Science.gov

Sample records for algal biomass accumulation

  1. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  2. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  3. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  4. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  5. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  6. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds.

    PubMed

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-Del-Valle, Manuel; Vílchez, Carlos

    2016-05-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  7. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  8. Multispectral image analysis for algal biomass quantification.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2013-01-01

    This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay-free process control feedback in large-scale cultivation platforms. In this technique, three-band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large-scale operation. PMID:23554374

  9. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  10. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  11. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. PMID:25704095

  12. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  13. Energy-efficient photobioreactor configuration for algal biomass production.

    PubMed

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs. PMID:23079413

  14. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function. PMID:23413190

  15. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues

    PubMed Central

    2014-01-01

    Background Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed. It is believed that along with biodiesel from algae, the high protein de-oiled algal residue may become an alternative feed supplement option in the future. This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species, Thalassiosira weissflogii, Selenarstrum capricornutum, Scenedesmus sp., and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean (Glycine max) meal and alfalfa (Medicago sativa) hay. Results With the exception of T. weissflogii, algal residue had higher concentrations of Cu, Zn, and Mn and lower concentration of Ca, Mg, and K than soybean meal and alfalfa hay. The algal residue CP (crude protein) concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues. In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%. The gas production curve, interpreted with a dual pool logistic model, confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay, and the fermenting rate of the fractions was also low. Conclusions Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen. PMID:25093078

  16. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGESBeta

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  17. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  18. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  19. Alien Marine Fishes Deplete Algal Biomass in the Eastern Mediterranean

    PubMed Central

    Sala, Enric; Kizilkaya, Zafer; Yildirim, Derya; Ballesteros, Enric

    2011-01-01

    One of the most degraded states of the Mediterranean rocky infralittoral ecosystem is a barren composed solely of bare rock and patches of crustose coralline algae. Barrens are typically created by the grazing action of large sea urchin populations. In 2008 we observed extensive areas almost devoid of erect algae, where sea urchins were rare, on the Mediterranean coast of Turkey. To determine the origin of those urchin-less ‘barrens’, we conducted a fish exclusion experiment. We found that, in the absence of fish grazing, a well-developed algal assemblage grew within three months. Underwater fish censuses and observations suggest that two alien herbivorous fish from the Red Sea (Siganus luridus and S. rivulatus) are responsible for the creation and maintenance of these benthic communities with extremely low biomass. The shift from well-developed native algal assemblages to ‘barrens’ implies a dramatic decline in biogenic habitat complexity, biodiversity and biomass. A targeted Siganus fishery could help restore the macroalgal beds of the rocky infralittoral on the Turkish coast. PMID:21364943

  20. Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to avert carbon starvation in microalgae.

    PubMed

    Akita, Tetsuya; Kamo, Masashi

    2015-09-01

    Microalgae-derived oil is considered as a feasible alternative to fossil-derived oil. To produce more algal biomass, both algal population size and oil accumulation in algae must be maximized. Most of the previous studies have concentrated on only one of these issues, and relatively little attention has been devoted to considering the tradeoff between them. In this paper, we first theoretically investigated evolutionary reasons for oil accumulation and then by coupling population and evolutionary dynamics, we searched for conditions that may provide better yields. Using our model, we assume that algae allocate assimilated carbon to growth, maintenance, and carbon accumulation as biofuel and that the amount of essential materials (carbon and nitrate) are strongly linked in fixed proportions. Such stoichiometrically explicit models showed that (i) algae with more oil show slower population growth; therefore, the use of such algae results in lower total yields of biofuel and (ii) oil accumulation in algae is caused by carbon and not nitrate starvation. The latter can be interpreted as a strategy for avoiding the risk of increased death rate by carbon starvation. Our model also showed that both strong carbon starvation and moderately limited nitrate will promote total biofuel production. Our results highlight considering the life-history traits for a higher total yields of biofuel, which leads to insight into both establishing a prolonged culture and collection of desired strains from a natural environment. PMID:26047852

  1. Simplifying biodiesel production: the direct or 'in situ' transesterification of algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ‘in situ’ esterification/transesterification of algal biomass lipids to produce fatty acid methyl esters (FAME), for potential use as biodiesel, was investigated. Commercial algal biomass was employed, containing 20.9 wt percent hexane extractable oil. This consisted of 35.1 wt percent free fa...

  2. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  3. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  4. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  5. Algal biomass and primary production within a temperate zone sandstone

    SciTech Connect

    Bell, R.A.; Sommerfeld, M.R. )

    1987-02-01

    The use of dimethyl sulfoxide (DMSO) to extract chlorophyll a and {sup 14}C-labelled photosynthate from endolithic algae of sparsely vegetated, cold temperate grasslands on the Colorado Plateau in Arizona has yielded the first estimates of biomass and photosynthesis for this unusual community. These subsurface microorganisms are found widespread in exposed Coconino Sandstone, a predominant formation in this cold temperate region. The endolithic community in Coconino Sandstone, composed primarily of coccoid blue-green and coccoid/sarcinoid green algae, yielded a biomass value (as chlorophyll a content) of 87 mg m{sup {minus}2} rock surface area and a photosynthetic rate of 0.37 mg CO{sub 2} dm{sup {minus}2} hr{sup {minus}1} or 0.48 mg CO{sub 2} mg{sup {minus}1} chl a hr{sup {minus}1}. The endolithic algal community contributes moderate biomass (5-10%) and substantial photosynthesis (20-80%) to the sparse grassland ecosystem.

  6. Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes

    SciTech Connect

    Kirkwood, A.E.; Chow-Fraser, P.; Mierle, G.

    1999-03-01

    This study focused on the seasonal dynamics of total Hg in the phytoplankton (living and dead) of two dystrophic shield lakes (Mouse and Ranger). Phytoplankton samples were taken from metalimnetic and hypolimnetic depths in the euphotic zone and were collected and analyzed using ultraclean techniques. In both lakes, phytoplankton Hg (PHYTO-Hg) levels (pg/L) in the metalimnion did not significantly change among dates over the season, although Ranger Lake exhibited significant differences between Hg values measured at the beginning and end of the season. In contrast, PHYTO-Hg significantly increased in the hypolimnia of both lakes by the end of the season. Combined influences of external Hg inputs, remineralization, phytoplankton sedimentation, and increased methylmercury production in the hypolimnia over the season may have contributed to these trends. A highly significant positive relationship existed between PHYTO-Hg levels and whole-water Hg levels, and the mean bioconcentration factor for Hg between the water column and phytoplankton was significantly higher in the hypolimnion compared to the metalimnion for both lakes. In most cases, parameters associated with algal biomass had significant positive correlations with PHYTO-Hg levels. Weight-specific PHYTO-Hg (pg/mg dry weight) varied significantly over the season, and there were interlake differences with respect to season trends. On the basis of these results, the authors recommend that the future sampling regimes include collection of phytoplankton at different limnetic depths through the season to account for spatial and temporal variations. Weight specific Hg levels in phytoplankton could not be explained well by the parameters tested, and the only significant regressions were with parameters reflecting algal biomass. This study provides in situ evidence of Hg accumulation in lake phytoplankton as a function of algal biomass on a seasonal basis and stresses the need to confirm these trends in other lake

  7. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  8. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. PMID:24880809

  9. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  10. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. PMID:26705954

  11. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters.

    PubMed

    Kahlert, Maria; McKie, Brendan G

    2014-11-01

    We compared conventional microscope-based methods for quantifying biomass and community composition of stream benthic algae with output obtained for these parameters from a new instrument (the BenthoTorch), which measures fluorescence of algal pigments in situ. Benthic algae were studied in 24 subarctic oligotrophic (1.7-26.9, median 7.2 μg total phosphorus L(-1)) streams in Northern Sweden. Readings for biomass of the total algal mat, quantified as chlorophyll a, did not differ significantly between the BenthoTorch (median 0.52 μg chlorophyll a cm(-2)) and the conventional method (median 0.53 μg chlorophyll a cm(-2)). However, quantification of community composition of the benthic algal mat obtained using the BenthoTorch did not match those obtained from conventional methods. The BenthoTorch indicated a dominance of diatoms, whereas microscope observations showed a fairly even distribution between diatoms, blue-green algae (mostly nitrogen-fixing) and green algae (mostly large filamentous), and also detected substantial biovolumes of red algae in some streams. These results most likely reflect differences in the exact parameters quantified by the two methods, as the BenthoTorch does not account for variability in cell size and the presence of non-chlorophyll bearing biomass in estimating the proportion of different algal groups, and does not distinguish red algal chlorophyll from that of other algal groups. Our findings suggest that the BenthoTorch has utility in quantifying biomass expressed as μg chlorophyll a cm(-2), but its output for the relative contribution of different algal groups to benthic algal biomass should be used with caution. PMID:25277172

  12. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity. PMID:24161650

  13. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  14. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). PMID:23764593

  15. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy. PMID:23827782

  16. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus.

    PubMed

    Kawaguchi, H; Hashimoto, K; Hirata, K; Miyamoto, K

    2001-01-01

    To produce hydrogen from starch accumulated in an algal biomass, we used a mixed culture of the lactic acid bacterium, Lactobacillus amylovorus, and the photosynthetic bacterium, Rhodobium marinum A-501. In this system L. amylovorus, which possesses amylase activity, utilized algal starch for lactic acid production, and R. marinum A-501 produced hydrogen in the presence of light using lactic acid as an electron donor. Algal starch accumulated in the marine green alga Dunaliella tertiolecta, and the freshwater green alga Chlamydomonas reinhardtii, was more suitable for lactic acid fermentation by L. amylovorus than an authentic starch sample. Consequently, the yields of hydrogen obtained from starch contained in D. tertiolecta and C. reinhardtii were 61% and 52%, respectively, in the mixed culture of L. amylovorus and R. marinum A-501. These values were markedly superior to those obtained using a mixed culture of Vibrio fluvialis T-522 and R. marinum A-501 described previously. The yield and production rate of hydrogen by R. marinum A-501 from the lactic acid fermentates were higher than from authentic lactic acid, suggesting that the fermentates contain a factor(s) which promotes H2 production by this bacterium. PMID:16232989

  17. Bicarbonate trigger for inducing lipid accumulation in algal systems

    SciTech Connect

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  18. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae. PMID:24599393

  19. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  20. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  1. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

    PubMed

    Shen, Qiao-Hui; Gong, Yu-Peng; Fang, Wen-Zhe; Bi, Zi-Cheng; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-10-01

    Chlorella vulgaris, a marine microalgae strain adaptable to 0-50 g L(-1) of salinity, was selected for studying the coupling system of saline wastewater treatment and lipid accumulation. The effect of total nitrogen (T N) concentration was investigated on algal growth, nutrients removal as well as lipid accumulation. The removal efficiencies of TN and total phosphorus (TP) were found to be 92.2-96.6% and over 99%, respectively, after a batch cultivation of 20 days. To illustrate the response of lipid accumulation to nutrients removal, C. vulgaris was further cultivated in the recycling experiment of tidal saline water within the photobioreactor. The lipid accumulation was triggered upon the almost depletion of nitrate (<5 mg L(-1)), till the final highest lipid content of 40%. The nitrogen conversion in the sequence of nitrate, nitrite, and then to ammonium in the effluents was finally integrated with previous discussions on metabolic pathways of algal cell under nitrogen deficiency. PMID:26117237

  2. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  3. Polyurethane and alginate immobilized algal biomass for the removal of aqueous toxic metals

    SciTech Connect

    Fry, I.V.; Mehlhorn, R.J.

    1992-12-01

    We describe the development of immobilized, processed algal biomass for use as an adsorptive filter in the removal of toxic metals from waste water. To fabricate an adsorptive filter from precessed biomass several crucial criteria must be met, including: (1) high metal binding capacity, (2) long term stability (both mechanical and chemical), (3) selectivity for metals of concern (with regard to ionic competition), (4) acceptable flow capacity (to handle large volumes in short time frames), (5) stripping/regeneration (to recycle the adsorptive filter and concentrate the toxic metals to manageable volumes). This report documents experiments with processed algal biomass (Spirulina platensis and Spirulina maxima) immobilized in either alginate gel or preformed polyurethane foam. The adsorptive characteristics of these filters were assessed with regard to the criteria listed above.

  4. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.

    PubMed

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang

    2011-01-01

    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented. PMID:20933395

  5. Responses of algal communities to gradients in herbivore biomass and water quality in Marovo Lagoon, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Albert, S.; Udy, J.; Tibbetts, I. R.

    2008-03-01

    Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.

  6. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. PMID:25539998

  7. Algal biomass conversion to bioethanol - a step-by-step assessment.

    PubMed

    Harun, Razif; Yip, Jason W S; Thiruvenkadam, Selvakumar; Ghani, Wan A W A K; Cherrington, Tamara; Danquah, Michael K

    2014-01-01

    The continuous growth in global population and the ongoing development of countries such as China and India have contributed to a rapid increase in worldwide energy demand. Fossil fuels such as oil and gas are finite resources, and their current rate of consumption cannot be sustained. This, coupled with fossil fuels' role as pollutants and their contribution to global warming, has led to increased interest in alternative sources of energy production. Bioethanol, presently produced from energy crops, is one such promising alternative future energy source and much research is underway in optimizing its production. The economic and temporal constraints that crop feedstocks pose are the main downfalls in terms of the commercial viability of bioethanol production. As an alternative to crop feedstocks, significant research efforts have been put into utilizing algal biomass as a feedstock for bioethanol production. Whilst the overall process can vary, the conversion of biomass to bioethanol usually contains the following steps: (i) pretreatment of feedstock; (ii) hydrolysis; and (iii) fermentation of bioethanol. This paper reviews different technologies utilized in the pretreatment and fermentation steps, and critically assesses their applicability to bioethanol production from algal biomass. Two different established fermentation routes, single-stage fermentation and two-stage gasification/fermentation processes, are discussed. The viability of algal biomass as an alternative feedstock has been assessed adequately, and further research optimisation must be guided toward the development of cost-effective scalable methods to produce high bioethanol yield under optimum economy. PMID:24227697

  8. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  9. Preliminary evaluation of an in vivo fluorometer to quantify algal periphyton biomass and community composition

    USGS Publications Warehouse

    Harris, Theodore D.; Graham, Jennifer

    2015-01-01

    The bbe-Moldaenke BenthoTorch (BT) is an in vivo fluorometer designed to quantify algal biomass and community composition in benthic environments. The BT quantifies total algal biomass via chlorophyll a (Chl-a) concentration and may differentiate among cyanobacteria, green algae, and diatoms based on pigment fluorescence. To evaluate how BT measurements of periphytic algal biomass (as Chl-a) compared with an ethanol extraction laboratory analysis, we collected BT- and laboratory-measured Chl-a data from 6 stream sites in the Indian Creek basin, Johnson County, Kansas, during August and September 2012. BT-measured Chl-a concentrations were positively related to laboratory-measured concentrations (R2 = 0.47); sites with abundant filamentous algae had weaker relations (R2 = 0.27). Additionally, on a single sample date, we used the BT to determine periphyton biomass and community composition upstream and downstream from 2 wastewater treatment facilities (WWTF) that discharge into Indian Creek. We found that algal biomass increased immediately downstream from the WWTF discharge then slowly decreased as distance from the WWTF increased. Changes in periphyton community structure also occurred; however, there were discrepancies between BT- and laboratory-measured community composition data. Most notably, cyanobacteria were present at all sites based on BT measurements but were present at only one site based on laboratory-analyzed samples. Overall, we found that the BT compared reasonably well with laboratory methods for relative patterns in Chl-a but not as well with absolute Chl-aconcentrations. Future studies need to test the BT over a wider range of Chl-aconcentrations, in colored waters, and across various periphyton assemblages.

  10. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants.

    PubMed

    Fortier, Marie-Odile P; Sturm, Belinda S M

    2012-10-16

    Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited. PMID:22970803

  11. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGESBeta

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  12. Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries

    SciTech Connect

    Laurens, L. M. L.; Dempster, T. A.; Jones, H. D. T.; Wolfrum, E. J.; Van Wychen, S.; McAllister, J. S. P.; Rencenberger, M.; Parchert, K. J.; Gloe, L. M.

    2012-02-21

    Algal biomass compositional analysis data form the basis of a large number of techno-economic process analysis models that are used to investigate and compare different processes in algal biofuels production. However, the analytical methods used to generate these data are far from standardized. This work investigated the applicability of common methods for rapid chemical analysis of biomass samples with respect to accuracy and precision. This study measured lipids, protein, carbohydrates, ash, and moisture of a single algal biomass sample at 3 institutions by 8 independent researchers over 12 separate workdays. Results show statistically significant differences in the results from a given analytical method among laboratories but not between analysts at individual laboratories, suggesting consistent training is a critical issue for empirical analytical methods. Significantly different results from multiple lipid and protein measurements were found to be due to different measurement chemistries. We identified a set of compositional analysis procedures that are in best agreement with data obtained by more advanced analytical procedures. The methods described here and used for the round robin experiment do not require specialized instrumentation, and with detailed analytical documentation, the differences between laboratories can be markedly reduced.

  13. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  14. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. PMID:24874875

  15. Advances in direct transesterification of algal oils from wet biomass.

    PubMed

    Park, Ji-Yeon; Park, Min S; Lee, Young-Chul; Yang, Ji-Won

    2015-05-01

    An interest in biodiesel as an alternative fuel for diesel engines has been increasing because of the issue of petroleum depletion and environmental concerns related to massive carbon dioxide emissions. Researchers are strongly driven to pursue the next generation of vegetable oil-based biodiesel. Oleaginous microalgae are considered to be a promising alternative oil source. To commercialize microalgal biodiesel, cost reductions in oil extraction and downstream biodiesel conversion are stressed. Herein, starting from an investigation of oil extraction from wet microalgae, a review is conducted of transesterification using enzymes, homogeneous and heterogeneous catalysts, and yield enhancement by ultrasound, microwave, and supercritical process. In particular, there is a focus on direct transesterification as a simple and energy efficient process that omits a separate oil extraction step and utilizes wet microalgal biomass; however, it is still necessary to consider issues such as the purification of microalgal oils and upgrading of biodiesel properties. PMID:25466997

  16. Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth

    NASA Astrophysics Data System (ADS)

    Lirman, D.

    2001-05-01

    Recent declines in coral abundance accompanied by increases in macroalgal cover on Florida reefs highlight the importance of competition for space between these groups. This paper documents the frequency of coral-algal interactions on the Northern Florida Reef Tract and evaluates the effects of grazer exclusions and experimental algal addition on growth and tissue mortality of three coral species, Siderastrea siderea, Porites astreoides, and Montastraea faveolata. The frequency of interactions between corals and macroalgae was high as more than 50% of the basal perimeter of colonies was in contact with macroalgae; turf forms, Halimeda spp., and Dictyota spp. were the most common groups in contact with corals. Decreased grazing pressure resulted in significant increases in algal biomass within cages, and caged corals showed species-specific susceptibility to increased algal biomass. While no effects were detected for S. siderea, significant decreases in growth rates were documented for caged P. astreoides which had growth rates three to four times lower than uncaged colonies. When an algal addition treatment was included to duplicate maximum algal biomass levels documented for reefs in the area, colonies of P. astreoides in the algal addition treatment had growth rates up to ten times lower than uncaged colonies. High susceptibility to algal overgrowth was also found for the reef-building coral M. faveolata, which experienced significant tissue mortality under both uncaged (5.2% decrease in live tissue area per month) and caged (10.2% per month) conditions. The documented effects of increased algal biomass on coral growth and tissue mortality suggest a potential threat for the long-term survivorship and growth of corals in the Florida Reef Tract if present rates of algal growth and space utilization are maintained.

  17. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.

    PubMed

    Maurya, Rahulkumar; Paliwal, Chetan; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Tonmoy; Satpati, Gour Gopal; Pal, Ruma; Ghosh, Arup; Mishra, Sandhya

    2016-05-01

    The present study demonstrates the utilization of the algal hydrolysate (AH) prepared from lipid extracted residual harmful bloom-forming cyanobacteria Lyngbya majuscula biomass, as a growth supplement for the cultivation of green microalgae Chlorella vulgaris. BG-11 replacements with AH in different proportions significantly affects the cell count, dry cell weight (DCW), biomass productivity (BP) and pigments concentration. Among all, 25% AH substitution in BG11 media was found to be optimum which enhanced DCW, BP and pigments content by 39.13%, 40.81% and 129.47%, respectively, compared to control. The lipid content (31.95%) was also significantly higher in the 25% AH replacement. The volumetric productivity of neutral lipids (ideal for biodiesel) and total protein content of the cells significantly increased in all AH substitutions. Thus, lipid extracted microalgal biomass residue (LMBR) hydrolysate can be a potential growth stimulating supplement for oleaginous microalgae C. vulgaris. PMID:26890794

  18. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass.

    PubMed

    O'Neil, Gregory W; Williams, John R; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M

    2016-01-01

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product. PMID:27404113

  19. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis.

    PubMed

    Vardon, Derek R; Sharma, Brajendra K; Blazina, Grant V; Rajagopalan, Kishore; Strathmann, Timothy J

    2012-04-01

    Thermochemical conversion is a promising route for recovering energy from algal biomass. Two thermochemical processes, hydrothermal liquefaction (HTL: 300 °C and 10-12 MPa) and slow pyrolysis (heated to 450 °C at a rate of 50 °C/min), were used to produce bio-oils from Scenedesmus (raw and defatted) and Spirulina biomass that were compared against Illinois shale oil. Although both thermochemical conversion routes produced energy dense bio-oil (35-37 MJ/kg) that approached shale oil (41 MJ/kg), bio-oil yields (24-45%) and physico-chemical characteristics were highly influenced by conversion route and feedstock selection. Sharp differences were observed in the mean bio-oil molecular weight (pyrolysis 280-360 Da; HTL 700-1330 Da) and the percentage of low boiling compounds (bp<400 °C) (pyrolysis 62-66%; HTL 45-54%). Analysis of the energy consumption ratio (ECR) also revealed that for wet algal biomass (80% moisture content), HTL is more favorable (ECR 0.44-0.63) than pyrolysis (ECR 0.92-1.24) due to required water volatilization in the latter technique. PMID:22285293

  20. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  1. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.

    PubMed

    Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus

    2016-01-01

    The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile. PMID:26514623

  2. Implications of nutrient removal and biomass production by native and augmented algal populations at a municipal wastewater treatment plant.

    PubMed

    Drexler, Ivy L C; Bekaan, Sascha; Eskandari, Yasmin; Yeh, Daniel H

    2014-01-01

    Algal monocultures (Chlorella sorokiniana and Botryococcus braunii) and algal communities native to clarifiers of a wastewater treatment plant were batch cultivated in (1) clarified effluent following a biochemical oxygen demand (BOD) removal reactor post-BOD removal clarified effluent (PBCE), (2) clarified effluent following a nitrification reactor post-nitrification clarified effluent (PNCE), and (3) a reference media (RM). After 12 days, all algal species achieved nitrogen removal between 68 and 82% in PBCE and 37 and 99% in PNCE, and phosphorus removal between 91 and 100% in PBCE and 60 and 100% in PNCE. The pH of the wastewater samples increased above 9.8 after cultivation of each species, which likely aided ammonia volatilization and phosphorus adsorption. Both monocultures grew readily with wastewater as a feedstock, but B. braunii experienced significant crowding from endemic fauna. In most cases, native algal species' nutrient removal efficiency was competitive with augmented algal monocultures, and in some cases achieved a higher biomass yield, demonstrating the potential to utilize native species for nutrient polishing and algal biomass production. PMID:25325538

  3. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.

    PubMed

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E

    2015-08-01

    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors. PMID:25895091

  4. A bio-anodic filter facilitated entrapment, decomposition and in situ oxidation of algal biomass in wastewater effluent.

    PubMed

    Mohammadi Khalfbadam, Hassan; Cheng, Ka Yu; Sarukkalige, Ranjan; Kaksonen, Anna H; Kayaalp, Ahmet S; Ginige, Maneesha P

    2016-09-01

    This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step. PMID:27268438

  5. Cost structures and life cycle impacts of algal biomass and biofuel production

    NASA Astrophysics Data System (ADS)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  6. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  7. One-pot conversions of lignocellulosic and algal biomass into liquid fuels.

    PubMed

    De, Sudipta; Dutta, Saikat; Saha, Basudeb

    2012-09-01

    The one-pot conversion of lignocellulosic and algal biomass into a liquid fuel, 2,5-dimethylfuran (DMF), has been achieved by using a multicomponent catalytic system comprising [DMA]⁺ [CH₃SO₃]⁻ (DMA=N,N-dimethylacetamide), Ru/C, and formic acid. The synthesis of DMF from all substrates was carried out under mild reaction conditions. The reaction progressed via 5-hydroxyemthylfurfural (HMF) in the first step followed by hydrogenation and hydrogenolysis of HMF with the Ru/C catalyst and formic acid as a hydrogen source. This report discloses the effectiveness of the Ru/C catalyst for the first time for DMF synthesis from inexpensive and readily abundant biomass sources, which gives a maximum yield of 32 % DMF in 1 h. A reaction route involving 5-(formyloxymethyl)furfural (FMF) as an intermediate has been elucidated based on the ¹H and ¹³C NMR spectroscopic data. Another promising biofuel, 5-ethoxymethylfurfural (EMF), was also synthesized with high selectivity from polymeric carbohydrate-rich biomass substrates by using a Brønsted acidic ionic liquid catalyst, that is [DMA]⁺ [CH₃SO₃]⁻, by etherification of HMF in ethanol. PMID:22639414

  8. A strategy for urban outdoor production of high-concentration algal biomass for green biorefining.

    PubMed

    Lim, Chun Yong; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-05-01

    The present study was to investigate the feasibility of carrying out effective microalgae cultivation and high-rate tertiary wastewater treatment simultaneously in a vertical sequencing batch photobioreactor with small areal footprint, suitable for sustainable urban microalgae production. For 15 consecutive days, Chlorella sorokiniana was cultivated in synthetic wastewater under various trophic conditions. A cycle of 12-h heterotrophic: 12-h mixotrophic condition produced 0.98 g l(-1) d(-1) of algal biomass in tandem with a 94.7% removal of 254.4 mg l(-1) C-acetate, a 100% removal of 84.7 mg l(-1) N-NH4 and a removal of 15.0 mg l(-1) P-PO4. The cells were harvested via cost-effective chitosan flocculation with multiple dosing (3 times) applying established chitosan:cell ratio (1:300 w/w) and pH control (6.3-6.8). Reproducible flocculation efficiencies of greater than 99% and high-concentration algal broths (>20% solids) were achieved. PMID:23186659

  9. Stimulation of commercial algal biomass production by the use of geothermal water for temperature control

    SciTech Connect

    Bedell, G.W.

    1985-01-01

    The first pilot algal biomass production project to use geothermal water for the maintenance of optimal culture temperatures in Nevada is described. The project was initiated during the fall of 1982 by TAD's Enterprises, Inc., Wabuska (near Yerington), Nevada. The facility was designed to produce Spirulina under conditions that would more than meet the requirements of the United States Food and Drug Administration for sale to the health food market. As a result, the algae were grown in large plastic bags in order to prevent contamination by extraneous organisms. Although this system has not been tuned to its optimum potential, preliminary yields obtained over most of a year indicate not only the feasibility of the project but also a stimulation of daily output yields when compared to the daily growth yields for Spirulina reported by Israel.

  10. Plasticizer and surfactant formation from food-waste- and algal biomass-derived lipids.

    PubMed

    Pleissner, Daniel; Lau, Kin Yan; Zhang, Chengwu; Lin, Carol Sze Ki

    2015-05-22

    The potential of lipids derived from food-waste and algal biomass (produced from food-waste hydrolysate) for the formation of plasticizers and surfactants is investigated herein. Plasticizers were formed by epoxidation of double bonds of methylated unsaturated fatty acids with in situ generated peroxoformic acid. Assuming that all unsaturated fatty acids are convertible, 0.35 and 0.40 g of plasticizer can be obtained from 1 g of crude algae- or food-waste-derived lipids, respectively. Surfactants were formed by transesterification of saturated and epoxidized fatty acid methyl esters (FAMEs) with polyglycerol. The addition of polyglycerol would result in a complete conversion of saturated and epoxidized FAMEs to fatty acid polyglycerol esters. This study successfully demonstrates the conversion of food-waste into value-added chemicals using simple and conventional chemical reactions. PMID:25425530

  11. Biofertilizers from Algal Treatment of Dairy and Swine Manure Effluents: Characterization of Algal Biomass as a Slow Release Fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative practice to land spreading of manure effluents is to grow crops of algae on the nitrogen (N) and phosphorus (P) present in these liquid slurries. The overall environmental and economic values of this approach depend, in part, on the use and value of the resulting algal byproduct. Am...

  12. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. PMID:25935388

  13. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel. PMID:25588528

  14. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed. PMID:18465872

  15. Using Algal Metrics and Biomass to Evaluate Multiple Ways of Defining Concentration-Based Nutrient Criteria in Streams and their Ecological Relevance

    EPA Science Inventory

    We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to cha...

  16. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater.

    PubMed

    Cho, Dae-Hyun; Ramanan, Rishiram; Heo, Jina; Kang, Zion; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Kim, Hee-Sik

    2015-09-01

    Algae based wastewater treatment coupled to biofuel production has financial benefits and practical difficulties. This study evaluated the factors influencing diversity and growth of indigenous algal consortium cultivated on untreated municipal wastewater in a high rate algal pond (HRAP) for a period of 1 year using multivariate statistics. Diversity analyses revealed the presence of Chlorophyta, Cyanophyta and Bacillariophyta. Dominant microalgal genera by biovolume in various seasons were Scenedesmus sp., Microcystis sp., and Chlorella sp. Scenedesmus sp., persisted throughout the year but none of three strains co-dominated with the other. The most significant factors affecting genus dominance were temperature, inflow cyanophyta and organic carbon concentration. Cyanophyta concentration affected microalgal biomass and diversity, whereas temperature impacted biomass. Preferred diversity of microalgae is not sustained in wastewater systems but is obligatory for biofuel production. This study serves as a guideline to sustain desired microalgal consortium in wastewater treatment plants for biofuel production. PMID:25746593

  17. Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell.

    PubMed

    He, Huanhuan; Zhou, Minghua; Yang, Jie; Hu, Youshuang; Zhao, Yingying

    2014-05-01

    A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 10(6) cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m(3) and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C. PMID:24057921

  18. Effect of constant magnetic field on anaerobic digestion of algal biomass.

    PubMed

    Dębowski, Marcin; Zieliński, Marcin; Kisielewska, Marta; Hajduk, Anna

    2016-07-01

    The aim of the study was to determine the impact of the constant magnetic field (CMF) application on the effectiveness of anaerobic digestion of algal biomass. The highest yield of biogas in the range of 448.9 L/kg volatile solids (VS) to 456.6 L/kg VS was observed in the variants, in which the retention time in the CMF-exposed area ranged from 144 to 216 min/d. Under these conditions, the concentration of methane in the biogas was nearly 65.0%. The increase in the contact time of the fermentation medium with the CMF-exposed area had a significant impact of reducing the effectiveness of anaerobic digestion. The lowest biodegradation was observed when the retention time was 432 min/d. Under such condition, 281.1 L of biogas/kg VS with methane content of 41.8% was obtained. A correlation between the time of exposure to CMF and the values of parameters characterizing the methane production was found. PMID:26672642

  19. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. PMID:24582427

  20. Neonatal lamb vigour is improved by feeding docosahexaenoic acid in the form of algal biomass during late gestation.

    PubMed

    Pickard, R M; Beard, A P; Seal, C J; Edwards, S A

    2008-08-01

    To determine whether feeding a sustainable, algal source of docosahexaenoic acid (DHA) to sheep during late pregnancy would improve neonatal lamb vigour, 48 English mule ewes, of known conception date, were divided into four treatment groups. For the last 9 weeks of gestation, ewes received one of two dietary supplements: either a DHA-rich algal biomass providing 12 g DHA/ewe per day, or a control supplement based on vegetable oil. The four dietary treatment groups (n = 12) were: control supplement for the duration of the trial (C), DHA supplement from 9 to 6 weeks before parturition (3 week), DHA supplement from 9 to 3 weeks before parturition (6 week) and DHA supplement for the duration of the trial (9 week). Dietary supplements were fed alongside grass silage and commercial concentrate. There was a tendency for gestation length to be extended with increased duration of DHA supplementation (P = 0.08). After parturition, the concentrations of eicosapentaenoic acid (EPA) and DHA in ewe and lamb plasma and colostrum were elevated in line with increased periods of DHA supplementation. Lambs from the 6-week and 9-week groups stood significantly sooner after birth than lambs from the C group (P < 0.05). These data show that neonatal vigour may be improved by the supplementation of maternal diets with DHA-rich algal biomass and that this beneficial effect depends upon the timing and/or duration of DHA allocation. PMID:22443731

  1. Recovering Magnetic Fe3O4-ZnO Nanocomposites from Algal Biomass Based on Hydrophobicity Shift under UV Irradiation.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Zhang, Wen; Kuang, Liyuan; Wu, Zhiyi; Wang, Xianqin

    2015-06-01

    Magnetic separation, one of the promising bioseparation technologies, faces the challenges in recovery and reuse of magnetic agents during algal harvesting for biofuel extraction. This study synthesized a steric acid (SA)-coated Fe3O4-ZnO nanocomposite that could shift hydrophobicity under UV365 irradiation. Our results showed that with the transition of surface hydrophobicity under UV365 irradiation, magnetic nanocomposites detached from the concentrated algal biomass. The detachment was partially induced by the oxidation of SA coating layers due to the generation of radicals (e.g., •OH) by ZnO under UV365 illumination. Consequently, the nanocomposite surface shifted from hydrophobic to hydrophilic, which significantly reduced the adhesion between magnetic particles and algae as predicted by the extended Derjaguin and Landau, Verwey, and Overbeek (EDLVO) theory. Such unique hydrophobicity shift may also find many other potential applications that require recovery, recycle, and reuse of valuable nanomaterials to increase sustainability and economically viability. PMID:25965291

  2. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery. PMID:26808018

  3. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web.

    PubMed

    Pickhardt, Paul C; Folt, Carol L; Chen, Celia Y; Klaue, Bjoern; Blum, Joel D

    2005-03-01

    There is a well documented accumulation of mercury in fish to concentrations of concern for human consumption. Variation in fish Hg burden between lakes is often high and may result from differences in Hg transfer through lower levels of the food web where mercury is bioconcentrated to phytoplankton and transferred to herbivorous zooplankton. Prior research derived patterns of mercury accumulation in freshwater invertebrates from field collected animals. This study provides results from controlled mesocosm experiments comparing the effects of zooplankton composition, algal abundance, and the chemical speciation of mercury on the ability of zooplankton to accumulate mercury from phytoplankton and transfer that mercury to planktivores. Experiments were conducted in 550-L mesocosms across a gradient of algal densities manipulated by inorganic nutrient additions. Enriched, stable isotopes of organic (CH3(200HgCl)) and inorganic (201HgCl2) mercury were added to mesocosms and their concentrations measured in water, seston, and three common zooplankton species. After 2 weeks, monomethylmercury (MMHg) concentrations were two to three times lower in the two copepod species, Leptodiaptomus minutus and Mesocyclops edax than in the cladoceran, Daphnia mendotae. All three zooplankton species had higher MMHg concentrations in mesocosms with low versus high initial algal abundance. However, despite higher concentrations of inorganic mercury (HgI) in seston from low nutrient mesocosms, there were no significant differences in the HgI accumulated by zooplankton across nutrient treatments. Bioaccumulation factors for MMHg in the plankton were similar to those calculated for plankton in natural lakes and a four-compartment (aqueous, seston, macrozooplankton, and periphyton/sediments) mass balance model after 21 days accounted for approximately 18% of the CH3(200Hg) and approximately 33% of the 201Hg added. Results from our experiments corroborate results from field studies and

  4. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE PAGESBeta

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  5. PCB UPTAKE AND ACCUMULATION BY OYSTERS (CRASSOSTREA VIRGINICA) EXPOSED VIA A CONTAMINATED ALGAL DIET. (R825349)

    EPA Science Inventory

    Abstract

    Reproductively active oysters were fed daily with 0.2 g algal paste containing 0, 0.1, and 1.0 small mu, Greekg polychlorinated biphenyls (PCBs) (1:1:1 mixture of Aroclor 1242, 1...

  6. EFFECT OF VAPOR-PHASE BIOREACTOR OPERATION ON BIOMASS ACCUMULATION, DISTRIBUTION, AND ACTIVITY. (R826168)

    EPA Science Inventory

    Excess biomass accumulation and activity loss in vapor-phase bioreactors (VPBs) can lead to unreliable long-term operation. In this study, temporal and spatial variations in biomass accumulation, distribution and activity in VPBs treating toluene-contaminated air were monitored o...

  7. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation.

    PubMed

    Zhou, Wenguang; Min, Min; Li, Yecong; Hu, Bing; Ma, Xiaochen; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2012-04-01

    A hetero-photoautotrophic algal growth model was studied for improved wastewater treatment and low cost algal biofuel feedstock production. The microalga, Auxenochlorella protothecoides UMN280, was grown heterotrophically on concentrated municipal wastewater and then autotrophically with CO(2) supplementation (air, 1% and 5%, respectively). Strain UMN280 was harvested by self-sedimentation after the heterotrophic stage and the supernatant was aerated with different levels of CO(2) to facilitate autotrophic growth in the second stage. The maximal biomass concentration and lipid content at the first and second stages reached 1.12g/L and 28.90%, and 1.16g/L and 33.22%, respectively. The nutrient removal efficiencies for total phosphorus, ammonia, nitrogen and chemical oxygen demand at the end of the two-stage cultivation were 98.48%, 100%, 90.60% and 79.10%, respectively. The above process can be used to treat organic-rich wastewaters (e.g. industrial and animal manure wastewaters) to achieve the dual purpose of low-cost wastewater treatment and biofuel feedstock production. PMID:22326332

  8. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    PubMed

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply. PMID:25459840

  9. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations

    NASA Astrophysics Data System (ADS)

    Bosc, E.; Bricaud, A.; Antoine, D.

    2004-03-01

    Because the Mediterranean has been subject for several decades to increasing anthropogenic influences, monitoring algal biomass and primary production on a long-term basis is required to detect possible modifications in the biogeochemical equilibrium of the basin. This work was initiated thanks to a 4-year-long time series of SeaWiFS observations. Seasonal variations of algal biomass (estimated using a previously developed regional algorithm) and primary production were analyzed for the various regions, and compared with those estimated using the CZCS sensor (1978-1986). Also, interannual variations could be assessed for the first time. The seasonal cycles of algal biomass generally reveal a maximum in winter or spring, and a minimum in summer. Some conspicuous differences with CZCS observations (e.g., in the Northwest Basin, reduction of the deep convection zone, earlier start of the spring bloom, quasi-absence of the vernal bloom) likely result from environmental changes. Interannual variations in algal biomass are noticeable all over the basin, including in the very oligotrophic waters of the Eastern Basin. The seasonal evolution of primary production is predominantly influenced by that of algal biomass in the Western Basin (with, in particular, a spring maximum). In the Eastern Basin, the seasonal courses of PAR and biomass tend to compensate each other, and primary production varies weakly along the year. The annual values computed over the 1998-2001 period for the Western Basin (163 ± 7 gC m-2 yr-1) and the Eastern Basin (121 ± 5 gC m-2 yr-1) are lower (by 17 and 12%, respectively) than those previously derived (using the same light-photosynthesis model) from CZCS data.

  10. Selective recovery of gold and other metal ions from an algal biomass

    SciTech Connect

    Darnall, D.W.; Greene, B.; Henzl, M.T.; Hosea, J.M.; McPherson, R.A.; Sneddon, J.; Alexander, M.D.

    1986-02-01

    The authors observed that the pH dependence of the binding of Au/sup 3 +/, Ag/sup +/, and Hg/sup 2 +/ to the algae Chlorella vulgaris is different than the binding of other metal ions. Between pH 5 and 7, a variety of metal ions bind strongly to the cell surface. Most of these algal-bound metal ions can be selectively desorbed by lowering the pH to 2; however, Au/sup 3 +/, Hg/sup 2 +/, and Ag/sup +/ are all bound strongly at pH 2. Addition of a strong ligand at different pHs is required to elute these ions from the algal surface. Algal-bound gold and mercury can be selectively eluted by using mercaptoethanol. An elution scheme is demonstrated for the binding and selective recovery of Cu/sup 2 +/, Zn/sup 2 +/, Au/sup 3 +/, and Hg/sup 2 +/ from an equimolar mixture. 20 references, 2 figures.

  11. Antarctic slush-ice algal accumulation not quantified through conventional satellite imagery: Beware the ice of March

    NASA Astrophysics Data System (ADS)

    Lieser, J. L.; Curran, M. A. J.; Bowie, A. R.; Davidson, A. T.; Doust, S. J.; Fraser, A. D.; Galton-Fenzi, B. K.; Massom, R. A.; Meiners, K. M.; Melbourne-Thomas, J.; Reid, P. A.; Strutton, P. G.; Vance, T. R.; Vancoppenolle, M.; Westwood, K. J.; Wright, S. W.

    2015-11-01

    Our current knowledge of broad-scale patterns of primary production in the Southern Ocean is derived from satellite ocean-colour estimates of chlorophyll a (Chl a) in the open ocean, typically in spring-summer. Here, we provide evidence that large-scale intra-ice phytoplankton surface aggregation occur off the coast of Antarctica during austral autumn, and that these "blooms" are largely undetected in satellite ocean-colour time series (which mask the ice-covered ocean). We present an analysis of (i) true-colour (visible) satellite imagery in combination with (ii) conventional ocean-colour data, and (iii) direct sampling from a research vessel, to identify and characterise a large-scale intra-ice algal occurrence off the coast of East Antarctica in early autumn (March) 2012. We also present evidence of these autumn "blooms" in other regions (for example, Princess Astrid Coast in 2012) and other years (for example, Terra Nova Bay in 2015) implying regular and widespread occurrence of these phenomena. The occurrence of such undetected algal accumulations implies that the magnitude of primary production in the Southern Ocean is currently underestimated.

  12. Treatment of Dairy and Swine Manure Effluents Using Freshwater Algae: Fatty Acid Content and Composition of Algal Biomass at Different Manure Loading Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative to land spreading of manure effluents is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to determine how fatty acid (FA) content and composition of algae respond to changes in the type of manu...

  13. Measuring the Composition and Stable-Isotope Labeling of Algal Biomass Carbohydrates via Gas Chromatography/Mass Spectrometry.

    PubMed

    McConnell, Brian O; Antoniewicz, Maciek R

    2016-05-01

    We have developed a method to measure carbohydrate composition and stable-isotope labeling in algal biomass using gas chromatography/mass spectrometry (GC/MS). The method consists of two-stage hydrochloric acid hydrolysis, followed by chemical derivatization of the released monomer sugars and quantification by GC/MS. Fully (13)C-labeled sugars are used as internal standards for composition analysis. This convenient, reliable, and accurate single-platform workflow offers advantages over existing methods and opens new opportunities to study carbohydrate metabolism of algae under autotrophic, mixotrophic, and heterotrophic conditions using metabolic flux analysis and isotopic tracers such as (2)H2O and (13)C-glucose. PMID:27042946

  14. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis

    PubMed Central

    Wang, Xiaoping; Yang, Xiyu; Chen, Siyu; Li, Qianqian; Wang, Wei; Hou, Chunjiang; Gao, Xiao; Wang, Li; Wang, Shucai

    2016-01-01

    Dramatic increase in the use of nanoparticles (NPs) in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs) are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ∼20 and 80%, respectively, in comparison to the control. Pigments measurement showed that Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO), CHLOROPHYLL SYNTHASE (CHLG), COPPER RESPONSE DEFECT 1 (CRD1), MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM) and MG-CHELATASE SUBUNIT D (CHLD), and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2), PHOTOSYSTEM I SUBUNIT E-2 (PSAE2), PHOTOSYSTEM I SUBUNIT K (PSAK) and PHOTOSYSTEM I SUBUNIT K (PSAN) were reduced about five folds in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6), PHYTOENE SYNTHASE (PSY) PHYTOENE DESATURASE (PDS), and ZETA-CAROTENE DESATURASE (ZDS) were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  15. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis.

    PubMed

    Wang, Xiaoping; Yang, Xiyu; Chen, Siyu; Li, Qianqian; Wang, Wei; Hou, Chunjiang; Gao, Xiao; Wang, Li; Wang, Shucai

    2015-01-01

    Dramatic increase in the use of nanoparticles (NPs) in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs) are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ∼20 and 80%, respectively, in comparison to the control. Pigments measurement showed that Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO), CHLOROPHYLL SYNTHASE (CHLG), COPPER RESPONSE DEFECT 1 (CRD1), MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM) and MG-CHELATASE SUBUNIT D (CHLD), and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2), PHOTOSYSTEM I SUBUNIT E-2 (PSAE2), PHOTOSYSTEM I SUBUNIT K (PSAK) and PHOTOSYSTEM I SUBUNIT K (PSAN) were reduced about five folds in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6), PHYTOENE SYNTHASE (PSY) PHYTOENE DESATURASE (PDS), and ZETA-CAROTENE DESATURASE (ZDS) were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  16. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.

    PubMed

    Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

    2014-02-01

    Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH₃-N, TN, COD, and PO₄-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study. PMID:24203276

  17. Genetic relatedness influences plant biomass accumulation in eelgrass (Zostera marina).

    PubMed

    Stachowicz, John J; Kamel, Stephanie J; Hughes, A Randall; Grosberg, Richard K

    2013-05-01

    In multispecies assemblages, phylogenetic relatedness often predicts total community biomass. In assemblages dominated by a single species, increasing the number of genotypes increases total production, but the role of genetic relatedness is unknown. We used data from three published experiments and a field survey of eelgrass (Zostera marina), a habitat-forming marine angiosperm, to examine the strength and direction of the relationship between genetic relatedness and plant biomass. The genetic relatedness of an assemblage strongly predicted its biomass, more so than the number of genotypes. However, contrary to the pattern observed in multispecies assemblages, maximum biomass occurred in assemblages of more closely related individuals. The mechanisms underlying this pattern remain unclear; however, our data support a role for both trait differentiation and cooperation among kin. Many habitat-forming species interact intensely with conspecifics of varying relatedness; thus, genetic relatedness could influence the functioning of ecosystems dominated by such species. PMID:23594554

  18. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation.

    PubMed

    Wong, Y K; Ho, K C; Tsang, Y F; Wang, L; Yung, K K L

    2016-01-01

    Microalgae have been used as energy resources in recent decades to mitigate the global energy crisis. As the demand for pure microalgae strains for commercial use increases, designing an effective photobioreactor (PBR) for mass cultivation is important. Chlorella vulgaris, a local freshwater microalga, was used to study the algal biomass cultivation and lipid production using various PBR configurations (bubbling, air-lift, porous air-lift). The results show that a bubbling column design is a better choice for the cultivation of Chlorella vulgaris than an air-lift one. The highest biomass concentration in the bubbling PBR was 0.78 g/L while the air-lift PBR had a value of 0.09 g/L. Key operating parameters, including draft-tube length and bubbling flowrate, were then optimized based on biomass production and lipid yield. The highest lipid content was in the porous air-lift PBR and the air-lift PBR with shorter draft tube (35 cm) was also better than a longer one (50 cm) for algal cultivation, but the microalgae attachment on the inner tube of PBR always occurred. The highest biomass concentration could be produced under the highest gas flowrate of 2.7 L/min, whereas the lowest dry cell mass was under the lowest gas flowrate of 0.2 L/min. PMID:26803025

  19. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

    PubMed

    Laurens, Lieve M L; Van Wychen, Stefanie; McAllister, Jordan P; Arrowsmith, Sarah; Dempster, Thomas A; McGowen, John; Pienkos, Philip T

    2014-05-01

    Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently. PMID:24556245

  20. Water and nitrogen management effects on biomass accumulation and partitioning in two potato cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass accumulation and partitioning into different plant parts is a dynamic process during the plant growing period, which is influenced by crop management and climate factors. Adequate knowledge of biomass partitioning is important to manage the crops to gain maximum partitioning of assimilates i...

  1. Accumulation Rate of Microbial Biomass at Two Permeable Reactive Barrier Sites

    NASA Astrophysics Data System (ADS)

    Wilkin, R.; Sewell, G.; Puls, R.

    2001-12-01

    Accumulation of mineral precipitates and microbial biomass are key factors that impact the long term performance of in situ Permeable Reactive Barriers for treating contaminated groundwater. Both processes can impact remedial performance by decreasing zero valent iron reactivity and permeability. Results are presented from solid phase and groundwater monitoring studies conducted at two Permeable Reactive Barrier sites, U.S. Coast Guard Support Center (Elizabeth City, North Carolina) and the Denver Federal Center (Lakewood, Colorado). At both sites barrier installations have been in place for approximately five years. Over this period, consistent patterns of spatially heterogeneous microbial biomass accumulation are observed at these sites. The iron-aquifer interface witnesses the greatest accumulation of microbial biomass and mineral precipitates. There accumulation rates are a factor of 3 to 10 times greater than midwall or downgradient regions. Estimates of porosity loss due to mineral and biomass buildup range from about 1 to 5 percent per year of the initial available volume. Phospholipid fatty acid profiles indicate that the PRB biomass is dominated by biomarkers indicative of anaerobic sulfate reducing or iron reducing bacteria. This result is in agreement with acid volatile sulfide concentrations that strongly correlate with biomass concentrations. Upgradient groundwater chemistry and flow rate appear to be the main factors that control the rate (and type) of mineral precipitate formation as well as the rate of biomass accumulation. Notice, this is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  2. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  3. Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean bio...

  4. Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial isochrysis algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean bio...

  5. Statistical models related to accumulated biomass of Hopea odorata in three soil series of ultisols

    NASA Astrophysics Data System (ADS)

    Maarof, Fauziah; Fauzi, Mohd Adi Faiz Ahmad; Mohamed, Shamsiah

    2014-07-01

    This paper presents results on statistical distribution fitting and polynomial regression on accumulated biomass of seven year-old tree species Hopea odorata, which were planted in three different soil series of ultisols, namely Rengggam, Baling and Kuala Berang. Data were collected from a study conducted in a Hopea odorata plantation at FRIM Research Station, Segamat, Johor. Thirty tree stands in each soil series were randomly sampled to measure their growth performance and accumulated biomass. The Kolmogorov-Smirnov and Anderson-Darling tests indicated that for all tree stands, diameter, height, above ground (stem, branch, leaves) and below ground (root) biomass were found to be best fitted with the four parameters Johnson's System Bounded (SB) distributions. Then, for each soil series, a polynomial regression model was estimated to describe the relationship between total accumulated biomass and functions of tree diameter and height.

  6. Occurrence and distribution of algal biomass and Its relation to nutrients and selected basin characteristics in Indiana streams, 2001-2005

    USGS Publications Warehouse

    Lowe, B. Scott; Leer, Donald R.; Frey, Jeffrey W.; Caskey, Brian J.

    2008-01-01

    The seasonal values for nutrients (nitrate, TKN, TN, and TP) and algal biomass (periphyton CHLa, AFDM, seston CHLa, and POC) were compared to published U. S. Environmental Protection Agency (USEPA) values for their respective ecoregions. Algal biomass values either were greater than the 25th percentile published USEPA values or extended the range of data in Aggregate Nutrient Ecoregions VI, VII, IX and USEPA Level III Ecoregions 54, 55, 56, 71, and 72. If the values for the 25th percentile proposed by the USEPA were adopted as nutrient water-quality criteria, then about 71 percent of the nutrient samples and 57 percent of the CHLa samples within the eight study basins would be considered nutrient enriched.

  7. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances.

    PubMed

    Alcántara, Cynthia; Domínguez, Jesús M; García, Dimas; Blanco, Saúl; Pérez, Rebeca; García-Encina, Pedro A; Muñoz, Raúl

    2015-09-01

    Algal-bacterial symbiosis, implemented in an innovative anoxic-aerobic photobioreactor configuration with biomass recycling, supported an efficient removal of total organic carbon (86-90%), inorganic carbon (57-98%) and total nitrogen (68-79%) during synthetic wastewater treatment at a hydraulic and sludge retention times of 2 days and 20 days, respectively. The availability of inorganic carbon in the photobioreactor, determined by its supply in the wastewater and microalgae activity, governed the extent of nitrogen removal by assimilation or nitrification-denitrification. Unexpectedly, nitrate production was negligible despite the high dissolved oxygen concentrations, denitrification being only based on nitrite reduction. Biomass recycling resulted in the enrichment of rapidly settling algal flocs, which supported effluent total suspended solid concentrations below the European Union maximum discharge limits. Finally, the maximum nitrous oxide emissions recorded were far below the emission factors reported for wastewater treatment plants, confirming the environmental sustainability of this innovative photobioreactor in terms of global warming impact. PMID:25989093

  8. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    PubMed

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems. PMID:27273089

  9. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.

    PubMed

    Chen, Wan-Ting; Zhang, Yuanhui; Zhang, Jixiang; Yu, Guo; Schideman, Lance C; Zhang, Peng; Minarick, Mitchell

    2014-01-01

    In this study, a mixed-culture algal biomass harvested from a functioning wastewater treatment system (AW) was hydrothermally converted into bio-crude oils. The highest bio-crude oil yield (49% of volatile matter) and the highest energy recovery were obtained at 300 °C with 1 h retention time. The highest heating value of the bio-crude oil was 33.3 MJ/kg, produced at 320 °C and 1h retention time. Thermogravimetric analysis showed approximately 60% of the bio-crude oils were distilled in the range of 200-550 °C; and the solid residue might be suitable for use in asphalt. GC-MS results indicated that the bio-crude oil contained hydrocarbons and fatty acids, while the aqueous product was rich in organic acids and cyclic amines. The nitrogen recovery (NR) in the bio-crude oil ranged from 8.41% to 16.8%, which was lower than the typical range of 25%-53% from previous studies. PMID:24287452

  10. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  11. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    NASA Astrophysics Data System (ADS)

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-08-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

  12. Potential biomass yield per phosphorus and lipid accumulation property of seven microalgal species.

    PubMed

    Wu, Yin-Hu; Yu, Yin; Hu, Hong-Ying

    2013-02-01

    The potential biomass yield per phosphorus and lipid/triglyceride (TAG) accumulation properties of seven microalgal species: Scenedesmus sp. LX1, Chlorella ellipsoidea YJ1, Chlorella vuglaris, Chlorella sorokiniana, Chlorella pyrenoidosa, Dunaliella primolecta and Haematococcus pluvialis were investigated. Among the tested species, Scenedesmus sp. LX1 obtained the smallest minimal phosphorus content in cell (Q(0)) and the highest potential biomass yield of 6100kg-biomass/kg-P. After 12-day growth with intracellular phosphorus, Scenedesmus sp. LX1 accumulated about 30% lipid in biomass. Furthermore, the TAGs content per lipid of this strain (58.5%) as well as the lipid and TAGs yield per phosphorus (1800kg-lipid/kg-P and 680kg-TAGs/kg-P, respectively) were all significantly higher than that of any other species investigated in this study. Therefore, the phosphorus consumption to produce 1kg biodiesel using Scenedesmus sp. LX1 as feedstock was lowest among the tested species. PMID:23334016

  13. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    PubMed Central

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-01-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping. PMID:23942574

  14. [Impacts of algal blooms accumulation on physiological ecology of water hyacinth].

    PubMed

    Wu, Ting-ting; Liu, Guo-feng; Han, Shi-qun; Zhou, Qing; Tang, Wan-ying

    2015-01-01

    Blue-green algae bloom will consume plenty of dissolved oxygen in water, which affects the growth of aquatic plants. The effects of water hyacinth growth and physiological response changes under 25 degrees C, 5 different concentrations of cyanobacteria gathered were studied and which would provide a theoretical basis to mitigate adverse impacts and improve water purification effect. The results showed that water quality indexes including dissolved oxygen (DO), pH dropped in algae density below 60 g x L(-1), with the increase of algae density. And the level of oxidation-reduction potential dropped to about 100 mV. The removal rates of TN, TP and COD were 58%-78%, 43%-68% and 59%-73%, leaf soluble protein, soluble sugar, MDA contents increased, respectively; and the MDA content became higher with the increase of algae density. It indicated that the water hyacinth could adapt to the adversity condition as algae density less than 60 g x L(-1). While algae density above 60 g x L(-1), water quality indexes significantly decreased, respectively and the water was in hypoxia or anoxia conditions. Plant leaves soluble sugar contents had a change trend of low-high-low. It indicated that the removal rates of TN, TP decreased with the increase of algae density and water hyacinth had irreversible stress. Plant root length, total length, fresh weight in different treatments, increased compared with the beginning of the experiment, the increase of root length, total length and fresh weight were 0.29-2.44 times, 0.41-0.76 times and 0.9-1.43 times. The increase of root length, total length decreased with the increase of algae density. According to the results, the cyanobacteria should avoid of excessive accumulation as using the floating plant to purify the water. PMID:25898654

  15. Biosorption of methylene blue by de-oiled algal biomass: equilibrium, kinetics and artificial neural network modelling.

    PubMed

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2-9), temperature (293.16-323.16 K), biosorbent dosage (1-10 g L(-1)), contact time (0-1,440 min), agitation speed (0-150 rpm) and dye concentration (25-2,500 mg L(-1)). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5-7 g L(-1) DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g(-1) at 2,000 mg L(-1) initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g(-1) in preliminary study while it went up to 139.11 mg g(-1) in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  16. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    PubMed Central

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  17. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    NASA Astrophysics Data System (ADS)

    Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.

    2012-08-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters.

  18. Determination of gold binding in an algal biomass using EXAFS and XANES spectroscopies

    SciTech Connect

    Watkins, J.W. II; Elder, R.C.; Greene, B.; Darnall, D.W.

    1987-04-08

    The alga Chorella vulgaris has been shown to have a high affinity for both gold(I) and gold(III) species in aqueous solutions. The accumulation of gold may approach 10% or more of the algae dry weight. X-ray absorption spectroscopy was used to investigate Au-algae samples prepared from aqueous solutions of the antiarthritic drug Myochrisine (sodium gold(I) thiomalate) and the gold complexes dicyanoaurate(I) and tetrachloroaurate(III). The oxidation state of the algae-bound gold and the structure of the gold coordination sphere that results upon binding have been determined. These results indicate that chemical reaction, not simply electrostatic interaction, is involved in the binding of the gold to the algae. The predominant oxidation state in algae complexes is Au(I). For samples derived from Au(I) complexes, the ligating atom appears to be sulfur while, for the samples prepared from Au(III), the product appears to bind Au(I) to a nitrogen moiety. 22 references, 2 figures, 2 tables.

  19. ACCUMULATION RATE OF MICROBIAL BIOMASS AT TWO PERMEABLE REACTIVE BARRIER SITES

    EPA Science Inventory

    Accumulation of mineral precipitates and microbial biomass are key factors that impact the long-term performance of in-situ Permeable Reactive Barriers for treating contaminated groundwater. Both processes can impact remedial performance by decreasing zero-valent iron reactivity...

  20. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.

    PubMed

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei

    2014-12-01

    Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1). PMID:25056754

  1. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado

    SciTech Connect

    Li, L.; Steefel, C.I.; Williams, K.H.; Wilkins, M.J.; Hubbard, S.S.

    2009-04-20

    Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.

  2. BIOMASS ACCUMULATION AND PARTITIONING OF EASTERN GAMMAGRASS GROWN UNDER DIFFERENT TEMPERATURE AND CO2 LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eastern gamagrass has been reported to have one of the highest photosynthetic rates of any C4 species but data on temperature x CO2 interactions are lacking. This study was conducted to determine the potential effects of future increases of atmospheric carbon dioxide on growth, biomass accumulation...

  3. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  4. Biomass Accumulation Rates of Amazonian Secondary Forest and Biomass of Old-Growth Forests from Landsat Time Series and GLAS

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Lefsky, M. A.; Roberts, D.

    2009-12-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover

  5. The relative influence of local and regional environmental drivers of algal biomass (chlorophyll-a) varies by estuarine location

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa; Yu, Hao; Gazenski, Kim; Boynton, Walter

    2016-09-01

    A major question in restoring estuarine water quality is whether local actions to manage excess nutrients can be effective, given that estuaries are also responding to tidal inputs from adjacent water bodies. Several types of statistical analysis were used to examine spatially-detailed and long-term water quality monitoring data in eight sub-estuaries of Chesapeake Bay. These sub-estuaries are likely to be similar to other shallow systems with moderate to long water residence times. Statistical cluster analysis of spatial water quality data suggested that estuaries had spatially distinct water quality zones and that the peak algal biomass (as measured by chlorophyll-a) was most often controlled by local watershed inputs in all but one estuary, although mainstem inputs affected most estuaries at some times and places. An elasticity indicator that compared inter-annual changes in sub-estuaries to parallel changes in the mainstem Chesapeake Bay supported the idea that water quality in sub-estuaries was not strongly coupled to the mainstem. A cross-channel zonation of water quality observed near the mouth of estuaries suggested that Bay influences were stronger on the right side of the lower channel (looking up estuary) at times in all estuaries, and was most common in small estuaries closest to the mouth of the primary water source to the estuary. Where Bay influences were strong, estuarine water quality would be expected to be less responsive to nutrient reductions made in the local watershed. Regression analysis was used to evaluate hypothesized relationships between environmental driver variables and average chlorophyll-a (chl-a) concentrations. Chl-a values were calculated from unusually detailed levels of spatial sampling, potentially providing a more comprehensive view of system conditions than that provided by traditional sparse sampling networks. The univariate models with the best data support to explain variability in averaged chl-a concentration were those

  6. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  7. Ethanol fermentation by flocculent yeast: on the kinetics of biomass accumulation

    SciTech Connect

    Netto, C.B.; Goma, G.

    1987-01-01

    A widespread interest has been noted in continuous-power ethanol fermentation utilizing systems with strong biomass accumulation. Flocculent yeast systems require not additional mechanical complexity to reach biomass levels on the order of 60-90 g/L. This is achieved by coupling a decantor to a fermentor, taking advantage of the fact the flocs may easily settle. the general performance of yeast floc reactors have been established: the high biomass levels achieved allow efficient ethanol conversion (40-80 g/L) and high productivities (10-18 g/L h) for 100-190 g/L glucose concentration in the feed with practically total conversion of substrate. The present communication gives additional information on the kinetics of a continuous flocculent yeast reactor operating under transient conditions. We give insight into the optimization of the startup operation.

  8. Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence

    USGS Publications Warehouse

    White, L.L.; Zak, D.R.; Barnes, B.V.

    2004-01-01

    The Upper Lake States region is marked by major disturbances of fire and logging over 100 years ago that created a landscape mosaic of early successional forests. Given the intimate link between soil N availability and forest growth in this region, it is important to understand how temporal changes in soil N constrain the rate at which forest biomass accumulates following a stand-destroying disturbance. Bigtooth aspen (Populus grandidentata Michx.) currently dominates sites where primarily old-growth pine-hemlock-oak forests once thrived, which provides an opportunity to observe nearly 100 years of succession following severe disturbance. In this study, we examine the relationship between soil N availability and biomass accrual in a series of plots undergoing secondary succession following logging and burning. Our results demonstrate that total aboveground biomass and nitrogen accrual patterns are strongly and positively related on a highly disturbed, bigtooth aspen-dominated ecosystem in northern Lower Michigan. Nitrogen mineralization and nitrification were highest immediately following disturbance, and then decreased over the next approximately 20 years of succession. Following this short-term decrease, these processes increased and attained a maximum value after 70 years of forest succession. Understory biomass accumulation showed the opposite trend of nutrient availability, with highest values during the first 20 years of succession, followed by a dramatic decrease for the next 70 years. Understory biomass began to decrease as plants grew into the overstory or died. Total aboveground biomass was correlated with N mineralization (r=0.894; P=0.041) and nitrification (r=0.782; P=0.118) and appears to be increasing steadily to some maximum that has not yet been reached. ?? 2003 Elsevier B.V. All rights reserved.

  9. Toward detection of CO2 fertilization of tree growth and biomass accumulation in Amazon forests

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.; Negron Juarez, R. I.; Di Vittorio, A. V.; Marra, D.; Rifai, S. W.; Ribeiro, G.; Higuchi, N.

    2012-12-01

    Synthesis studies of old-growth tropical forest plot networks indicate a pantropical net carbon sink of more than 1 Pg C/yr. However a number of confounding factors limit our ability to attribute these changes to direct CO2 fertilization of tree growth and forest productivity. Of primary importance is determining if the plots adequately sample natural disturbance and recovery gradients, and the larger landscape successional mosaic. In addition, forest biomass dynamics which include tree growth, recruitment and mortality can interact in complex ways with changes in forest productivity and biomass accumulation. This study represents a novel approach to determine the sensitivity of different sampling strategies for detecting tropical forest CO2 fertilization while accounting for these confounding factors. Our approach, developed for Amazon forests in Brazil and Peru, combines extensive field plot data on biomass dynamics, remote sensing analyses to generate disturbance probability distribution functions, and individual-based simulation modeling for placing plot-level results into a landscape context. Results indicate that forest plots significantly larger than 10 ha are required to maximize the signal-to-noise ratio for detecting CO2 fertilization. We also present a field sampling strategy for quantifying site-to-site differences in forest biomass accumulation rates, which is useful for detecting regional differences in tropical forest sensitivity to rising atmospheric CO2 concentration. Overall, this approach is useful in developing field campaigns that explicitly account for landscape heterogeneity in testing key predictions of Earth system models.

  10. Accumulation and partitioning of biomass, nutrients, and trace elements in switchgrass for phytoremediation of municipal biosolids.

    PubMed

    Jeke, Nicholson N; Zvomuya, Francis; Ross, Lisette

    2016-09-01

    In situ phytoremediation of municipal biosolids is a promising alternative to the land spreading and landfilling of biosolids from end-of-life municipal lagoons. Accumulation and partitioning of dry matter, nitrogen (N), phosphorus (P), and trace elements were determined in aboveground biomass (AGB) and belowground biomass (BGB) of switchgrass (Panicum virgatum L.) to determine the harvest stage that maximizes phytoextraction of contaminants from municipal biosolids. Seedlings were transplanted into 15-L plastic pails containing 3.9 kg (dry wt.) biosolids. Biomass yield components and contaminant concentrations were assessed every 14 days for up to 161 days. Logistic model fits to biomass yield data indicated no significant differences in asymptotic yield between AGB and BGB. Switchgrass partitioned significantly more N and P to AGB than to BGB. Maximum uptake occurred 86 days after transplanting (DAT) for N and 102 DAT for P. Harvesting at peak aboveground element accumulation removed 5% of N, 1.6% of P, 0.2% of Zn, 0.05% of Cd, and 0.1% of Cr initially present in the biosolids. These results will contribute toward identification of the harvest stage that will optimize contaminant uptake and enhance in situ phytoremediation of biosolids using switchgrass. PMID:26940512

  11. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.

    PubMed

    Yin, Yehu; Yu, Changjiang; Yu, Li; Zhao, Jinshan; Sun, Changjiang; Ma, Yubin; Zhou, Gongke

    2015-01-01

    Duckweed has been considered as a valuable feedstock for bioethanol production due to its high biomass and starch production. To investigate the effects of light conditions on duckweed biomass and starch production, Lemna aequinoctialis 6000 was cultivated at different photoperiods (12:12, 16:8 and 24:0h) and light intensities (20, 50, 80, 110, 200 and 400μmolm(-2)s(-1)). The results showed that the duckweed biomass and starch production was increased with increasing light intensity and photoperiod except at 200 and 400μmolm(-2)s(-1). Considering the light cost, 110μmolm(-2)s(-1) was optimum light condition for starch accumulation with the highest maximum growth rate, biomass and starch production of 8.90gm(-2)day(-1), 233.25gm(-2) and 98.70gm(-2), respectively. Moreover, the results suggested that high light induction was a promising method for duckweed starch accumulation. This study provides optimized light conditions for future industrial large-scale duckweed cultivation. PMID:25841186

  12. Impact of nitrogen availability and soil communities on biomass accumulation of an invasive species

    PubMed Central

    Bajpai, Devika; Inderjit

    2013-01-01

    Exotic plant species impact belowground processes by influencing resource availability through enhanced microbial activity as a consequence of litter inputs. We have little understanding of the impact of microbe-driven nutrient fluctuations on the biomass accumulation of invasive species. Here we attempt to answer the question on whether soil community-driven nitrogen availability influences invader biomass. We discovered that soil communities cultured by Ageratina adenophora, a neotropical invader in Asia, retain available nitrogen that influences the biomass of the invader. Through soil manipulation experiments we found that A. adenophora grows better in soil with a higher available nitrogen content. Ageratina adenophora-invaded soil had higher microbial activity and available nitrogen due to higher inputs of terpene-rich litter compared with soil not yet invaded by it. Our results provide evidence that microbe-linked nitrogen availability exerts a positive impact on A. adenophora biomass accumulation. Our work emphasizes the importance of soil community-driven nitrogen availability in invasion success.

  13. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    PubMed

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature. PMID:25397981

  14. Catchment and in-stream influences on iron-deposit chemistry, algal-bacterial biomass and invertebrate richness in upland streams, Northern Ireland.

    NASA Astrophysics Data System (ADS)

    Macintosh, Katrina Ann; Griffiths, David

    2013-04-01

    The density and composition of upland stream bed iron-deposits is affected by physical, chemical and biological processes. The basic chemical processes producing ochre deposits are well known. Mobilisation of iron and manganese is influenced by bedrock weathering, the presence of acidic and/or reducing conditions and the concentration of dissolved organic carbon. Ferromanganese-depositing bacteria are significant biogenic agents and can cause/enhance the deposition of metals in streams as (hydr)oxides. Metal concentrations from stream waters in two geological blocks in Northern Ireland were compared to determine the contributions of catchment characteristics and in-stream conditions. One block is composed of metamorphosed schist and unconsolidated glacial drift, with peat or peaty podzol (mainly humic) soils, while the other block consists of tertiary basalt with brown earth and gley soils. Water samples were collected from 52 stream sites and analysed for iron, manganese and aluminium as well as a range of other chemical determinands known to affect metal solubility. Stone deposit material was analysed for metal concentrations, organic matter content and epilithic algae, chlorophyll a concentration. Invertebrates were collected by area-standardised kick samples and animals identified to family and numbers counted. Higher conductivities and concentrations of bicarbonate, alkalinity, calcium and magnesium occurred on basalt than on schist. Despite higher iron and manganese oxide concentrations in basalt-derived non-humic soils, stream water concentrations were much lower and stone deposit concentrations only one third of those occurring on schist overlain by humic soils. Peat-generated acidity and the limited acid neutralising capacity of base-poor metamorphosed schist has resulted in elevated concentrations of metals and ochre deposit in surface waters. Algal biomass was determined by catchment level factors whereas in-stream conditions affected bacterial biomass

  15. A growth inhibitory model with SO(x) influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere.

    PubMed

    Ronda, Srinivasa Reddy; Kethineni, Chandrika; Parupudi, Lakshmi Chandrika Pavani; Thunuguntla, Venkata Bala Sai Chaitanya; Vemula, Sandeep; Settaluri, Vijaya Saradhi; Allu, Prasada Rao; Grande, Suresh Kumar; Sharma, Suraj; Kandala, Chari Venkatakrishna

    2014-01-01

    A theoretical model for the prediction of biomass concentration under rice husk flue gas emission has been developed. The growth inhibitory model (GIM) considers the CO2 mass transfer rate, the critical SOx concentration and its role in pH-based inter-conversion of bicarbonate. The calibration and subsequent validation of the growth profile of Nannochloropsis limnetica at 2% and 10% (v/v) CO2 showed that the predicted values were consistent with the measured values, with r(2) being 0.96 and 0.98, respectively, and p<0.001 in both cases. The constants used in the GIM for the prediction of biomass have been justified using sensitivity analysis. GIM applicability was defined as ±30% of the calibrated flow rate (3.0 L min(-1)). This growth model can be applied to predict algal growth in photo-bioreactors treated with flue gas in the generation of biomass feed stock for biofuel production. PMID:24300846

  16. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass.

    PubMed

    Zale, Janice; Jung, Je Hyeong; Kim, Jae Yoon; Pathak, Bhuvan; Karan, Ratna; Liu, Hui; Chen, Xiuhua; Wu, Hao; Candreva, Jason; Zhai, Zhiyang; Shanklin, John; Altpeter, Fredy

    2016-02-01

    Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications. PMID:26058948

  17. Accumulation and tissue distribution of radioiodine ( sup 131 I) from algal phytoplankton by the freshwater clam Corbicula manilensis

    SciTech Connect

    Cuvin-Aralar, Ma.L.A. ); Umaly, R.C. )

    1991-12-01

    Radioactive wastes discharged from establishments involved in the use of radioisotopes such as nuclear-powered industries, tracer research and nuclear medicine are a potential public health hazard. Such wastes contain radionuclides, particularly Iodine-131 ({sup 131}I), produced in fission with a yield of about 3%. Radionuclides in waste waters are known to be taken up by molluscs such as mussels, oysters, and clams. This study aims to determine the uptake of {sup 131}I from algal phytoplankton (Chroococcus dispersus) fed to the freshwater clam Corbicula manilensis as well as the organ/tissue distribution. The results will be compared with a previous study on {sup 131}I uptake from water by the same clams.

  18. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  19. Biomass accumulation in hydroponically grown sweetpotato in a controlled environment: a preliminary study.

    PubMed

    Hill, J; Douglas, D; David, P; Mortley, D; Trotman, A; Bonsi, C

    1996-12-01

    In the development of a plant growth model, the assumptions made and the general equations representing an understanding of plant growth are gradually refined as more information is acquired through experimentation. One such experiment that contributed to sweetpotato model development consisted of measuring biomass accumulation of sweetpotato grown in hydroponic culture in a plant growth chamber. Plants were started from fifteen centimeter long 'TU-82-155' sweetpotato vine cuttings spaced 25 cm apart in each of 18 rectangular growing channels (0.15 by 0.15 by 1.2m) in a system designed to use the nutrient film technique (NFT). Each channel contained four plants. The 3.5m by 5.2m plant growth chamber environmental parameters included an 18h photoperiod, 500 micromoles m-2 s-1 of photosynthetic photon flux (PPF), and a diurnal light/dark temperature of 28 degrees C/22 degrees C. The relative humidity was 80 +/- 5% and the CO2 partial pressure was ambient (350 ppm). The nutrient solution contained in 30L reservoirs was a modified half Hoagland's solution with a 1:2.4 N:K ratio and a pH of 6.2. Solution replenishment occurred when the electrical conductivity (EC) level dropped below 1050. Plants were harvested at 15 days after planting (DAP) and weekly thereafter until day 134. By 57 DAP, stems and fibrous roots had acquired 90% of their total dry biomass, while leaves had reached 84% of their maximum dry biomass. Beginning at 64 DAP dry biomass accumulation in the storage roots dominated the increase in dry biomass for the plants. Dry weight of storage roots at 120 DAP was 165 g/plant or 1.1 kg/m2. Resulting growth curves were consistent with the physiological processes occurring in the plant. Results from this study will be incorporated in a plant growth model for use in conjunction with controlled life support systems for long-term manned space missions. PMID:11541575

  20. Biomass accumulation in hydroponically grown sweetpotato in a controlled environment: a preliminary study

    NASA Technical Reports Server (NTRS)

    Hill, J.; Douglas, D.; David, P.; Mortley, D.; Trotman, A.; Bonsi, C.

    1996-01-01

    In the development of a plant growth model, the assumptions made and the general equations representing an understanding of plant growth are gradually refined as more information is acquired through experimentation. One such experiment that contributed to sweetpotato model development consisted of measuring biomass accumulation of sweetpotato grown in hydroponic culture in a plant growth chamber. Plants were started from fifteen centimeter long 'TU-82-155' sweetpotato vine cuttings spaced 25 cm apart in each of 18 rectangular growing channels (0.15 by 0.15 by 1.2m) in a system designed to use the nutrient film technique (NFT). Each channel contained four plants. The 3.5m by 5.2m plant growth chamber environmental parameters included an 18h photoperiod, 500 micromoles m-2 s-1 of photosynthetic photon flux (PPF), and a diurnal light/dark temperature of 28 degrees C/22 degrees C. The relative humidity was 80 +/- 5% and the CO2 partial pressure was ambient (350 ppm). The nutrient solution contained in 30L reservoirs was a modified half Hoagland's solution with a 1:2.4 N:K ratio and a pH of 6.2. Solution replenishment occurred when the electrical conductivity (EC) level dropped below 1050. Plants were harvested at 15 days after planting (DAP) and weekly thereafter until day 134. By 57 DAP, stems and fibrous roots had acquired 90% of their total dry biomass, while leaves had reached 84% of their maximum dry biomass. Beginning at 64 DAP dry biomass accumulation in the storage roots dominated the increase in dry biomass for the plants. Dry weight of storage roots at 120 DAP was 165 g/plant or 1.1 kg/m2. Resulting growth curves were consistent with the physiological processes occurring in the plant. Results from this study will be incorporated in a plant growth model for use in conjunction with controlled life support systems for long-term manned space missions.

  1. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  2. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI).

    PubMed

    Ohnuki, Toshihiko; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O

    2004-01-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040+/-0.010 and 0.055+/-0.015 g gdry (-1), respectively, after 96 h incubation with 4.0 x 10(14) mol 1(-1) Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment. PMID:15381325

  3. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.

    PubMed

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki; Fukuzawa, Hideya

    2015-06-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. PMID:25922058

  4. Algal Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Triacylglycerol Accumulation Regulator1, Regulates Accumulation of Triacylglycerol in Nitrogen or Sulfur Deficiency1[OPEN

    PubMed Central

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki

    2015-01-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. PMID:25922058

  5. Short-term temporal dynamics of algal species in a subtidal kelp bed in relation to changes in environmental conditions and canopy biomass

    NASA Astrophysics Data System (ADS)

    Wernberg, Thomas; Goldberg, Nisse

    2008-01-01

    Understanding temporal variation at the scale of weeks to months is critical to understanding broad temporal patterns in diversity in the same way as understanding diversity across landscapes relies on understanding variation at the scale of meters. However, whereas small-scale spatial variation in temperate reef algal assemblages has been extensively studied, fine-scale temporal changes have not been well addressed. By sampling the macroalgae of a subtidal reef near Perth (Australia), dominated by the small kelp Ecklonia radiata, every ˜40 days over a 2-year period, we were able to test whether temporal changes in species richness, assemblage structure and species turn-over were related to seasonal changes in surface temperature, solar radiation and wave height. A total of 93 macroalgal taxa were identified, and species richness per sampling time ranged from 25 to 64 taxa 1.25 m -2. Biomass of E. radiata was positively correlated with changes in sea surface temperature and light, and negatively correlated with wave height. Species richness, assemblage structure and turn-over of other macroalgae were more associated with seasonal changes in kelp biomass than environmental variables per se. We conclude that seasonal changes in environmental conditions drive changes in the kelp canopy, which in turn drive changes in species richness and assemblage structure. This suggests that habitat-formers such as kelps can exert a strong temporal influence on associated communities, analogous to well-described spatial influences. Thus, as kelp canopy biomass expands and retracts over time-scales of weeks to months, so does available space for colonization and growth, resulting in a high species turn-over. Species richness is therefore increased and maintained through time, in the same way as canopy-gap mosaics increase and maintain species richness across spatial landscapes.

  6. A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A theoretical model for the prediction of biomass concentration under real flue gas emission has been developed. The model considers the CO2 mass transfer rate, the critical SOx concentration and its role on pH based inter-conversion of bicarbonate in model building. The calibration and subsequent v...

  7. Biomass Accumulation and Carbon Sequestration in Four Different Aged Casuarina equisetifolia Coastal Shelterbelt Plantations in South China

    PubMed Central

    Zou, Bi; Guo, Zhihua; Li, Zhian; Zhu, Weixing

    2013-01-01

    Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast coastline of China. These plantations also play an important role in the regional carbon (C) cycling. In this study, we examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of C accumulation in the C. equisetifolia plant biomass during 0–3, 3–6, 6–13 and 13–18 years stage was 2.9, 8.2, 4.2 and 1.0 Mg C ha−1 yr−1, respectively. Soil organic C (SOC) at the top 1 m soil layer in these plantations was 17.74, 5.14, 6.93, and 11.87 Mg C ha−1, respectively, with SOC density decreasing with increasing soil depth. Total C storage in the plantation ecosystem averaged 26.57, 38.50, 69.78, and 79.79 Mg C ha−1 in the 3, 6, 13 and 18- yrs plantation, with most of the C accumulated in the aboveground biomass rather than in the belowground root biomass and soil organic C. Though our results suggest that C. equisetifolia plantations have the characteristics of fast growth, high biomass accumulation, and the potential of high C sequestration despite planting in poor soil conditions, the interactive effects of soil condition, natural disturbance, and human policies on the ecosystem health of the plantation need to be further studied to fully realize the ecological and social benefits of the C equisetifolia shelterbelt forests in South China. PMID:24143236

  8. Weed management practices for organic production of trailing blackberry. II. Accumulation and loss of plant biomass and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to assess the impact of cultivar and weed management on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer in trailing blackberry. Treatments included two cultivars, Marion and Black Diamond, each with ei...

  9. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products.

    PubMed

    Tian, Chunyan; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Cao, Wei; Lu, Haifeng; Duan, Na; Zhang, Li; Zhang, Tingting

    2015-05-01

    Hydrothermal liquefaction (HTL) allows a direct conversion of algal biomass into biocrude oil, not only solving the environmental issues caused by the over-growing algae but also producing renewable energy. This study reports HTL of algae after separation from eutrophicated Dianchi Lake in China. Conversion efficiency was studied under different operational conditions via an orthogonal design, including holding temperature (HT) (260-340 °C), retention time (RT) (30-90 min) and total solid (TS) (10-20%). A highest biocrude oil yield (18.4%, dry ash-free basis, daf) was achieved at 300 °C, 60 min, and 20% (TS), due to the low contents of lipids (1.9%, daf) and proteins (24.8%, daf), and high contents of ash (41.6%, dry basis) and carbohydrates (71.8%, daf). Operational parameters significantly affected the biocrude yields, and chemical distribution of HTL products. The biocrude production also related to other HTL products, and involved chemical reactions, such as deoxygenation and/or denitrogenation. PMID:25466998

  10. Characterization of habitats based on algal periphyton biomass in the upper Paraná River floodplain, Brazil.

    PubMed

    Leandrini, Ja; Fonseca, Ia; Rodrigues, L

    2008-08-01

    Considering the relevant role played by the hydrological regime on the structure and functioning of floodplains, this study aims at characterizing different types of aquatic environments according to periphyton biomass and evaluating the influence of the fluviometric levels of the Paraná River and other forcing functions upon the periphytic community. Periphyton (chlorophyll a) was analyzed in 28 habitats, during the years 2000 and 2001, in high and low water seasons. Both years were characterized by lacking the characteristic high water season. The Principal Components Analysis revealed two groups. The first component was positively associated with hydrometric level, electric conductivity, pH and transparency, and negatively with total nitrogen and total phosphorus, dissolved organic carbon and turbidity. The second component separated the habitats of Paraná River in the period of low waters from other environments, mainly for hydrometric level and high transparency values. Periphytic biomass of the habitats demonstrated that the maintenance of the functional integrity of the Upper Paraná River floodplain is closely related to its hydrologic cycle. PMID:18833470

  11. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China.

    PubMed

    Keesing, John K; Liu, Dongyan; Shi, Yajun; Wang, Yujue

    2016-04-15

    Annually recurrent green-tides in the Yellow Sea have been shown to result from direct disposal into the sea of fouling Ulva from Pyropia aquaculture. The role abiotic factors play in Ulva biomass accumulation on rafts was studied to find ways to mitigate this problem. Dissolved inorganic nitrogen (DIN) was very high at all sites, but the highest Ulva biomass was associated with the lowest DIN and anthropogenic N. Under luxuriant background nutrient conditions, variability in temperature and periods of emersion, rather than pH, light and salinity determined Ulva biomass. Two dominant species of Ulva displayed differing tolerances to temperature and desiccation which helped explain why Ulva prolifera dominates floating green-tides. Rather than trying to mitigate green-tides only by reducing nutrient pollution, an earlier harvest of Pyropia in southern Jiangsu Province especially before temperatures increase greatly above 10°C during April, could reduce the biomass of U. prolifera disposed from rafts. PMID:26936121

  12. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.

    PubMed

    Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S

    2010-03-01

    Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an

  13. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte.

    PubMed

    Ventura, Yvonne; Myrzabayeva, Malika; Alikulov, Zerekbay; Omarov, Rustem; Khozin-Goldberg, Inna; Sagi, Moshe

    2014-01-01

    The fresh water shortage in agriculture is an increasing problem worldwide, therefore the possibility of cultivating crops under saline conditions is of high importance. Crithmum maritimum, a halophytic plant naturally found on the rocky coastlines of the Atlantic Ocean and the Mediterranean Sea, has a long history of human consumption and was recently suggested as a cash crop for biosaline agriculture. In the present study, we compared the responses of different genotypes originating from France, Portugal and Israel to moderate saline irrigation (up to 100 mM NaCl). The genotypes varied greatly in the onset of flowering, their leaf appearance, growth habits and leaf metabolite content. Both Atlantic genotypes (from France and Portugal) flowered earlier than those from the Mediterranean, but the number of inflorescences decreased with salinity. Irrigation with 50 and 100 mM NaCl led to a reduction in biomass production in both the Israeli and the Portuguese genotypes, while the French genotype was found to produce maximum leaf yield at 50 mM NaCl. With increasing salinity, salt was accumulated by the plants, as indicated by increasing electrical conductivities of the leaf extracts. Concomitantly, antioxidant compounds (such as ascorbic acid), total polyphenols and ureides responded to salinity in a genotype-dependent manner; either they increased, decreased or were unaffected. Notably, the total fatty acid concentration increased with salinity in both Mediterranean genotypes, reaching 2.7 and 2.4 % total fatty acids (on a dry weight basis) at 100 mM NaCl. Moreover, the proportion assigned to omega-3 fatty acids in these genotypes was higher than in their Atlantic counterparts at the highest salinity tested. Our results highlight the variations existing among C. maritimum genotypes from different origins regarding salt-induced changes in plant growth, flowering behaviour and leaf metabolites with nutritional value. Thus, genotypic characteristics should be taken

  14. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte

    PubMed Central

    Ventura, Yvonne; Myrzabayeva, Malika; Alikulov, Zerekbay; Omarov, Rustem; Khozin-Goldberg, Inna; Sagi, Moshe

    2014-01-01

    The fresh water shortage in agriculture is an increasing problem worldwide, therefore the possibility of cultivating crops under saline conditions is of high importance. Crithmum maritimum, a halophytic plant naturally found on the rocky coastlines of the Atlantic Ocean and the Mediterranean Sea, has a long history of human consumption and was recently suggested as a cash crop for biosaline agriculture. In the present study, we compared the responses of different genotypes originating from France, Portugal and Israel to moderate saline irrigation (up to 100 mM NaCl). The genotypes varied greatly in the onset of flowering, their leaf appearance, growth habits and leaf metabolite content. Both Atlantic genotypes (from France and Portugal) flowered earlier than those from the Mediterranean, but the number of inflorescences decreased with salinity. Irrigation with 50 and 100 mM NaCl led to a reduction in biomass production in both the Israeli and the Portuguese genotypes, while the French genotype was found to produce maximum leaf yield at 50 mM NaCl. With increasing salinity, salt was accumulated by the plants, as indicated by increasing electrical conductivities of the leaf extracts. Concomitantly, antioxidant compounds (such as ascorbic acid), total polyphenols and ureides responded to salinity in a genotype-dependent manner; either they increased, decreased or were unaffected. Notably, the total fatty acid concentration increased with salinity in both Mediterranean genotypes, reaching 2.7 and 2.4 % total fatty acids (on a dry weight basis) at 100 mM NaCl. Moreover, the proportion assigned to omega-3 fatty acids in these genotypes was higher than in their Atlantic counterparts at the highest salinity tested. Our results highlight the variations existing among C. maritimum genotypes from different origins regarding salt-induced changes in plant growth, flowering behaviour and leaf metabolites with nutritional value. Thus, genotypic characteristics should be taken

  15. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Helmer, Eileen H.; Lefsky, Michael A.; Roberts, Dar A.

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover.

  16. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterizations of algal proteins and lipids

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1986-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  17. Transcriptomic Analyses during the Transition from Biomass Production to Lipid Accumulation in the Oleaginous Yeast Yarrowia lipolytica

    PubMed Central

    Beopoulos, Athanasios; Lelandais, Gaëlle; Le Berre, Veronique; Uribelarrea, Jean-Louis; Molina-Jouve, Carole; Nicaud, Jean-Marc

    2011-01-01

    We previously developed a fermentation protocol for lipid accumulation in the oleaginous yeast Y. lipolytica. This process was used to perform transcriptomic time-course analyses to explore gene expression in Y. lipolytica during the transition from biomass production to lipid accumulation. In this experiment, a biomass concentration of 54.6 gCDW/l, with 0.18 g/gCDW lipid was obtained in ca. 32 h, with low citric acid production. A transcriptomic profiling was performed on 11 samples throughout the fermentation. Through statistical analyses, 569 genes were highlighted as differentially expressed at one point during the time course of the experiment. These genes were classified into 9 clusters, according to their expression profiles. The combination of macroscopic and transcriptomic profiles highlighted 4 major steps in the culture: (i) a growth phase, (ii) a transition phase, (iii) an early lipid accumulation phase, characterized by an increase in nitrogen metabolism, together with strong repression of protein production and activity; (iv) a late lipid accumulation phase, characterized by the rerouting of carbon fluxes within cells. This study explores the potential of Y. lipolytica as an alternative oil producer, by identifying, at the transcriptomic level, the genes potentially involved in the metabolism of oleaginous species. PMID:22132183

  18. Biomass and nutrient accumulation in young Prosopis Juliflora at Mombasa, Kenya

    SciTech Connect

    Maghembe, J.A.; Kariuki, E.M.; Haller, R.D.

    1983-01-01

    Data are presented for 6-yr old P. juliflora, grown for quarry reclamation on: biomass of stems, large branches, small branches and leaves; height and volume of stems and large branches. All were calculated from regressions on based diameter. Volume was 209 cubic m/ha (stems), 75 cubic m/ha (large branches). Total biomass was 216 t/ha (77% in stems and large branches). Leaves plus small branches (22.6% of biomass) contained over 50% of the pool of nutrients N, P, K and Mg. Implications are discussed for site depletion as a result of total tree use for fuelwood and fodder. 25 references.

  19. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.

    PubMed

    Benyammi, Roukia; Paris, Cédric; Khelifi-Slaoui, Majda; Zaoui, Djamila; Belabbassi, Ouarda; Bakiri, Nouara; Meriem Aci, Myassa; Harfi, Boualem; Malik, Sonia; Makhzoum, Abdullah; Desobry, Stéphane; Khelifi, Lakhdar

    2016-10-01

    Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli. PMID:26983347

  20. Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes

    SciTech Connect

    Behrends, L.L.; Bailey, E.; Bulls, M.J.; Coonrod, H.S.; Sikora, F.J.

    1996-05-01

    Growth and biomass accumulation of selected nutrients and trace metals were monitored for six species of aquatic macrophytes during June, August and November, 1993. Plant species were cultivated in two polyculture treatments, each replicated three times. Polyculture I consisted of Scirpus acutus (hardstem bullrush), Phragmites communes (common reed), and Phalaris arundinacea (canary grass). Polyculture H consisted of Typha spp. (cattail), Scirpus atrovirens (green bullrush), and Scirpus cyperinus (wool grass). Each of the six cells (6 x 9 x 0.6 m), was operated as a gravel-substrate, subsurface-flow wetlands in a continuous recirculating mode. At six week intervals, macro, micro and trace elements were dissolved and added to the sump of the recirculating system. On each of three sampling dates, replicate shoot and root samples were collected, segregated by species and tissue type (roots, rhizomes, stems and leaves), and prepared for gravimetric biomass estimates and chemical analysis. Tissue specific concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn and Cu, were determined on each date for each species and tissue type. Results will be discussed with respect to species specific growth rates, biomass accumulation, and seasonal uptake and translocation of plant nutrients.

  1. Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Hazen, Sam

    2013-03-01

    Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  2. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude.

    PubMed

    Lavanya, Melcureraj; Meenakshisundaram, Arunachalam; Renganathan, Sahadevan; Chinnasamy, Senthil; Lewis, David Milton; Nallasivam, Jaganathan; Bhaskar, Sailendra

    2016-03-01

    Biocrude was produced from Tetraselmis sp. - a marine alga and Arthrospira platensis - a fresh water alga using hydrothermal liquefaction (HTL) process. Considering the constraints in cultivating algae for replacing 100% petrocrude, this study evaluated the option of blending and co-processing algal biocrude with petrocrude. Biocrudes obtained from algal strains cultivated in fresh water and sea water were blended with petrocrude at 10% concentration and the characteristics were studied using FT-IR and CNS SIMDIST. True Boiling Point (TBP) distillation was carried out to assess yields and properties of distillates of blended biocrudes. Biocrudes obtained from both algae were light crudes and the blended crudes recorded distillate yields of 76-77 wt%. The yield of light naphtha fraction of biocrude blends was 29-30%; whereas the yield of diesel fraction was about 18%. This study proposes blending and co-processing of algal biocrude with petrocrude to produce drop-in biofuels. PMID:26735877

  3. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  4. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  5. Charting the Impacts of Disturbance on Biomass Accumulation in Old-Growth Amazon Forests

    NASA Astrophysics Data System (ADS)

    Chambers, J.; Fisher, J.; Hurtt, G.; Baker, T.; Camargo, P.; Campanella, R.; Dos Santos, J.; Higuchi, N.; Malhi, Y.; Phillips, O.; Plourde, L.; Smith, M.; Trumbore, S.

    2006-12-01

    Observed increases in intact Amazon forest biomass, averaging ~0.6 Mg C ha-1 yr-1, have led to suggestions that a forest sink may be of a magnitude large enough to substantially offset Amazonian land- use sources. The mechanism which explains the biomass increase remains unclear. Here we use a synthetic approach, combining remote sensing, intensive field observations, and simulation modeling to elucidate the impact of disturbance on forest structure and changes in biomass. EO-1 Hyperion data and existing field data will be analyzed to generate broad scale disturbance maps. These maps will integrate information from field and remote sensing investigations, spanning a gradient from individual trees to landscape-scale events. Intensive field work will quantify the mortality from these disturbance events. Mapped data will be used to parameterize the height-structured Ecosystem Demography model (ED). ED offers a general method of scaling stochastic individual-based models of ecosystem dynamics to regional scales. Model runs of ED with synthetic mortality rates brackets the range of potential carbon flux attributable to disturbance, mortality, and recovery. The parameterization of the model with generated disturbance maps will provide a best estimate biomass gain due to disturbance patterns across the Amazon.

  6. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions. PMID:21977667

  7. Water deficit on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the importance of Artemisia annua as the only source of the anti-parasitic drug artemisinin, little can be found on the role of biotic and abiotic stress on artemisinin. Water stress is the most limiting factor on plant growth, but can trigger secondary metabolite accumulation, depending on...

  8. Production, accumulation, and decomposition of Melaleuca quinquenervia litter biomass in time and space

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melaleuca quinquenervia (melaleuca) is highly invasive in various habitats of southern Florida where it has invaded over 200,000 hectares. Some areas have become closed-canopy monocultures with thick layers of leaf litter covering the forest floor. We hypothesized that the dramatic accumulation of...

  9. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  10. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.

    PubMed

    Muñoz, Raul; Alvarez, Maria Teresa; Muñoz, Adriana; Terrazas, Enrique; Guieysse, Benoit; Mattiasson, Bo

    2006-05-01

    The residual algal-bacterial biomass from photosynthetically supported, organic pollutant biodegradation processes, in enclosed photobioreactors, was tested for its ability to accumulate Cu(II), Ni(II), Cd(II), and Zn(II). Salicylate was chosen as a model contaminant. The algal-bacterial biomass combined the high adsorption capacity of microalgae with the low cost of the residual biomass, which makes it an attractive biosorbent for environmental applications. Cu(II) was preferentially taken-up from the medium when the metals were present both separately and in combination. There was no observed competition for adsorption sites, which suggested that Cu(II), Ni(II), Cd(II), and Zn(II) bind to different sites and that active Ni(II), Cd(II) and Zn(II) binding groups were present at very low concentrations. Therefore, special focus was given to Cu(II) biosorption. Cu(II) biosorption by the algal-bacterial biomass was characterized by an initial fast cell surface adsorption followed by a slower metabolically driven uptake. pH, Cu(II), and algal-bacterial concentration significantly affected the biosorption capacity for Cu(II). Maximum Cu(II) adsorption capacities of 8.5+/-0.4 mg g-1 were achieved at an initial Cu(II) concentration of 20 mg l-1 and at pH 5 for the tested algal-bacterial biomass. These are consistent with values reported for other microbial sorbents under similar conditions. The desorption of Cu(II) from saturated biomass was feasible by elution with a 0.0125 M HCl solution. Simultaneous Cu(II) and salicylate removal in a continuous stirred tank photobioreactor was not feasible due to the high toxicity of Cu(II) towards the microbial culture. The introduction of an adsorption column, packed with the algal-bacterial biomass, prior to the photobioreactor reduced Cu(II) concentration, thereby allowing the subsequent salicylate biodegradation in the photobioreactor. PMID:16307789

  11. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    PubMed

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition. PMID:27474341

  12. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  13. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  14. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  15. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGESBeta

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  16. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.

    PubMed

    Weraduwage, Sarathi M; Chen, Jin; Anozie, Fransisca C; Morales, Alejandro; Weise, Sean E; Sharkey, Thomas D

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  17. [Effects of phosphorus fertilization on biomass accumulation and phosphorus use efficiency of trellis-cultivated melon].

    PubMed

    Chen, Bo-lang; Wu, Hai-hua; Luo, Jia; Hao, Li-na; Qi, Xiao-chen; Zhao, Ku

    2016-02-01

    A field experiment applying six rates of P fertilizer (P2O5, 0, 150, 225, 300, 375 and 450 kg . hm-2, respectively) was conducted to investigate the effects of P fertilization on dry matter accumulation (DMA), P uptake and accumulation (PUA) and P use efficiency (PUE) of trellis-cultivated melon. Results showed that, P application increased DMA and PUA, for 150 and 225 kg P2O5 . hm-2 treatments, being 19.9% and 26.3%, 23.0% and 26.3% higher than that in no P fertilizer treatment at fruiting stage. With plant growth, DMA and PUA of different organs and the whole plant gradually increased. DMA and PUA were mainly distributed in the leaves during the early stage of the growth and in the fruit during the latter stage. P application decreased the recovery efficiency of applied P (REP), agronomic efficiency of applied P (AEP) and partial factor productivity of applied P (PFP). At 150 kg . hm-2 P application rate, the maximum REP, AEP and PFP were 11.1%, 152.9 kg . kg-1 and 476.3 kg . kg-1, respectively. Compared with no P fertilizer treatment, melon yields of 150 and 225 kg P2O5 . hm2 treatments increased by 47.3% and 39.7%, respectively. In summary, the vining stage and fruit expanding stage were the key periods for P application in trellis-cultivated melon system. Based on synthesized economic yield and P fertilizer efficiency, the recommendation of P fertilizer for trellis-cultivated melon is 150-225 kg P2O5 . hm-2 under the climatic condition of the experimental area. PMID:27396125

  18. Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002

    NASA Astrophysics Data System (ADS)

    Gradinger, Rolf

    2009-08-01

    Sea-ice and water samples were collected at 14 stations on the shelves and slope regions of the Chukchi and Beaufort Seas during the spring 2002 expedition as part of the Shelf-Basin Interaction Studies. Algal pigment content, particulate organic carbon and nitrogen, and primary productivity were estimated for both habitats based on ice cores, brine collection and water samples from 5-m depth. The pigment content (0.2-304.3 mg pigments m -2) and primary productivity (0.1-23.0 mg C m -3 h -1) of the sea-ice algae significantly exceeded water-column parameters (0.2 and 1.0 mg pigments m -3; <0.1-0.4 mg C m -3 h -1), making sea ice the habitat with the highest food availability for herbivores in early spring in the Chukchi and Beaufort Seas. Stable isotope signatures for ice and water samples did not differ significantly for δ 15N, but for δ 13C (ice: -25.1‰ to -14.2‰; water: -26.1‰ to -22.4‰). The analysis of nutrient concentrations and the pulse-amplitude-modulated fluorescence signal of ice algae and phytoplankton indicate that nutrients were the prime limiting factor for sea-ice algal productivity. The estimated spring primary production of about 1-2 g C m -2 of sea-ice algae on the shelves requires the use of substantial nutrient reservoirs from the water column.

  19. [Effects of ozone pollution on the accumulation and distribution of dry matter and biomass carbon of different varieties of wheat].

    PubMed

    Kou, Tai-ji; Yu, Wei-wei; Zhu, Jian-guo; Zhu, Xin-kai

    2012-08-01

    Effects of surface ozone pollution on the terrestrial ecosystem and plant growth have drawn great attention. With the support of the free-air ozone concentration enrichment (O3-FACE) system located in Jiangdu City, Jiangsu Province, the effects of elevated atmospheric ozone (pO3) on the accumulation and distribution of dry matter and biomass carbon as well as the C/N ratio of crop residue of five wheat (Tritcium aestivum L.) varieties (Yangmai 15, Yangmai 16, Yannong 19, Yangfumai 2 and Jiaxing 002) were investigated in the Yangtze River delta, the target pO3 of which was 50% higher than the ambient pO3. The results showed that the accumulation and distribution of different wheat varieties responded differently to elevated pO3. Elevated pO3 decreased the biomass of Yangmai 15 and Jiaxing 002, increased the Yangfumai 2 biomass, and had no effects on the total biomass of Yangmai 16 and Yannog 19, among which a significant difference was found for Jiaxing 002. Elevated pO3 significantly increased the ratios of root to shoot for Yangmai 15 and Jiaxing 002 and significantly decreased the root/shoot ratios of Yannong 19 and Yangfumai 2, but had no effect on Yangmai 16, leading to an obvious difference in dry matter distributed among aboveground and belowground parts. O3 enrichment decreased the wheatear weight of Yangmai 15, Yangmai 16 and Jiaxing 002, and had no effect on that of Yannong 19 and Yangfumai 2. Elevated pO3 significantly decreased the proportion of grain weight to ear weight by 8.2%-15.5% for Jiaxing 002, Yannong 19 and Yangfumai 2, whereas the proportion was increased for Yangmai 15 and not affected for Yangmai 16, suggesting that O3 enrichment lead to different decreases in the yield of Jiaxing 002, Yannong 19, Yangfumai 2 and Yangmai 16. Elevated pO3 significantly increased the straw carbon of Yannong 19 and Yanfumai 2 by 14.1%-22.9% and significantly decreased the straw C/N ratio by 10.9%-29.1%. The rising pO3 significantly decreased the straw carbon of

  20. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    PubMed

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-10-01

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions. PMID:26426026

  1. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    PubMed Central

    Polotow, Tatiana G.; Poppe, Sandra C.; Vardaris, Cristina V.; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F.; Bondan, Eduardo F.; Barros, Marcelo P.

    2015-01-01

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions. PMID:26426026

  2. Weed management, training, and irrigation practices for organic production of trailing blackberry: III. Accumulation and removal of aboveground biomass, carbon, and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...

  3. Effects of Artificial Defoliation on Growth and Biomass Accumulation in Short-Rotation Sweetgum (Liquidambar styraciflua) in North Carolina

    PubMed Central

    Jetton, Robert M.; Robison, Daniel J.

    2014-01-01

    Sweetgum, Liquidambar styraciflua L. (Hamamelidales: Hamamelidaceae), is a species of interest for short-rotation plantation forestry in the southeastern United States. Despite its high levels of resistance to many native insects and pathogens, the species is susceptible to generalist defoliators during outbreak epidemics. The objective of this field study was to evaluate the potential impact of defoliation on sweetgum growth and productivity within the context of an operational plantation. Over three growing seasons, trees were subjected to artificial defoliation treatments of various intensity (control = 0% defoliation; low intensity = 33% defoliation; moderate intensity = 67% defoliation; high intensity = 99% defoliation) and frequency (not defoliated; defoliated once in April of the first growing season; defoliated twice, once in April of the first growing season and again in April of the second growing season). The responses of stem height, stem diameter, stem volume, crown volume, total biomass accumulation, and branch growth were measured in November of each growing season. At the end of the first growing season, when trees had received single defoliations, significant reductions in all growth traits followed the most severe (99%) defoliation treatment only. After the second and third growing seasons, when trees had received one or two defoliations of varying intensity, stem diameter and volume and total tree biomass were reduced significantly by 67 and 99% defoliation, while reductions in stem height and crown volume followed the 99% treatment only. All growth traits other than crown volume were reduced significantly by two defoliations but not one defoliation. Results indicate that sweetgum is highly resilient to single defoliations of low, moderate, and high intensity. However, during the three-year period of the study, repeated high-intensity defoliation caused significant reductions in growth and productivity that could have lasting impacts on yield

  4. [Effects of drought and waterlogging on carbohydrate contents of cotton boll and its relationship with boll biomass accumulation at the flowering and bolling stage].

    PubMed

    Yang, Chang-Qin; Liu, Jing-Ran; Zhang, Guo-Wei; Liu, Rui-Xian; Zhou, Zhi-Guo

    2014-08-01

    Cotton cultivar NuCOTN 33B was planted in isolated pools treated with drought or waterlogging for 7 or 14 d to explore their effects on cotton boll carbohydrate content and its relationship with the biomass accumulation. The results showed that the drought treatment reduced the carbohydrate content of cotton boll shell on middle fruit branches, but had a weak effect on cotton boll shells on lower fruit branches. Soluble sugar, starch and sucrose contents of cotton boll shell on upper fruit branches under the drought condition and on whole plant branches under waterlogging treatment changed similarly, namely, the soluble sugar and starch content increased, while the sucrose content went down firstly and then increased later, which indicated that the exportation of sucrose from boll shell was inhibited and became worse with the increase of waterlogging duration. Compared with the boll shell, the carbohydrate contents of cotton seed were less affected by the drought and waterlogging treatments at the flowering and bolling stage. Under the treatments of drought and 7 d-waterlogging, the biomass accumulation of cotton bolls on the middle fruit branches initiated earlier but lasted less days, and the maximum speed at lower and upper fruit branches reduced, while the treatment of waterlogging for 14 d caused the decline of maximum speed of biomass accumulation of bolls on whole branches. On the other side, the correlation analysis showed the significant positive relationships among the boll biomass, the maximum speed and the contents of soluble sugar and sucrose in the boll shell respectively. In conclusion, the treatment of drought and waterlogging at the flowering and bolling stage retarded the outward transportation of sucrose from cotton bolls, changed the boll biomass accumulation characteristics, and therefore were detected as the important cause of cotton boll total biomass reduction. PMID:25509075

  5. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction

    PubMed Central

    Zhao, Shuai; Wei, Hui; Lin, Chien-Yuan; Zeng, Yining; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi-You

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources. PMID:26858740

  6. Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction

    DOE PAGESBeta

    Zhao, Shuai; Wei, Hui; Lin, Chien -Yuan; Zeng, Yining; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi -You

    2016-01-29

    In this study, it is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes inmore » the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.« less

  7. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction.

    PubMed

    Zhao, Shuai; Wei, Hui; Lin, Chien-Yuan; Zeng, Yining; Tucker, Melvin P; Himmel, Michael E; Ding, Shi-You

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources. PMID:26858740

  8. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs. PMID:26271287

  9. Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L.

    PubMed

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Akbar, Fazal; Kanwal, Farina

    2016-06-01

    Light is one of the key elicitors that directly fluctuates plant developmental processes and biosynthesis of secondary metabolites. In this study, the effects of various spectral lights on biomass accumulation and production of antioxidant secondary metabolites in callus cultures of Prunella vulgaris were investigated. Among different spectral lights, green light induced the maximum callogenic response (95%). Enhanced fresh biomass accumulation was observed in log phases on day-35, when callus cultures were exposed to yellow and violet lights. Yellow light induced maximum biomass accumulation (3.67g/100ml) from leaf explants as compared to control (1.27g/100ml). In contrast, violet lights enhanced biomass accumulation (3.49g/100ml) from petiole explant. Maximum total phenolics content (TPC; 23.9mg/g-DW) and total flavonoids content (TFC; 1.65mg/g-DW) were observed when cultures were grown under blue lights. In contrast, green and yellow lights enhanced total phenolics production (TPP; 112.52g/100ml) and total flavonoids production (TFP; 9.64g/100ml) as compared to control. The calli grown under green, red and blue lights enhanced DPPH-free radical scavenging activity (DFRSA; 91.3%, 93.1% and 93%) than control (56.44%) respectively. The DFRSA was correlated either with TPC and TFC or TPP and TFP. Furthermore, yellow lights enhanced superoxide dismutase (SOD), peroxidase (POD) and protease activities, however, the content of total protein (CTP) was higher in control cultures (186μg BSAE/mg FW) as compared to spectral lights. These results suggest that the exposure of callus cultures to various spectral lights have shown a key role in biomass accumulation and production of antioxidant secondary metabolites. PMID:26995670

  10. Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability.

    PubMed

    Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio

    2015-10-15

    This study evaluates the capacity of seven species and a Bloom of microalgae to grow in urban wastewater. Nutrient removal kinetics and biomass harvesting by means of centrifugation and coagulation-flocculation-sedimentation have been also tested. Results show that the best biomass productivities ranged from between 118 and 108 mgSS L(-1) d(-1) for the Bloom (Bl) and Scenedesmus obliquus (Sco). Regarding nutrient removal, microalgae were able to remove the total dissolved phosphorus and nitrogen concentrations by more than 80% and 87% respectively, depending on the species tested. The final total dissolved concentration of nitrogen and phosphorus in the culture media complies with the European Commission Directive 98/15/CE on urban wastewater treatment. Regarding harvesting, the results of coagulation-flocculation sedimentation using a 60 mg L(-1) dose of Ferric chloride were similar between species, exceeding the biomass removal efficiency by more than 90%. The results of centrifugation (time required to remove 90% of solids at 1000 rpm) were not similar between species, with the shortest time being 2.9 min for Sco, followed by the bloom (7.25 min). An overall analysis suggested that the natural bloom and Scenedesmus obliquus seem to be the best candidates to grow in pre-treated wastewater, according to their biomass production, nutrient removal capability and harvestability. PMID:26117372

  11. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  12. Near- and mid-infrared spectroscopic determination of algal composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the feasibility of using near-infrared reflectance spectroscopy (NIRS) and mid-infrared reflectance spectroscopy (MIRS) to determine the composition of algal samples. We assayed a set of algal biomass samples (n=117), collected from algae turf scrubber...

  13. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    PubMed

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts. PMID:23031586

  14. Explaining the Accumulation of Intercontinental Biomass Burning Pollution: High Versus Low Processes, Africa Versus South America, Cooking Versus Mixing

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Podolske, James R. (Technical Monitor)

    1995-01-01

    The intercontinental buildup of tropospheric ozone, carbon monoxide, and other pollutants over the South Atlantic has been attributed to biomass burning over distant continents. We address several of the large questions regarding the nature and budget of this buildup have remained: What is the role of turning In South America or various portions of Africa in this accumulation? What are the relative roles of shallow and deep convection for emplacing various compounds in the free troposphere? Can we understand the ozone budget? We report the first simulations of a three-dimensional pollutant transport model, (GRACES) transport which is driven by fully reconstructed meteorology for the TRACE-A/SAFARI period of 1992. Greater detail is provided by a two-dimensional, detailed-chemistry model of more restricted regions of Africa. We find a predominant role for African emissions affecting the Atlantic during this period. Boundary-layer venting via PBL convection tends to build the observed carbon monoxide column over the ocean, while deep cumulonimbus processes tend to explain rather more of the ozone column.

  15. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  16. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  17. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables

  18. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.

    PubMed

    Valentino, Francesco; Karabegovic, Lamija; Majone, Mauro; Morgan-Sagastume, Fernando; Werker, Alan

    2015-06-15

    The response of a mixed-microbial-culture (MMC) biomass for PHA accumulation was evaluated over a range of relative nitrogen (N) and phosphorus (P) availabilities with respect to the supply of either complex (fermented whey permeate - FWP) or simpler (acetic acid) organic feedstocks. Fed-batch feed-on-demand PHA accumulation experiments were conducted where the feed N/COD and P/COD ratios were varied ranging from conditions of nutrient starvation to excess. A feast-famine enrichment (activated sludge) biomass, produced in a pilot-scale aerobic sequencing batch reactor on FWP and with a long history of stable PHA accumulation performance, was used for all the experiments as reference material. FWP with N/COD ratios of (2, 5, 15, 70 mg/g all with P/COD = 8 mg/g) as well as simulated FWP with nutrient starvation (N/COD = P/COD = 0) conditions were applied. For the acetic acid accumulations, nutrient starvation as well as N/COD variations (2.5, 5, 50 mg/g all with P/COD = 9 mg/g) and P/COD variations (0.5, 2, 9, 15 mg/g all with N/COD = 10 mg/g) were evaluated. An optimal range of combined N and P limitation with N/COD from 2 to 15 mg/g and P/COD from 0.5 to 3 mg/g was considered to offer consistent improvement of productivity over the case of nutrient starvation. Productivity increased due to active biomass growth of the PHA storing biomass without observed risk for a growth response overtaking PHA storage activity. PHA production with respect to the initial active biomass was significantly higher even in cases of excess nutrient additions when compared to the cases of nutrient starvation. The 24-h PHA productivities were enhanced as much as 4-fold from a base value of 1.35 g-PHA per gram initial active biomass with respect nutrient starvation feedstock. With or without nutrient loading the biomass consistently accumulated similar and significant PHA (nominally 60% g-PHA/g-VSS). Based on results from replicate experiments some variability in the extant biomass maximum

  19. Effects of algal hydrolysate as reaction medium on enzymatic hydrolysis of lignocelluloses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal biomass has been proposed as a source of lipids and sugars for biofuel productions. However, a substantial portion of potentially valuable algal material remains as a liquid hydrolysate after sugar and lipid extractions. This study examined the effects of an algal hydrolysate on the enzymatic...

  20. The Influence of Precipitation Regimes and Elevated CO2 on Photosynthesis and Biomass Accumulation and Partitioning in Seedlings of the Rhizomatous Perennial Grass Leymus chinensis

    PubMed Central

    Li, Zhuolin; Zhang, Yuting; Yu, Dafu; Zhang, Na; Lin, Jixiang; Zhang, Jinwei; Tang, Jiahong; Wang, Junfeng; Mu, Chunsheng

    2014-01-01

    Leymus chinensis is a dominant, rhizomatous perennial C3 species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO2 and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO2 levels (380±20 µmol mol-1,760±20 µmol mol-1) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO2 and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO2 enrichment. Water use efficiency and the ratio of root: total biomass increased significantly when precipitation was low, but decreased when it was high under CO2 enrichment. Moreover, high precipitation at the elevated level of CO2 increased the ratio between stem biomass and total biomass. The effect of elevated CO2 on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO2 levels, the net photosynthetic rate and biomass of L. chinensis increase with precipitation, but those measures are not further affected by additional precipitation when CO2 is elevated. Furthermore, CO2 may partly compensate for the negative effect of low precipitation on the growth and development of L. chinensis. PMID:25093814

  1. Dynamics of nitrogen, phosphorus, algal biomass, and suspended solids in an artificial lentic ecosystem and significant implications of regional hydrology on trophic status.

    PubMed

    An, Kwang-Guk; Park, Seok Soon; Ahn, Kyu-Hong; Urchin, Christopher G

    2003-01-01

    Chemical and biological parameters were analyzed to examine how regional hydrological fluctuations influence water quality of a artificial lentic ecosystem over a two-year period The intensity of seasonal monsoon rain accounted for most of annual inflow and discharge and influenced flow pathway (interflow vs. overflow), resulting in a modification of chemical and biological conditions. Sharp contrasting interannual hydrology of intense vs. weak monsoon occurred during the study. The intense monsoon disrupted thermal stratification and resulted in ionic dilution, high TP and high inorganic solids (NVSS) in the headwater reach. The variation of NVSS accounted 75% of TP variation (slope = 4.14, p < 0.01, n = 48). Regression analysis of residual chlorophyll-a (Chl) versus flushing rate indicated that short hydraulic retention time and high mineral turbidity affected algal growth in the headwater reach during summer monsoon. In contrast, severe drought during weak monsoon produced strong thermal stratification, low inorganic solids, high total dissolved solids (TDS), and low TP in the entire system. In addition, Chl concentrations were controlled by phosphorus. Based on the physical, chemical and biological parameters, riverine conditions, dominated during the intense monsoon, but lacustrine conditions were evident during the weak monsoon. The interannual dynamics suggest that monsoon seasonality is considered the main forcing factor regulating overall functions and processes of the waterbody and this characteristic has an important implication to eutrophication of the system. PMID:12974409

  2. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. PMID:23499181

  3. The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk).

    PubMed

    Staniszewska, Marta; Nehring, Iga; Zgrundo, Aleksandra

    2015-12-01

    Endocrine disrupting compounds (EDCs) like bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) are introduced to the trophic webs through among others phytoplankton. This paper describes BPA, OP and NP concentrations in phytoplankton in the Gulf of Gdansk (Southern Baltic Sea) in the years 2011-2012. The assays of BPA, OP and NP in samples were performed using HPLC with fluorescence detection. The concentrations of BPA, the most commonly used of the three compounds, were over ten times higher than OP and NP concentrations. The concentrations of the studied EDCs in phytoplankton from the Gulf of Gdansk depended on anthropogenic factors and on phytoplankton properties (species composition, biomass, volume). An increase in phytoplankton biomass did not always result in an increase of BPA, OP and NP concentrations. However, the load of the studied EDCs accumulated in phytoplankton biomass increase with a rise of biomass. An increase in BPA, OP and NP concentrations was effected by biomass growth and the proportions ofciliates, dinoflagellates, diatoms and green algae. A strong positive correlation between OP and NP concentrations and negative correlation between BPA concentrations and biomass of organisms with cells measuring <1000 μm(3) in volume results from the differing properties of these compounds. PMID:26433181

  4. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. PMID:25585252

  5. A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle.

    PubMed

    van der Steen, Peter; Rahsilawati, Kuntarini; Rada-Ariza, Angélica M; Lopez-Vazquez, Carlos M; Lens, Piet N L

    2015-01-01

    Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 μmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater. PMID:26204077

  6. Changes of concentrations and possibility of accumulation of bisphenol A and alkylphenols, depending on biomass and composition, in zooplankton of the Southern Baltic (Gulf of Gdansk).

    PubMed

    Staniszewska, Marta; Nehring, Iga; Mudrak-Cegiołka, Stella

    2016-06-01

    The focus of the present study was to find the relationship between concentrations of bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) in zooplankton and seasonal changes in the composition and biomass of particular zooplankton taxa in the Gulf of Gdansk (Southern Baltic) in the years 2011-2012. Assays of BPA, OP and NP in water and zooplankton samples were performed using the HPLC/FL system. High mean concentrations of the studied compounds, determined in spring (405.9 (BPA); 25.7 (OP); 111.2 (NP) ng g(-1) dw), can be linked to the high proportion of meroplankton in that season. Rotifera also had an influence on the rise in concentrations of the studied compounds but to a lesser degree, while the lowest concentrations (determined in summer) can be associated with the high participation of Copepoda and Cladocera in zooplankton biomass. It was also observed that juvenile forms can be more susceptible to accumulating endocrine disrupting compounds (EDCs). This is indicated by the positive correlation between BPA concentration in zooplankton and the proportion of Copepoda nauplii biomass in spring (r = 0.90; p < 0.05). In most cases, greater zooplankton biomass accumulated higher concentrations and loads of the studied compounds. With biomass growth (to 123.32 μg m(-3)), the bioconcentration factor also rose (to max 46.1·10(3)), demonstrating that unlike typical hydrophobic compounds the studied EDCs do not become "diluted" in zooplankton biomass. The highest BPA concentrations from all compounds may be connected with anthropogenic sources located in the coastal zone. PMID:26970874

  7. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  8. [Effects of plant species combination and water body nutrient level on the biomass accumulation and allocation of three kinds functional plants].

    PubMed

    Sun, Li-Fang; Sun, Yi-Xiang; Zhou, Chang-Fang; An, Shu-Qing

    2009-10-01

    Four nutrient levels, i.e., 0.5 mg N x L(-1) and 0.1 mg P x L(-1) (I), 1.5 mg N x L(-1) and 0.3 mg P x L(-1) (II), 4.5 mg N x L(-1) and 0.9 mg P x L(-1) (III), and 13.5 mg N x L(-1) and 2.7 mg P x L(-1) (IV), were installed to study the effects of water body's nutrient level, plant species combination, and their interactions on the biomass accumulation and allocation of invasive floating species Eichhornia crassipes, native rooted leaf-floating species Jussiaea stipulacea, and submerged plant Vallisneria spiralis. The total, root, stem, and leaf biomass of E. crassipes and J. stipulacea, either in monoculture or in mixed-culture, increased with increasing water body's nutrient level, their total biomass in treatments III and IV being averagely 54.47% and 102.63% higher than that in treatments I and II, respectively. Under different plant species combination, the total, root, stem, and leaf biomass of V. spiralis showed a declining trend with the increase of nutrient level, and the total biomass of V. spiralis in treatments III and IV was averagely 45.88% lower than that in treatments I and II. The results of two-way ANOVA showed that water body's nutrient level had significant positive effects on the biomass of E. crassipes and J. stipulacea but negative effects on that of V. spiralis, and the effects of plant species combination varied with target plant species. PMID:20077692

  9. Constitutive and Companion Cell-Specific Overexpression of AVP1, Encoding a Proton-Pumping Pyrophosphatase, Enhances Biomass Accumulation, Phloem Loading, and Long-Distance Transport.

    PubMed

    Khadilkar, Aswad S; Yadav, Umesh P; Salazar, Carolina; Shulaev, Vladimir; Paez-Valencia, Julio; Pizzio, Gaston A; Gaxiola, Roberto A; Ayre, Brian G

    2016-01-01

    Plant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H(+)-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H(+)-PPases have a well-documented role in hydrolyzing pyrophosphate (PPi) and capturing the released energy to pump H(+) across the tonoplast and endomembranes to create proton motive force (pmf). Recently, an additional role for H(+)-PPases in phloem loading and biomass partitioning was proposed. In companion cells (CCs) of the phloem, H(+)-PPases localize to the plasma membrane rather than endomembranes, and rather than hydrolyzing PPi to create pmf, pmf is utilized to synthesize PPi. Additional PPi in the CCs promotes sucrose oxidation and ATP synthesis, which the plasma membrane P-type ATPase in turn uses to create more pmf for phloem loading of sucrose via sucrose-H(+) symporters. To test this model, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated with constitutive and CC-specific overexpression of AVP1, encoding type 1 ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1. Plants with both constitutive and CC-specific overexpression accumulated more biomass in shoot and root systems. (14)C-labeling experiments showed enhanced photosynthesis, phloem loading, phloem transport, and delivery to sink organs. The results obtained with constitutive and CC-specific promoters were very similar, such that the growth enhancement mediated by AVP1 overexpression can be attributed to its role in phloem CCs. This supports the model for H(+)-PPases functioning as PPi synthases in the phloem by arguing that the increases in biomass observed with AVP1 overexpression stem from improved phloem loading and transport. PMID:26530315

  10. Constitutive and Companion Cell-Specific Overexpression of AVP1, Encoding a Proton-Pumping Pyrophosphatase, Enhances Biomass Accumulation, Phloem Loading, and Long-Distance Transport1[OPEN

    PubMed Central

    Shulaev, Vladimir; Paez-Valencia, Julio

    2016-01-01

    Plant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H+-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H+-PPases have a well-documented role in hydrolyzing pyrophosphate (PPi) and capturing the released energy to pump H+ across the tonoplast and endomembranes to create proton motive force (pmf). Recently, an additional role for H+-PPases in phloem loading and biomass partitioning was proposed. In companion cells (CCs) of the phloem, H+-PPases localize to the plasma membrane rather than endomembranes, and rather than hydrolyzing PPi to create pmf, pmf is utilized to synthesize PPi. Additional PPi in the CCs promotes sucrose oxidation and ATP synthesis, which the plasma membrane P-type ATPase in turn uses to create more pmf for phloem loading of sucrose via sucrose-H+ symporters. To test this model, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated with constitutive and CC-specific overexpression of AVP1, encoding type 1 ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1. Plants with both constitutive and CC-specific overexpression accumulated more biomass in shoot and root systems. 14C-labeling experiments showed enhanced photosynthesis, phloem loading, phloem transport, and delivery to sink organs. The results obtained with constitutive and CC-specific promoters were very similar, such that the growth enhancement mediated by AVP1 overexpression can be attributed to its role in phloem CCs. This supports the model for H+-PPases functioning as PPi synthases in the phloem by arguing that the increases in biomass observed with AVP1 overexpression stem from improved phloem loading and transport. PMID:26530315

  11. Dewatering as a non-toxic control of nuisance midge larvae in algal wastewater treatment floways.

    PubMed

    Keller, Troy A; Husted, Emily M

    2015-01-01

    Attached-algae floways have tremendous potential for use in wastewater treatment because natural algal communities show high nutrient removal efficiencies, have low operating costs, and are easy to maintain. Algal wastewater floways may also serve as a sustainable option for producing renewable energy because algae grow rapidly, are easily harvested, and can serve as a source of biomass for biofuel. However, pests such as chironomids (Diptera) colonize open channel periphyton floways and their larvae damage the biofilms. While pesticides can control midge larvae, little information is known about alternative, non-toxic controls. This study examined the effectiveness of periodic, short-term dewatering (4 hours every 9 days) on midge abundance and periphyton growth in 16 recirculating, outdoor floways (3 m long, 0.1 m wide). We compared midge abundance and algal accumulation (chlorophyll a, b, c, and pheophytin) among control (n=8) and dewatered (n=8) floways filled with secondarily treated wastewater (27 days, 10 hours of daylight). Dewatered flumes had 42% fewer midges and 28-49% lower algal productivity (as measured by chlorophyll a, b, c, and pheophytin pigments). Chlorophyll a production rates averaged (±1 SD) 0.5±0.2 μg/cm2/day in control floways compared to 0.3±0.1 μg/cm2/day dewatered floways. Short-term dewatering effectively reduced midges but also damaged periphyton. To maximize the recovery of periphyton biomass, operators should harvest periphyton from floways during dewatering events before periphyton is damaged by desiccation or direct exposure to sunlight. PMID:25607663

  12. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  13. Response of highbush blueberry to nitrogen fertilizer during field establishment. I. Accumulation and allocation of fertilizer nitrogen and biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of N fertilizer rate on plant growth, N uptake, and biomass and N partitioning was studied in highbush blueberry during the first 2 years after planting. Plants were grown without N fertilizer or with either 50, 100, or 150 kg/ha N applied each year using 15N-depleted ammonium sulfate t...

  14. Supplementation with Sodium Selenite and Selenium-Enriched Microalgae Biomass Show Varying Effects on Blood Enzymes Activities, Antioxidant Response, and Accumulation in Common Barbel (Barbus barbus)

    PubMed Central

    Kouba, Antonín; Velíšek, Josef; Stará, Alžběta; Masojídek, Jiří; Kozák, Pavel

    2014-01-01

    Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3 mg kg−1 dw selenium (Se) from sodium selenite, or 0.3 and 1.0 mg kg−1 from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite. PMID:24772422

  15. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus).

    PubMed

    Kouba, Antonín; Velíšek, Josef; Stará, Alžběta; Masojídek, Jiří; Kozák, Pavel

    2014-01-01

    Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3 mg kg(-1) dw selenium (Se) from sodium selenite, or 0.3 and 1.0 mg kg(-1) from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite. PMID:24772422

  16. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community.

    PubMed

    Runion, G B; Davis, M A; Pritchard, S G; Prior, S A; Mitchell, R J; Torbert, H A; Rogers, H H; Dute, R R

    2006-01-01

    Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this

  17. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  18. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  19. Evaluating Post-fire Ecosystem Effects in Tussock Tundra of the Seward Peninsula: Characterizing Above-ground Biomass Accumulation, Soil Nutrient Pools, and Foliar Nitrogen.

    NASA Astrophysics Data System (ADS)

    Hollingsworth, T. N.; Mack, M. C.; Breen, A. L.

    2014-12-01

    Over the last century in the circumpolar north, changes in vegetation include shrub cover expansion and shifts in tree line. Invasion of tundra by trees and shrubs may be further facilitated by wildfire disturbance, which creates opportunities for establishment where recruitment is otherwise rare. Even moderate increases in warm-season temperatures are predicted to increase the likelihood of tundra fires. Understanding the consequences of a change in fire regime are complicated by the fact that there are relatively few large recent fires to study. However, the Seward Peninsula is a region that currently experiences more frequent and large fires than other tundra regions in Arctic Alaska. In this tundra region, there are areas of overlapping burns dating back to the 1970s. Using a chronosequence approach, we looked at post-fire biomass accumulation as well as foliar and soil C and N. Our experimental design incorporated sites that showed no evidence of recent burning, sites that burned in 1971, 1997, 2002, and 2011 as well as sites that burned multiple times over the last 30 years. We found that fire had a significant effect on total biomass and shrub basal area in tussock tundra. Our site that burned in 2011 had the lowest total biomass, about half of the biomass of our unburned site. However, our results indicated the site that burned in 1971 had over double the aboveground biomass and more soil N than the unburned site. We found that sites that repeatedly burned since 1971 were very similar in biomass to unburned tundra. This suggests that repeat fires keep a post-fire site at unburned levels of biomass. However, in these repeat fire sites, foliar C/N was ~25% greater and soil C and N was ~50% less than in unburned tundra. These results indicate that repeat fires are potentially causing nitrogen loss that not likely to be replenished into the system. As tundra fires become more frequent prediction of post-fire ecosystem effects is critical due to impacts on

  20. Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)*

    PubMed Central

    Zhao, Xiao-ying; Zhu, Deng-feng; Zhou, Bo; Peng, Wu-sheng; Lin, Jian-zhong; Huang, Xing-qun; He, Re-qing; Zhuo, Yu-hong; Peng, Dan; Tang, Dong-ying; Li, Ming-fang; Liu, Xuan-ming

    2010-01-01

    Gibberellin 2-oxidase (GA 2-oxidase) plays very important roles in plant growth and development. In this study, the AtGA2ox8 gene, derived from Arabidopsis (Arabidopsis thaliana), was transformed and over-expressed in rapeseed (Brassica napus L.) to assess the role of AtGA2ox8 in biomass accumulation and lignification in plants. The transgenic plants, identified by resistant selection, polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) analyses, and green fluorescence examination, showed growth retardation, flowering delay, and dwarf stature. The fresh weight and dry weight in transgenic lines were about 21% and 29% lower than those in wild type (WT), respectively, and the fresh to dry weight ratios were higher than that of WT. Quantitative measurements demonstrated that the lignin content in transgenic lines decreased by 10%–20%, and histochemical staining results also showed reduced lignification in transgenic lines. Quantitative real-time PCR analysis indicated that the transcript levels of lignin biosynthetic genes in transgenic lines were markedly decreased and were consistent with the reduced lignification. These results suggest that the reduced biomass accumulation and lignification in the AtGA2ox8 over-expression rapeseed might be due to altered lignin biosynthetic gene expression. PMID:20593511

  1. Production of biofuel using molluscan pseudofeces derived from algal cells

    SciTech Connect

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  2. Application of ceramic membranes for microalgal biomass accumulation and recovery of the permeate to be reused in algae cultivation.

    PubMed

    Nędzarek, Arkadiusz; Drost, Arkadiusz; Harasimiuk, Filip; Tórz, Agnieszka; Bonisławska, Małgorzata

    2015-12-01

    The present study was carried out to investigate the possibility of using ceramic membranes for microalgal biomass densification and to evaluate the qualitative composition of the permeate as a source of nitrogen and phosphorus for microalgae cultivated in a closed system. The studies were conducted on the microalga Monoraphidium contortum. The microfiltration process was carried out on a quarter-technical scale using ceramic membranes with 1.4 μm, 300 and 150 kDa cut-offs. Permeate flux and respective hydraulic resistances were calculated. Dissolved inorganic nitrogen and phosphorus fractions were measured in the feed and the permeate. It was noted that the permeate flux in the MF process was decreasing while the values of reversible and irreversible resistances were increasing as the cut-off of the studied membranes was diminishing. An analysis of the hydraulic series resistance showed that using a 300 kDa membrane would be the most beneficial, as it was characterized by a comparatively high permeate flux (Jv=1.68 10(-2)m(3)/m(2)s), a comparatively low susceptibility to irreversible fouling (1.72·10(9) 1/m) and a high biomass retention coefficient (91%). The obtained permeate was characterized by high concentrations of dissolved nitrogen and phosphorus forms, which indicated that it could be reused in the process of microalgal biomass production. PMID:26546921

  3. Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a dynamic model using dichloromethane as a model pollutant

    SciTech Connect

    Okkerse, W.J.H.; Osinga-Kuipers, B.; Okkerse, M.; Ottengraf, S.P.P. |

    1999-05-20

    A dynamic model is developed that describes the degradation of volatile acidifying pollutants in biotrickling filters (BTFs) for waste gas purification. Dynamic modelling enables the engineer to predict the clogging rate of a filter bed and the time it takes the BTF to adapt to changes in its inlet concentration. The most important mechanisms that govern the behavior of the BTF are incorporated in the model. The time scale of the accumulation of biomass in a filter is investigated, and an approach is presented that can be used to estimate how long a BTF can be operated before its packing has to be cleaned. A three-month experiment was carried out to validate the model, using dichloromethane (DCM) as a model acidifying pollutant. Valuable experimental data about biomass accumulation and liquid hold-up in the reactor were obtained with an experimental set-up that allows the continuous registration of the weight of the BTF. The results show that in BTFs eliminating DCM from a waste gas, clogging is not to be expected up to concentrations of several g/m{sup 3}. Model calculations based on the measurements also suggest that the maximum carbon load that can safely be applied per unit void packing volume should not exceed 0.5--1.6 C mol/(m{sup 3} {approximately} h), depending on the density of the biofilm formed. The model is a good predictor of the elimination of the pollutant in the system, the axial gas and liquid concentration profiles, the axial biomass distribution, and the response of the system upon a stepwise increase in the DCM inlet concentration. The influence of the buffer concentrations in the liquid phase upon the performance of the BTF is investigated.

  4. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents.

    PubMed

    Wang, Changhui; Bai, Leilei; Jiang, He-Long; Xu, Huacheng

    2016-07-01

    Lake eutrophication typically occurs with a syndrome of algae breeding and biomass accumulation (e.g., algal blooms). Therefore, the effect of algal bloom sedimentation on eutrophication control by phosphorus (P) inactivating agents was assessed herein. Three commercial products, including aluminum (Al) sulfate, iron (Fe) sulfate, and a lanthanum-modified clay (Phoslock®), as well as one easily available by-product, drinking water treatment residue (DWTR), were selected. The most important finding was that during algae sedimentation, P immobilization from the overlying water by Al, Phoslock®, and DWTR was dominated by a long-term slow phase (>150d), while Fe has limited effectiveness on the immobilization. Further analysis indicated that the algae sedimentation effect was mainly due to the slow release of P from algae, leading to relatively limited P available for the inactivating agents. Then, a more unfavorable effect on the P immobilization capability of inactivating agents was caused by the induced anaerobic conditions, the released organic matter from algae, and the increased sulfide in the overlying water and sediments during sedimentation. Overall, algae sedimentation induced variable control of eutrophication by P inactivating agents. Accordingly, recommendations for future works about algal lake restoration were also proposed. PMID:27017078

  5. Application of NDVI to detecting algal bloom in the Bohai Sea of China from AVHRR

    NASA Astrophysics Data System (ADS)

    Zhao, Dongzhi

    2003-05-01

    This paper analyses the relation between data measured in situ and the NDVI derived from AVHRR of NOAA-14 during algal bloom in the Bohai sea in 1998 to establish surface biomass model of Ceratium furca(EHr.). This model is easy to utilize data received from multi-source satellite in operation, and gets directly the index of phytoplankton biomass. The area and distribution of high biomass is also presented. Based on this model, propagation speed of phytoplankton reveals progress of algal bloom development. The result of this model can discriminate algal bloom water from silt or suspended particle material (SPM).

  6. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  7. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  8. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    PubMed

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. PMID:25311189

  9. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation

    PubMed Central

    Donnison, Iain

    2013-01-01

    Miscanthus sacchariflorus is a fast-growing C4 perennial grass that can naturally hybridize with M. sinensis to produce interspecific hybrids, such as the sterile triploid M.× giganteus. The creation of such hybrids is essential for the rapid domestication of this novel bioenergy crop. However, progress has been hindered by poor understanding of the environmental cues promoting floral transition in M. sacchariflorus, which flowers less readily than M. sinensis. The purpose of this work was to identify the flowering requirements of M. sacchariflorus genotypes in order to expedite the introduction of new germplasm optimized to different environments. Six M. sacchariflorus accessions collected from a range of latitudes were grown under controlled photoperiod and temperature conditions, and flowering, biomass, and morphological phenotypic data were captured. Results indicated that M. sacchariflorus, irrespective of origin, is a quantitative short-day plant. Flowering under static long days (15.3h daylength), compared with shorter photoperiods, was delayed by an average 61 d, with an average associated increase of 52% of above-ground biomass (DM plant–1). Timing of floral initiation occurred between photoperiods of 14.2h and 12.1h, and accumulated temperatures of 553–1157 °C above a base temperature of 10 °C. Miscanthus sacchariflorus flowering phenology closely resembles that of Sorghum and Saccharum, indicating potentially similar floral pathways and suggesting that determination of the underlying genetic mechanisms will be facilitated by the syntenic relationships existing between these important C4 grasses. PMID:23183254

  10. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  11. Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179.

    PubMed

    Lin, Qiang; Gu, Na; Li, Gang; Lin, Junda; Huang, Liangmin; Tan, LingLing

    2012-05-01

    This investigation examined the effects of the inorganic carbon concentration (4, 0.8 and 0 g/L NaHCO(3)) on the carbon formation, nitrate utilization, growth and fatty acids compositions of Nannochloropsis oculata. The dissolved inorganic carbon (DIC) concentration in the three treatments decreased sharply during the first 6 days, and the percentage of dissolved organic carbon (DOC) (% of total organic carbon (TOC)) decreased with the depletion of the DIC. The NO(3)(-) assimilation of the algae was correlated with the DIC concentration. The algae in the highest DIC treatment had the highest specific grow rate (0.0843 d(-1)) (P<0.0001), and their biomass and fatty acid methyl esters (FAME) productivity were 84.00 and 9.69 mg/L/d, respectively (P<0.0001). Contents of C16 and C18 series (% of FAME) were high and the C16:0 increased with the decrease of C18:1 during the cultivation. The iodine value (IV) of the algae was low at the low DIC media. PMID:22386465

  12. Grazing effects by Nereis diversicolor on development and growth of green algal mats

    NASA Astrophysics Data System (ADS)

    Engelsen, Anna; Pihl, Leif

    2008-08-01

    Nereis diversicolor is generally considered to be a predator and deposit feeder, but have also been found to graze on benthic algae in shallow coastal areas. In this study we investigated the grazing effects on the development and growth of green algae, Ulva spp. Algal growth was studied in an experiment including two levels of sediment thickness; 100 mm sediment including macrofauna and 5 mm sediment without macrofauna, and three treatments of varying algal biomass; sediment with propagules, sediment with low algal biomass (120 g dry weight (dwt) m - 2 ) and sediment with high algal biomass (240 g dwt m - 2 ). In the 100 mm sediment, with a natural population of macrofauna, N. diversicolor was the dominating (60% of total biomass) species. After three weeks of experimentation the result showed that N. diversicolor was able to prevent initial algal growth, affect growth capacity and also partly reduce full-grown algal mats. The weight of N. diversicolor was significantly higher for polychaetes in treatments with algae added compared to non-algal treatments. There were also indications that a rich nutrient supply per algae biomass counteracted the grazing capacity of N. diversicolor.

  13. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    PubMed

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils. PMID:26517728

  14. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920

  15. Energy evaluation of algal cell disruption by high pressure homogenisation.

    PubMed

    Yap, Benjamin H J; Dumsday, Geoff J; Scales, Peter J; Martin, Gregory J O

    2015-05-01

    The energy consumption of high pressure homogenisation (HPH) was analysed to determine the feasibility of rupturing algal cells for biodiesel production. Experimentally, the processing capacity (i.e. flow rate), power draw and cell disruption efficiency of HPH were independent of feed concentration (for Nannochloropsis sp. up to 25%w/w solids). Depending on the homogenisation pressure (60-150 MPa), the solids concentration (0.25-25%w/w), and triacylglyceride (TAG) content of the harvested algal biomass (10-30%), the energy consumed by HPH represented between 6% and 110-times the energy density of the resulting biodiesel. Provided the right species (weak cell wall and high TAG content) is selected and the biomass is processed at a sufficiently high solids concentration, HPH can consume a small fraction of the energy content of the biodiesel produced. This study demonstrates the feasibility of process-scale algal cell disruption by HPH based on its energy requirement. PMID:25435068

  16. Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system.

    PubMed

    Gross, Martin; Wen, Zhiyou

    2014-11-01

    Current algal cultivation has been mainly performed in open ponds or photobioreactors in which algal cells are suspended and harvested through flocculation and centrifugation. A unique attachment based Revolving Algal Biofilm (RAB) cultivation system was recently developed for easy biomass harvest with enhanced biomass productivity. The objective of this research was to evaluate the performance (durability, algal growth, and the geometry) of the RAB system at pilot-scale. A yearlong test of the RAB system was successfully conducted at a greenhouse facility at Boone, Iowa, USA. The RAB resulted in an average of 302% increase in biomass productivity compared to a standard raceway pond, with a maximum biomass productivity (ash free) of 18.9 g/m(2)-day being achieved. The RAB with a vertical configuration generated higher productivity than the triangular RAB. Collectively, the research shows that the RAB as an efficient algal culture system has great potential for being deployed at commercial scale. PMID:25189508

  17. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  18. [Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize].

    PubMed

    Chen, Yuan-Xue; Li, Han-Han; Zhou, Tao; Chen, Xin-Ping; Huang, Wei; Liu, Jing; Zhang, Chao-Chun; Xu, Kai-Wei

    2013-10-01

    A 2-year field experiment was conducted in 2011 and 2012 to investigate the effects of phosphorus (P) fertilization on the leaf area index (LAI), dry matter accumulation (DMA), and P use efficiency (PUE) of maize in wheat/maize/soybean intercropping system. Five P fertilization rates were installed, i.e., 0, 45, 90, 135, and 180 kg P2O5 x hm(-2) for wheat, marked as WP0, WP1, WP2, WP3, and WP4, respectively, and 0, 37.5, 75, 112.5, and 150 kg P2O5 x hm(-2) for maize, marked as MP0, MP1, MP2, MP3, and MP4, respectively. During the coexisted growth periods of wheat and maize, P fertilization increased the LAI, leaf area duration (LAD), and stem and leaf DMA of maize significantly. After the jointing stage of maize, the maize LAI, LAD, DMA, and crop growth rate (CGR) all decreased after an initial increase with the increasing P rate, with the maximum growth in treatment MP2 or MP3. During the reproductive stage of maize, the maize dry mass translocation from vegetative to reproductive organ increased with increasing P fertilization rate, and the grain yield of both maize and whole cropping system increased firstly and decreased then, with the maximum grain yield of maize and whole cropping system being 6588 and 11955 kg x hm(-2) in treatment P3, respectively. The P apparent recovery efficiency of maize was the highest (26.3%) in treatment MP2, being 82.6%, 38.4%, and 152.9% higher than that in MP1 (14.4%), MP3 (19.0%), and MP4 (10.4%), respectively. In sum, for the wheat/maize/soybean intercropping system, applying appropriate amount of P fertilizer could promote maize growth, alleviate the impact of wheat on maize, and consequently, increase the P apparent recovery efficiency of maize. In this study, the appropriate P fertilization rate was 75-112.5 kg P2O5 x hm(-2). PMID:24483073

  19. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  20. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  1. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). PMID:27007038

  2. High-light stress does not impair biomass accumulation of sun-acclimated tropical tree seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.).

    PubMed

    Krause, G H; Gallé, A; Virgo, A; García, M; Bucic, P; Jahns, P; Winter, K

    2006-01-01

    Studies with seedlings of tropical rainforest trees ( Calophyllum longifolium Willd.; Tectona grandis L. f.) were designed to test whether high-light stress affects photosynthetic performance and growth. Seedlings were cultivated in pots at a field site in Central Panama (9 degrees N) and separated into two groups: (1) plants exposed to full solar radiation; (2) plants subjected to automatic neutral shading (48 %) whenever visible irradiance surpassed 1000, 1200, or 1600 micromol photons m-2 s-1. After 2-4 months, chlorophyll fluorescence (Fv/Fm ratio), photosynthetic net CO2 uptake, pigment composition, alpha-tocopherol content of leaves, and plant biomass accumulation were measured. Fully sun-exposed, compared to periodically shaded plants, experienced substantial high-light stress around midday, indicated by photoinhibition of photosystem II and depressed net CO2 uptake. Higher contents of xanthophyll cycle pigments, lutein, and alpha-tocopherol showed an enhancement of photoprotection in fully sun-exposed plants. However, in all experiments, the maximum capacity of net CO2 uptake and plant dry mass did not differ significantly between the two treatments. Thus, in these experiments, high-light stress did not impair productivity of the seedlings studied. Obviously, the continuously sun-exposed plants were capable of fully compensating for any potential costs associated with photoinhibition and repair of photosystem II, reduced CO2 assimilation, and processes of high-light acclimation. PMID:16435267

  3. A seasnake's colour affects its susceptibility to algal fouling

    PubMed Central

    Shine, R.; Brischoux, F.; Pile, A. J.

    2010-01-01

    Evolutionary transitions from terrestrial to aquatic life modify selective forces on an animal's coloration. For example, light penetrates differently through water than air, and a new suite of predators and visual backgrounds changes the targets of selection. We suggest that an aquatic animal's coloration may also affect its susceptibility to algal fouling. In a colour-polymorphic field population of seasnakes (Emydocephalus annulatus) in New Caledonia, black individuals supported higher algal cover than did banded conspecifics. In experimental tests, black snake models (plastic tubes) accumulated more algae than did banded models. Algal cover substantially reduced snake activity (in the field) and swimming speeds (in the laboratory). Effects of algal cover on a snake's hydrodynamic efficiency and/or its rate of cutaneous gas exchange thus may impose selection on the colours of aquatic organisms. PMID:20375055

  4. Impact of land-use and long-term (>150 years) charcoal accumulation on microbial activity, biomass and community structure in temperate soils (Belgium).

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Dufey, Joseph E.

    2015-04-01

    In the last decade, biochar has been increasingly investigated as a soil amendment for long-term soil carbon sequestration while improving soil fertility. On the short term, biochar application to soil generally increases soil respiration as well as microbial biomass and activity and affects significantly the microbial community structure. However, such effects are relatively short-term and tend to vanish over time. In our study, we investigated the long-term impact of charcoal accumulation and land-use on soil biota in temperate haplic Luvisols developed in the loess belt of Wallonia (Belgium). Charcoal-enriched soils were collected in the topsoil of pre-industrial (>150 years old) charcoal kilns in forest (4 sites) and cropland (5 sites). The topsoil of the adjacent charcoal-unaffected soils was sampled in a comparable way. Soils were characterized (pH, total, organic and inorganic C, total N, exchangeable Ca, Mg, K, Na, cation exchange capacity and available P) and natural soil organic matter (SOM) and black carbon (BC) contents were determined by differential scanning calorimetry. After rewetting at pF 2.5, soils were incubated during 140 days at 20 °C. At 70 days of incubation, 10 g of each soil were freeze dried in order to measure total microbial biomass and community structure by PLFA analysis. The PLFA dataset was analyzed by principal component analysis (PCA) while soil parameters were used as supplementary variables. For both agricultural and forest soils, the respiration rate is highly related to the total microbial biomass (R²=0.90). Both soil respiration and microbial biomass greatly depend on the SOM content, which indicates that the BC pool is relatively inert microbiologically. Land-use explains most of the variance in the PLFA dataset, largely governing the first principal component of the ACP. In forest soils, we observe a larger proportion of gram + bacteria, actinomycetes and an increased bacteria:fungi ratio compared to cropland, where gram

  5. Algal functional annotation tool

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  6. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  7. Effects of solar ultraviolet radiation on tropical algal communities

    SciTech Connect

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity.

  8. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  9. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  10. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  11. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.

    PubMed

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Leal, Lucia Hernandez; Fernandes, Tânia V; Langenhoff, Alette; Zeeman, Grietje

    2016-03-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied. Biodegradation and photolysis led to 60-100% removal of diclofenac, ibuprofen, paracetamol and metoprolol. Removal of carbamazepine and trimethoprim was incomplete and did not exceed 30% and 60%, respectively. Sorption to algal biomass accounted for less than 20% of the micropollutant removal. Furthermore, the presence of micropollutants did not inhibit C. sorokiniana growth at applied concentrations. Algal treatment systems allow simultaneous removal of micropollutants and recovery of nutrients from source separated wastewater. Nutrient rich algal biomass can be harvested and applied as fertilizer in agriculture, as lower input of micropollutants to soil is achieved when algal biomass is applied as fertilizer instead of urine. PMID:26546707

  12. The algal lift: Buoyancy-mediated sediment transport

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, Clara; Federlein, Laura L.; Knie, Matthias; Mutz, Michael

    2016-01-01

    The role of benthic algae as biostabilizers of sediments is well-known, however, their potential to lift and transport sediments remains unclear. Under low-flow conditions, matured algal mats may detach from the bed and may lift up sediment, thereby causing disturbance to the uppermost streambed sediment. We tested the potential of algal mats to lift sediments in 12 indoor flumes filled with sand (0.2 - 0.8 mm), gravel (2 - 8 mm) or a sand-gravel mixture (25/75% mass). After four weeks, the algal mats covered about 50% of the flumes area. Due to the accumulation of oxygen gas bubbles in the mats, that developed from high primary production at 4.5 weeks, about half of the algal mats detached from the bed carrying entangled sediments. Both the area covered by algal mats and detached area were similar among sediment types, but the amount of sediment transported tended to be higher for sand and sand-gravel mixture compared to gravel. Our results reveal that biologically mediated sediment transport mainly depends on the development of a dense filamentous algal matrix, that traps gas bubbles, increasing the mats buoyancy. This novel mechanism of sediment transport will occur in shallow ecosystems during low-flow periods, with the highest impact for sandy sediments.

  13. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  14. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest. PMID:21330711

  15. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria.

    PubMed

    Guillemette, François; Leigh McCallister, S; Del Giorgio, Paul A

    2016-06-01

    Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ(13)C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs. PMID:26623544

  16. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species. PMID:25675371

  17. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  18. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  19. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study

    NASA Astrophysics Data System (ADS)

    Li, Qinqin; Hu, Weiping; Zhai, Shuhua

    2016-01-01

    Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading.

  20. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study.

    PubMed

    Li, Qinqin; Hu, Weiping; Zhai, Shuhua

    2016-01-01

    Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading. PMID:26296739

  1. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  2. A comparison of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages

    USGS Publications Warehouse

    Potapova, M.; Coles, J.F.; Giddings, E.M.P.; Zappia, H.

    2005-01-01

    Patterns of stream benthic algal assemblages along urbanization gradients were investigated in three metropolitan areas-Boston (BOS), Massachusetts; Birmingham (BIR), Alabama; and Salt Lake City (SLC), Utah. An index of urban intensity derived from socioeconomic, infrastructure, and land-use characteristics was used as a measure of urbanization. Of the various attributes of the algal assemblages, species composition changed along gradients of urban intensity in a more consistent manner than biomass or diversity. In urban streams, the relative abundance of pollution-tolerant species was often higher than in less affected streams. Shifts in assemblage composition were associated primarily with increased levels of conductivity, nutrients, and alterations in physical habitat. Water mineralization and nutrients were the most important determinants of assemblage composition in the BOS and SLC study areas; flow regime and grazers were key factors in the BIR study area. Species composition of algal assemblages differed significantly among geographic regions, and no particular algal taxa were found to be universal indicators of urbanization. Patterns in algal biomass and diversity along urban gradients varied among study areas, depending on local environmental conditions and habitat alteration. Biomass and diversity increased with urbanization in the BOS area, apparently because of increased nutrients, light, and flow stability in urban streams, which often are regulated by dams. Biomass and diversity decreased with urbanization in the BIR study area because of intensive fish grazing and less stable flow regime. In the SLC study area, correlations between algal biomass, diversity, and urban intensity were positive but weak. Thus, algal responses to urbanization differed considerably among the three study areas. We concluded that the wide range of responses of benthic algae to urbanization implied that tools for stream bioassessment must be region specific. ?? 2005 by the

  3. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  4. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  5. An algal solution to large scale wastewater amelioration

    SciTech Connect

    Adey, W.H.

    1995-06-01

    Wastewater nutrients can be lowered to oligotrophic levels through uptake by algal biomass, while photosynthetic oxygen removes bacterial BOD, and oxygen-based ions, with UV application, can break down xenobiotic organic compounds. Algae also uptake heavy metals in cell walls, and the high pH from CO{sub 25} removal precipitates metals, earth metals and phosphorus. Algal biomass produced from many wastewaters has valuable commercial applications. Algal Turf Scrubbing (ATS) was developed as a tool to control water quality in ecosystem models, often at oligotrophic levels. ATS has routinely achieved biomass production (and water amelioration capability) of over 50 g (dry mass) m{sup -2} day{sup -1} in secondary sewage. Engineering innovations, with mechanized harvest, have brought ATS to large scale with a pilot sewage plant in central California. This is a low cost, modular unit, at 1000 cubic meters per day, and plans are underway to expand to city capacity for Tertiary-Quinary water recovery. A wide variety of wastewater applications, from agricultural, to aquacultural to industrial will be discussed.

  6. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  7. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  8. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation. PMID:25149444

  9. Biodegradation of bisphenol A by an algal-bacterial system.

    PubMed

    Eio, Er Jin; Kawai, Minako; Niwa, Chiaki; Ito, Masato; Yamamoto, Shuichi; Toda, Tatsuki

    2015-10-01

    The degradation of bisphenol A (BPA) by Chlorella sorokiniana and BPA-degrading bacteria was investigated. The results show that BPA was partially removed by a monoculture of C. sorokiniana, but the remaining BPA accounted for 50.2, 56.1, and 60.5 % of the initial BPA concentrations of 10, 20, and 50 mg L(-1), respectively. The total algal BPA adsorption and accumulation were less than 1 %. C. sorokiniana-bacterial system effectively removed BPA with photosynthetic oxygen provided by the algae irrespective of the initial BPA concentration. The growth of C. sorokiniana in the algal system was inhibited by BPA concentrations of 20 and 50 mg L(-1), but not in the algal-bacterial system. This observation indicates that bacterial growth in the algal-bacterial system reduced the BPA-inhibiting effect on algae. A total of ten BPA biodegradation intermediates were identified by GC-MS. The concentrations of the biodegradation intermediates decreased to a low level at the end of the experiment. The hypothetical carbon mass balance analysis showed that the amounts of oxygen demanded by the bacteria are insufficient for effective BPA degradation. However, adding an external carbon source could compensate for the oxygen shortage. This study demonstrates that the algal-bacterial system has the potential to remove BPA and its biodegradation intermediates. PMID:26013738

  10. Fuels from biomass and wastes

    NASA Astrophysics Data System (ADS)

    Klass, D. L.; Emert, G. H.

    The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

  11. Spatial Variation in the Accumulation of Elements in Thalli of the Lichen Pseudevernia furfuracea (L.) Zopf Transplanted Around a Biomass Power Plant in Italy.

    PubMed

    Lucadamo, Lucio; Corapi, Anna; Loppi, Stefano; De Rosa, Rosanna; Barca, Donatella; Vespasiano, Giovanni; Gallo, Luana

    2016-04-01

    Thalli of the lichen Pseudevernia furfuracea were transplanted for 3 months at 32 sites located in and around an industrial area of S Italy whose main anthropogenic sources of atmospheric trace elements are a biomass power plant and vehicular emissions. Meteorological stations were deployed at four sites for finer detection of local wind patterns. The station near the biomass power plant showed a significant S-SE wind component not detectable by measurements made at the regional scale or by the other local meteorological stations. Sb, Sn, and Mo showed a very high degree of covariance and a statistically significant correlation with traffic rate. No element concentrations in the exposed thalli were correlated with distance from the biomass power plant, although Ti and Co concentrations showed a significant correlation with the "Potential Number of Times the Winds coming from the biomass power plant Reach each exposure Site" (PNTWRS). This value is calculated dividing the time (minutes) during the experimental trimester that the wind blows from the power plant into each of the four geographical sides by the time (minutes) the winds passing through the power plant take to reach the exposure sites in each of the four geographical sides.) during the period of thalli transplantation. Moreover, there were significant differences among clusters of sites with different levels of enrichment of Ti, Co, Al, V, and Cu and a "local control" group. These results, together with the high covariance of the Al-Ti and V-Co pairs, indicate an association between the biomass power plant and spatial variation of Ti, Co, Al, and V levels in the transplanted lichens. The nature of the fuels used in the biomass power plant explains the spatial variation of As, Cr, Cu, and Zn concentrations. PMID:26546421

  12. Simulating pH effects in an algal-growth hydrodynamics model(1).

    PubMed

    James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T

    2013-06-01

    Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. PMID:27007048

  13. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  14. Biosorption of cadmium by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B.; Prasetyo, I. )

    1993-04-01

    Biomass of nonliving, dried brown marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum demonstrated high equilibrium uptake of cadmium from aqueous solutions. The metal uptake by these materials was quantitatively evaluated using sorption isotherms. Biomass of A. nodosum accumulated the highest amount of cadmium exceeding 100 mg Cd[sup 2+]/g (at the residual concentration of 100 mg Cd/L and pH 3.5), outperforming a commercial ion exchange resin DUOLITE GT-73. A new biosorbent material based on A. nodosum biomass was obtained by reinforcing the algal biomass by formaldehyde cross-linking. The prepared sorbent possessed good mechanical properties, chemical stability of the cell wall polysaccharides and low swelling volume. Desorption of deposited cadmium with 0.1-0.5 M HCl resulted in no changes of the biosorbent metal uptake capacity through five subsequent adsorption/desorption cycles. There was no damage to the biosorbent which retained its macroscopic appearance and performance in repeated metal uptake/elution cycles.

  15. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain

    SciTech Connect

    Topa, M.A.

    1984-01-01

    Seedlings of pond, and loblolly pines were grown in a non-circulating, continuously-flowing solution culture under anaerobic (0.75 mg/1 O/sub 2/) conditions to determine the effects of anaerobiosis on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root was demonstrated via rhizosphere oxidation experiments using indigo-carmine dye solutions and polarography. Stem and root collar lenticels were found to be the major sites of atmospheric O/sub 2/ entry for submerged roots. Longitudinal and radial pathways for gas diffusion via intercellular spaces in the pericycle and ray parenchyma, respectively, were elucidated histologically. Lenticel and aerenchyma development, and rhizosphere oxidation in roots of anaerobically-grown sand pine seedlings were minimal. Elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term /sup 32/P uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass. Phosphorus absorption rates were negatively correlated with internal tissue phosphorus concentrations, and root and shoot biomass. 315 refs., 25 figs., 14 tabs.

  16. Anaerobic bioassay of methane potential of microalgal biomass

    NASA Astrophysics Data System (ADS)

    Yen, Hong-Wei

    This study was undertaken to investigate the feasibility of using anaerobic digestion as a technique to recover solar energy embodied in excess algal biomass production harvested from Clemson University's high rate algal based Partitioned Aquaculture System (PAS) as an energy source to support PAS operations. In this study, four different organic substrates were loaded to anaerobic digesters in eight experimental trials, to ascertain the optimal combination of operational variables and effect of algal, or modified algal substrate upon methane production rate. The four substrates used in this study were: (1) a synthetic feedstock consisting of molasses and dog food, (2) a commercially obtained, readily degradable algal biomass (Spirulina ) in dry form, (3) PAS harvested and dewatered algal sludge, and (4) algal biomass blended with shredded waste paper or molasses as a carbon supplement for the adjustment of algal C/N ratio. Eight experimental trials using combinations of the four substrates were conducted in 15 liter digesters to investigate the effects of controlled digester parameters upon digester performance. Digesters operating at 20 days HRT, mesophilic digestion (35°C), and twice per day mixing at maximal loading rates produced maximal methane gas using PAS algal sludge. However, under these conditions overall methane production was less than 1000 ml CH4/l day. This low level of energy recovery from the fermentation of algal biomass (alone) is not energetically or economically favorable. Co-digestion of algal sludge and waste paper was investigated as a way to increase methane production. The data obtained from these trials suggest an optimum C/N ratio for co-digestion of algal sludge and waste paper in the range of 20--25/l. A balanced C/N ratio along with the stimulated increase in cellulase activity is suggested as likely reasons for increased methane production seen in co-digestion of algal sludge and waste paper. Yeast extract addition to anaerobic

  17. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii.

    PubMed

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  18. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii

    PubMed Central

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  19. Evaluation of the integrated hydrothermal carbonization-algal cultivation process for enhanced nitrogen utilization in Arthrospira platensis production.

    PubMed

    Yao, Changhong; Wu, Peichun; Pan, Yanfei; Lu, Hongbin; Chi, Lei; Meng, Yingying; Cao, Xupeng; Xue, Song; Yang, Xiaoyi

    2016-09-01

    Sustainable microalgal cultivation at commercial scale requires nitrogen recycling. This study applied hydrothermal carbonization to recover N of hot-water extracted Arthrospira platensis biomass residue into aqueous phase (AP) under different operation conditions and evaluated the N utilization, biomass yield and quality of A. platensis cultures using AP as the sole N source. With the increase of temperature at 190-210°C or reaction time of 2-3h, the N recovery rate decreased under nitrogen-repletion (+N) cultivation, while contrarily increased under nitrogen-limitation (-N) cultivation. Under +N biomass accumulation in the cultures with AP under 190°C was enhanced by 41-67% compared with that in NaNO3, and the highest protein content of 51.5%DW achieved under 200°C-2h was also 22% higher. Carbohydrate content of 71.4%DW under -N cultivation achieved under 210°C-3h was 14% higher than that in NaNO3. HTC-algal cultivation strategy under -N mode could save 60% of conventional N. PMID:27262092

  20. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii.

    PubMed

    Goold, Hugh Douglas; Cuiné, Stéphan; Légeret, Bertrand; Liang, Yuanxue; Brugière, Sabine; Auroy, Pascaline; Javot, Hélène; Tardif, Marianne; Jones, Brian; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-08-01

    Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity. PMID:27297678

  1. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World.

    PubMed

    Rai, Vineeta; Karthikaichamy, Anbarasu; Das, Debasish; Noronha, Santosh; Wangikar, Pramod P; Srivastava, Sanjeeva

    2016-07-01

    Current momentum of microalgal research rests extensively in tapping the potential of multi-omics methodologies in regard to sustainable biofuels. Microalgal biomass is fermented to bioethanol; while lipids, particularly triacylglycerides (TAGs), are transesterified to biodiesels. Biodiesel has emerged as an ideal biofuel candidate; hence, its commercialization and use are increasingly being emphasized. Abiotic stresses exaggerate TAG accumulation, but the precise mechanisms are yet to be known. More recently, comprehensive multi-omics studies in microalgae have emerged from the biofuel perspective. Genomics and transcriptomics of microalgae have provided crucial leads and basic understanding toward lipid biosynthesis. Proteomics and metabolomics are now complementing "algal omics" and offer precise functional insights into the attendant static and dynamic physiological contexts. Indeed, the field has progressed from shotgun to targeted approaches. Notably, targeted proteomics studies in microalga are not yet reported. Several multi-omics tools and technologies that may be used to dig deeper into the microalgal physiology are examined and highlighted in this review. The article therefore aims to both introduce various available high-throughput biotechnologies and applications of "omics" in microalgae, and enlists a compendium of the emerging cutting edge literature. We suggest that a strategic and thoughtful combination of data streams from different omics platforms can provide a system-wide overview. The algal omics warrants closer attention in the future, with a view to technical, economic, and societal impacts that are anticipated in the current postgenomics era. PMID:27315140

  2. Numerical simulation of an algal bloom in Dianshan Lake

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lin, Weiqing; Zhu, Jianrong; Lu, Shiqiang

    2016-01-01

    A hydrodynamic model and an aquatic ecology model of Dianshan Lake, Shanghai, were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D, which is an integrated modelling suite offered by Deltares. The simulated water elevation, current velocity, and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data, as well as simulated results. In 2008, the dominant algae in Dianshan Lake was Bacillariophyta from February to March, while it was Chlorophyta from April to May, and Cyanophyta from July to August. In summer, the biomass of Cyanophyta grew quickly, reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however, increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions, resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.

  3. Mechanism of algal aggregation by Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2014-07-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  4. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  5. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors.

    PubMed

    Posadas, Esther; García-Encina, Pedro-Antonio; Soltau, Anna; Domínguez, Antonio; Díaz, Ignacio; Muñoz, Raúl

    2013-07-01

    The mechanisms of carbon and nutrient removal in an open algal-bacterial biofilm reactor and an open bacterial biofilm reactor were comparatively evaluated during the treatment of centrates and domestic wastewater. Comparable carbon removals (>80%) were recorded in both bioreactors, despite the algal-bacterial biofilm supported twice higher nutrient removals than the bacterial biofilm. The main carbon and nitrogen removal mechanisms in the algal-bacterial photobioreactor were assimilation into algal biomass and stripping, while stripping accounted for most carbon and nitrogen removal in the bacterial biofilm. Phosphorus was removed by assimilation into algal-bacterial biomass while no effective phosphorous removal was observed in the bacterial biofilm. Carbon, nitrogen and phosphorus removals of 91 ± 3%, 70 ± 8% and 85 ± 9%, respectively, were recorded in the algal-bacterial bioreactor at 10d of hydraulic retention time when treating domestic wastewater. However, the high water footprint recorded (0.5-6.7 Lm(-2)d(-1)) could eventually compromise the environmental sustainability of this microalgae-based technology. PMID:23644070

  6. Total mercury and methylmercury accumulation in periphyton of Boreal Shield lakes: influence of watershed physiographic characteristics.

    PubMed

    Desrosiers, Mélanie; Planas, Dolors; Mucci, Alfonso

    2006-02-15

    Little is known about Hg accumulation in littoral communities, especially in periphyton biofilm of unperturbed lakes. The objectives of this study were to investigate and establish relationships between total mercury (THg) and methylmercury (MeHg) concentrations in periphyton communities of Boreal lakes and watershed physiographic and lake morphometric characteristics. This study was carried out on 23 Boreal Canadian Shield lakes located between 47-50 degrees N and 73-77 degrees W. Periphyton was sampled on rocks, the dominant periphyton substrate in the littoral zone of these lakes. Periphyton algal biomass (Chla) ranged from 12 to 164 mg m(-2) whereas THg concentrations varied from 42 to 271 ng g(-1) DW and MeHg levels varied from 3 to 55 ng Hg g(-1) DW. Periphyton biomass was positively correlated to latitude, watershed wetland area and negatively correlated to watershed slope and depth of the lake. THg concentrations in periphyton were negatively correlated to watershed wetland area whereas MeHg concentrations were negatively correlated to latitude and positively correlated to watershed slope, dissolved sulfate concentration and the presence of beavers in the lake. This study confirms that periphyton can accumulate large amounts of Hg and the accumulation is strongly influenced by watershed characteristics and periphyton biomass. PMID:15894350

  7. Is the frequency of algal blooms increasing in oligotrophic lakes in temperate forests?

    NASA Astrophysics Data System (ADS)

    Paltsev, A.; Creed, I. F.

    2014-12-01

    Oligotrophic lakes in the temperate forests of eastern North America appear to be experiencing an increase in the frequency and duration of algal blooms. This has been the focus of numerous public and government reports, resulting in heightened public concern for reporting of algal blooms. There is a vital need for detailed historical survey of numerous lakes, covering large spatial scales (the scale of region, province, or entire country) and temporal scales (decades) to determine if public observations are accurate. We used a remote sensing approach to: (1) develop regression models that relate Landsat imagery reflectance to chlorophyll-a (Chl-a) as a proxy of algal biomass of lakes; (2) apply these models to estimate Chl-a in lakes at the northern edge of the temperate forest biome in central Ontario over a 28 year period (1984-2011). The linear regression model was built on the basis of the normalized exoatmospheric reflectance values acquired from the utility of Landsat TM and ETM imagery and in situ measurements. Landsat band 3 (red) showed the strongest correlation with in situ data explaining 84% of the variance in Chl-a (r2 = 0.84, p <0.001). We applied this model to all lakes within the region selected from atmospherically corrected Landsat data for the peak algal bloom period (late July to early November) for the entire 28 years. A time series revealed a cyclic stationary pattern in the average Chl-a. This pattern followed the regional patterns of major droughts, especially for the first part of the time period, making climate a major driver in the formation of algal biomass in lakes that, in turn, can lead to the rise of algal blooms. However this climate driver appeared to become less predictable, with elevated algal biomass occurring in both normal and drought years, later in the record.

  8. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  9. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture.

    PubMed

    Formighieri, Cinzia; Franck, Fabrice; Bassi, Roberto

    2012-11-30

    An increasing number of investors is looking at algae as a viable source of biofuels, beside cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modelling-based predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity. PMID:22426090

  10. SHOOT BIOMASS AND ZINC/CADMIUM UPTAKE FOR HYPERACCUMULATOR AND NON-ACCUMULATOR THLASPI SPECIES IN RESPONSE TO GROWTH ON A ZINC-DEFICIENT CALCAREOUS SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, the Zn/Cd hyperaccumulator, Thlaspi caerulescens and a related non-accumulator, Thlaspi arvense, were used to study shoot growth (dry matter production) and Zn and Cd uptake from a severely Zn-deficient calcareous soil supplemented with increasing amounts of Zn and Cd. Shoot dry matte...

  11. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.

    PubMed

    Wertin, Timothy M; McGuire, Mary Anne; Teskey, Robert O

    2011-12-01

    If an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution. Seedlings were grown in chambers in elevated CO(2) (700 µmol mol(-1)) at three temperature conditions, ambient (tracking diurnal and seasonal variation in outdoor temperature), ambient +3 °C and ambient +6 °C, which produced mean growing season temperatures of 23, 26 and 29 °C, respectively. A group of seedlings was also grown in ambient [CO(2)] and ambient temperature as a check of the growth response to elevated [CO(2)]. Net photosynthesis and leaf respiration, photosynthetic capacity (V(cmax), J(max) and triose phosphate utilization (TPU)) and chlorophyll fluorescence, as well as seedling height, diameter and biomass, were measured during one growing season. Higher growth temperatures reduced net photosynthesis, increased respiration and reduced height, diameter and biomass production. Maximum net photosynthesis at saturating [CO(2)] and maximum rate of electron transport (J(max)) were lowest throughout the growing season in seedlings grown in the highest temperature regime. These parameters were also lower in June, but not in July or September, in seedlings grown at +3 °C above ambient, compared with those grown in ambient temperature, indicating no impairment of photosynthetic capacity with a moderate increase in air temperature. An unusual and potentially important observation was that foliar respiration did not acclimate to growth temperature, resulting in substantially higher leaf respiration at the higher growth temperatures. Lower net carbon assimilation was correlated with lower growth at higher temperatures. Total biomass at the end of the growing season decreased in direct proportion to the

  12. BENTHIC AMPHIPOD COMMUNITY RESPONSE TO STRESS INDUCED BY ALGAL MATS IN A PACIFIC NORTHWEST ESTUARY

    EPA Science Inventory

    Amphipod, algal biomass and sediment samples were taken at two- to four-week intervals from June through December, 2000 along lines perpendicular to two transects in Yaquina Bay, OR, extending from within the Zostera marina bed at the river channel edge through intertidal burrowi...

  13. Connecting Florida Bay algal blooms to freshwater nutrient sources

    NASA Astrophysics Data System (ADS)

    Blakey, T.; Melesse, A. M.

    2013-12-01

    In this study, monthly water quality data collected in the Everglades by the Southeast Environmental Research Center (SERC) and the South Florida Water Management District (SFWMD) from 1991 to 2008 at 28 sampling stations distributed across Florida Bay was analyzed within the context of local geomorphology and seasonal wind and current regimes in order to evaluate the feasibility of the various purported nutrient sources for reoccurring algal blooms. The in situ chlorophyll-a (chl-a) measurements from the SERC dataset were evaluated as the indicator of algal biomass. Significant differences in average monthly chl-a concentrations at stations indicated a seasonality of algal blooms in the north central and west areas that is not evidenced in stations exhibiting low levels of chl-a throughout the typical year. Tukey's pairwise comparisons of monthly chl-a indicated, at the 95% confidence level, peak algal biomass occurs in October and November at the end of the wet season with minimums occurring between February and August depending on the location of the station. By month comparison of chl-a levels across stations suggest seasonal trends in the geographic focus and extent of blooms. Significant differences from Tukey's pairwise comparisons at the 95% confidence level showed stations to the west as having higher levels of chl-a in March through May with north central stations dominating from June to January. The month of February shows no significant difference in chl-a levels across this area. The results support hypotheses centering on a western source of nutrients that are delivered to the bay over the course of the rainy season. Mapping water quality sampling station locations on top of the bathymetry of Florida Bay illustrates the importance of considering coastal morphology in explaining trends in estuarine algal blooms. Coastal geomorphology along with seasonal changes in the direction of winds and magnitude of rains are demonstrated to be the predominant

  14. Assessment of factors limiting algal growth in acidic pit lakes-a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability. PMID:26593729

  15. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis

    PubMed Central

    Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; Collins, Carl C.; Wolfrum, Edward J.; Broeckling, Corey D.; Prenni, Jessica E.; Jahn, Courtney E.

    2016-01-01

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end products of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  16. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis.

    PubMed

    Turner, Marie F; Heuberger, Adam L; Kirkwood, Jay S; Collins, Carl C; Wolfrum, Edward J; Broeckling, Corey D; Prenni, Jessica E; Jahn, Courtney E

    2016-01-01

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end products of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  17. Evaluation of High Density Algal Cultivation for Secondary Wastewater Polishing.

    PubMed

    Xu, Meng; Xu, Shengnan; Bernards, Matthew; Hu, Zhiqiang

    2016-01-01

    This study evaluated the performance of an algal membrane bioreactor (A-MBR) for secondary wastewater effluent polishing and determined the membrane fouling behavior and dominance of algae in the A-MBR. The continuous flow A-MBR (effective volume = 7.2 L) was operated with low biomass wastage for more than 180 days, resulting in an average algal mixed liquor suspended solid concentration of 4922 mg/L. At the influent concentrations of 43 mg/L COD, 1.6 mg/L total phosphorus (TP), and 11.8 mg/L total nitrogen (TN), the effluent COD, TP and TN concentrations were 26 ± 6 mg/L, 0.7 ± 0.3 mg/L, and 9.6 ± 1.2 mg/L, respectively. High-density algae cultivation facilitated P adsorption and chemical precipitation. However, the TN removal efficiency was only 14% because of low biomass wastage. Although bacteria represented less than 2% of the total biomass in the A-MBR, bacterial growth in the secondary wastewater effluent accelerated membrane fouling. PMID:26803026

  18. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  19. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  20. Marine Algae: a Source of Biomass for Biotechnological Applications.

    PubMed

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development. PMID:26108496

  1. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II).

    PubMed

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g(-1) and 112, 77 and 67 mg Cu g(-1) for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  2. Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg.

    PubMed

    Carrias, J-F; Céréghino, R; Brouard, O; Pélozuelo, L; Dejean, A; Couté, A; Corbara, B; Leroy, C

    2014-09-01

    The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics. PMID:24400863

  3. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. PMID:27008510

  4. Arctic spring awakening - Steering principles behind the phenology of vernal ice algal blooms

    NASA Astrophysics Data System (ADS)

    Leu, E.; Mundy, C. J.; Assmy, P.; Campbell, K.; Gabrielsen, T. M.; Gosselin, M.; Juul-Pedersen, T.; Gradinger, R.

    2015-12-01

    Marine ecosystems at high latitudes are characterized by extreme seasonal changes in light conditions, as well as a limited period of high primary production during spring and early summer. As light returns at the end of winter to Arctic ice-covered seas, a first algal bloom takes place in the bottom layer of the sea ice. This bottom ice algae community develops through three distinct phases in the transition from winter to spring, starting with phase I, a predominantly net heterotroph community that has limited interaction with the pelagic or benthic realms. Phase II begins in the spring once light for photosynthesis becomes available at the ice bottom, although interaction with the water column and benthos remains limited. The transition to the final phase III is then mainly driven by a balance of atmospheric and oceanographic forcing that induce structural changes in the sea ice and ultimately the removal of algal biomass from the ice. Due to limited data availability an incomplete understanding exists of all the processes determining ice algal bloom phenology and the considerable geographic differences in sympagic algal standing stocks and primary production. We present here the first pan-Arctic compilation of available time-series data on vernal sea ice algal bloom development and identify the most important factors controlling its development and termination. Using data from the area surrounding Resolute Bay (Nunavut, Canada) as an example, we support previous investigations that snow cover on top of the ice influences sea ice algal phenology, with highest biomass development, but also earliest termination of blooms, under low snow cover. We also provide a pan-Arctic overview of sea ice algae standing stocks and primary production, and discuss the pertinent processes behind the geographic differences we observed. Finally, we assess potential future changes in vernal algal bloom phenology as a consequence of climate change, including their importance to

  5. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps.

    PubMed

    Norvill, Zane N; Shilton, Andy; Guieysse, Benoit

    2016-08-01

    Whereas the fate of emerging contaminants (ECs) during 'conventional' and 'advanced' wastewater treatment (WWT) has been intensively studied, little research has been conducted on the algal WWT ponds commonly used in provincial areas. The long retention times and large surface areas exposed to light potentially allow more opportunities for EC removal to occur, but experimental evidence is lacking to enable definite predictions about EC fate across different algal WWT systems. This study reviews the mechanisms of EC hydrolysis, sorption, biodegradation, and photodegradation, applying available knowledge to the case of algal WWT. From this basis the review identifies three main areas that need more research due to the unique environmental and ecological conditions occurring in algal WWT ponds: i) the effect of diurnally fluctuating pH and dissolved oxygen upon removal mechanisms; ii) the influence of algae and algal biomass on biodegradation and sorption under relevant conditions; and iii) the significance of EC photodegradation in the presence of dissolved and suspended materials. Because of the high concentration of dissolved organics typically found in algal WWT ponds, most EC photodegradation likely occurs via indirect mechanisms rather than direct photolysis in these systems. PMID:27135171

  6. Translocation of microbenthic algal assemblages used for In situ analysis of metal pollution in rivers

    PubMed

    Ivorra; Hettelaar; Tubbing; Kraak; Sabater; Admiraal

    1999-07-01

    Effects of metal pollution from a zinc factory on microbenthic algal communities were assessed in three neighboring streams on the Dutch-Belgian border. Diatom species composition was experimentally related to water quality by transferring racks with colonized glass discs from a polluted stream to a reference stream and vice versa. The succession of species and the changes in biomass and metal accumulation were measured during experiments in spring, autumn, and winter. Metal concentrations and dry weight in translocated biofilms tended to conform with those in local biofilms within an incubation time of 14 to 18 days. Bray-Curtis similarity values from the different communities indicated that diatom communities responded more completely to the metal-polluted conditions than to the reference water quality. Cymbella minuta, Diatoma vulgare var. ehrenbergii, Navicula sp., and Melosira varians had a lower percentage in assemblages placed in the metal-polluted streams. In contrast, Pinnularia sp. and Neidium ampliatum decreased in assemblages from the polluted streams that were transferred to the reference stream. Achnanthes minutissima and Navicula seminulum (N. atomus) proliferated on any translocation, possibly reflecting an opportunistic strategy and a high tolerance for Zn and Cd. The behavior of the species in relation to metal pollution generally accorded with observations in the literature. However, it seems that metal tolerance is not the only selective factor, and other ecological variables may also influence the composition of microphytobenthic communities.http://link.springer-ny. com/link/service/journals/00244/bibs/37n1p19.html PMID:10341038

  7. Biological control of harmful algal blooms: A modelling study

    NASA Astrophysics Data System (ADS)

    Solé, Jordi; Estrada, Marta; Garcia-Ladona, Emilio

    2006-07-01

    A multispecies dynamic simulation model (ERSEM) was used to examine the influence of allelopathic and trophic interactions causing feeding avoidance by predators, on the formation of harmful algal blooms, under environmental scenarios typical of a Mediterranean harbour (Barcelona). The biological state variables of the model included four functional groups of phytoplankton (diatoms, toxic and non-toxic flagellates and picophytoplankton), heterotrophic flagellates, micro- and mesozooplankton and bacteria. The physical-chemical forcing (irradiance, temperature and major nutrient concentrations) was based on an actual series of measurements taken along a year cycle in the Barcelona harbour. In order to evaluate potential effects of advection, some runs were repeated after introducing a biomass loss term. Numerical simulations showed that allelopathic effects of a toxic alga on a non-toxic but otherwise similar competitor did not have appreciable influence on the dynamics of the system. However, induction of avoidance of the toxic alga by predators, which resulted on increased predation pressure on other algal groups had a significant effect on the development of algal and predator populations. The presence of advection overrided the effect of these interactions and only allowed organisms with sufficiently high potential growth rates to thrive.

  8. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  9. Promotion of harmful algal blooms by zooplankton predatory activity

    PubMed Central

    Mitra, Aditee; Flynn, Kevin J

    2006-01-01

    The relationship between algae and their zooplanktonic predators typically involves consumption of nutrients by algae, grazing of the algae by zooplankton which in turn enhances predator biomass, controls algal growth and regenerates nutrients. Eutrophication raises nutrient levels, but does not simply increase normal predator–prey activity; rather, harmful algal bloom (HAB) events develop often with serious ecological and aesthetic implications. Generally, HAB species are outwardly poor competitors for nutrients, while their development of grazing deterrents during nutrient stress ostensibly occurs too late, after the nutrients have largely been consumed already by fast-growing non-HAB species. A new mechanism is presented to explain HAB dynamics under these circumstances. Using a multi-nutrient predator–prey model, it is demonstrated that these blooms can develop through the self-propagating failure of normal predator–prey activity, resulting in the transfer of nutrients into HAB growth at the expense of competing algal species. Rate limitation of this transfer provides a continual level of nutrient stress that results in HAB species exhibiting grazing deterrents protecting them from top-down control. This process is self-stabilizing as long as nutrient demand exceeds supply, maintaining the unpalatable status of HABs; such events are most likely under eutrophic conditions with skewed nutrient ratios. PMID:17148360

  10. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  11. Approaches for the detection of harmful algal blooms using oligonucleotide interactions.

    PubMed

    Bruce, Karen L; Leterme, Sophie C; Ellis, Amanda V; Lenehan, Claire E

    2015-01-01

    Blooms of microscopic algae in our waterways are becoming an increasingly important environmental concern. Many are sources of harmful biotoxins that can lead to death in humans, marine life and birds. Additionally, their biomass can cause damage to ecosystems such as oxygen depletion, displacement of species and habitat alteration. Globally, the number and frequency of harmful algal blooms has increased over the last few decades, and monitoring and detection strategies have become essential for managing these events. This review discusses developments in the use of oligonucleotide-based 'molecular probes' for the selective monitoring of algal cell numbers. Specifically, hybridisation techniques will be a focus. PMID:25381608

  12. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  13. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  14. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  15. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  16. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    PubMed

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. PMID:25899246

  17. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  18. From MERIS To OLCI And Sentinel 2: Harmful Algal Bloom Applications & Modelling In South Africa

    NASA Astrophysics Data System (ADS)

    Robertson Lain, L.; Bernard, S.; Evers-King, H.; Matthews, M. W.; Smith, M.

    2013-12-01

    The Sentinel 2 and 3 missions offer new capabilities for Harmful Algal Bloom (HAB) observations in Southern Africa and further afield on the African continent where there is a great need for improved monitoring of water quality: both in freshwater resources where eutrophication is common, and in vulnerable coastal ecosystems. Two well validated algorithms - Equivalent Algal Populations (EAP) & Maximum Peak Height (MPH) - available for operational use on eutrophic waters are described. Spectral remote sensing reflectances (Rrs) and inherent optical properties (IOPs) are characterised via measurement and modelling of phytoplankton assemblages typical of high biomass algal blooms of the Southern Benguela and inland waters of South Africa. Sensitivity to phytoplankton functional types (PFTs) is investigated, with focus on optically significant biological characteristics e.g. particle size distribution and intracellular structure (including vacuoles).

  19. Use of a mixed algal culture to characterize industrial waste waters

    SciTech Connect

    Claesson, A.

    1984-02-01

    A mixture of five freshwater algae was cultivated with additions of waste water samples from chemical, mining, polyvinylchloride, textile, paper mill, and oil refinery industries. Two water samples from chemical industries and one from an oil refinery stimulated the algal growth in a nutrient-poor medium, while growth in other samples, including a nutrient-rich medium, was inhibited in several different ways. For eight of the water samples a delayed growth of 2-4 days was noted. Decreased growth rate and lowered maximal biomass occurred in seven of the samples. The photosynthetic capacity of the algal cells was measured by using in vivo fluorescence of chlorophyll a. These quick measurements mostly agreed with those of the growth rates. When the species composition of the mixed algal culture was investigated, large differences in sensitivities between the different species were found. Stimulation or inhibition were observed in the same sample for different species but also for the same species at different concentrations.

  20. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology.

    PubMed

    Ding, Yi; Wang, Wei; Liu, Xingpo; Song, Xinshan; Wang, Yuhui; Ullman, Jeffrey L

    2016-11-01

    High rate algal pond (HRAP) was combined with constructed wetland (CW) to intensify nitrogen removal through optimizing nitrification and denitrification. Nitrification and denitrification process mainly depends on the oxygen content and carbon source level in CWs. Algal biomass was enriched in HRAP, and dissolved oxygen (DO) concentration was increased via photosynthesis. Algal debris increased COD as degradable bioresource. The results showed that HRAP-CW hybrid systems effectively promoted the nitrogen removal performance due to rich DO and COD. The extension of hydraulic retention time in HRAP significantly improved NH4-N and TN removals by 10.9% and 11.1% in hybrid systems, respectively. The highest NH4-N and TN removals in hybrid systems respectively reached 67.2% and 63.5%, which were significantly higher than those in single CW. The study suggested that the hybrid system had the application potentials in nitrogen removal from wastewater. PMID:27544265

  1. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content. PMID:25909734

  2. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.

    PubMed

    Chen, Lin; Li, Runzhi; Ren, Xiaoli; Liu, Tianzhong

    2016-08-01

    High moisture content in wet algal biomass hinders effective performance of current lipid extraction methods. An improved aqueous extraction method combing thermal and enzymatic lysis was proposed and performed in algal slurry of Nannochloropsis oceanica (96.0% moisture) in this study. In general, cell-wall of N. oceanica was disrupted via thermal lysis and enzymatic lysis and lipid extraction was performed using aqueous surfactant solution. At the optimal conditions, high extraction efficiencies for both lipid (88.3%) and protein (62.4%) were obtained, which were significantly higher than those of traditional hexane extraction and other methods for wet algal biomass. Furthermore, an excessive extraction of polar lipid was found for wet biomass compared with dry biomass. The advantage of this method is to efficiently extract lipids from high moisture content algal biomass and avoid using organic solvent, indicating immense potential for commercial microalgae-based biofuel production. PMID:27132220

  3. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system.

    PubMed

    Ma, Xiaochen; Zhou, Wenguang; Fu, Zongqiang; Cheng, Yanling; Min, Min; Liu, Yuhuan; Zhang, Yunkai; Chen, Paul; Ruan, Roger

    2014-09-01

    Centrate, a type of nutrient-rich municipal wastewater was used to determine the effect of wastewater-borne bacteria on algal growth and nutrients removal efficiency in this study. The characteristics of algal and bacterial growth profiles, wastewater nutrient removal and effect of initial algal inoculums were systematically examined. The results showed that initial algal concentration had apparent effect on bacterial growth, and the presence of bacteria had a significant influence on algal growth pattern, suggesting symbiotic relationship between algae and bacteria at the initial stage of algae cultivation. The maximum algal biomass of 2.01 g/L with 0.1g/L initial algal inoculums concentration can be obtained during algae cultivation in raw centrate medium. The synergistic effect of centrate-borne bacteria and microalgae on algae growth and nutrient removal performance at initial fast growth stage has great potential to be applied to pilot-scale wastewater-based algae wastewater system cultivated in continuous or semi-continuous mode. PMID:24968106

  4. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature

    PubMed Central

    Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

    2011-01-01

    In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

  5. Simulated Macro-Algal Outbreak Triggers a Large-Scale Response on Coral Reefs.

    PubMed

    Welsh, Justin Q; Bellwood, David R

    2015-01-01

    Ecosystem degradation has become common throughout the world. On coral reefs, macroalgal outbreaks are one of the most widely documented signs of degradation. This study simulated local-scale degradation on a healthy coral reef to determine how resident taxa, with the potential to reverse algal outbreaks, respond. We utilized a combination of acoustic and video monitoring to quantify changes in the movements and densities, respectively, of coral reef herbivores following a simulated algal outbreak. We found an unprecedented accumulation of functionally important herbivorous taxa in response to algal increases. Herbivore densities increased by 267% where algae were present. The increase in herbivore densities was driven primarily by an accumulation of the browsing taxa Naso unicornis and Kyphosus vaigiensis, two species which are known to be important in removing macroalgae and which may be capable of reversing algal outbreaks. However, resident individuals at the site of algal increase exhibited no change in their movements. Instead, analysis of the size classes of the responding individuals indicates that large functionally-important non-resident individuals changed their movement patterns to move in and feed on the algae. This suggests that local-scale reef processes may not be sufficient to mitigate the effects of local degradation and highlights the importance of mobile links and cross-scale interactions. PMID:26171788

  6. Simulated Macro-Algal Outbreak Triggers a Large-Scale Response on Coral Reefs

    PubMed Central

    Welsh, Justin Q.; Bellwood, David R.

    2015-01-01

    Ecosystem degradation has become common throughout the world. On coral reefs, macroalgal outbreaks are one of the most widely documented signs of degradation. This study simulated local-scale degradation on a healthy coral reef to determine how resident taxa, with the potential to reverse algal outbreaks, respond. We utilized a combination of acoustic and video monitoring to quantify changes in the movements and densities, respectively, of coral reef herbivores following a simulated algal outbreak. We found an unprecedented accumulation of functionally important herbivorous taxa in response to algal increases. Herbivore densities increased by 267% where algae were present. The increase in herbivore densities was driven primarily by an accumulation of the browsing taxa Naso unicornis and Kyphosus vaigiensis, two species which are known to be important in removing macroalgae and which may be capable of reversing algal outbreaks. However, resident individuals at the site of algal increase exhibited no change in their movements. Instead, analysis of the size classes of the responding individuals indicates that large functionally-important non-resident individuals changed their movement patterns to move in and feed on the algae. This suggests that local-scale reef processes may not be sufficient to mitigate the effects of local degradation and highlights the importance of mobile links and cross-scale interactions. PMID:26171788

  7. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef.

    PubMed

    Rasher, Douglas B; Engel, Sebastian; Bonito, Victor; Fraser, Gareth J; Montoya, Joseph P; Hay, Mark E

    2012-05-01

    Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition. PMID:22038059

  8. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef

    PubMed Central

    Rasher, Douglas B.; Engel, Sebastian; Bonito, Victor; Fraser, Gareth J.; Montoya, Joseph P.

    2012-01-01

    Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9–46 times, upright macroalgal biomass by 23–84 times, and cyanobacteria cover by 0–27 times, but decreased cover of encrusting coralline algae by 46–100% and short turf algae by 14–39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33–42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30–35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition. PMID:22038059

  9. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  10. Algal Flocculation with Synthetic Organic Polyelectrolytes

    PubMed Central

    Tenney, Mark W.; Echelberger, Wayne F.; Schuessler, Ronald G.; Pavoni, Joseph L.

    1969-01-01

    The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported. PMID:5370666

  11. Algal biosensor array on a single electrode.

    PubMed

    Tatsuma, Tetsu; Yoshida, Yutaka; Shitanda, Isao; Notsu, Hideo

    2009-02-01

    An algal array was prepared on a single transparent electrode, and photosynthetic activity of each algal channel and its inhibition by a toxin were monitored with a single-channel potentiostat by successive light irradiation with a LED array. PMID:19173040

  12. TEXAS HARMFUL ALGAL BLOOM COORDINATION MX964014

    EPA Science Inventory

    Harmful algal blooms (HAB) are an expanding problem in coastal Texas. Nearly � of the known harmful algal blooms along the Texas coast have occurred in the past ten years and have led to significant resource and tourism losses. For example, there are at least two types of toxic...

  13. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  14. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  15. ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1).

    PubMed

    Veraart, Annelies J; Romaní, Anna M; Tornés, Elisabet; Sabater, Sergi

    2008-06-01

    Nutrient input in streams alters the density and species composition of attached algal communities in open systems. However, in forested streams, the light reaching the streambed (rather than the local nutrient levels) may limit the growth of these communities. A nutrient-enrichment experiment in a forested oligotrophic stream was performed to test the hypothesis that nutrient addition has only minor effects on the community composition of attached algae and cyanobacteria under light limitation. Moderate nutrient addition consisted of increasing basal phosphorus (P) concentrations 3-fold and basal nitrogen (N) concentrations 2-fold. Two upstream control reaches were compared to a downstream reach before and after nutrient addition. Nutrients were added continuously to the downstream reach for 1 year. Algal biofilms growing on ceramic tiles were sampled and identified for more than a year before nutrient addition to 12 months after. Diatoms were the most abundant taxonomic group in the three stream reaches. Nutrient enrichment caused significant variations in the composition of the diatom community. While some taxa showed significant decreases (e.g., Achnanthes minutissima, Gomphonema angustum), increases for other taxa (such as Rhoicosphenia abbreviata and Amphora ovalis) were detected in the enriched reach (for taxonomic authors, see Table 2). Epiphytic and adnate taxa of large size were enhanced, particularly during periods of favorable growth conditions (spring). Nutrients also caused a change in the algal chl a, which increased from 0.5-5.8 to 2.1-10.7 μg chl · cm(-2) . Our results indicate that in oligotrophic forested streams, long-term nutrient addition has significant effects on the algal biomass and community composition, which are detectable despite the low light availability caused by the tree canopy. Low light availability moderates but does not detain the long-term tendency toward a nutrient-tolerant community. Furthermore, the effects

  16. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  17. Extra- and intra-cellular accumulation of platinum group elements by the marine microalga, Chlorella stigmatophora.

    PubMed

    Shams, Leyla; Turner, Andrew; Millward, Geoffrey E; Brown, Murray T

    2014-03-01

    To better understand the marine biogeochemistry of the platinum group elements (PGE), Rh(III), Pd(II) and Pt(IV) were added in combination and at ppb concentrations to cultures of the marine microalga, Chlorella stigmatophora, maintained in sea water at 15 °C and under 60 μmol m(-2) s(-1) PAR. The accumulation of PGE was established in short-term (24-h) exposures, and under varying conditions of algal biomass and PGE concentration, and in a longer-term exposure (156-h) by ICP-MS analysis of sea water and nitric acid digests and EDTA washes of the alga. In short-term exposures, and under all conditions, the extent of accumulation by C. stigmatophora was in the order: Rh > Pd > Pt; and Pd was internalised (or resistant to EDTA extraction) to a considerably greater extent than Rh and Pt. Accumulation isotherms were quasi-linear up to added PGE concentrations of 30 μg L(-1) and all metals displayed a significant reduction in accumulation on a weight-normalised basis with increasing density (biomass) of C. stigmatophora, an effect attributed to the production of exudates able to stabilise metals in sea water through complexation. In the longer-term exposure, kinetic constraints on the reactivities of Rh and, in particular, Pt, resulted in final degrees of accumulation and internalisation by C. stigmatophora that were greatest for Rh and similar between Pd and Pt. Among the PGE, therefore, Rh is predicted to participate in biological removal and transport processes in the marine environment to the greatest extent while decoupling in the biogeochemistries of Pd and Pt is predicted in shorter-term or more transient processes. PMID:24268058

  18. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  19. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems.

    PubMed

    Cuaresma, María; Casal, Carlos; Forján, Eduardo; Vílchez, Carlos

    2011-01-01

    Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate high-value compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This microalga accumulates high concentrations of lutein, a very well-known natural antioxidant. The aim of this study is to assess use of different carbon sources (CO(2), glucose, glycerol, starch, urea, and glycine) for efficient growth of and carotenoid production by C. acidophila. Our results reveal that growth of the microalga on different carbon sources resulted in different algal biomass productivities, urea being as efficient as CO(2) when used as sole carbon source (~20 g dry biomass m(-2) day(-1)). Mixotrophic growth on glucose was also efficient in terms of biomass production (~14 g dry biomass m(-2) day(-1)). In terms of carotenoid accumulation, mixotrophic growth on urea resulted in even higher productivity of carotenoids (mainly lutein, probably via α-carotene) than obtained with photoautotrophic cultures (70% versus 65% relative abundance of lutein, respectively). The accumulated lutein concentrations of C. acidophila reported in this work (about 10 g/kg dry weight, produced in batch systems) are among the highest reported for a microalga. Glycerol and glycine seem to enhance β-carotene biosynthesis, and when glycine is used as carbon source, zeaxanthin becomes the most accumulated carotenoid in the microalga. Strategies for production of lutein and zeaxanthin are suggested based on the obtained results. PMID:20811803

  20. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.

    PubMed

    Iman Shayan, Sahand; Agblevor, Foster A; Bertin, Lorenzo; Sims, Ronald C

    2016-07-01

    Rotating algal biofilm reactor (RABR) technology was successfully employed in an effective strategy to couple the removal of wastewater nutrients with accumulation of valuable bioproducts by grown algae. A secondary stage municipal wastewater was fed to the developed system and the effects of the hydraulic retention time (HRT) parameter on both nutrient removal and bioproduct production were evaluated under fed-batch operation mode. Two sets of bench scale RABRs were designed and operated with HRTs of 2 and 6days in order to provide competitive environment for algal growth. The HRT significantly affected nitrogen and phosphorus uptakes along with lipid and starch accumulations by microalgae in harvested biofilms. Domination of nitrogen removal in 2-day HRT with higher lipid accumulation (20% on dried weight basis) and phosphorus removal in 6-day HRT with higher starch production (27% on dried weight basis) was observed by comparing the performances of the RABRs in duplicate runs. PMID:27038261

  1. Depositional and diagenetic history of a Pennsylvanian algal-mound complex: Bug and Papoose Canyon fields, Paradox basin, Utah and Colorado

    SciTech Connect

    Roylance, M.H.

    1990-07-01

    During the Middle Pennsylvanian (Desmoinesian), the Paradox basin was an enclosed, evaporitic basin consisting of a deep trough with a shallow shelf rimming its south and west side. During Desert Creek deposition, at least two large phylloid algal-mound complexes flourished on or at the edge of the shelf. One complex is now delineated by Aneth field and the other is partly delineated by Bug and Papoose Canyon fields. In the Bug-Papoose Canyon algal-mound complex of southeastern Utah and southwestern Colorado, carbonate mud mounds grew by accumulation of platy algal fragments, by baffling and trapping of fine sediment by the algae, and by precipitation of botryoidal aragonite cement between fragments. Extensive diagenesis of the accumulations began with syndepositional precipitation of botryoidal cement, inferred to have been aragonite, on phylloid algal plates, creating a topographically prominent, rigid framework containing abundant pore space. Brecciation during compaction created more pores. Parts of voids were subsequently filled by internal sediment and by calcite and gypsum cements. Finally, the algal-mound accumulations were extensively dolomitized and their porosity increased by dissolution. The relationship of these algal mounds to the Desert Creek shelf edge suggests that delineation of the shelf edge holds the promise of further discoveries of algal mounds as it is traced to the west and east of Bug and Papoose Canyon fields. 17 figs., 1 tab.

  2. BIOMASS UTILIZATION

    EPA Science Inventory

    The biomass utilization task consists of the evaluation of a biomass conversion technology including research and development initiatives. The project is expected to provide information on co-control of pollutants, as well as, to prove the feasibility of biomass conversion techn...

  3. Biomass pretreatment

    SciTech Connect

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  4. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations. PMID:25300549

  5. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.

    PubMed

    Drira, Neila; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2016-04-01

    In this study, the harvesting of a biomass from a high rate algal pond (HRAP) of a real-scale domestic wastewater treatment facility and its potential as a biomaterial for the production of biodiesel were investigated. Increasing the medium pH to 12 induced high flocculation efficiency of up to 96% of the biomass through both sweep flocculation and charge neutralization. Lipids extracted by ultrasounds from this biomass contained around 70% of fatty acids, with palmitic and stearic acids being the most abundant. The extract obtained by supercritical CO2 contained 86% of fatty acids. Both conventional solvents extracts contained only around 10% of unsaturated fats, whereas supercritical CO2 extract contained more than 40% of unsaturated fatty acids. This same biomass was also subject to direct extractive-transesterification in a microwave reactor to produce fatty acid methyl esters, also known as, raw biodiesel. PMID:26866759

  6. The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil

    PubMed Central

    Wu, Zhe; Duangmanee, Promchup; Zhao, Pu; Juntawong, Niran; Ma, Chunhong

    2016-01-01

    Background: Developing algal industries in saline-alkali areas is necessary. However, suitable strains and optimal production conditions must be studied before widespread commercial use. Objectives: The effects of light, temperature, KNO3, and CO(NH2)2 on beta-carotene and biomass accumulation were compared and evaluated in order to provide scientific guidance for commercial algal production in northeastern Thailand. Materials and Methods: An orthogonal design was used for evaluating optimal conditions for the algal production of three candidate Dunaliella salina strains (KU XI, KU 10 and KU 31) which were isolated from saline soils and cultured in the column photobioreactor. Results: The optimal light and temperature for algae growth were 135.3 μmol m-2 s-1 and 22°C, while the conditions of 245.6 μmol m-2 s-1 and 22°C induced the highest level of beta-carotene production (117.99 mg L-1). The optimal concentrations of KNO3, CO(NH2)2, and NaHCO3 for algae growth were 0.5 g L-1, 0.36 g L-1, and 1.5 g L-1, respectively, while 0, 0.12 g L-1 and 1.5 g L-1 were best suited for beta-carotene accumulation. The highest beta-carotene rate per cell appeared with the highest light intensity (12.21 pg) and lowest temperature (12.47 pg), and the lowest total beta-carotene content appeared at the lowest temperature (15°C). There was not a significant difference in biomass accumulation among the three Dunaliella strains; however, the beta-carotene accumulation of KU XI was higher than that of the other two strains. Conclusions: Light and temperature were both relevant factors that contributed to the growth and beta-carotene accumulation of the three D. salina strains, and NaHCO3 had significantly positive effects on growth. The degree of impact of the different factors on cell growth was temperature > NaHCO3 > light intensity > KNO3 > CO (NH2)2 > strains; the impact on beta-carotene accumulation was temperature > light intensity > KNO3 > CO (NH2)2 > strains > NaHCO3 PMID

  7. Algal-based, single-step treatment of urban wastewaters.

    PubMed

    Henkanatte-Gedera, S M; Selvaratnam, T; Caskan, N; Nirmalakhandan, N; Van Voorhies, W; Lammers, Peter J

    2015-08-01

    Currently, urban wastewaters (UWW) laden with organic carbon (BOD) and nutrients (ammoniacal nitrogen, N, and phosphates, P) are treated in multi-stage, energy-intensive process trains to meet the mandated discharge standards. This study presents a single-step process based on mixotrophic metabolism for simultaneous removal of carbon and nutrients from UWWs. The proposed system is designed specifically for hot, arid environments utilizing an acidophilic, thermotolerant algal species, Galdieria sulphuraria, and an enclosed photobioreactor to limit evaporation. Removal rates of BOD, N, and P recorded in this study (14.93, 7.23, and 1.38 mg L(-1) d(-1), respectively) are comparable to literature reports. These results confirm that the mixotrophic system can reduce the energy costs associated with oxygen supply in current UWW treatment systems, and has the potential to generate more energy-rich biomass for net energy extraction from UWW. PMID:25898089

  8. Analysis of pollutant enhanced bacterial-blue-green algal interrelationships potentiating surface water contamination by noxious blue-green algal blooms. Completion report

    SciTech Connect

    Bedell, G.W.

    1984-02-01

    Sulfate-reducing bacteria from the genus Desulfovibro can stimulate the blue-green alga (Cyanobacterium) Anabaena variabilis (Strain 6411) into increasing its dry weight biomass production by more than 200 percent over that of the control as the total phosphate in the medium approaches zero. Results suggest that methods which utilize total nitrogen to phosphorus ratios in waters as predictors of blue-green algal 'blooms' may be unreliable when the waters are very low in phosphorus yet remain high in sulfate with conditions favorable for sulfate-reducing bacterial growth in benthic sediments. Otherwise, if the phosphate levels alone in the aqueous systems are reduced below threshold levels under these conditions, the magnitude of the blue-green algal blooms may be increased substantially.

  9. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  10. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  11. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  12. Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously.

    PubMed

    Wu, Yin-Hu; Yu, Yin; Hu, Hong-Ying

    2015-09-01

    Nutrient deprivation is a commonly-used trigger for microalgal lipid accumulation, but its adverse impact on microalgal growth seems to be inevitable. In this study, Scenedesmus sp. LX1 was found to show similar physiological and biochemical variation under oligotrophic and eutrophic conditions during growth with intracellular phosphorus. Under both conditions microalgal chlorophyll content and photosynthesis activity was stable during this growth process, leading to significant increase of single cell weight and size. Therefore, while algal density growth rate dropped significantly to below 1.0 × 10(5)cells mL(-1) d(-1) under oligotrophic condition, the biomass dry weight growth rate still maintained about 40 mg L(-1) d(-1). Meanwhile, the lipid content in biomass and triacylglycerols (TAGs) content in lipids increased significantly to about 35% and 65%, respectively. Thus, high biomass growth rate and high lipid/TAG content were achieved simultaneously at the late growth phase with intracellular phosphorus. Besides, microalgal biomass produced was rich in carbohydrate with low protein content. PMID:26056779

  13. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    2016-01-01

    Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively. PMID:27533866

  14. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle.

    PubMed

    Stamey, J A; Shepherd, D M; de Veth, M J; Corl, B A

    2012-09-01

    Fish oil is used as a ration additive to provide n-3 fatty acids to dairy cows. Fish do not synthesize n-3 fatty acids; they must consume microscopic algae or other algae-consuming fish. New technology allows for the production of algal biomass for use as a ration supplement for dairy cattle. Lipid encapsulation of the algal biomass protects n-3 fatty acids from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Our objective was to examine the use of algal products as a source for n-3 fatty acids in milk. Four mid-lactation Holsteins were assigned to a 4×4 Latin square design. Their rations were supplemented with 1× or 0.5× rumen-protected (RP) algal biomass supplement, 1× RP algal oil supplement, or no supplement for 7 d. Supplements were lipid encapsulated (Balchem Corp., New Hampton, NY). The 1× supplements provided 29 g/d of docosahexaenoic acid (DHA), and 0.5× provided half of this amount. Treatments were analyzed by orthogonal contrasts. Supplementing dairy rations with rumen-protected algal products did not affect feed intake, milk yield, or milk component yield. Short- and medium-chain fatty acid yields in milk were not influenced by supplements. Both 0.5× and 1× RP algae supplements increased daily milk fat yield of DHA (0.5 and 0.6±0.10 g/d, respectively) compared with 1× RP oil (0.3±0.10 g/d), but all supplements resulted in milk fat yields greater than that of the control (0.1±0.10g/d). Yield of trans-18:1 fatty acids in milk fat was also increased by supplementation. Trans-11 18:1 yield (13, 20, 27, and 15±3.0 g/d for control, 0.5× RP algae, 1× RP algae, and 1× RP oil, respectively) was greater for supplements than for control. Concentration of DHA in the plasma lipid fraction on d 7 showed that the DHA concentration was greatest in plasma phospholipid. Rumen-protected algal biomass provided better DHA yield than algal oil. Feeding lipid-encapsulated algae supplements

  15. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  16. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigate how species richness affects temporal stability of biomass production by analyzing 27 recent biodiversity experiments conducted in grassland and freshwater algal communities. We find that, in grasslands, increasing species richness stabilizes whole-community biomass pro...

  17. Study of polyethyleneimine- and amidoxime-functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    2015-11-01

    This study investigates the potential application of the polyethyleneimine- (PEI) and amidoxime-modified Spirulina (Arthrospira) platensis biomasses for the removal of uranium ion in batch mode using the native biomass as a control system. The uranium ion adsorption was also characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra, zeta potential analysis, and surface area measurement studies. The effects of pH, biomass amount, contact time, initial uranium ion concentration, and ionic strength were evaluated by using native and modified algal biomass preparations. The uranium ion removal was rapid, with more than 70% of total adsorption taking place in 40 min, and equilibrium was established within 60 min. From the experimental data, it was found that the amount of adsorption uranium ion on the algal preparations decreased in the following series: amidoxime-modified algal biomass > PEI-modified algal biomass > native algal biomass. Maximum adsorption capacities of amidoxime- and PEI-modified, and native algal biomasses were found to be 366.8, 279.5, and 194.6 mg/g, respectively, in batchwise studies. The adsorption rate of U(VI) ion by amidoxime-modified algal biomass was higher than those of the native and PEI-modified counterparts. The adsorption processes on all the algal biomass preparations followed by the Dubinin-Radushkevitch (D-R) and Temkin isotherms and pseudo-second-order kinetic models. The thermodynamic parameters were determined at four different temperatures (i.e., 15, 25, 35, and 45 °C) using the thermodynamics constant of the Temkin isotherm model. The ΔH° and ΔG° values of U(VI) ion adsorption on algal preparations show endothermic heat of adsorption; higher temperatures favor the process. The native and modified algal biomass preparations were regenerated using 10 mM HNO3. These results show that amidoxime-modified algal biomass can be a potential candidate for effective removal of U(VI) ion from

  18. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.

    PubMed

    Mulbry, Walter; Kondrad, Shannon; Pizarro, Carolina; Kebede-Westhead, Elizabeth

    2008-11-01

    Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m2 each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants. PMID:18487042

  19. Microflotation performance for algal separation.

    PubMed

    Hanotu, James; Bandulasena, H C Hemaka; Zimmerman, William B

    2012-07-01

    The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm. In contrast, continuous air flow at the same rate through the same diffusers yielded an average bubble size of 1,059 µm, 28 times larger than the pore size. Following microbubble generation, the separation of algal cells under fluidic oscillator generated microbubbles was investigated by varying metallic coagulant types, concentration and pH. Best performances were recorded at the highest coagulant dose (150 mg/L) applied under acidic conditions (pH 5). Amongst the three metallic coagulants studied, ferric chloride yielded the overall best result of 99.2% under the optimum conditions followed closely by ferric sulfate (98.1%) and aluminum sulfate with 95.2%. This compares well with conventional dissolved air flotation (DAF) benchmarks, but has a highly turbulent flow, whereas microflotation is laminar with several orders of magnitude lower energy density. PMID:22290221

  20. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  1. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  2. MACROALGAL VOLUME: A SURROGATE FOR BIOMASS IN SOME GREEN ALGAE

    EPA Science Inventory

    Two green algal morphotypes, filamentous species (e.g., Chaetomorpha spp.) and flattened or tubular (e.g.,Ulva spp. and Enteromorpha spp.) were collected from 63 sites within the Yaquina Bay estuary (Newport, OR) and used to compare an in situ volumetric biomass estimator to the...

  3. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  4. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. PMID:24015819

  5. Rapid algal culture diagnostics for open ponds using multispectral image analysis.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2014-01-01

    This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. PMID:24265121

  6. Population dynamics of an algal bacterial cenosis in closed ecological system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  7. Detection of toxic organometallic complexes in wastewaters using algal assays.

    PubMed

    Wong, S L; Nakamoto, L; Wainwright, J F

    1997-05-01

    Chlorella (a unicellular green alga) and Cladophora (a filamentous alga) were used in algal assays to identify the presence and toxicity of organometallic complexes in four industrial wastewaters. Toxicities of inorganic Pb and organometallic compounds (trimethyl, tetramethyl and tetraethyl leads, cacodylic acid and Cu-picolinate) were examined, using algal cells grown in 10% BBM solution. Inorganic Pb and organometallic compounds altered the fine structure of Chlorella cells in a distinguishable manner. X-ray microanalysis revealed that organometallic compounds accumulated in the neutral lipids of Cladophora cells. By applying the above techniques to the wastewater assays, two of the four wastewaters tested were found to contain organometallic complexes. Wastewater from a chemical company contained only traces of organo-Cu, but one mining effluent contained significant quantities of organo-Cu and organo-Pb, and traces of organo-Cr and organo-Tl (thallium). These studies suggest that X-ray microanalysis of algae may be a useful tool in identifying aquatic systems contaminated with metals and organometallic compounds. PMID:9175500

  8. Role of initial cell density of algal bioassay of toxic chemicals.

    PubMed

    Singh, Prashant Kumar; Shrivastava, Alok Kumar

    2016-07-01

    A variety of toxicants such as, metal ions, pesticides, dyes, etc. are continuously being introduced anthropogenically in the environment and adversely affect to the biotic component of the ecosystem. Therefore, the assessment of negative effects of these toxicants is required. However, toxicity assessment anticipated by chemical analysis are extremely poor, therefore the application of the living systems for the same is an excellent approach. Concentration of toxicant as well as cell density both influenced the result of the algal toxicity assay. Here, Scenedesmus sp, a very fast growing green microalgae was selected for study the effects of initial cell densities on the toxicity of Cu(II), Cd(II), Zn(II), paraquat and 2,4-D. Results demonstrated concentration dependent decrease in biomass and specific growth rate of Scenedesmus sp. on exposure of abovesaid toxicants. Paraquat and 2,4-D emerged as extremely toxic to the test alga which reflected from the lowest EC value and very steep decline in biomass was evident with increasing concentration of paraquat and 2,4-D in the medium. Result also demonstrated that initial cell density is a very important parameter than specific growth rate for algal bioassay of various toxicants. Present study clearly illustrated that the use of smaller cell density is always recommended for assaying toxicity of chemicals in algal assays. PMID:26593761

  9. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms. PMID:25682049

  10. Phytoplankton biomass, production and growth limitations on the Huanghe (Yellow River) continental shelf

    NASA Astrophysics Data System (ADS)

    Turner, R. Eugene; Rabalais, Nancy N.; Zhang, Zhi Nan

    1990-06-01

    We examined phytoplankton populations in coastal waters of the Huanghe (Yellow River) estuary during two cruises in the annual high and normal discharge periods: August 1986 and October 1987, respectively. Strong salinity, nutrient, and phytoplankton pigment concentration gradients occur along the 5 m isobath. Landward of these gradients the phytoplankton growth potential (PGP) appears strongly phosphorus-limited and light limitation of PGP, paradoxically, appears less significant than it does further offshore where the euphotic zone depth is greater. Phytoplankton pigments are sparse both in the river and far offshore, and the peak accumulation (9 μg l -1 chlorophyll a) is centered broadly between 20 and 25 ppt, thus straddling the region of the hypopycnal plume from the hyperpycnal plunge point to where Secchi disk depth exceeds 1 m. As the suspended matter falls out (sharply) near the 25 ppt isohaline, light conditions improve, the N:P ratio drops to below 100, and nitrate concentrations continue to decrease in an offshore direction. Phytoplankton production rates reach a maximum and large algal cells accumulate where the suspended particulate matter concentration drops to less than 10 mg l -1. Both phytoplankton biomass and production declines beyond approximately 32 ppt. Sedimentary pigment accumulations also increase going from land to sea. Phosphorus and nitrogen dominate the suite of nutrients tested to determine which nutrients limit PGP. Phosphorus is probably the major nutrient limiting phytoplankton growth (not necessarily biomass accumulation) in most of the Huanghe estuary. This conclusion is based on the very high N:P ratios of dissolved nutrients, the results of an extensive array of addition and deletion bioassay experiments, and the results of P addition experiments. Where trace metals and EDTA limit PGP, they are usually limiting in concert with other nutrients and do not act alone. Comparison with other large river plumes are made.

  11. Malt house wastewater treatment with settleable algal-bacterial flocs.

    PubMed

    Stříteský, Luboš; Pešoutová, Radka; Hlavínek, Petr

    2015-01-01

    This paper deals with biological treatment of malt house wastewater using algal-bacterial flocs. During three months of testing, optimisation of growth conditions and biomass separation leads to maximisation of biomass production, improved flocs settleability and increased pollutant removal efficiency while maintaining low energy demand. At a high food to microorganism ratio (0.16 to 0.29 kg BOD5 kg(-1) TSS d(-1)), the biological oxygen demand (BOD5), chemical oxygen demand (CODCr), total phosphorus (Ptot) and total suspended solids (TSS) removal efficiencies were all higher than 90%. At a food to microorganism ratio of 0.06 kg BOD5 kg(-1) TSS d(-1), BOD5, CODCr, total nitrogen (Ntot), Ptot and TSS removal efficiencies of 99.5%, 97.6%, 91.5%, 97.8% and 98.4%, respectively, were achieved. The study also proved a strong dependence of removal efficiencies on solar radiation. The results suggest the algae-bacteria system is suitable for treatment of similar wastewater in locations with available land and sufficient solar radiation and temperature during the whole year. PMID:26540541

  12. Freshwater harmful algal blooms: toxins and children's health.

    PubMed

    Weirich, Chelsea A; Miller, Todd R

    2014-01-01

    Massive accumulations of cyanobacteria (a.k.a. "blue-green algae"), known as freshwater harmful algal blooms (FHABs), are a common global occurrence in water bodies used for recreational purposes and drinking water purification. Bloom prevalence is increased due to anthropogenic changes in land use, agricultural activity, and climate change. These photosynthetic bacteria produce a range of toxic secondary metabolites that affect animals and humans at both chronic and acute dosages. Children are especially at risk because of their lower body weight, behavior, and toxic effects on development. Here we review common FHAB toxins, related clinical symptoms, acceptable concentrations in drinking water, case studies of children's and young adults' exposures to FHAB toxins through drinking water and food, methods of environmental and clinical detection in potential cases of intoxication, and best practices for FHAB prevention. PMID:24439026

  13. Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake.

    PubMed

    Todorova, Svetoslava; Driscoll, Charles T; Matthews, David A; Effler, Steven W

    2015-04-01

    In this study, the biodilution hypothesis of methylmercury (MeHg) accumulation was examined in a Hg-contaminated ecosystem that has undergone concurrent changes in nutrient loading and zooplankton community composition. Using a long-term record of 17 years (between 1980 and 2009), we demonstrate that zooplankton MeHg concentrations in Onondaga Lake, NY, are strongly driven by changes in the zooplankton community and body size. MeHg concentrations in zooplankton increased with an increase in body size and biomass. The highest concentrations of MeHg were observed under eutrophic and hypereutrophic conditions when large-bodied Daphnia species, Daphnia pulicaria and Daphnia galeata mendotae, were present. Bioconcentration rather than biodilution was governing the accumulation of MeHg in zooplankton without apparent growth dilution or zooplankton biomass dilution. Algal-bloom dilution controlled the variability in the MeHg concentration only under hypereutrophic conditions when Ceriodaphnia predominated the cladoceran population. Our study demonstrates that changes in zooplankton community composition confound the biodilution theory in Onondaga Lake and that the presence of large-bodied zooplankton species drives elevated MeHg concentrations. PMID:25741879

  14. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-01

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2 mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.

  15. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    SciTech Connect

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  16. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  17. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGESBeta

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  18. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  19. Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage.

    PubMed

    Awuah, Esi; Oppong-Peprah, M; Lubberding, H J; Gijzen, H J

    A bench-scale continuous-flow wastewater treatment system comprising three parallel lines using duckweed (Spirodela polyrhiza), water lettuce (Pistia stratiotes), and algae (natural colonization) as treatment agents was set up to determine environmental conditions, fecal coliform profiles and general treatment performance. Each line consisted of four ponds connected in series fed by diluted sewage. Influent and effluent parameters measured included environmental conditions, turbidity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, nitrite, ammonia, total phosphorus, fecal coliforms, mosquito larvae, and sludge accumulations. Environmental conditions and fecal coliforms profiles were determined in the sediments (0.63 m), suspensions (0.35 m), and surfaces (0.1 m) of each pond. Acidic conditions were observed in the pistia ponds, neutral conditions in duckweed ponds, and alkaline conditions in algal ponds. Fecal coliforms log removals of 6, 4, and 3 were observed in algal, duckweed, and pistia ponds, respectively, in the final effluents, with die-off rates per pond of 2.7, 2.0, and 1.6. Sedimentation accounted for over 99% fecal coliform removal in most of the algal and pistia ponds. BOD removal was highest in the duckweed system, followed by pistia and algae at 95%, 93%, and 25%, respectively. COD removals were 65% and 59%, respectively, for duckweed and pistia, while COD increased in algal ponds by 56%. Nitrate removals were 72%, 70%, and 36%, respectively for duckweed, pistia, and algal ponds. Total phosphorus removals were 33% and 9% for pistia and duckweed systems, while an increase of 19% was observed in the algal treatment system. Ammonia removals were 95% in both pistia and duckweed and 93% in algal systems. Removals of total dissolved solids (TDS) were 70% for pistia, 15% for duckweed, and 9% for algae. Mosquito populations of 11,175/m(2), 3516/m(2), and 96/m(2) were counted in pistia, algal, and duckweed ponds, respectively. Low

  20. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption. PMID:22528997

  1. Relating Nearshore Algal Blooms Determined Using Satellite Imagery to Nutrient Loading, Watershed Land Use, and Storm Events

    NASA Astrophysics Data System (ADS)

    Stevenson, R. J.; Hyndman, D. W.; Qi, J.; Esselman, P.; Novitski, L.; Kendall, A. D.; Martin, S. L.; Lin, S.

    2014-12-01

    The overarching goal of our project was to relate algal biomass in the coastal zone of the Great Lakes, nutrient concentrations, watershed land use, and storm events. Algal biomass was determined using MODIS and Landsat remote sensing images. Nutrient loading from rivers into coastal zones was estimated with watershed land use, soils, geology, size and precipitation records. Our models of chlorophyll a based on remote sensing images (RS inferred chl a) and nutrient loading in coastal zones were validated with measured chlorophyll concentrations in the Great Lakes and nutrients in rivers. RS-inferred chl a was related to nutrient loading from rivers, which was dependent upon recent storm events and land use in watersheds. RS-inferred chl a was more related to nutrient loads during the week preceeding measurement of chl a than other periods before or during chl measurement. This lag time is presumably related to algal growth following nutrient loading, and was non-linearly related to nutrient loading. Our results indicate that these tools will improve understanding of land use effects on algal blooms in coastal zones of the Great Lakes and will help identify priority watersheds for restoration.

  2. Production of algal-based biofuel using non-fresh water sources.

    SciTech Connect

    Sun, Amy Cha-Tien; Reno, Marissa Devan

    2007-09-01

    The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual simulation framework and historical data are based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The overall water balance ignores both transportation options and water chemistry and is broken down by county level. The resulting model contains an algal growth module, a dairy module, an oil production module, and a gas production module. A user interface is also created for controlling the adjustable parameters in the model. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil- and gas-produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

  3. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept

    PubMed Central

    Balboa, Elena M.; Moure, Andrés; Domínguez, Herminia

    2015-01-01

    The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts. Hydrothermal processing is proposed to fractionate the algal biomass and to solubilize the fucoidan and phlorotannin fractions. Membrane technology was proposed to concentrate these fractions and obtain salt- and arsenic-free saccharidic fractions. Based on these technologies, this study presents a multipurpose process to obtain six different products with potential applications for nutraceutical, cosmetic and pharmaceutical industries. PMID:26110896

  4. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept.

    PubMed

    Balboa, Elena M; Moure, Andrés; Domínguez, Herminia

    2015-06-01

    The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts. Hydrothermal processing is proposed to fractionate the algal biomass and to solubilize the fucoidan and phlorotannin fractions. Membrane technology was proposed to concentrate these fractions and obtain salt- and arsenic-free saccharidic fractions. Based on these technologies, this study presents a multipurpose process to obtain six different products with potential applications for nutraceutical, cosmetic and pharmaceutical industries. PMID:26110896

  5. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  6. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  7. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  8. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  9. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    NASA Astrophysics Data System (ADS)

    Roberts, Griffin William

    significant portion of algae biomass total weight; wastewater treatment using nitrification requires significant daily additions of buffers, most commonly lime or calcium hydroxide. Accumulation of these ions and metals in wastewater-cultivated algae results in a biomass with substantial amount of inorganic ash content. The cultivated biomass was converted to a carbon-rich biocrude, similar to petroleum crude oil, through a process called hydrothermal liquefaction (abbreviated as HTL), which uses subcritical water (water just below its supercritical point) as the chemical driving force for conversion. Biomass HTL produces four product fractions; liquid biocrude, solids (referred to as biochar), an aqueous product (referred to as aqueous co-product; abbreviated as ACP), and gasses. Many factors contribute to the overall viability of using algae HTL biocrude as a petroleum displacement, particularly yield and quality are important for overall economics and ability to utilize existing refining infrastructure, respectively. The HTL product distribution and quality of wastewater-cultivated algae has been found to be extremely unique with significant advantageous over controlled fertilized growth strategies. Biocrude yields of were typically lower but substantially higher quality with lower oxygen content and higher amounts of direct fuel distillate fractions. This phenomenon is contributed to the fact that large amounts of pure-phase substituted hydroxyapatite (a calcium orthophosphate material) are synthesized in-situ, providing catalytically active sites. Hydroxyapatite (abbreviated HA) is a widely studied material for bone (and dental) tissue regeneration purposes and its acid-base catalytic properties. The specific HA produced during HTL of wastewater-cultivated algae presents unique characteristics for performance and tunability in each respective application, providing novel economic value streams for the production of algal biofuels. The overall work of this dissertation

  10. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca.

    PubMed

    Suganya, Tamilarasan; Renganathan, Sahadevan

    2012-03-01

    In this present investigation, kinetic studies on oil extraction were performed in marine macroalgae Ulva lactuca. The algal biomass was characterized by scanning electron microscopy and Fourier Transform-Infra Red Spectroscopy. Six different pre-treatment methods were carried out to evaluate the best method for maximum oil extraction. Optimization of extraction parameters were performed and high oil yield was obtained at 5% moisture content, 0.12 mm particle size, 500 rpm stirrer speed, 55°C temperature, 140 min time and solvent-to-solid ratio as 6:1 with 1% diethyl-ether and 10% methylene chloride in n-hexane solvent mixture. After optimization, 10.88% (g/g) of oil extraction yield was achieved from 30 g of algal biomass. The rate constant was obtained for the first order kinetic study by differential method. The activation energy (Ea) was calculated as 63.031 kJ/mol. From the results obtained in the investigation, U. lactuca biomass was proved to be a suitable source for the biodiesel production. PMID:22209436

  11. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  12. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  13. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  14. AL HARMFUL ALGAL BLOOM (HAB) INFORMATION EXCHANGE

    EPA Science Inventory

    This project proposes to implement an integrated web site that will serve as an Alabama Harmful Algal Bloom (HAB) Information Exchange Network. This network will be a stand-alone site where HAB data from all agencies and research efforts in the State of Alabama will be integrate...

  15. Using hyperspectral imagery to monitor algal persence

    SciTech Connect

    Anderson, J.M.; Monk, J.; Yan, Gu; Brignal, W.

    1997-08-01

    This paper illustrates how an inexpensive and easily deployable imaging spectrometer can be used to monitor and identify algal blooms at short notice, thus making practical the addition of airborne data to the usual in-situ measurements. Two examples are described, one in the Irish Sea and the other in a reservoir system in the London area.

  16. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  17. Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies

    SciTech Connect

    Vunjak-Novakovic, G.; Kim, Y.; Wu, X.X.; Berzin, I.; Merchuk, J.C.

    2005-08-03

    Air-lift reactors (ALRs) have great potential for industrial bioprocesses, because of the low level and homogeneous distribution of hydrodynamic shear. One growing field of application is the flue-gas treatment using algae for the absorption of CO{sub 2}, In this paper, we discuss the requirements for photosynthetic biomass growth in an ALR. The effects of the operating variables are analyzed using a mathematical model that accounts for the effects of ALR geometry, fluid flow, and illumination on the biomass growth. On the basis of the ALR principles and the specific requirements of photosynthetic processes, we developed a 'triangular' ALR configuration that is particularly suitable for algal growth. We describe the design and operation of this novel bioreactor and present the first series of experimental data obtained for two different algal species in a pilot-scale unit supplied with flue gases from a small power plant. The measured removal efficiency of CO{sub 2} was significant (82.3 12.5% on sunny days and 50.1 6.5% on cloudy days) and consistent with the increase in the algal biomass.

  18. Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems.

    PubMed

    Michael, Clayton; del Ninno, Matteo; Gross, Martin; Wen, Zhiyou

    2015-03-01

    This work is to use thin film nano-materials as light filters to selectively transmit certain wavelengths from natural sunlight to algal culture. A red light filter (620-710 nm) and blue filter (450-495 nm) were evaluated. Algae were grown in flasks, flat panel reactors, and rotating algal biofilm (RAB) system. It was found that the light filters did not improve algal growth in flask cultures, probably due to the additional reflection of light by the glass wall of the flasks. However, the light filters significantly (P<0.05) improved biomass yield (13-34%) in flat panel reactors and biomass productivity (70-100%) in RAB system, depending on the growth mode and lighter filters. Such improvements may be due to the eliminating the ultra-violet (UV) damaging the cellular structure. The biomass compositions did not change significantly among different light-filter cultures (P>0.05). The research shows a great potential of using light filters to improve microalgal growth. PMID:25575207

  19. Increased biomass productivity in green algae by tuning non-photochemical quenching.

    PubMed

    Berteotti, Silvia; Ballottari, Matteo; Bassi, Roberto

    2016-01-01

    Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae. PMID:26888481

  20. Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary

    NASA Astrophysics Data System (ADS)

    Artigas, M. L.; Llebot, C.; Ross, O. N.; Neszi, N. Z.; Rodellas, V.; Garcia-Orellana, J.; Masqué, P.; Piera, J.; Estrada, M.; Berdalet, E.

    2014-03-01

    Understanding the spatio-temporal variability of phytoplankton in aquaculture zones is necessary for the prevention and/or prediction of harmful algal bloom events. Synoptic cruises, time series analyses of physical and biological parameters, and 3D modeling were combined to investigate the variability of phytoplankton biomass in Alfacs Bay at basin scale. This microtidal estuary located in the NW Mediterranean is an important area of shellfish and finfish exploitation, which is regularly affected by toxic outbreaks. Observations showed the existence of a preferential phytoplankton accumulation area on the NE interior of the bay. This pattern can be observed throughout the year, and we show that it is directly linked to the physical forcing in the bay, in particular, the interplay between freshwater input and wind-induced turbulence. Both drivers affect the strength of the estuarine circulation, explaining nearly 75% of the variability in phytoplankton biomass. More cells are retained when stratification is weakened and the estuarine circulation reduced, while flushing rates are higher during times of increased stratification and stronger estuarine flow. This has been confirmed by using a 3D hydrodynamic model with Eulerian tracers. Nutrients, while important to support phytoplankton populations, have been found to play only a secondary role in explaining this variability at basin scale.

  1. Increased biomass productivity in green algae by tuning non-photochemical quenching

    PubMed Central

    Berteotti, Silvia; Ballottari, Matteo; Bassi, Roberto

    2016-01-01

    Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae. PMID:26888481

  2. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    PubMed

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. PMID:26172107

  3. NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents.

    PubMed

    Nestle, N F; Kimmich, R

    1996-09-01

    In this contribution, an NMR imaging study of heavy metal absorption in alginate, immobilized-cell biosorbents, and kombu (Laminaria japonica) algal biomass is presented. This method provides the good possibility of directly monitoring the time evolution of the spatial distribution of the ions in the materials. From these results, we demonstrate that rare earth ions are absorbed with a steep reaction front that can be described very well with a modified shrinking core model, while copper ions are absorbed with a more diffuse front. PMID:18629817

  4. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Trainer, V. L.; Pitcher, G. C.; Reguera, B.; Smayda, T. J.

    2010-04-01

    Comparison of harmful algal bloom (HAB) species in eastern boundary upwelling systems, specifically species composition, bloom densities, toxin concentrations and impacts are likely to contribute to understanding these phenomena. We identify and describe HABs in the California, Canary, Benguela and Humboldt Current systems, including those that can cause the poisoning syndromes in humans called paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), as well as yessotoxins, ichthyotoxins, and high-biomass blooms resulting in hypoxia and anoxia. Such comparisons will allow identification of parameters, some unique to upwelling systems and others not, that contribute to the development of these harmful blooms.

  5. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  6. Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis

    PubMed Central

    Chen, Tianpeng; Liu, Jin; Guo, Bingbing; Ma, Xiaonian; Sun, Peipei; Liu, Bin; Chen, Feng

    2015-01-01

    The objective of this study was to investigate the effect of light on lipid and starch accumulation in the oleaginous green algae Chlorella zofingiensis supplemented with glucose. C. zofingiensis, when fed with 30 g/L glucose, synthesized lipids up to 0.531 g/g dry weight; while in the presence of light, the lipid content dropped down to 0.352 g/g dry weight. Lipid yield on glucose was 0.184 g/g glucose, 14% higher than that cultured with light. The light-mediated lipid reduction was accompanied by the down-regulation of fatty acid biosynthetic genes at the transcriptional level. Furthermore, light promoted cell proliferation, starch accumulation, and the starch yield based on glucose. Taken together, light may attenuate lipid accumulation, possibly through the inhibition of lipid biosynthetic pathway, leading to more carbon flux from glucose to starch. This study reveals the dual effects of light on the sugar-fed C. zofingiensis and provides valuable insights into the possible optimization of algal biomass and lipid production by manipulation of culture conditions. PMID:26442783

  7. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    NASA Astrophysics Data System (ADS)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  8. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize.

    PubMed

    McClanahan, T R; Cokos, B A; Sala, E

    2002-06-01

    The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p < 0.06) in the fertilized compared to open-top cages. Algal species composition was influenced by all

  9. Effect of algal extract on H2 production by a photosynthetic bacterium Rhodobium marinum A-501: analysis of stimulating effect using a kinetic model.

    PubMed

    Kawaguchi, Hideo; Nagase, Hiroyasu; Hashimoto, Kyoko; Kimata, Shiho; Doi, Mikio; Hirata, Kazumasa; Miyamoto, Kazuhisa

    2002-01-01

    We have established a system for hydrogen (H2) production from algal starch via lactic acid using a mixed culture of a lactic acid bacterium, Lactobacillus amylovorus, and a photosynthetic bacterium, Rhodobium marinum A-501. We found that the H2 production from lactate was stimulated in the presence of algal extract, which was obtained from algal biomass homogenate used as a substrate in the system by removing settleable solids including starch. To analyze the stimulating effect of algal extract on H2 production, we developed a kinetic model for H2 production by R. marinum A-501. The model revealed that approximately 20% of lactate was consumed for cell mass production, and the remaining portion was a source of reducing power to drive hydrogen production or other cellular processes. In the presence of algal extract, the model indicated that the conversion efficiency from lactate to the reducing power increased from 0.56 to 0.80 and nitrogenase activity increased up to twofold, resulting in the increase in yield of hydrogen from lactate from 29% to 48%. These results suggest that algal extract can attenuate the limitation process in lactate catabolism by which the supplementation of reducing power to drive H2 production was suppressed. PMID:16233271

  10. In Situ Oxygen Dynamics in Coral-Algal Interactions

    PubMed Central

    Wangpraseurt, Daniel; Weber, Miriam; Røy, Hans; Polerecky, Lubos; de Beer, Dirk; Suharsono; Nugues, Maggy M.

    2012-01-01

    Background Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300–400 µM during the day. At night, the interface was hypoxic (∼70 µM) in coral-turf interactions and close to anoxic (∼2 µM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental

  11. In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae

    PubMed Central

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-01-01

    The current fascination with algal biofuel production stems from a high lipid biosynthetic capacity and little conflict with land plant cultivation. However, the mechanisms which enable algae to accumulate massive oil remain elusive. An enzyme for triacylglycerol (TAG) biosynthesis in Chlamydomonas reinhardtii, CrDGTT2, can produce a large amount of TAG when expressed in yeast or higher plants, suggesting a unique ability of CrDGTT2 to enhance oil production in a heterologous system. Here, we performed metabolic engineering in Saccharomyces cerevisiae by taking advantage of CrDGTT2. We suppressed membrane phospholipid biosynthesis at the log phase by mutating OPI3, enhanced TAG biosynthetic pathway at the stationary phase by overexpressing PAH1 and CrDGTT2, and suppressed TAG hydrolysis on growth resumption from the stationary phase by knocking out DGK1. The resulting engineered yeast cells accumulated about 70-fold of TAG compared with wild type cells. Moreover, TAG production was sustainable. Our results demonstrated the enhanced and sustainable TAG production in the yeast synthetic platform. PMID:26913021

  12. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  13. Monitoring Algal Blooms in a Southwestern U.S. Reservoir System

    NASA Astrophysics Data System (ADS)

    Tarrant, Philip; Neuer, Susanne

    2009-02-01

    In recent years, several studies have explored the potential of higher-resolution sensor data for monitoring phytoplankton primary production in coastal areas and lakes. Landsat data have been used to monitor algal blooms [Chang et al., 2004; Vincent et al., 2004], and Moderate Resolution Imaging Spectroradiometer (MODIS) 250-meter and Medium Resolution Imaging Spectrometer (MERIS) full-resolution (300-meter) bands have been utilized to detect cyanobacterial blooms [Reinart and Kutser, 2006] as well as to monitor water quality [Koponen et al., 2004]. Field sampling efforts and MODIS 250-meter data are now being combined to develop a cost-effective method for monitoring water quality in a southwestern U.S. reservoir system. In the Phoenix, Ariz., metropolitan area, the Salt River reservoirs supply more than 3.5 million people, a population expected to rise to more than 6 million by 2030. Given that reservoir capacities have physical limitations, maintaining water quality will become critical as the population expands. Potentially noxious algal blooms that can release toxins and may affect water quality by modifying taste and odor have become a major concern in recent years. While frequent field sampling regimes are expensive, satellite imagery can be applied cost-effectively to monitor algal biomass trends remotely, and this information could provide early warning of blooms in these reservoirs.

  14. Continuous flocculation-sedimentation for harvesting Nannochloropsis salina biomass.

    PubMed

    Chatsungnoen, Tawan; Chisti, Yusuf

    2016-03-20

    A continuous flow process is developed for recovery of the biomass of the marine microalga Nannochloropsis salina. Flocculation-sedimentation is used to recover the biomass from an algal suspension with an initial dry biomass concentration of 0.5 g L(-1), as would be typical of a raceway-based biomass production system. More than 85% of the biomass initially in suspension could be settled by gravity in a flocculation-sedimentation device with a total residence time of ∼148 min. Aluminum sulfate was used as an inexpensive, readily available and safe flocculant. The optimal flocculant dosage (as Al2(SO4)3) was 229 mg L(-1). Relative to a highly effective 62-min batch flocculation-sedimentation process for the same alga and flocculant, the continuous flow operation took longer and required nearly double the flocculant dose. The design of the flocculation-sedimentation system is explained. PMID:26880538

  15. Microalgal biomass production pathways: evaluation of life cycle environmental impacts

    PubMed Central

    2013-01-01

    Background Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of −46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae’s life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae’s direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Conclusions Given the high variability in microalgae’s energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative

  16. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  17. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    PubMed

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P < 0.05. ANOVA was performed for comparing significance mean between the groups and within the group for heavy metals in water. The concentration of heavy metals in water was in the following order: Zn > Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals. PMID:26688974

  18. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors. PMID:24960016

  19. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  20. Algal pigments record shifts in dominant primary productivity through the Holocene in an arctic lake

    NASA Astrophysics Data System (ADS)

    Florian, C.; Miller, G. H.; Fogel, M. L.

    2011-12-01

    The character and magnitude of primary productivity in arctic lakes is largely controlled by climate. Organic compounds derived from pigments and preserved in lake sediments allow reconstruction of past abundances of algae that do not leave silicious microfossils. Fossil algal pigments are abundant in lake sediment and can be accurately quantified using High Pressure Liquid Chromatography (HPLC). Several groups of algae produce unique pigments that can be used to reconstruct their past abundance. In Qivitu Highlands Lake, eastern central Baffin Island, the ratio of pigments diatoxantin and lutein exhibits coherent changes through the Holocene. Diatoxanthin is produced by diatoms and chrysophytes, whereas lutein is produced by green algae and higher plants. Because these pigments are the dominant carotenoids in the sediment, they serve as proxies for the dominant group of primary producers. During the Holocene Thermal Maximum and the past century, lutein is much more abundant than diatoxanthin. During Neoglacial cooling and into the Little Ice Age, diatoxanthin becomes the dominant carotenoid. This shift reveals that there was a change in not only the magnitude of algal production, but also the most abundant type. The adaptation of aquatic algal assemblages to changing climate suggests that gross changes in primary productivity may not be suitable to track the abundance of one type of algal microfossil (such as diatoms) without considering the other algal groups. Higher plants also produce lutein, and its abundance is additionally influenced by the presence of terrestrial organic matter as well as aquatic macrophyte plants. We hypothesize that the prevalence of lutein during warm summers is due to a longer ice-free season, allowing the development of a greater biomass of green algae and macrophyte plants as well as possible increases of terrestrial higher plant communities. This is part of a larger study where the lutein to diatoxanthin ratio is compared to organic

  1. Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores.

    PubMed

    Taylor, David I; Schiel, David R

    2010-01-01

    Consumers that forage across habitats can affect communities by altering the abundance and distribution of key species. In marine communities, studies of trophic interactions have generally focused on the effects of herbivorous and predatory invertebrates on benthic algae and mussel populations. However, large mobile consumers that move across habitats, such as fishes, can strongly affect community dynamics through consumption of habitat-dominating species, but their effects often vary over environmental gradients. On temperate rocky shores, herbivorous fishes are generally a small part of the fish fauna compared to the tropics, and there is sparse evidence that they play a major direct role in algal community dynamics, particularly of large brown algae that dominate many reefs. In New Zealand, however, a wide-ranging herbivorous fish, Odax pullus, feeds exclusively on macroalgae, including Durvillaea antarctica, a large low-intertidal fucoid reaching 10 m in length and 70 kg in mass. In four experiments we tested the extent of fish herbivory and how it was affected by algal canopy structure across a gradient of wave exposure at multiple sites. Exclusion experiments showed that fish impacts greatly reduced the cover and biomass of Durvillaea and that these effects decreased with increasing wave stress and algal canopy cover, effectively restricting the alga to exposed conditions. Almost all plants were entirely removed by fish where there was a sparse algal canopy in sheltered and semi-exposed sites, but there was significantly less grazing in exposed sites. Recruit Durvillaea beneath canopies were less affected by fish grazing, but they grew slowly. Successful natural recruitment, therefore, occurred almost exclusively on exposed shores outside canopies where many plants escaped severe grazing, and growth to maturity was far greater than elsewhere. Such large and direct impacts on the local and regional distribution of large brown algal populations by mobile

  2. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    PubMed

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. PMID:27039331

  3. Approaches to monitoring, control and management of harmful algal blooms (HABs)

    PubMed Central

    Anderson, Donald M.

    2009-01-01

    Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters. Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs. The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena

  4. Approaches to monitoring, control and management of harmful algal blooms (HABs).

    PubMed

    Anderson, Donald M

    2009-07-01

    Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called "red tides"). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term "HAB" also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters.Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs.The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena that

  5. [Development and succession of biological soil crusts and the changes of microbial biomasses].

    PubMed

    Wu, Li; Zhang, Gao-Ke; Chen, Xiao-Guo; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-04-01

    Biological soil crusts (BSCs) play important ecological roles in vegetation and ecological restoration in desert regions, and different crust developmental and successional stages have different ecological functions. In this experiment, the BSCs in Shapotou region (at southeast edge of Tengger Desert) were investigated to study crust development and succession through field investigation, microscopic observation combined with quantitative analysis of microbial biomasses. The results showed that BSCs in this region generally developed and succeeded from algal crusts, lichen crusts to moss crusts. With the development and succession of BSCs, crust photosynthetic biomass gradually increased, while microalgal biomass showed a first increasing and then decreasing trend. Among the crust algae (cyanobacteia), Microcoleus vaginatus, as the first dominant species, occupied the most algal biomass and reached a maximum of 0.33 mm3 x g(-1) crusts in algal crusts; while Scytonema javanicum and Nostoc sp. have their maximal biomasses in the later lichen crusts. In addition, it was found that the heterotrophic microbial biomass began to increase in algal crusts, and then decreased in lichen crusts; followed by another increase and the increase achieved the maximum at last in moss crusts. Through the correlation analysis, it was found that bacterial biomass significantly positively correlated with crust organic carbon and Na+ content, while fungal biomass positively correlated with K+ and Na+ content (P < 0.05). In conclusion, this study investigated the developmental and successional patterns of BSCs in Shapotou region, and discussed the effects of crust development and succession on several microbial biomasses from the point of view of environmental adaptation and functional requirement, which may be helpful for us to understand crust development and succession, and provide theoretical and practical significances for crust maintenance and management in ecological restoration of

  6. Effects of changing continuous iron input rates on a Southern Ocean algal assemblage

    NASA Astrophysics Data System (ADS)

    Hare, C. E.; DiTullio, G. R.; Riseman, S. F.; Crossley, A. C.; Popels, L. C.; Sedwick, P. N.; Hutchins, D. A.

    2007-05-01

    The upwelling of nutrients and iron (Fe) sustains biological production in much of the Southern Ocean. Using a shipboard natural community continuous culture system (Ecostat), we supplied a single added Fe concentration at two dilution rates chosen to examine the effects of variations in realistic growth and loss rates on an Fe-limited algal community in the Antarctic Zone south of Australia. A parallel growout experiment provided "no-dilution" +Fe and -Fe controls. In the continuous flow experiment, phytoplankton biomass was lower and more constant throughout the incubation and major nutrients were never depleted. Nanophytoplankton abundance remained similar in both growout treatments, and therefore, growth of this group did not appear to be Fe-limited. The addition of Fe in a continuous fashion resulted in a community co-dominated by both small diatoms and nanophytoplankton. Increases in dilution rate favored diatom species that were smaller and faster-growing, as well as non-silicified algal groups. Particulate carbon (PC) to particulate nitrogen (PN) ratios increased above the Redfield ratio when Fe was added in a continuous fashion, while biogenic silica (BSi) to PC and PN ratios decreased 2-3 fold in the continuous flow experiment compared to the initial conditions and the parallel growout control experiment. Photosynthetic efficiency increased in the continuous flow treatments above the control but remained significantly lower than in the 1.4 nM Fe addition. The results of our shipboard continuous flow experiments are compared and contrasted with those of the mesoscale Southern Ocean Iron RElease Experiment (SOIREE) carried out at the same site. Our results suggest that increases in natural dilution rates (i.e. vertical turbulent diffusion) in polar Antarctic waters could shift the algal community towards smaller, faster-growing algal species, thus having a major effect on nutrient cycling and carbon export in the Southern Ocean.

  7. Degradation of algal lipids by deep-sea benthic foraminifera: An in situ tracer experiment

    NASA Astrophysics Data System (ADS)

    Nomaki, Hidetaka; Ohkouchi, Naohiko; Heinz, Petra; Suga, Hisami; Chikaraishi, Yoshito; Ogawa, Nanako O.; Matsumoto, Kouhei; Kitazato, Hiroshi

    2009-09-01

    We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C 15,anteiso-C 17, and C 17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4-6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.

  8. Biotechnology of biomass conversion

    SciTech Connect

    Wayman, M.; Parekh, S.R.

    1990-01-01

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion.

  9. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA. PMID:24530948

  10. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    PubMed

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth. PMID:20182083

  11. Algal sludge from Taihu Lake can be utilized to create novel PGPR-containing bio-organic fertilizers.

    PubMed

    Zhang, Miao; Li, Rong; Cao, Liangliang; Shi, Juanjuan; Liu, Hongjun; Huang, Yan; Shen, Qirong

    2014-01-01

    Large amounts of refloated algal sludge from Taihu Lake result in secondary environmental pollution due to annual refloatation. This study investigated the possibility to produce bio-organic fertilizer (BIO) using algal sludge as a solid-state fermentation (SSF) medium. Results showed that addition of algal sludge contributed to efficient SFF by a plant growth-promoting rhizobacteria (PGPR) strain SQR9 and improved the nutrient contents in the novel BIO. The optimum water content and initial inoculation size were 45% and 5%, respectively. After 6 days of SSF, the biomass of strain SQR9 was increased to a cell density of more than 5 × 10(7) CFU g(-1). Microcystins were rapidly degraded, and a high germination index value was observed. Plant growth experiments showed that the produced BIO efficiently promoted plant growth. Additional testing showed that the novel SSF process was also suitable for other PGPR strains. This study provides a novel way of high-value utilization of algal sludge from Taihu Lake by producing low-cost but high-quality BIOs. PMID:24321283

  12. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder

    USGS Publications Warehouse

    Depew, David C.; Stevens, Andrew W.; Smith, Ralph E.H.; Hecky, Robert E.

    2009-01-01

    A high-frequency echosounder was used to detect and characterize percent cover and stand height of the benthic filamentous green alga Cladophora sp. on rocky substratum of the Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal stand characteristics (percent cover, stand height) derived from the acoustic data show good agreement for algal stands that exceeded the height threshold for detection by acoustics (~7.5 cm). Backscatter intensity and volume scattering strength were unable to provide any predictive power for estimating algal biomass. A comparative analysis between the only current commercial software (EcoSAV™) and an alternate method using a graphical user interface (GUI) written in MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height classification on adjustable thresholds that can be visualized by a trained analyst. This study documents the successful characterization of nuisance quantities of filamentous algae on hard substrate using an acoustic system and demonstrates the potential to significantly increase the efficiency of collecting information on the distribution of nuisance macroalgae. This study also highlights the need for further development of more flexible classification algorithms that can be used in a variety of aquatic ecosystems.

  13. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and sterilization. New test containers may contain substances which inhibit growth of algae. They.... (A) Formulation and sterilization of nutrient medium used for algal culture and preparation of...

  15. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  16. Nutrient-contaminant (Pu) plant accumulation model

    SciTech Connect

    Cowan, C.E.; Jenne, E.A.; Simpson, J.C.; Cataldo, D.A.

    1981-12-01

    A model was developed which simulates the movement and daily accumulation of nutrients and contaminants in crop plants resulting from known physiological processes in the plant. In the model, the daily contaminant accumulation is governed by daily increase in plant biomass derived from photosynthesis and by the specified thermodynamic activity of the bioavailable contaminant species in soil or hydroponic solutin. Total accumulation and resulting concentration in the plant's root, stem and branch, leaf, and reproductive compartments can be simulated any time during the growing season. Parameters were estimated from data on plutonium accumulation in soybeans and the model was calibrated against this same data set. The plutonium distribution in the plant was found to be most sensitive to parameters related to leaf accumulation. Contamination at different times during the growing season resulted in a large change in predicted leaf accumulation but very little change in predicted accumulation in other plant parts except when contamination occurred very late in the growing season.

  17. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    PubMed

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals. PMID:23455221

  18. Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.).

    PubMed

    Bielmyer, G K; Grosell, M; Bhagooli, R; Baker, A C; Langdon, C; Gillette, P; Capo, T R

    2010-04-15

    Land-based sources of pollution have been identified as significant stressors linked to the widespread declines of coral cover in coastal reef ecosystems over the last 30 years. Metal contaminants, although noted as a concern, have not been closely monitored in these sensitive ecosystems, nor have their potential impacts on coral-algal symbioses been characterized. In this study, three species of laboratory-reared scleractinian corals, Acropora cervicornis, Pocillopora damicornis, and Montastraea faveolata each containing different algal symbionts (Symbiodinium A3, C1 and D1a, respectively) were exposed to copper (ranging from 2 to 20microg/L) for 5 weeks. At the end of the exposure period, copper had accumulated in the endosymbiotic dinoflagellate ("zooxanthellae") and animal tissue of A. cervicornis and the animal tissue of M. faveolata; however, no copper accumulation was detected in the zooxanthellae or animal tissue of P. damicornis. The three coral species exhibited significantly different sensitivities to copper, with effects occurring in A. cervicornis and P. damicornis at copper concentrations as low as 4microg/L. Copper exposure affected zooxanthellae photosynthesis in A. cervicornis and P. damicornis, and carbonic anhydrase was significantly decreased in A. cervicornis and M. faveolata. Likewise, significant decreases in skeletal growth were observed in A. cervicornis and P. damicornis after copper exposure. Based on preliminary results, no changes in Symbiodinium communities were apparent in response to increasing copper concentration. These results indicate that the relationships between physiological/toxicological endpoints and copper accumulation between coral species differ, suggesting different mechanisms of toxicity and/or susceptibility. This may be driven, in part, by differences in the algal symbiont communities of the coral species in question. PMID:20089320

  19. Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.).

    PubMed

    Campos, M Doroteia; Nogales, Amaia; Cardoso, Hélia G; Kumar, Sarma R; Nobre, Tânia; Sathishkumar, Ramalingam; Arnholdt-Schmitt, Birgit

    2016-01-01

    Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes' were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1. PMID:26858746

  20. GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Background WD40 domains have been found in a plethora of eukaryotic proteins, acting as scaffolding molecules assisting proper activity of other proteins, and are involved in multi-cellular processes. They comprise several stretches of 44-60 amino acid residues often terminating with a WD di-peptide. They act as a site of protein-protein interactions or multi-interacting platforms, driving the assembly of protein complexes or as mediators of transient interplay among other proteins. In Arabidopsis, members of WD40 protein superfamily are known as key regulators of plant-specific events, biologically playing important roles in development and also during stress signaling. Results Using reverse genetic and protein modeling approaches, we characterize GIGANTUS1 (GTS1), a new member of WD40 repeat protein in Arabidopsis thaliana and provide evidence of its role in controlling plant growth development. GTS1 is highly expressed during embryo development and negatively regulates seed germination, biomass yield and growth improvement in plants. Structural modeling analysis suggests that GTS1 folds into a β-propeller with seven pseudo symmetrically arranged blades around a central axis. Molecular docking analysis shows that GTS1 physically interacts with two ribosomal protein partners, a component of ribosome Nop16, and a ribosome-biogenesis factor L19e through β-propeller blade 4 to regulate cell growth development. Conclusions Our results indicate that GTS1 might function in plant developmental processes by regulating ribosomal structural features, activities and biogenesis in plant cells. Our results suggest that GIGANTUS1 might be a promising target to engineer transgenic plants with higher biomass and improved growth development for plant-based bioenergy production. PMID:24467952

  1. Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.)

    PubMed Central

    Campos, M. Doroteia; Nogales, Amaia; Cardoso, Hélia G.; Kumar, Sarma R.; Nobre, Tânia; Sathishkumar, Ramalingam; Arnholdt-Schmitt, Birgit

    2016-01-01

    Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes’ were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1. PMID:26858746

  2. Investigation of severe UF membrane fouling induced by three marine algal species.

    PubMed

    Merle, Tony; Dramas, Laure; Gutierrez, Leonardo; Garcia-Molina, Veronica; Croué, Jean-Philippe

    2016-04-15

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonema costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3. PMID:26874470

  3. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  4. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply.

    PubMed

    Abdelaziz, Ahmed E M; Leite, Gustavo B; Hallenbeck, Patrick C

    2013-01-01

    Microalgae hold promise for the production of sustainable replacement of fossil fuels due to their high growth rates, ability to grow on non-arable land and their high content, under the proper conditions, of high energy compounds that can be relatively easily chemically converted to fuels using existing technology. However, projected large-scale algal production raises a number of sustainability concerns concerning land use, net energy return, water use and nutrient supply. The state-of-the-art of algal production of biofuels is presented with emphasis on some possible avenues to provide answers to the sustainability questions that have been raised. Here, issues concerning algal strains and supply of nutrients for large-scale production are discussed. Since sustainability concerns necessitate the use of wastewaters for supply of bulk nutrients, emphasis is placed on the composition and suitability of different wastewater streams. At the same time, algal cultivation has proven useful in waste treatment processes, and thus this aspect is also treated in some detail. PMID:24350435

  5. Lifespan extension of rotifers by treatment with red algal extracts

    PubMed Central

    Snare, David J.; Fields, Allison M.; Snell, Terry W.; Kubanek, Julia

    2013-01-01

    Aging results from an accumulation of damage to macromolecules inhibiting cellular replication, repair, and other necessary functions. Damage may be due to environmental stressors such as metal toxicity, oxidative stress caused by imperfections in electron transfer reactions, or other metabolic processes. In an effort to discover medical treatments that counteract this damage, we initiated a search for small molecule drugs from natural sources using life table experiments which, through their unbiased approach, present the opportunity to discover first-in-class molecules. We have identified marine red algae as a source of natural products that slow aging of the invertebrate rotifer Brachionus manjavacas. Rotifers are a promising model organism for life extension studies as they maintain a short, measurable lifespan while also having an extensive literature related to aging. Rotifer lifespan was increased 9–14% by exposure to three of a total of 200 screened red algal extracts. Bioassay guided fractionation led to semi-purified extracts composed primarily of lipids responsible for rotifer life extension. The life extending mixture from the red alga Acanthophora spicifera contained eicosanoic, octadecanoic, and hexadecanoic acids as well as several unidentified unsaturated fatty acids. The life extending effects of these small molecule mixtures are not a result of their direct antioxidant capacity; other unknown mechanisms of action are likely involved. An understanding of how these natural products interact with their molecular targets could lead to selective and effective treatments for slowing aging and reducing age related diseases. PMID:24120568

  6. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. PMID:25479688

  7. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Algal acute toxicity test. 797.1050 Section 797.1050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1050 Algal acute toxicity test. (a) Purpose. The...

  8. What is causing the harmful algal blooms in Lake Erie?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmful and nuisance algal blooms have been increasing in size and extent since about 2000. In recent years, the release of the algal toxin microcystin has become a growing concern and has resulted in the inability to use water from Lake Erie as a drinking water source to the 400,000 residents of T...

  9. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  10. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  11. Method and system of culturing an algal mat

    SciTech Connect

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  12. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  13. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  14. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2013-09-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m-2 in cell volume or 13 mg carbon m-2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season.

  15. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Mehrabadi, Abbas; Craggs, Rupert J

    2016-02-01

    Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity and CO2 augmentation is often used to overcome this limitation in summer. However, the implications of carbon limitation during winter are poorly understood. This paper investigates the effects of 0.5%, 2%, 5% and 10% CO2 addition on the winter-time performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, photosynthetic efficiency, biomass production and nutrient removal rates, along with community composition. Varying percentage CO2 addition and associated change in culture pH resulted in 3 distinct microalgal communities. Light absorption by the microalgae increased by up to 144% with CO2 addition, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. Carbon augmentation increased the maximum rate of photosynthesis by up to 172%, which led to increased microalgal biovolume by up to 181% and an increase in total organic biomass for all treatments except 10% CO2. While 10% CO2 improved light absorption and photosynthesis this did not translate to enhanced microalgal productivity. Increased microalgal productivity with CO2 addition did not result in increased dissolved nutrient (nitrogen and phosphorus) removal. This experiment demonstrated that winter-time carbon augmentation up to 5% CO2 improved microalgal light absorption and utilisation, which ultimately increased microalgal biomass and is likely to enhance total annual microalgal areal productivity in HRAPs. PMID:26707731

  16. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  17. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    SciTech Connect

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  18. Evaluation of anticoagulant activity of two algal polysaccharides.

    PubMed

    Faggio, C; Pagano, M; Dottore, A; Genovese, G; Morabito, M

    2016-09-01

    Marine algae are important sources of phycocolloids like agar, carrageenans and alginates used in industrial applications. Algal polysaccharides have emerged as an important class of bioactive products showing interesting properties. The aim of our study was to evaluate the potential uses as anticoagulant drugs of algal sulphate polysaccharides extracted from Ulva fasciata (Chlorophyta) and Agardhiella subulata (Rhodophyta) collected in Ganzirri Lake (Cape Peloro Lagoon, north-eastern Sicily, Italy). Toxicity of algal extracts through trypan blue test and anticoagulant action measured by activated partial thromboplastin time (APTT), prothrombin time (PT) test has been evaluated. Algal extracts showed to prolong the PT and APTT during the coagulation cascade and to avoid the blood coagulation of samples. Furthermore, the algal extracts lack toxic effects towards cellular metabolism and their productions are relatively at low cost. This permits to consider the algae as the biological source of the future. PMID:26360806

  19. Uniform algal growth in photobioreactors using surface scatterers

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed S.; Pereyra, Brandon; Erickson, David

    2014-03-01

    Cultures of algae, such as cyanobacteria, are a promising source of renewable energy. However, algal growth is highly dependent on light intensity and standard photobioreactors do a poor job of distributing light uniformly for algal utilization due to shading effects in dense algal cultures. Engineered scattering schemes are already employed in current slab-waveguide technologies, like edge-lit LEDs. Stacking such slab-waveguides that uniformly distribute light could potentially yield photobioreactors to overcome the shading effect and grow extremely high densities of algal cultures that would lower monetary and energetic costs. Here, we characterize and design a scattering scheme for specific application within photobioreactors which employs a gradient distribution of surface scatterers with uniform lateral scattering intensity. This uniform scattering scheme is shown to be superior for algal cultivation.

  20. The contribution of bacteria to algal growth by carbon cycling.

    PubMed

    Bai, Xue; Lant, Paul; Pratt, Steven

    2015-04-01

    Algal mass production in open systems is often limited by the availability of inorganic carbon substrate. In this paper, we evaluate how bacterial driven carbon cycling mitigates carbon limitation in open algal culture systems. The contribution of bacteria to carbon cycling was determined by quantifying algae growth with and without supplementation of bacteria. It was found that adding heterotrophic bacteria to an open algal culture dramatically enhanced algae productivity. Increases in algal productivity due to supplementation of bacteria of 4.8 and 3.4 times were observed in two batch tests operating at two different pH values over 7 days. A kinetic model is proposed which describes carbon limited algal growth, and how the limitation could be overcome by bacterial activity to re-mineralize photosynthetic end products. PMID:25312046

  1. Algal bloom-associated disease outbreaks among users of freshwater lakes--United States, 2009-2010.

    PubMed

    Hilborn, Elizabeth D; Roberts, Virginia A; Backer, Lorraine; Deconno, Erin; Egan, Jessica S; Hyde, James B; Nicholas, David C; Wiegert, Eric J; Billing, Laurie M; Diorio, Mary; Mohr, Marika C; Hardy, Joan F; Wade, Timothy J; Yoder, Jonathan S; Hlavsa, Michele C

    2014-01-10

    Harmful algal blooms (HABs) are excessive accumulations of microscopic photosynthesizing aquatic organisms (phytoplankton) that produce biotoxins or otherwise adversely affect humans, animals, and ecosystems. HABs occur sporadically and often produce a visible algal scum on the water. This report summarizes human health data and water sampling results voluntarily reported to CDC's Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS) and the Harmful Algal Bloom-Related Illness Surveillance System (HABISS)* for the years 2009-2010. For 2009-2010, 11 waterborne disease outbreaks associated with algal blooms were reported; these HABs all occurred in freshwater lakes. The outbreaks occurred in three states and affected at least 61 persons. Health effects included dermatologic, gastrointestinal, respiratory, and neurologic signs and symptoms. These 11 HAB-associated outbreaks represented 46% of the 24 outbreaks associated with untreated recreational water reported for 2009-2010, and 79% of the 14 freshwater HAB-associated outbreaks that have been reported to CDC since 1978. Clinicians should be aware of the potential for HAB-associated illness among patients with a history of exposure to freshwater. PMID:24402467

  2. ALGAL NUTRIENT AVAILABILITY AND LIMITATION IN LAKE ONTARIO DURING IFYGL. PART III. ALGAL NUTRIENT LIMITATION IN LAKE ONTARIO DURING IFYGL

    EPA Science Inventory

    This study was conducted on the potential significance of nitrogen, phosphorus and micronutrients in limiting planktonic algal growth in Lake Ontario and its major tributaries. Standard algal assay procedures were used. Samples of the open waters of Lake Ontario and Niagara River...

  3. Modeling of polymer brush grafted nanoparticles for algal harvesting

    NASA Astrophysics Data System (ADS)

    Goins, Jason

    Microalgae derived biofuel shows great potential as a replacement to petroleum based fuels. However, industrial scale and economical production of fuel from microalgae suffer from an expensive dewatering step brought on by the organism's specific cell properties. A retrievable, paramagnetic nanoparticle polyelectrolyte brush (NPPB) has been designed as a flocculation agent to provide a low cost method in collecting algal biomass in biofuel production. In conjunction with experiment, subsequent theoretical investigations have been conducted in order to understand experimental observations and inform future design. A strategy has been implemented to provide informative descriptions for the relationship between flocculation agent parameters and dewatering efficiency. We studied the effect altering the degree of polymerization and monomer charge fraction had on the harvesting efficiency by considering flocculation as the criteria for harvesting. As the number of charges on the polymer backbone of the NPPB is increased, less NPPB concentrations are required to achieve equal harvesting efficiencies. This is a result of needing less NPPB to completely screen the effective charge on the algae surface. However, the Debye length limits the amount of charge on the algae surface one NPPB can screen. Using the free energy calculations for the complete set of pair interactions between the NPPB and the algae, we determined how many adsorbed NPPB were required in order for the force between coated algae to become attractive at some algae surface separation. This corresponded to the NPPB bridging two algae surfaces. NPPB with higher monomer charge fractions and degree of polymerizations led to a stronger bridging bond and larger bridging gap that could outweigh the algae pair repulsion. Optimized structures maximize these effects.

  4. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production

    PubMed Central

    2013-01-01

    Background Biodiesel production from oleaginous microalgae shows great potential as a promising alternative to conventional fossil fuels. Currently, most research focus on algal biomass production with autotrophic cultivation, but this cultivation strategy induces low biomass concentration and it is difficult to be used in large-scale algal biomass production. By contrast, heterotrophic algae allows higher growth rate and can accumulate higher lipid. However, the fast-growing and lipid-rich microalgae that can be cultivated in heterotrophic system for the industrial application of biodiesel production are still few. Traditional solvent extraction and gravimetric determination to detect the microalgal total lipid content is time-consuming and laborious, which has become a major limiting factor for selecting large number of algae specimens. Thus, it is critical to develop a rapid and efficient procedure for the screening of lipid-rich microalgae. Results A novel green microalga Scenedesmus sp. strain R-16 with high total lipid content was selected using the Nile red staining from eighty-eight isolates. Various carbon sources (fructose, glucose and acetate) and nitrogen sources (nitrate, urea, peptone and yeast extract) can be utilized for microalgal growth and lipid production, and the optimal carbon and nitrogen sources were glucose (10 g L-1) and nitrate (0.6 g L-1), respectively. Compared to autotrophic situation, the strain R-16 can grow well heterotrophically without light and the accumulated total lipid content and biomass reached 43.4% and 3.46 g L-1, respectively. In addition, nitrogen deficiency led to an accumulation of lipid and the total lipid content was as high as 52.6%, and it was worth noting that strain R-16 exhibited strong tolerance to high glucose (up to 100 g L-1) and a wide range of pH (4.0-11.0). Conclusions The newly developed ultrasonic-assisted Nile red method proved to be an efficient isolation procedure and was successfully used in

  5. Modeling of Biomass Plug Development and Propagation in Porous Media

    SciTech Connect

    Stewart, Terri L.; Kim, Dong-Shik

    2004-02-01

    Biomass accumulation and evolution in porous media were simulated using a combination of biofilm evolution model and a biofilm removal model. Theses models describe biomass plug development, removal, and propagation in biological applications such as microbial enhanced oil recovery, in situ bioremediation, and bio-barrier techniques. The biofilm evolution model includes the cell growth rate and exopolymer production kinetics. The biofilm removal model was used for describing the biomass plug propagation and channel breakthrough using Bingham yield stress of biofilm, which represents the stability of biofilm against shear stress. Network model was used to describe a porous medium. The network model consists of pore body and pore bond of which the sizes were determined based on the pore size distribution of ceramic cores. The pressure drop across the network is assumed to be generated from pore bonds only, and the cell growth and biomass accumulation took place in pore bonds. The simulation results showed that the biofilm models based on Bingham yield stress predicted the biomass accumulation and channel breakthrough well. The pressure oscillation (or, permeability oscillation) was also demonstrated well indicating the process of biomass accumulation and breakthrough channel formation. In addition, the effects of cell and biofilm sucrose concentration were significant on the biomass plug development and permeability reduction rates. The modeling elucidated some deficiencies in our knowledge of the biomass yield stress that enables us to predict the stability of biomass plug against shear stress.

  6. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  7. Biomass Energy Research

    SciTech Connect

    Traylor, T.D.; Pitsenbarger, J.

    1996-03-01

    Biomass Energy Research announces on a bimonthly basis the current worldwide research and development (R&D) information available on biomass power systems, alternate feedstocks from biomass, and biofuels supply options.

  8. Spectral procedures for estimating crop biomass

    SciTech Connect

    Wanjura, D.F.; Hatfield, J.L.

    1985-05-01

    Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.

  9. Oxidative Stress Is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina Strain

    PubMed Central

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels. PMID:24651514

  10. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    PubMed

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels. PMID:24651514

  11. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    PubMed Central

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  12. The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications

    PubMed Central

    Roberts, David A.; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m-2 d-1 to a maximum of 22.5 g DW m-2 d-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  13. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

    PubMed

    Roberts, David A; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  14. Harmful Algal Blooms and Public Health

    PubMed Central

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  15. Extreme Algal Bloom Detection with MERIS

    NASA Astrophysics Data System (ADS)

    Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.

    2009-05-01

    Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.

  16. Stability of alginate-immobilized algal cells

    SciTech Connect

    Dainty, A.L.; Goulding, K.H.; Robinson, P.K.; Simpkins, I; Trevan, M.D.

    1986-01-01

    Investigations were carried out using immobilized Chlorella cells to determine the diameter, compressibility, tolerance to phosphate chelation, and ability to retain algal cells during incubation of various alginate beads. These physical bead-characteristics were affected by a variety of interactive factors, including multivalent cation type (hardening agent) and cell, cation, and alginate concentration, the latter exhibiting a predominant influence. The susceptibility of alginate beads to phosphate chelation involved a complex interaction of cation type, concentration, and pH of phosphate solution. A scale of response ranging from gel swelling to gel shrinking was observed for a range of conditions. However, stable Ca alginate beads were maintained in incubation media with a pH of 5.5 and a phosphate concentration of 5 micro M. A preliminary investigation into cell leakage from the beads illustrated the importance of maintaining a stable gel structure and limiting cell growth to reduce leakage.

  17. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    PubMed

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. PMID:27151683

  18. Red algal beds increase the condition of nekto-benthic fish

    NASA Astrophysics Data System (ADS)

    Ordines, Francesc; Bauzá, Marco; Sbert, Miquel; Roca, Pilar; Gianotti, Magdalena; Massutí, Enric

    2015-01-01

    The present study analysed the effect of three different benthic habitats, the maërl, Peyssonnelia red algal beds and sandy bottoms, on the condition of two nekto-benthic fish species: Serranus cabrilla and Trigloporus lastoviza. Sampling was conducted during the MEDITS 2010 and 2011 surveys around the Balearic Islands. The condition of the spawning females of both species was determined by using i) biochemical measurements of proteins and lipids in the muscle, liver and gonads, and ii) weight at length relationships based on eviscerated, liver, and gonad weights. Moreover, based on the total weight at length relationship, the mean somatic condition (SC) of the sexually inactive individuals of S. cabrilla and males of T. lastoviza was calculated. Lipid reserves were higher in the livers of S. cabrilla and T. lastoviza from the maërl beds. Additionally, S. cabrilla showed higher lipid reserves in the gonads both in the maërl and Peyssonnelia beds. The mean weights of the liver and gonads at a given individual length revealed the same pattern as the lipids, whereas the mean eviscerated weight was higher in the maërl beds but only for S. cabrilla. A positive correlation was detected between the SC and the biomass of the algal species characterizing the maërl beds for both S. cabrilla and T. lastoviza. The high habitat quality of the red algal beds off the Balearic Islands increased the condition of nekto-benthic fish. In oligotrophic areas, such as the archipelago, these "oases" could help fish to maintain healthy populations.

  19. My Biomass, Your Biomass, Our Solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US is pursuing an array of renewable energy sources to reduce reliance on imported fossil fuels and reduce greenhouse gas emissions. Biomass energy and biomass ethanol are key components in the pursuit. The need for biomass feedstock to produce sufficient ethanol to meet any of the numerous stat...

  20. Toxicity and accumulation of selenite in four microalgae

    NASA Astrophysics Data System (ADS)

    Dazhi, Wang; Zhaodi, Cheng; Shaojing, Li; Yahui, Gao

    2003-09-01

    The toxicity and bioaccumulation of selenite in four microalgae, Spirulina platensis, Dunaliella salina, Dunaliella bardawill and Phaeodactylum tricornutum cultured in the presence of selenite were investigated. Lower concentrations of selenite were generally nontoxic and frequently stimulated algal growth, while higher concentrations of selenite inhibited algal growth. Selenite was more toxic to D. salina and D. bardawill than to S. platensis and P. Tricornutum. All algae cultured in selenite were able to incorporate Se to different degrees, which depended on algal species. The distributions of selenite among intracellular macromolecular compounds were different among algal species: most of the selenite was associated with proteins in S. platensis, D. salina and D. bardawill, while most of the selenite was associated with lipids in P. tricornutum, which reflected the physiological differences among the algae. These observations suggest that algae are able to accumulate selenite and bind it with intracellular macromolecular compounds when exposed to high concentration of selenite. This may represent a form of storage or detoxification of selenite by the algae.

  1. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale

    SciTech Connect

    Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

    2014-04-21

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  2. Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.

    PubMed

    Davis, Ryan E; Fishman, Daniel B; Frank, Edward D; Johnson, Michael C; Jones, Susanne B; Kinchin, Christopher M; Skaggs, Richard L; Venteris, Erik R; Wigmosta, Mark S

    2014-05-20

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr(-1) (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and interannual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, but economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance. PMID:24749989

  3. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment.

    PubMed

    Drexler, Ivy L C; Joustra, Caryssa; Prieto, Ana; Bair, Robert; Yeh, Daniel H

    2014-02-01

    AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification). PMID:24645547

  4. [Changes of algal communities in water body with different proportions of nitrogen and phosphorus].

    PubMed

    Sun, Ling; Jin, Xiangcan; Zhong, Yuan; Zhang, Dongmei; Zhu, Lin; Dai, Shugui; Zhuang, Yuanyi

    2006-07-01

    A simulation test was conducted in aquaria to study the responses of algal communities to different N/P ratios in urban water body. The water sample was taken from a small artificial lake in Tianjin, and its initial N/P ratio was adjusted to 0. 5:1,7.2:1, 25:1 and 50:1, respectively. The results showed that in high N/P ratio groups, the numbers of Chlorophyta species decreased, while those of Cyanophyta species didn' t change very much. The numbers of these two species were both decreased in low N/P ratio group. Algal biomass, cell density and chlorophyll a content in medium and high N groups were higher than those in control and high P groups. The mean value of chlorophyll a reached the highest (69.7 microg x L(-1)) in high N group, and was 54.3, 30.3 and 29.7 microg x L(-1) in medium N, control, and high P groups, respectively. At the mid-late stages of culture, green algae Dictyosphaerium pulchellum was dominant in high P group, while blue algae Phormidium tenue, P. corium, Lyngbya limnetica and Microcystis aeruginosa were dominated in high N/P ratio groups. Control group had the highest species richness, while medium and high N groups had the highest and lowest ecological species dominance, respectively. PMID:17044495

  5. Increasing algal biofuel production using Nannocholropsis oculata cultivated with anaerobically and aerobically treated swine wastewater.

    PubMed

    Wu, Pei-Fen; Teng, Jui-Chin; Lin, Yun-Huin; Hwang, Sz-Chwun John

    2013-04-01

    For mass production of Nannocholropsis oculata, a cheap nutrition source such as swine wastewater is required. The use of a combination of anaerobically/aerobically treated swine wastewater (AnATSW) was compared to artificial 3×f/2 medium in terms of algal growth rate and oil content. For microalgae cultured in 0-50% (v/v) AnATSW, a biomass of 0.94-3.22 g L(-1) was reached in 5 days. For microalgae cultured in 3×f/2 medium with vitamins, the lipid productivity was 0.122 g L(-1) d(-1) although its oil content reached 48.9%. Culturing N. oculata in 0-50% AnATSW resulted in an optimal lipid productivity of 0.035-0.177 g L(-1) d(-1). Only vitamins improved algal production of more oxidatively stable compositions of unsaturated oils. These oils were similar to the chemical structure of rapeseed oil based on analysis of the bis-allylic-position-equivalent value (30.64-46.13) and the iodine value (90.5-117.46). These oils were similar to coal based on the calculated low-heating-value of 17.6-22.9 MJ/kg. PMID:23422305

  6. Potential for eutrophication and nuisance algal blooms in the lower Neuse river estuary. Final report

    SciTech Connect

    Paerl, H.W.; Mallin, M.; Rudek, J.; Bates, P.W.

    1990-12-01

    Phytoplankton primary production and its environmental regulation were examined at 3 stations representative of the lower Neuse River Estuary near the Pamlico Sound interface. This study covered a 3-year period (November 1987-October 1990). The authors also examined the roles of the major phytoplankton nutrients nitrogen and phosphorus in controlling growth and bloom formation. The overall potential for nuisance blooms and associated episodes of bottom water hypoxia and anoxia was investigated in field studies. Algal biomass and production varied seasonally, with high values in summer and low values in winter. In situ nutrient addition bioassays indicated the estuary experienced a general state of N limitation with especially profound limitation during summer periods. The authors recommendations for a management strategy include reductions in Dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and suspended sediment loads in order to maintain the system in a nuisance bloom-free condition.

  7. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  8. Seasonal variations of epipelic algal community in relation to environmental factors in the Istanbul Strait (the Bosphorus), Turkey.

    PubMed

    Aktan, Y; Balkıs, N; Balkıs, N

    2014-04-15

    This study was implemented to investigate the species composition, abundance, seasonal variations and diversity of epipelic algae, to determine environmental variables affecting them and to reveal the accumulation of total organic carbon in the sediment in the coastal zone of the Istanbul Strait, Turkey. Epipelic algal community consisted of 44 taxa with a low diversity. The sediment structure which is highly unstable due to the high hydrodynamism of the zone played a dominant role as the main factor in the epipelic algal flora along the coasts of Istanbul Strait. Low TOC and high carbonate values also support this result. The dominance of cyanobacteria in some periods and, as a result of this, the record of the lowest diversity index values indicated the effect of nutrient enrichment and the risk of coastal eutrophication. High dominance of cyanobacteria may also be explicated by climate changes considering its effect in the other areas. PMID:24467854

  9. Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.

    PubMed

    Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

    2013-01-01

    This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre. PMID:23306273

  10. Airborne Monitoring of Harmful Algal Blooms over Lake Erie

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John

    2013-01-01

    The Hyperspectral Imager mounted to an aircraft was used to develop a remote sensing capability to detect the pigment Phycocyanin, an indicator of Microcystis, in low concentration as an early indicator of harmful algal bloom prediction.