan molecules into monomeric pentose units involves the synergistic action of mainly two key enzymes which are endo-β-xylanase and β-xylosidase. Xylanases are different with respect to their mode of action, substrate specificities, biochemical properties, 3D structure and are widely produced by a spectrum of bacteria and fungi. Currently, large scale production of xylanase can be produced through the application of genetic engineering tool which allow fast identification of novel xylanase genes and their genetic variations makes it an ideal enzymes. Due to depletion of fossil fuel, there is urgent need to find out environment friendly and sustainable energy sources. Therefore, utilisation of cheap lignocellulosic materials along with proper optimisation of process is most important for cost efficient ethanol production. Among, various types of lignocellulosic substances, water hyacinth, a noxious aquatic weed, has been found in many tropical. Therefore, the technological development for biofuel production from water hyacinth is becoming commercially worthwhile. In this review, the classification and mode of action of xylanase including genetic regulation and strategy for robust xylanase production have been critically discussed from recent reports. In addition various strategies for cost effective biofuel production from water hyacinth including chimeric proteins design has also been critically evaluated. PMID:26529189

  13. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth.

    PubMed

    Uday, Uma Shankar Prasad; Choudhury, Payel; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath

    2016-01-01

    Xylanases are classified under glycoside hydrolase families which represent one of the largest groups of commercial enzymes. Depolymerizing xylan molecules into monomeric pentose units involves the synergistic action of mainly two key enzymes which are endo-β-xylanase and β-xylosidase. Xylanases are different with respect to their mode of action, substrate specificities, biochemical properties, 3D structure and are widely produced by a spectrum of bacteria and fungi. Currently, large scale production of xylanase can be produced through the application of genetic engineering tool which allow fast identification of novel xylanase genes and their genetic variations makes it an ideal enzymes. Due to depletion of fossil fuel, there is urgent need to find out environment friendly and sustainable energy sources. Therefore, utilisation of cheap lignocellulosic materials along with proper optimisation of process is most important for cost efficient ethanol production. Among, various types of lignocellulosic substances, water hyacinth, a noxious aquatic weed, has been found in many tropical. Therefore, the technological development for biofuel production from water hyacinth is becoming commercially worthwhile. In this review, the classification and mode of action of xylanase including genetic regulation and strategy for robust xylanase production have been critically discussed from recent reports. In addition various strategies for cost effective biofuel production from water hyacinth including chimeric proteins design has also been critically evaluated.

  14. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production.

    PubMed

    Evans, Samuel G; Ramage, Benjamin S; DiRocco, Tara L; Potts, Matthew D

    2015-02-17

    Decisions concerning future land-use/land cover change stand at the forefront of ongoing debates on how to best mitigate climate change. In this study, we compare the greenhouse gas (GHG) mitigation value over a 30-year time frame for a range of forest recovery and biofuel production scenarios on abandoned agricultural land. Carbon sequestration in recovering forests is estimated based on a statistical analysis of tropical and temperate studies on marginal land. GHGs offset by biofuel production are analyzed for five different production pathways. We find that forest recovery is superior to low-yielding biofuel production scenarios such as oil palm and corn. Biofuel production scenarios with high yields, such as sugarcane or high-yielding energy grasses, can be comparable or superior to natural forest succession and to reforestation in some cases. This result stands in contrast to previous research suggesting that restoring degraded ecosystems to their native state is generally superior to agricultural production in terms of GHG mitigation. Further work is needed on carbon stock changes in forests, soil carbon dynamics, and bioenergy crop production on degraded/abandoned agricultural land. This finding also emphasizes the need to consider the full range of social, economic, and ecological consequences of land-use policies.

  15. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production.

    PubMed

    Evans, Samuel G; Ramage, Benjamin S; DiRocco, Tara L; Potts, Matthew D

    2015-02-17

    Decisions concerning future land-use/land cover change stand at the forefront of ongoing debates on how to best mitigate climate change. In this study, we compare the greenhouse gas (GHG) mitigation value over a 30-year time frame for a range of forest recovery and biofuel production scenarios on abandoned agricultural land. Carbon sequestration in recovering forests is estimated based on a statistical analysis of tropical and temperate studies on marginal land. GHGs offset by biofuel production are analyzed for five different production pathways. We find that forest recovery is superior to low-yielding biofuel production scenarios such as oil palm and corn. Biofuel production scenarios with high yields, such as sugarcane or high-yielding energy grasses, can be comparable or superior to natural forest succession and to reforestation in some cases. This result stands in contrast to previous research suggesting that restoring degraded ecosystems to their native state is generally superior to agricultural production in terms of GHG mitigation. Further work is needed on carbon stock changes in forests, soil carbon dynamics, and bioenergy crop production on degraded/abandoned agricultural land. This finding also emphasizes the need to consider the full range of social, economic, and ecological consequences of land-use policies. PMID:25582654

  16. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed

  17. Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production.

    PubMed

    Sathish, Ashik; Marlar, Tyler; Sims, Ronald C

    2015-10-01

    Methods to convert microalgal biomass to bio based fuels and chemicals are limited by several processing and economic hurdles. Research conducted in this study modified/optimized a previously published procedure capable of extracting transesterifiable lipids from wet algal biomass. This optimization resulted in the extraction of 77% of the total transesterifiable lipids, while reducing the amount of materials and temperature required in the procedure. In addition, characterization of side streams generated demonstrated that: (1) the C/N ratio of the residual biomass or lipid extracted (LE) biomass increased to 54.6 versus 10.1 for the original biomass, (2) the aqueous phase generated contains nitrogen, phosphorous, and carbon, and (3) the solid precipitate phase was composed of up to 11.2 wt% nitrogen (70% protein). The ability to isolate algal lipids and the possibility of utilizing generated side streams as products and/or feedstock material for downstream processes helps promote the algal biorefinery concept.

  18. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, prot