Science.gov

Sample records for algal biomass chlorophyll

  1. The relative influence of local and regional environmental drivers of algal biomass (chlorophyll-a) varies by estuarine location

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa; Yu, Hao; Gazenski, Kim; Boynton, Walter

    2016-09-01

    A major question in restoring estuarine water quality is whether local actions to manage excess nutrients can be effective, given that estuaries are also responding to tidal inputs from adjacent water bodies. Several types of statistical analysis were used to examine spatially-detailed and long-term water quality monitoring data in eight sub-estuaries of Chesapeake Bay. These sub-estuaries are likely to be similar to other shallow systems with moderate to long water residence times. Statistical cluster analysis of spatial water quality data suggested that estuaries had spatially distinct water quality zones and that the peak algal biomass (as measured by chlorophyll-a) was most often controlled by local watershed inputs in all but one estuary, although mainstem inputs affected most estuaries at some times and places. An elasticity indicator that compared inter-annual changes in sub-estuaries to parallel changes in the mainstem Chesapeake Bay supported the idea that water quality in sub-estuaries was not strongly coupled to the mainstem. A cross-channel zonation of water quality observed near the mouth of estuaries suggested that Bay influences were stronger on the right side of the lower channel (looking up estuary) at times in all estuaries, and was most common in small estuaries closest to the mouth of the primary water source to the estuary. Where Bay influences were strong, estuarine water quality would be expected to be less responsive to nutrient reductions made in the local watershed. Regression analysis was used to evaluate hypothesized relationships between environmental driver variables and average chlorophyll-a (chl-a) concentrations. Chl-a values were calculated from unusually detailed levels of spatial sampling, potentially providing a more comprehensive view of system conditions than that provided by traditional sparse sampling networks. The univariate models with the best data support to explain variability in averaged chl-a concentration were those

  2. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  3. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters.

    PubMed

    Kahlert, Maria; McKie, Brendan G

    2014-11-01

    We compared conventional microscope-based methods for quantifying biomass and community composition of stream benthic algae with output obtained for these parameters from a new instrument (the BenthoTorch), which measures fluorescence of algal pigments in situ. Benthic algae were studied in 24 subarctic oligotrophic (1.7-26.9, median 7.2 μg total phosphorus L(-1)) streams in Northern Sweden. Readings for biomass of the total algal mat, quantified as chlorophyll a, did not differ significantly between the BenthoTorch (median 0.52 μg chlorophyll a cm(-2)) and the conventional method (median 0.53 μg chlorophyll a cm(-2)). However, quantification of community composition of the benthic algal mat obtained using the BenthoTorch did not match those obtained from conventional methods. The BenthoTorch indicated a dominance of diatoms, whereas microscope observations showed a fairly even distribution between diatoms, blue-green algae (mostly nitrogen-fixing) and green algae (mostly large filamentous), and also detected substantial biovolumes of red algae in some streams. These results most likely reflect differences in the exact parameters quantified by the two methods, as the BenthoTorch does not account for variability in cell size and the presence of non-chlorophyll bearing biomass in estimating the proportion of different algal groups, and does not distinguish red algal chlorophyll from that of other algal groups. Our findings suggest that the BenthoTorch has utility in quantifying biomass expressed as μg chlorophyll a cm(-2), but its output for the relative contribution of different algal groups to benthic algal biomass should be used with caution. PMID:25277172

  4. Algal biomass and primary production within a temperate zone sandstone

    SciTech Connect

    Bell, R.A.; Sommerfeld, M.R. )

    1987-02-01

    The use of dimethyl sulfoxide (DMSO) to extract chlorophyll a and {sup 14}C-labelled photosynthate from endolithic algae of sparsely vegetated, cold temperate grasslands on the Colorado Plateau in Arizona has yielded the first estimates of biomass and photosynthesis for this unusual community. These subsurface microorganisms are found widespread in exposed Coconino Sandstone, a predominant formation in this cold temperate region. The endolithic community in Coconino Sandstone, composed primarily of coccoid blue-green and coccoid/sarcinoid green algae, yielded a biomass value (as chlorophyll a content) of 87 mg m{sup {minus}2} rock surface area and a photosynthetic rate of 0.37 mg CO{sub 2} dm{sup {minus}2} hr{sup {minus}1} or 0.48 mg CO{sub 2} mg{sup {minus}1} chl a hr{sup {minus}1}. The endolithic algal community contributes moderate biomass (5-10%) and substantial photosynthesis (20-80%) to the sparse grassland ecosystem.

  5. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    NASA Astrophysics Data System (ADS)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  6. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  7. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  8. Preliminary evaluation of an in vivo fluorometer to quantify algal periphyton biomass and community composition

    USGS Publications Warehouse

    Harris, Theodore D.; Graham, Jennifer

    2015-01-01

    The bbe-Moldaenke BenthoTorch (BT) is an in vivo fluorometer designed to quantify algal biomass and community composition in benthic environments. The BT quantifies total algal biomass via chlorophyll a (Chl-a) concentration and may differentiate among cyanobacteria, green algae, and diatoms based on pigment fluorescence. To evaluate how BT measurements of periphytic algal biomass (as Chl-a) compared with an ethanol extraction laboratory analysis, we collected BT- and laboratory-measured Chl-a data from 6 stream sites in the Indian Creek basin, Johnson County, Kansas, during August and September 2012. BT-measured Chl-a concentrations were positively related to laboratory-measured concentrations (R2 = 0.47); sites with abundant filamentous algae had weaker relations (R2 = 0.27). Additionally, on a single sample date, we used the BT to determine periphyton biomass and community composition upstream and downstream from 2 wastewater treatment facilities (WWTF) that discharge into Indian Creek. We found that algal biomass increased immediately downstream from the WWTF discharge then slowly decreased as distance from the WWTF increased. Changes in periphyton community structure also occurred; however, there were discrepancies between BT- and laboratory-measured community composition data. Most notably, cyanobacteria were present at all sites based on BT measurements but were present at only one site based on laboratory-analyzed samples. Overall, we found that the BT compared reasonably well with laboratory methods for relative patterns in Chl-a but not as well with absolute Chl-aconcentrations. Future studies need to test the BT over a wider range of Chl-aconcentrations, in colored waters, and across various periphyton assemblages.

  9. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  10. Multispectral image analysis for algal biomass quantification.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2013-01-01

    This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay-free process control feedback in large-scale cultivation platforms. In this technique, three-band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large-scale operation. PMID:23554374

  11. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (chlorophyta).

    PubMed

    Kvíderová, Jana

    2010-12-01

    Three methods of algal assays--the standard assay, microassay, and the proposed fluorescence assay--are compared from the point of view of reliability of EC50 detection, the minimum required time for the detection, sensitivity of individual measurement, i.e. at which cell density the particular assay can be used for EC50 estimation, and the time stability of the EC50 values. The assays were performed with green alga Chlorella kessleri strain LARG/1 growing in potassium dichromate solution in Z-medium ranging from 0.01 to 100 mg Cr L⁻¹. The inoculation cell density was set according to the standards to 10⁴ cells mL⁻¹ and according to spectrophotometer/plate reader detection limit. The average EC50 ranged from 0.096 to 0.649 mg Cr L⁻¹ and there were no significant differences in EC50 between the assay type and the inoculation methods with the exception of the significant difference between EC(c)50₇₂ (EC50 established from biomass measured as chlorophyll a concentration after 72 h of cultivation) in the standard assay and EC(r)50 (EC50 derived from growth rate) in the microassay in the standard inoculation experiment due to low variability of their values. The EC(f)50 (EC50 derived from variable fluorescence measurement) values correspond to EC50 values derived from the growth rates. Fluorescence measurement revealed the toxic effect of the chromium after 24 h of exposure at cell density of 5 x 10⁴ cells mL⁻¹, less by half than other used assay methods. The positive correlation of EC(f)50 and time was found in the standard inoculation experiment but opposite effect was observed at the spectrophotometric one. PMID:19551890

  12. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  13. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  14. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. PMID:25704095

  15. Energy-efficient photobioreactor configuration for algal biomass production.

    PubMed

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs. PMID:23079413

  16. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function. PMID:23413190

  17. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGESBeta

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  18. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  19. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  20. Alien Marine Fishes Deplete Algal Biomass in the Eastern Mediterranean

    PubMed Central

    Sala, Enric; Kizilkaya, Zafer; Yildirim, Derya; Ballesteros, Enric

    2011-01-01

    One of the most degraded states of the Mediterranean rocky infralittoral ecosystem is a barren composed solely of bare rock and patches of crustose coralline algae. Barrens are typically created by the grazing action of large sea urchin populations. In 2008 we observed extensive areas almost devoid of erect algae, where sea urchins were rare, on the Mediterranean coast of Turkey. To determine the origin of those urchin-less ‘barrens’, we conducted a fish exclusion experiment. We found that, in the absence of fish grazing, a well-developed algal assemblage grew within three months. Underwater fish censuses and observations suggest that two alien herbivorous fish from the Red Sea (Siganus luridus and S. rivulatus) are responsible for the creation and maintenance of these benthic communities with extremely low biomass. The shift from well-developed native algal assemblages to ‘barrens’ implies a dramatic decline in biogenic habitat complexity, biodiversity and biomass. A targeted Siganus fishery could help restore the macroalgal beds of the rocky infralittoral on the Turkish coast. PMID:21364943

  1. Simplifying biodiesel production: the direct or 'in situ' transesterification of algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ‘in situ’ esterification/transesterification of algal biomass lipids to produce fatty acid methyl esters (FAME), for potential use as biodiesel, was investigated. Commercial algal biomass was employed, containing 20.9 wt percent hexane extractable oil. This consisted of 35.1 wt percent free fa...

  2. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  3. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  4. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  5. Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea.

    PubMed

    Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed. PMID:25901605

  6. Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year Sea Ice from the Lincoln Sea

    PubMed Central

    Lange, Benjamin A.; Michel, Christine; Beckers, Justin F.; Casey, J. Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed. PMID:25901605

  7. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  8. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. PMID:24880809

  9. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  10. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    PubMed

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  11. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. PMID:26705954

  12. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity. PMID:24161650

  13. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  14. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). PMID:23764593

  15. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy. PMID:23827782

  16. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  17. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds.

    PubMed

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-Del-Valle, Manuel; Vílchez, Carlos

    2016-05-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  18. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae. PMID:24599393

  19. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  20. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  1. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  2. Polyurethane and alginate immobilized algal biomass for the removal of aqueous toxic metals

    SciTech Connect

    Fry, I.V.; Mehlhorn, R.J.

    1992-12-01

    We describe the development of immobilized, processed algal biomass for use as an adsorptive filter in the removal of toxic metals from waste water. To fabricate an adsorptive filter from precessed biomass several crucial criteria must be met, including: (1) high metal binding capacity, (2) long term stability (both mechanical and chemical), (3) selectivity for metals of concern (with regard to ionic competition), (4) acceptable flow capacity (to handle large volumes in short time frames), (5) stripping/regeneration (to recycle the adsorptive filter and concentrate the toxic metals to manageable volumes). This report documents experiments with processed algal biomass (Spirulina platensis and Spirulina maxima) immobilized in either alginate gel or preformed polyurethane foam. The adsorptive characteristics of these filters were assessed with regard to the criteria listed above.

  3. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.

    PubMed

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang

    2011-01-01

    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented. PMID:20933395

  4. Responses of algal communities to gradients in herbivore biomass and water quality in Marovo Lagoon, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Albert, S.; Udy, J.; Tibbetts, I. R.

    2008-03-01

    Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.

  5. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. PMID:25539998

  6. Algal biomass conversion to bioethanol - a step-by-step assessment.

    PubMed

    Harun, Razif; Yip, Jason W S; Thiruvenkadam, Selvakumar; Ghani, Wan A W A K; Cherrington, Tamara; Danquah, Michael K

    2014-01-01

    The continuous growth in global population and the ongoing development of countries such as China and India have contributed to a rapid increase in worldwide energy demand. Fossil fuels such as oil and gas are finite resources, and their current rate of consumption cannot be sustained. This, coupled with fossil fuels' role as pollutants and their contribution to global warming, has led to increased interest in alternative sources of energy production. Bioethanol, presently produced from energy crops, is one such promising alternative future energy source and much research is underway in optimizing its production. The economic and temporal constraints that crop feedstocks pose are the main downfalls in terms of the commercial viability of bioethanol production. As an alternative to crop feedstocks, significant research efforts have been put into utilizing algal biomass as a feedstock for bioethanol production. Whilst the overall process can vary, the conversion of biomass to bioethanol usually contains the following steps: (i) pretreatment of feedstock; (ii) hydrolysis; and (iii) fermentation of bioethanol. This paper reviews different technologies utilized in the pretreatment and fermentation steps, and critically assesses their applicability to bioethanol production from algal biomass. Two different established fermentation routes, single-stage fermentation and two-stage gasification/fermentation processes, are discussed. The viability of algal biomass as an alternative feedstock has been assessed adequately, and further research optimisation must be guided toward the development of cost-effective scalable methods to produce high bioethanol yield under optimum economy. PMID:24227697

  7. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  8. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants.

    PubMed

    Fortier, Marie-Odile P; Sturm, Belinda S M

    2012-10-16

    Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited. PMID:22970803

  9. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    PubMed

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides). PMID:24632123

  10. Mixed layer variability and chlorophyll a biomass in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Narvekar, J.; Prasanna Kumar, S.

    2014-07-01

    The mixed layer is the most variable and dynamically active part of the marine environment that couples the underlying ocean to the atmosphere and plays an important role in determining the oceanic primary productivity. We examined the basin-scale processes controlling the seasonal variability of mixed layer depth in the Bay of Bengal and its association with chlorophyll using a suite of in situ as well as remote sensing data. A coupling between mixed layer depth and chlorophyll was seen during spring intermonsoon and summer monsoon, but for different reasons. In spring intermonsoon the temperature-dominated stratification and associated shallow mixed layer makes the upper waters of the Bay of Bengal nutrient depleted and oligotrophic. In summer, although the salinity-dominated stratification in the northern Bay of Bengal shallows the mixed layer, the nutrient input from adjoining rivers enhance the surface chlorophyll. This enhancement is confined only to the surface layer and with increase in depth, the chlorophyll biomass decreases rapidly due to reduction in sunlight by suspended sediment. In the south, advection of high salinity waters from the Arabian Sea and westward propagating Rossby waves from the eastern Bay of Bengal led to the formation of deep mixed layer. In contrast, in the Indo-Sri Lanka region, the shallow mixed layer and nutrient enrichment driven by upwelling and Ekman pumping resulted in chlorophyll enhancement. The mismatch between the nitrate and chlorophyll indicated the inadequacy of present data to fully unravel its coupling to mixed layer processes.

  11. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGESBeta

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  12. Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries

    SciTech Connect

    Laurens, L. M. L.; Dempster, T. A.; Jones, H. D. T.; Wolfrum, E. J.; Van Wychen, S.; McAllister, J. S. P.; Rencenberger, M.; Parchert, K. J.; Gloe, L. M.

    2012-02-21

    Algal biomass compositional analysis data form the basis of a large number of techno-economic process analysis models that are used to investigate and compare different processes in algal biofuels production. However, the analytical methods used to generate these data are far from standardized. This work investigated the applicability of common methods for rapid chemical analysis of biomass samples with respect to accuracy and precision. This study measured lipids, protein, carbohydrates, ash, and moisture of a single algal biomass sample at 3 institutions by 8 independent researchers over 12 separate workdays. Results show statistically significant differences in the results from a given analytical method among laboratories but not between analysts at individual laboratories, suggesting consistent training is a critical issue for empirical analytical methods. Significantly different results from multiple lipid and protein measurements were found to be due to different measurement chemistries. We identified a set of compositional analysis procedures that are in best agreement with data obtained by more advanced analytical procedures. The methods described here and used for the round robin experiment do not require specialized instrumentation, and with detailed analytical documentation, the differences between laboratories can be markedly reduced.

  13. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  14. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. PMID:24874875

  15. Advances in direct transesterification of algal oils from wet biomass.

    PubMed

    Park, Ji-Yeon; Park, Min S; Lee, Young-Chul; Yang, Ji-Won

    2015-05-01

    An interest in biodiesel as an alternative fuel for diesel engines has been increasing because of the issue of petroleum depletion and environmental concerns related to massive carbon dioxide emissions. Researchers are strongly driven to pursue the next generation of vegetable oil-based biodiesel. Oleaginous microalgae are considered to be a promising alternative oil source. To commercialize microalgal biodiesel, cost reductions in oil extraction and downstream biodiesel conversion are stressed. Herein, starting from an investigation of oil extraction from wet microalgae, a review is conducted of transesterification using enzymes, homogeneous and heterogeneous catalysts, and yield enhancement by ultrasound, microwave, and supercritical process. In particular, there is a focus on direct transesterification as a simple and energy efficient process that omits a separate oil extraction step and utilizes wet microalgal biomass; however, it is still necessary to consider issues such as the purification of microalgal oils and upgrading of biodiesel properties. PMID:25466997

  16. Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth

    NASA Astrophysics Data System (ADS)

    Lirman, D.

    2001-05-01

    Recent declines in coral abundance accompanied by increases in macroalgal cover on Florida reefs highlight the importance of competition for space between these groups. This paper documents the frequency of coral-algal interactions on the Northern Florida Reef Tract and evaluates the effects of grazer exclusions and experimental algal addition on growth and tissue mortality of three coral species, Siderastrea siderea, Porites astreoides, and Montastraea faveolata. The frequency of interactions between corals and macroalgae was high as more than 50% of the basal perimeter of colonies was in contact with macroalgae; turf forms, Halimeda spp., and Dictyota spp. were the most common groups in contact with corals. Decreased grazing pressure resulted in significant increases in algal biomass within cages, and caged corals showed species-specific susceptibility to increased algal biomass. While no effects were detected for S. siderea, significant decreases in growth rates were documented for caged P. astreoides which had growth rates three to four times lower than uncaged colonies. When an algal addition treatment was included to duplicate maximum algal biomass levels documented for reefs in the area, colonies of P. astreoides in the algal addition treatment had growth rates up to ten times lower than uncaged colonies. High susceptibility to algal overgrowth was also found for the reef-building coral M. faveolata, which experienced significant tissue mortality under both uncaged (5.2% decrease in live tissue area per month) and caged (10.2% per month) conditions. The documented effects of increased algal biomass on coral growth and tissue mortality suggest a potential threat for the long-term survivorship and growth of corals in the Florida Reef Tract if present rates of algal growth and space utilization are maintained.

  17. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.

    PubMed

    Maurya, Rahulkumar; Paliwal, Chetan; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Tonmoy; Satpati, Gour Gopal; Pal, Ruma; Ghosh, Arup; Mishra, Sandhya

    2016-05-01

    The present study demonstrates the utilization of the algal hydrolysate (AH) prepared from lipid extracted residual harmful bloom-forming cyanobacteria Lyngbya majuscula biomass, as a growth supplement for the cultivation of green microalgae Chlorella vulgaris. BG-11 replacements with AH in different proportions significantly affects the cell count, dry cell weight (DCW), biomass productivity (BP) and pigments concentration. Among all, 25% AH substitution in BG11 media was found to be optimum which enhanced DCW, BP and pigments content by 39.13%, 40.81% and 129.47%, respectively, compared to control. The lipid content (31.95%) was also significantly higher in the 25% AH replacement. The volumetric productivity of neutral lipids (ideal for biodiesel) and total protein content of the cells significantly increased in all AH substitutions. Thus, lipid extracted microalgal biomass residue (LMBR) hydrolysate can be a potential growth stimulating supplement for oleaginous microalgae C. vulgaris. PMID:26890794

  18. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass.

    PubMed

    O'Neil, Gregory W; Williams, John R; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M

    2016-01-01

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product. PMID:27404113

  19. Pitfalls, artefacts and open questions in chlorophyll thermoluminescence of leaves or algal cells.

    PubMed

    Ducruet, Jean-Marc

    2013-07-01

    Thermoluminescence of intact photosynthetic organisms, leaves or algal cells, raises specific problems. The constitutive S2/3Q B (-) B bands constitute major probes of the state of photosystem II in vivo. The presence of a dark-stable acidic lumen causes a temperature downshift of B bands, specially the S3 B band, providing a lumen pH indicator. This is accompanied by a broadening of the S3 B band that becomes an envelope of elementary B bands. The occasional AT, Q and C bands are briefly examined in an in vivo context. It is emphasized that freezing below the nucleation temperature is not necessary for physiological studies, but a source of artefacts, hence should be avoided. In intact photosynthetic structures, a dark-electron transfer from stroma reductants to the quinonic acceptors of photosystem II via the cyclic/chlororespiratory pathways, strongly stimulated by moderate warming, gives rise to the afterglow (AG) luminescence emission that reflects chloroplast energy status. The decomposition of complex TL signals into elementary bands is necessary to determine the maximum temperature T m and the area of each of them. A comparison of TL signals after 1 flash and 2 flashes prevents from confusing the three main bands observed in vivo, i.e. the S2 and S3 B bands and the AG band. Finally, the thermoluminescence bands arising sometimes above 50 °C are mentioned. The basic principles of (thermo)luminescence established on isolated thylakoids should not be applied directly without a careful examination of in vivo conditions. PMID:23720191

  20. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis.

    PubMed

    Vardon, Derek R; Sharma, Brajendra K; Blazina, Grant V; Rajagopalan, Kishore; Strathmann, Timothy J

    2012-04-01

    Thermochemical conversion is a promising route for recovering energy from algal biomass. Two thermochemical processes, hydrothermal liquefaction (HTL: 300 °C and 10-12 MPa) and slow pyrolysis (heated to 450 °C at a rate of 50 °C/min), were used to produce bio-oils from Scenedesmus (raw and defatted) and Spirulina biomass that were compared against Illinois shale oil. Although both thermochemical conversion routes produced energy dense bio-oil (35-37 MJ/kg) that approached shale oil (41 MJ/kg), bio-oil yields (24-45%) and physico-chemical characteristics were highly influenced by conversion route and feedstock selection. Sharp differences were observed in the mean bio-oil molecular weight (pyrolysis 280-360 Da; HTL 700-1330 Da) and the percentage of low boiling compounds (bp<400 °C) (pyrolysis 62-66%; HTL 45-54%). Analysis of the energy consumption ratio (ECR) also revealed that for wet algal biomass (80% moisture content), HTL is more favorable (ECR 0.44-0.63) than pyrolysis (ECR 0.92-1.24) due to required water volatilization in the latter technique. PMID:22285293

  1. Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes

    SciTech Connect

    Kirkwood, A.E.; Chow-Fraser, P.; Mierle, G.

    1999-03-01

    This study focused on the seasonal dynamics of total Hg in the phytoplankton (living and dead) of two dystrophic shield lakes (Mouse and Ranger). Phytoplankton samples were taken from metalimnetic and hypolimnetic depths in the euphotic zone and were collected and analyzed using ultraclean techniques. In both lakes, phytoplankton Hg (PHYTO-Hg) levels (pg/L) in the metalimnion did not significantly change among dates over the season, although Ranger Lake exhibited significant differences between Hg values measured at the beginning and end of the season. In contrast, PHYTO-Hg significantly increased in the hypolimnia of both lakes by the end of the season. Combined influences of external Hg inputs, remineralization, phytoplankton sedimentation, and increased methylmercury production in the hypolimnia over the season may have contributed to these trends. A highly significant positive relationship existed between PHYTO-Hg levels and whole-water Hg levels, and the mean bioconcentration factor for Hg between the water column and phytoplankton was significantly higher in the hypolimnion compared to the metalimnion for both lakes. In most cases, parameters associated with algal biomass had significant positive correlations with PHYTO-Hg levels. Weight-specific PHYTO-Hg (pg/mg dry weight) varied significantly over the season, and there were interlake differences with respect to season trends. On the basis of these results, the authors recommend that the future sampling regimes include collection of phytoplankton at different limnetic depths through the season to account for spatial and temporal variations. Weight specific Hg levels in phytoplankton could not be explained well by the parameters tested, and the only significant regressions were with parameters reflecting algal biomass. This study provides in situ evidence of Hg accumulation in lake phytoplankton as a function of algal biomass on a seasonal basis and stresses the need to confirm these trends in other lake

  2. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.

    PubMed

    Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus

    2016-01-01

    The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile. PMID:26514623

  3. Implications of nutrient removal and biomass production by native and augmented algal populations at a municipal wastewater treatment plant.

    PubMed

    Drexler, Ivy L C; Bekaan, Sascha; Eskandari, Yasmin; Yeh, Daniel H

    2014-01-01

    Algal monocultures (Chlorella sorokiniana and Botryococcus braunii) and algal communities native to clarifiers of a wastewater treatment plant were batch cultivated in (1) clarified effluent following a biochemical oxygen demand (BOD) removal reactor post-BOD removal clarified effluent (PBCE), (2) clarified effluent following a nitrification reactor post-nitrification clarified effluent (PNCE), and (3) a reference media (RM). After 12 days, all algal species achieved nitrogen removal between 68 and 82% in PBCE and 37 and 99% in PNCE, and phosphorus removal between 91 and 100% in PBCE and 60 and 100% in PNCE. The pH of the wastewater samples increased above 9.8 after cultivation of each species, which likely aided ammonia volatilization and phosphorus adsorption. Both monocultures grew readily with wastewater as a feedstock, but B. braunii experienced significant crowding from endemic fauna. In most cases, native algal species' nutrient removal efficiency was competitive with augmented algal monocultures, and in some cases achieved a higher biomass yield, demonstrating the potential to utilize native species for nutrient polishing and algal biomass production. PMID:25325538

  4. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.

    PubMed

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E

    2015-08-01

    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors. PMID:25895091

  5. A bio-anodic filter facilitated entrapment, decomposition and in situ oxidation of algal biomass in wastewater effluent.

    PubMed

    Mohammadi Khalfbadam, Hassan; Cheng, Ka Yu; Sarukkalige, Ranjan; Kaksonen, Anna H; Kayaalp, Ahmet S; Ginige, Maneesha P

    2016-09-01

    This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step. PMID:27268438

  6. Cost structures and life cycle impacts of algal biomass and biofuel production

    NASA Astrophysics Data System (ADS)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  7. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  8. One-pot conversions of lignocellulosic and algal biomass into liquid fuels.

    PubMed

    De, Sudipta; Dutta, Saikat; Saha, Basudeb

    2012-09-01

    The one-pot conversion of lignocellulosic and algal biomass into a liquid fuel, 2,5-dimethylfuran (DMF), has been achieved by using a multicomponent catalytic system comprising [DMA]⁺ [CH₃SO₃]⁻ (DMA=N,N-dimethylacetamide), Ru/C, and formic acid. The synthesis of DMF from all substrates was carried out under mild reaction conditions. The reaction progressed via 5-hydroxyemthylfurfural (HMF) in the first step followed by hydrogenation and hydrogenolysis of HMF with the Ru/C catalyst and formic acid as a hydrogen source. This report discloses the effectiveness of the Ru/C catalyst for the first time for DMF synthesis from inexpensive and readily abundant biomass sources, which gives a maximum yield of 32 % DMF in 1 h. A reaction route involving 5-(formyloxymethyl)furfural (FMF) as an intermediate has been elucidated based on the ¹H and ¹³C NMR spectroscopic data. Another promising biofuel, 5-ethoxymethylfurfural (EMF), was also synthesized with high selectivity from polymeric carbohydrate-rich biomass substrates by using a Brønsted acidic ionic liquid catalyst, that is [DMA]⁺ [CH₃SO₃]⁻, by etherification of HMF in ethanol. PMID:22639414

  9. A strategy for urban outdoor production of high-concentration algal biomass for green biorefining.

    PubMed

    Lim, Chun Yong; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-05-01

    The present study was to investigate the feasibility of carrying out effective microalgae cultivation and high-rate tertiary wastewater treatment simultaneously in a vertical sequencing batch photobioreactor with small areal footprint, suitable for sustainable urban microalgae production. For 15 consecutive days, Chlorella sorokiniana was cultivated in synthetic wastewater under various trophic conditions. A cycle of 12-h heterotrophic: 12-h mixotrophic condition produced 0.98 g l(-1) d(-1) of algal biomass in tandem with a 94.7% removal of 254.4 mg l(-1) C-acetate, a 100% removal of 84.7 mg l(-1) N-NH4 and a removal of 15.0 mg l(-1) P-PO4. The cells were harvested via cost-effective chitosan flocculation with multiple dosing (3 times) applying established chitosan:cell ratio (1:300 w/w) and pH control (6.3-6.8). Reproducible flocculation efficiencies of greater than 99% and high-concentration algal broths (>20% solids) were achieved. PMID:23186659

  10. Stimulation of commercial algal biomass production by the use of geothermal water for temperature control

    SciTech Connect

    Bedell, G.W.

    1985-01-01

    The first pilot algal biomass production project to use geothermal water for the maintenance of optimal culture temperatures in Nevada is described. The project was initiated during the fall of 1982 by TAD's Enterprises, Inc., Wabuska (near Yerington), Nevada. The facility was designed to produce Spirulina under conditions that would more than meet the requirements of the United States Food and Drug Administration for sale to the health food market. As a result, the algae were grown in large plastic bags in order to prevent contamination by extraneous organisms. Although this system has not been tuned to its optimum potential, preliminary yields obtained over most of a year indicate not only the feasibility of the project but also a stimulation of daily output yields when compared to the daily growth yields for Spirulina reported by Israel.

  11. Plasticizer and surfactant formation from food-waste- and algal biomass-derived lipids.

    PubMed

    Pleissner, Daniel; Lau, Kin Yan; Zhang, Chengwu; Lin, Carol Sze Ki

    2015-05-22

    The potential of lipids derived from food-waste and algal biomass (produced from food-waste hydrolysate) for the formation of plasticizers and surfactants is investigated herein. Plasticizers were formed by epoxidation of double bonds of methylated unsaturated fatty acids with in situ generated peroxoformic acid. Assuming that all unsaturated fatty acids are convertible, 0.35 and 0.40 g of plasticizer can be obtained from 1 g of crude algae- or food-waste-derived lipids, respectively. Surfactants were formed by transesterification of saturated and epoxidized fatty acid methyl esters (FAMEs) with polyglycerol. The addition of polyglycerol would result in a complete conversion of saturated and epoxidized FAMEs to fatty acid polyglycerol esters. This study successfully demonstrates the conversion of food-waste into value-added chemicals using simple and conventional chemical reactions. PMID:25425530

  12. Biofertilizers from Algal Treatment of Dairy and Swine Manure Effluents: Characterization of Algal Biomass as a Slow Release Fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative practice to land spreading of manure effluents is to grow crops of algae on the nitrogen (N) and phosphorus (P) present in these liquid slurries. The overall environmental and economic values of this approach depend, in part, on the use and value of the resulting algal byproduct. Am...

  13. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. PMID:25935388

  14. Catchment and in-stream influences on iron-deposit chemistry, algal-bacterial biomass and invertebrate richness in upland streams, Northern Ireland.

    NASA Astrophysics Data System (ADS)

    Macintosh, Katrina Ann; Griffiths, David

    2013-04-01

    The density and composition of upland stream bed iron-deposits is affected by physical, chemical and biological processes. The basic chemical processes producing ochre deposits are well known. Mobilisation of iron and manganese is influenced by bedrock weathering, the presence of acidic and/or reducing conditions and the concentration of dissolved organic carbon. Ferromanganese-depositing bacteria are significant biogenic agents and can cause/enhance the deposition of metals in streams as (hydr)oxides. Metal concentrations from stream waters in two geological blocks in Northern Ireland were compared to determine the contributions of catchment characteristics and in-stream conditions. One block is composed of metamorphosed schist and unconsolidated glacial drift, with peat or peaty podzol (mainly humic) soils, while the other block consists of tertiary basalt with brown earth and gley soils. Water samples were collected from 52 stream sites and analysed for iron, manganese and aluminium as well as a range of other chemical determinands known to affect metal solubility. Stone deposit material was analysed for metal concentrations, organic matter content and epilithic algae, chlorophyll a concentration. Invertebrates were collected by area-standardised kick samples and animals identified to family and numbers counted. Higher conductivities and concentrations of bicarbonate, alkalinity, calcium and magnesium occurred on basalt than on schist. Despite higher iron and manganese oxide concentrations in basalt-derived non-humic soils, stream water concentrations were much lower and stone deposit concentrations only one third of those occurring on schist overlain by humic soils. Peat-generated acidity and the limited acid neutralising capacity of base-poor metamorphosed schist has resulted in elevated concentrations of metals and ochre deposit in surface waters. Algal biomass was determined by catchment level factors whereas in-stream conditions affected bacterial biomass

  15. The relationship between sea ice break-up, water mass variation, chlorophyll biomass, and sedimentation in the northern Bering Sea

    NASA Astrophysics Data System (ADS)

    Cooper, L. W.; Janout, M. A.; Frey, K. E.; Pirtle-Levy, R.; Guarinello, M. L.; Grebmeier, J. M.; Lovvorn, J. R.

    2012-06-01

    The northern Bering Sea shelf is dominated by soft-bottom infauna and ecologically significant epifauna that are matched by few other marine ecosystems in biomass. The likely basis for this high benthic biomass is the intense spring bloom, but few studies have followed the direct sedimentation of organic material during the bloom peak in May. Satellite imagery, water column chlorophyll concentrations and surface sediment chlorophyll inventories were used to document the dynamics of sedimentation to the sea floor in both 2006 and 2007, as well as to compare to existing data from the spring bloom in 1994. An atmospherically-derived radionuclide, 7Be, that is deposited in surface sediments as ice cover retreats was used to supplement these observations, as were studies of light penetration and nutrient depletion in the water column as the bloom progressed. Chlorophyll biomass as sea ice melted differed significantly among the three years studied (1994, 2006, 2007). The lowest chlorophyll biomass was observed in 2006, after strong northerly and easterly winds had distributed relatively low nutrient water from near the Alaskan coast westward across the shelf prior to ice retreat. By contrast, in 1994 and 2007, northerly winds had less northeasterly vectors prior to sea ice retreat, which reduced the westward extent of low-nutrient waters across the shelf. Additional possible impacts on chlorophyll biomass include the timing of sea-ice retreat in 1994 and 2007, which occurred several weeks earlier than in 2006 in waters with the highest nutrient content. Late winter brine formation and associated water column mixing may also have impacts on productivity that have not been previously recognized. These observations suggest that interconnected complexities will prevent straightforward predictions of the influence of earlier ice retreat in the northern Bering Sea upon water column productivity and any resulting benthic ecosystem re-structuring as seasonal sea ice retreats in

  16. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel. PMID:25588528

  17. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed. PMID:18465872

  18. Using Algal Metrics and Biomass to Evaluate Multiple Ways of Defining Concentration-Based Nutrient Criteria in Streams and their Ecological Relevance

    EPA Science Inventory

    We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to cha...

  19. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater.

    PubMed

    Cho, Dae-Hyun; Ramanan, Rishiram; Heo, Jina; Kang, Zion; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Kim, Hee-Sik

    2015-09-01

    Algae based wastewater treatment coupled to biofuel production has financial benefits and practical difficulties. This study evaluated the factors influencing diversity and growth of indigenous algal consortium cultivated on untreated municipal wastewater in a high rate algal pond (HRAP) for a period of 1 year using multivariate statistics. Diversity analyses revealed the presence of Chlorophyta, Cyanophyta and Bacillariophyta. Dominant microalgal genera by biovolume in various seasons were Scenedesmus sp., Microcystis sp., and Chlorella sp. Scenedesmus sp., persisted throughout the year but none of three strains co-dominated with the other. The most significant factors affecting genus dominance were temperature, inflow cyanophyta and organic carbon concentration. Cyanophyta concentration affected microalgal biomass and diversity, whereas temperature impacted biomass. Preferred diversity of microalgae is not sustained in wastewater systems but is obligatory for biofuel production. This study serves as a guideline to sustain desired microalgal consortium in wastewater treatment plants for biofuel production. PMID:25746593

  20. Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell.

    PubMed

    He, Huanhuan; Zhou, Minghua; Yang, Jie; Hu, Youshuang; Zhao, Yingying

    2014-05-01

    A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 10(6) cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m(3) and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C. PMID:24057921

  1. Effect of constant magnetic field on anaerobic digestion of algal biomass.

    PubMed

    Dębowski, Marcin; Zieliński, Marcin; Kisielewska, Marta; Hajduk, Anna

    2016-07-01

    The aim of the study was to determine the impact of the constant magnetic field (CMF) application on the effectiveness of anaerobic digestion of algal biomass. The highest yield of biogas in the range of 448.9 L/kg volatile solids (VS) to 456.6 L/kg VS was observed in the variants, in which the retention time in the CMF-exposed area ranged from 144 to 216 min/d. Under these conditions, the concentration of methane in the biogas was nearly 65.0%. The increase in the contact time of the fermentation medium with the CMF-exposed area had a significant impact of reducing the effectiveness of anaerobic digestion. The lowest biodegradation was observed when the retention time was 432 min/d. Under such condition, 281.1 L of biogas/kg VS with methane content of 41.8% was obtained. A correlation between the time of exposure to CMF and the values of parameters characterizing the methane production was found. PMID:26672642

  2. Neonatal lamb vigour is improved by feeding docosahexaenoic acid in the form of algal biomass during late gestation.

    PubMed

    Pickard, R M; Beard, A P; Seal, C J; Edwards, S A

    2008-08-01

    To determine whether feeding a sustainable, algal source of docosahexaenoic acid (DHA) to sheep during late pregnancy would improve neonatal lamb vigour, 48 English mule ewes, of known conception date, were divided into four treatment groups. For the last 9 weeks of gestation, ewes received one of two dietary supplements: either a DHA-rich algal biomass providing 12 g DHA/ewe per day, or a control supplement based on vegetable oil. The four dietary treatment groups (n = 12) were: control supplement for the duration of the trial (C), DHA supplement from 9 to 6 weeks before parturition (3 week), DHA supplement from 9 to 3 weeks before parturition (6 week) and DHA supplement for the duration of the trial (9 week). Dietary supplements were fed alongside grass silage and commercial concentrate. There was a tendency for gestation length to be extended with increased duration of DHA supplementation (P = 0.08). After parturition, the concentrations of eicosapentaenoic acid (EPA) and DHA in ewe and lamb plasma and colostrum were elevated in line with increased periods of DHA supplementation. Lambs from the 6-week and 9-week groups stood significantly sooner after birth than lambs from the C group (P < 0.05). These data show that neonatal vigour may be improved by the supplementation of maternal diets with DHA-rich algal biomass and that this beneficial effect depends upon the timing and/or duration of DHA allocation. PMID:22443731

  3. Size-fractionated Chlorophyll a biomass in the northern South China Sea in summer 2014

    NASA Astrophysics Data System (ADS)

    Liu, Haijiao; Xue, Bing; Feng, Yuanyuan; Zhang, Rui; Chen, Mianrun; Sun, Jun

    2015-11-01

    Spatial distribution of phaeopigment and size-fractionated chlorophyll a (Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea (NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 µg/L with a mean value of 0.259±0.247 (mean±standard deviation) µg/L. Chl a concentration was generally higher in shallow water (<200 m) than in deep water (>200 m), with mean values of 0.364±0.311 µg/L and 0.206±0.192 µg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30-50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations (SEATS and J4) were determined, with values of pico- (0.7-2 µm), nano- (2-20 µm) and micro-plankton (20-200 µm) ranging from 0.001-0.287 (0.093±0.071 µg/L), 0.004-1.149 (0.148±0.192 µg/L) and 0.001-0.208 (0.023±0.036 µg/L), respectively. Phaeopigment concentrations were determined at specific depths at ten stations, except for at station A9, and varied from 0.007 to 0.572 (0.127±0.164) µg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Different sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters (30-50 m). The summer monsoon, Kuroshio waters, Zhujiang (Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS.

  4. Size-fractionated Chlorophyll a biomass in the northern South China Sea in summer 2014

    NASA Astrophysics Data System (ADS)

    Liu, Haijiao; Xue, Bing; Feng, Yuanyuan; Zhang, Rui; Chen, Mianrun; Sun, Jun

    2016-07-01

    Spatial distribution of phaeopigment and size-fractionated chlorophyll a (Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea (NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 µg/L with a mean value of 0.259±0.247 (mean±standard deviation) µg/L. Chl a concentration was generally higher in shallow water (<200 m) than in deep water (>200 m), with mean values of 0.364±0.311 µg/L and 0.206±0.192 µg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30-50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations (SEATS and J4) were determined, with values of pico- (0.7-2 µm), nano- (2-20 µm) and micro-plankton (20-200 µm) ranging from 0.001-0.287 (0.093±0.071 µg/L), 0.004-1.149 (0.148±0.192 µg/L) and 0.001-0.208 (0.023±0.036 µg/L), respectively. Phaeopigment concentrations were determined at specific depths at ten stations, except for at station A9, and varied from 0.007 to 0.572 (0.127±0.164) µg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Different sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters (30-50 m). The summer monsoon, Kuroshio waters, Zhujiang (Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS.

  5. Recovering Magnetic Fe3O4-ZnO Nanocomposites from Algal Biomass Based on Hydrophobicity Shift under UV Irradiation.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Zhang, Wen; Kuang, Liyuan; Wu, Zhiyi; Wang, Xianqin

    2015-06-01

    Magnetic separation, one of the promising bioseparation technologies, faces the challenges in recovery and reuse of magnetic agents during algal harvesting for biofuel extraction. This study synthesized a steric acid (SA)-coated Fe3O4-ZnO nanocomposite that could shift hydrophobicity under UV365 irradiation. Our results showed that with the transition of surface hydrophobicity under UV365 irradiation, magnetic nanocomposites detached from the concentrated algal biomass. The detachment was partially induced by the oxidation of SA coating layers due to the generation of radicals (e.g., •OH) by ZnO under UV365 illumination. Consequently, the nanocomposite surface shifted from hydrophobic to hydrophilic, which significantly reduced the adhesion between magnetic particles and algae as predicted by the extended Derjaguin and Landau, Verwey, and Overbeek (EDLVO) theory. Such unique hydrophobicity shift may also find many other potential applications that require recovery, recycle, and reuse of valuable nanomaterials to increase sustainability and economically viability. PMID:25965291

  6. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery. PMID:26808018

  7. Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Poulton, Alex J.; Holligan, Patrick M.; Hickman, Anna; Kim, Young-Nam; Adey, Tim R.; Stinchcombe, Mark C.; Holeton, Claire; Root, Sarah; Woodward, E. Malcolm S.

    2006-07-01

    We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll- a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003-04. Surface rates of carbon fixation ranged from <0.2-mmol C m -3 d -1 in the subtropical gyres to 0.2-0.5-mmol C m -3 d -1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll- a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50-70%) and chlorophyll- a (80-90%), nanoplankton (>2-μm) contributions to total carbon fixation (30-50%) were higher than to total chlorophyll- a (10-20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70-90%) and chlorophyll- a (70-90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2-3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll- a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.

  8. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE PAGESBeta

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  9. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus.

    PubMed

    Kawaguchi, H; Hashimoto, K; Hirata, K; Miyamoto, K

    2001-01-01

    To produce hydrogen from starch accumulated in an algal biomass, we used a mixed culture of the lactic acid bacterium, Lactobacillus amylovorus, and the photosynthetic bacterium, Rhodobium marinum A-501. In this system L. amylovorus, which possesses amylase activity, utilized algal starch for lactic acid production, and R. marinum A-501 produced hydrogen in the presence of light using lactic acid as an electron donor. Algal starch accumulated in the marine green alga Dunaliella tertiolecta, and the freshwater green alga Chlamydomonas reinhardtii, was more suitable for lactic acid fermentation by L. amylovorus than an authentic starch sample. Consequently, the yields of hydrogen obtained from starch contained in D. tertiolecta and C. reinhardtii were 61% and 52%, respectively, in the mixed culture of L. amylovorus and R. marinum A-501. These values were markedly superior to those obtained using a mixed culture of Vibrio fluvialis T-522 and R. marinum A-501 described previously. The yield and production rate of hydrogen by R. marinum A-501 from the lactic acid fermentates were higher than from authentic lactic acid, suggesting that the fermentates contain a factor(s) which promotes H2 production by this bacterium. PMID:16232989

  10. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    PubMed

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply. PMID:25459840

  11. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations

    NASA Astrophysics Data System (ADS)

    Bosc, E.; Bricaud, A.; Antoine, D.

    2004-03-01

    Because the Mediterranean has been subject for several decades to increasing anthropogenic influences, monitoring algal biomass and primary production on a long-term basis is required to detect possible modifications in the biogeochemical equilibrium of the basin. This work was initiated thanks to a 4-year-long time series of SeaWiFS observations. Seasonal variations of algal biomass (estimated using a previously developed regional algorithm) and primary production were analyzed for the various regions, and compared with those estimated using the CZCS sensor (1978-1986). Also, interannual variations could be assessed for the first time. The seasonal cycles of algal biomass generally reveal a maximum in winter or spring, and a minimum in summer. Some conspicuous differences with CZCS observations (e.g., in the Northwest Basin, reduction of the deep convection zone, earlier start of the spring bloom, quasi-absence of the vernal bloom) likely result from environmental changes. Interannual variations in algal biomass are noticeable all over the basin, including in the very oligotrophic waters of the Eastern Basin. The seasonal evolution of primary production is predominantly influenced by that of algal biomass in the Western Basin (with, in particular, a spring maximum). In the Eastern Basin, the seasonal courses of PAR and biomass tend to compensate each other, and primary production varies weakly along the year. The annual values computed over the 1998-2001 period for the Western Basin (163 ± 7 gC m-2 yr-1) and the Eastern Basin (121 ± 5 gC m-2 yr-1) are lower (by 17 and 12%, respectively) than those previously derived (using the same light-photosynthesis model) from CZCS data.

  12. Selective recovery of gold and other metal ions from an algal biomass

    SciTech Connect

    Darnall, D.W.; Greene, B.; Henzl, M.T.; Hosea, J.M.; McPherson, R.A.; Sneddon, J.; Alexander, M.D.

    1986-02-01

    The authors observed that the pH dependence of the binding of Au/sup 3 +/, Ag/sup +/, and Hg/sup 2 +/ to the algae Chlorella vulgaris is different than the binding of other metal ions. Between pH 5 and 7, a variety of metal ions bind strongly to the cell surface. Most of these algal-bound metal ions can be selectively desorbed by lowering the pH to 2; however, Au/sup 3 +/, Hg/sup 2 +/, and Ag/sup +/ are all bound strongly at pH 2. Addition of a strong ligand at different pHs is required to elute these ions from the algal surface. Algal-bound gold and mercury can be selectively eluted by using mercaptoethanol. An elution scheme is demonstrated for the binding and selective recovery of Cu/sup 2 +/, Zn/sup 2 +/, Au/sup 3 +/, and Hg/sup 2 +/ from an equimolar mixture. 20 references, 2 figures.

  13. Treatment of Dairy and Swine Manure Effluents Using Freshwater Algae: Fatty Acid Content and Composition of Algal Biomass at Different Manure Loading Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative to land spreading of manure effluents is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to determine how fatty acid (FA) content and composition of algae respond to changes in the type of manu...

  14. Measuring the Composition and Stable-Isotope Labeling of Algal Biomass Carbohydrates via Gas Chromatography/Mass Spectrometry.

    PubMed

    McConnell, Brian O; Antoniewicz, Maciek R

    2016-05-01

    We have developed a method to measure carbohydrate composition and stable-isotope labeling in algal biomass using gas chromatography/mass spectrometry (GC/MS). The method consists of two-stage hydrochloric acid hydrolysis, followed by chemical derivatization of the released monomer sugars and quantification by GC/MS. Fully (13)C-labeled sugars are used as internal standards for composition analysis. This convenient, reliable, and accurate single-platform workflow offers advantages over existing methods and opens new opportunities to study carbohydrate metabolism of algae under autotrophic, mixotrophic, and heterotrophic conditions using metabolic flux analysis and isotopic tracers such as (2)H2O and (13)C-glucose. PMID:27042946

  15. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.

    PubMed

    Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

    2014-02-01

    Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH₃-N, TN, COD, and PO₄-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study. PMID:24203276

  16. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

    PubMed

    Laurens, Lieve M L; Van Wychen, Stefanie; McAllister, Jordan P; Arrowsmith, Sarah; Dempster, Thomas A; McGowen, John; Pienkos, Philip T

    2014-05-01

    Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently. PMID:24556245

  17. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  18. Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean bio...

  19. Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial isochrysis algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean bio...

  20. Characterization of habitats based on algal periphyton biomass in the upper Paraná River floodplain, Brazil.

    PubMed

    Leandrini, Ja; Fonseca, Ia; Rodrigues, L

    2008-08-01

    Considering the relevant role played by the hydrological regime on the structure and functioning of floodplains, this study aims at characterizing different types of aquatic environments according to periphyton biomass and evaluating the influence of the fluviometric levels of the Paraná River and other forcing functions upon the periphytic community. Periphyton (chlorophyll a) was analyzed in 28 habitats, during the years 2000 and 2001, in high and low water seasons. Both years were characterized by lacking the characteristic high water season. The Principal Components Analysis revealed two groups. The first component was positively associated with hydrometric level, electric conductivity, pH and transparency, and negatively with total nitrogen and total phosphorus, dissolved organic carbon and turbidity. The second component separated the habitats of Paraná River in the period of low waters from other environments, mainly for hydrometric level and high transparency values. Periphytic biomass of the habitats demonstrated that the maintenance of the functional integrity of the Upper Paraná River floodplain is closely related to its hydrologic cycle. PMID:18833470

  1. Evaluation of the performance of HPLC CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium)

    NASA Astrophysics Data System (ADS)

    Lionard, Marie; Muylaert, Koenraad; Tackx, Michèle; Vyverman, Wim

    2008-03-01

    In the upper Schelde estuary in 2002, phytoplankton biomass and community composition were studied using microscopic and pigment analyses. Chlorophyll a concentration was a good predictor of phytoplankton biomass estimated from cell counts and biovolume measurements. The phytoplankton carbon to chlorophyll a ratio, however, was often unrealistically low (<10). CHEMTAX was used to estimate the contribution of the major algal groups to total chlorophyll a. The dominant algal groups were diatoms and chlorophytes. While diatom equivalents in chlorophyll a predicted diatom biomass relatively well, chlorophyte equivalents in chlorophyll a were only weakly related to chlorophyte biomass. The pigment-based approach to study phytoplankton overestimated phytoplankton biomass in general and chlorophyte biomass in particular in late autumn and winter, when phytoplankton biomass was low. A possible explanation for this overestimation may be the presence of large amounts of vascular plant detritus in the upper Schelde estuary. Residual chlorophyll a, chlorophyll b and lutein in this detritus may result in an overestimation of total phytoplankton and chlorophyte biomass when the contribution of phytoplankton to total particulate organic matter is low.

  2. Occurrence and distribution of algal biomass and Its relation to nutrients and selected basin characteristics in Indiana streams, 2001-2005

    USGS Publications Warehouse

    Lowe, B. Scott; Leer, Donald R.; Frey, Jeffrey W.; Caskey, Brian J.

    2008-01-01

    The seasonal values for nutrients (nitrate, TKN, TN, and TP) and algal biomass (periphyton CHLa, AFDM, seston CHLa, and POC) were compared to published U. S. Environmental Protection Agency (USEPA) values for their respective ecoregions. Algal biomass values either were greater than the 25th percentile published USEPA values or extended the range of data in Aggregate Nutrient Ecoregions VI, VII, IX and USEPA Level III Ecoregions 54, 55, 56, 71, and 72. If the values for the 25th percentile proposed by the USEPA were adopted as nutrient water-quality criteria, then about 71 percent of the nutrient samples and 57 percent of the CHLa samples within the eight study basins would be considered nutrient enriched.

  3. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances.

    PubMed

    Alcántara, Cynthia; Domínguez, Jesús M; García, Dimas; Blanco, Saúl; Pérez, Rebeca; García-Encina, Pedro A; Muñoz, Raúl

    2015-09-01

    Algal-bacterial symbiosis, implemented in an innovative anoxic-aerobic photobioreactor configuration with biomass recycling, supported an efficient removal of total organic carbon (86-90%), inorganic carbon (57-98%) and total nitrogen (68-79%) during synthetic wastewater treatment at a hydraulic and sludge retention times of 2 days and 20 days, respectively. The availability of inorganic carbon in the photobioreactor, determined by its supply in the wastewater and microalgae activity, governed the extent of nitrogen removal by assimilation or nitrification-denitrification. Unexpectedly, nitrate production was negligible despite the high dissolved oxygen concentrations, denitrification being only based on nitrite reduction. Biomass recycling resulted in the enrichment of rapidly settling algal flocs, which supported effluent total suspended solid concentrations below the European Union maximum discharge limits. Finally, the maximum nitrous oxide emissions recorded were far below the emission factors reported for wastewater treatment plants, confirming the environmental sustainability of this innovative photobioreactor in terms of global warming impact. PMID:25989093

  4. Growth and Content of Spirulina Platensis Biomass Chlorophyll Cultivated at Different Values of Light Intensity and Temperature Using Different Nitrogen Sources

    PubMed Central

    Godoy Danesi, Eliane Dalva; Oliveira Rangel-Yagui, Carlota; Sato, Sunao; Monteiro de Carvalho, João Carlos

    2011-01-01

    The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m−2 s−1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m−2s−1, for cell growth, with cell productivity of approximately 95 mg L−1 d−1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m−2 s−1. PMID:24031643

  5. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    PubMed

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems. PMID:27273089

  6. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.

    PubMed

    Chen, Wan-Ting; Zhang, Yuanhui; Zhang, Jixiang; Yu, Guo; Schideman, Lance C; Zhang, Peng; Minarick, Mitchell

    2014-01-01

    In this study, a mixed-culture algal biomass harvested from a functioning wastewater treatment system (AW) was hydrothermally converted into bio-crude oils. The highest bio-crude oil yield (49% of volatile matter) and the highest energy recovery were obtained at 300 °C with 1 h retention time. The highest heating value of the bio-crude oil was 33.3 MJ/kg, produced at 320 °C and 1h retention time. Thermogravimetric analysis showed approximately 60% of the bio-crude oils were distilled in the range of 200-550 °C; and the solid residue might be suitable for use in asphalt. GC-MS results indicated that the bio-crude oil contained hydrocarbons and fatty acids, while the aqueous product was rich in organic acids and cyclic amines. The nitrogen recovery (NR) in the bio-crude oil ranged from 8.41% to 16.8%, which was lower than the typical range of 25%-53% from previous studies. PMID:24287452

  7. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  8. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  9. Biosorption of methylene blue by de-oiled algal biomass: equilibrium, kinetics and artificial neural network modelling.

    PubMed

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2-9), temperature (293.16-323.16 K), biosorbent dosage (1-10 g L(-1)), contact time (0-1,440 min), agitation speed (0-150 rpm) and dye concentration (25-2,500 mg L(-1)). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5-7 g L(-1) DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g(-1) at 2,000 mg L(-1) initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g(-1) in preliminary study while it went up to 139.11 mg g(-1) in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  10. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    PubMed Central

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  11. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  12. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables

  13. Distribution of chroococcoid cyanobacteria and size-fractionated chlorophyll a biomass in the central and southern north sea waters during June/July 1989

    NASA Astrophysics Data System (ADS)

    Iriarte, Arantza; Purdie, Duncan A.

    The spatial and vertical distribution of phycoerythrin(PE)-containing chroococcoid cyanobacteria and the contribution of the <3 μm size fraction to overall phytoplankton chlorophyll a biomass were investigated in the central and southern North Sea during June and July 1989. PE-containing chroococcoid cyanobacteria cell numbers ranged between 6×10 5 and 4.4×10 7 cells·dm -3 and was typically between 0.5×10 7 and 3×10 7 cells·dm -3, lowest numbers being recorded near the British coast in central North Sea waters. The vertical distribution of these cyanobacteria showed no evidence to suggest a preferential accumulation deep in the euphotic zone. The <3 μm size fraction accounted for 6.6 to 57.5% of the total phytoplankton chlorophyll a biomass (mean 19.7%). In general, the relative significance of the <3 μm size fraction decreased with increasing total chlorophyll a biomass.

  14. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  15. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass?

    PubMed

    Bowes, M J; Gozzard, E; Johnson, A C; Scarlett, P M; Roberts, C; Read, D S; Armstrong, L K; Harman, S A; Wickham, H D

    2012-06-01

    Chlorophyll-a and nutrient concentrations were monitored at weekly intervals across 21 river sites throughout the River Thames basin, southern England, between 2009 and 2011. Despite a 90% decrease in soluble reactive phosphorus (SRP) concentration of the lower River Thames since the 1990s, very large phytoplankton blooms still occur. Chlorophyll concentrations were highest in the mid and lower River Thames and the larger tributaries. Lowest chlorophyll concentrations were observed in the smaller tributaries, despite some having very high phosphorus concentrations of over 300 μg l(-1). There was a strong positive correlation between river length and mean chlorophyll concentration (R(2)=0.82), and rivers connected to canals had ca. six times greater chlorophyll concentration than 'natural' rivers with similar phosphorus concentrations, indicating the importance that residence time has on determining phytoplankton biomass. Phosphorus concentration did have some influence, with phosphorus-enriched rivers having much larger phytoplankton blooms than nutrient-poor rivers of a similar length. Water quality improvements may now be capping chlorophyll peaks in the Rivers Thames and Kennet, due to SRP depletion during the spring/early summer phytoplankton bloom period. Dissolved reactive silicon was also depleted to potentially-limiting concentrations for diatom growth in the River Thames during these phytoplankton blooms, but nitrate remained in excess for all rivers throughout the study period. Other potential mitigation measures, such as increasing riparian shading and reducing residence times by removing impoundments may be needed, alongside phosphorus mitigation, to reduce the magnitude of phytoplankton blooms in the future. PMID:22503676

  16. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  17. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  18. A growth inhibitory model with SO(x) influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere.

    PubMed

    Ronda, Srinivasa Reddy; Kethineni, Chandrika; Parupudi, Lakshmi Chandrika Pavani; Thunuguntla, Venkata Bala Sai Chaitanya; Vemula, Sandeep; Settaluri, Vijaya Saradhi; Allu, Prasada Rao; Grande, Suresh Kumar; Sharma, Suraj; Kandala, Chari Venkatakrishna

    2014-01-01

    A theoretical model for the prediction of biomass concentration under rice husk flue gas emission has been developed. The growth inhibitory model (GIM) considers the CO2 mass transfer rate, the critical SOx concentration and its role in pH-based inter-conversion of bicarbonate. The calibration and subsequent validation of the growth profile of Nannochloropsis limnetica at 2% and 10% (v/v) CO2 showed that the predicted values were consistent with the measured values, with r(2) being 0.96 and 0.98, respectively, and p<0.001 in both cases. The constants used in the GIM for the prediction of biomass have been justified using sensitivity analysis. GIM applicability was defined as ±30% of the calibrated flow rate (3.0 L min(-1)). This growth model can be applied to predict algal growth in photo-bioreactors treated with flue gas in the generation of biomass feed stock for biofuel production. PMID:24300846

  19. Use of a mixed algal culture to characterize industrial waste waters

    SciTech Connect

    Claesson, A.

    1984-02-01

    A mixture of five freshwater algae was cultivated with additions of waste water samples from chemical, mining, polyvinylchloride, textile, paper mill, and oil refinery industries. Two water samples from chemical industries and one from an oil refinery stimulated the algal growth in a nutrient-poor medium, while growth in other samples, including a nutrient-rich medium, was inhibited in several different ways. For eight of the water samples a delayed growth of 2-4 days was noted. Decreased growth rate and lowered maximal biomass occurred in seven of the samples. The photosynthetic capacity of the algal cells was measured by using in vivo fluorescence of chlorophyll a. These quick measurements mostly agreed with those of the growth rates. When the species composition of the mixed algal culture was investigated, large differences in sensitivities between the different species were found. Stimulation or inhibition were observed in the same sample for different species but also for the same species at different concentrations.

  20. Dynamics of nitrogen, phosphorus, algal biomass, and suspended solids in an artificial lentic ecosystem and significant implications of regional hydrology on trophic status.

    PubMed

    An, Kwang-Guk; Park, Seok Soon; Ahn, Kyu-Hong; Urchin, Christopher G

    2003-01-01

    Chemical and biological parameters were analyzed to examine how regional hydrological fluctuations influence water quality of a artificial lentic ecosystem over a two-year period The intensity of seasonal monsoon rain accounted for most of annual inflow and discharge and influenced flow pathway (interflow vs. overflow), resulting in a modification of chemical and biological conditions. Sharp contrasting interannual hydrology of intense vs. weak monsoon occurred during the study. The intense monsoon disrupted thermal stratification and resulted in ionic dilution, high TP and high inorganic solids (NVSS) in the headwater reach. The variation of NVSS accounted 75% of TP variation (slope = 4.14, p < 0.01, n = 48). Regression analysis of residual chlorophyll-a (Chl) versus flushing rate indicated that short hydraulic retention time and high mineral turbidity affected algal growth in the headwater reach during summer monsoon. In contrast, severe drought during weak monsoon produced strong thermal stratification, low inorganic solids, high total dissolved solids (TDS), and low TP in the entire system. In addition, Chl concentrations were controlled by phosphorus. Based on the physical, chemical and biological parameters, riverine conditions, dominated during the intense monsoon, but lacustrine conditions were evident during the weak monsoon. The interannual dynamics suggest that monsoon seasonality is considered the main forcing factor regulating overall functions and processes of the waterbody and this characteristic has an important implication to eutrophication of the system. PMID:12974409

  1. Is the frequency of algal blooms increasing in oligotrophic lakes in temperate forests?

    NASA Astrophysics Data System (ADS)

    Paltsev, A.; Creed, I. F.

    2014-12-01

    Oligotrophic lakes in the temperate forests of eastern North America appear to be experiencing an increase in the frequency and duration of algal blooms. This has been the focus of numerous public and government reports, resulting in heightened public concern for reporting of algal blooms. There is a vital need for detailed historical survey of numerous lakes, covering large spatial scales (the scale of region, province, or entire country) and temporal scales (decades) to determine if public observations are accurate. We used a remote sensing approach to: (1) develop regression models that relate Landsat imagery reflectance to chlorophyll-a (Chl-a) as a proxy of algal biomass of lakes; (2) apply these models to estimate Chl-a in lakes at the northern edge of the temperate forest biome in central Ontario over a 28 year period (1984-2011). The linear regression model was built on the basis of the normalized exoatmospheric reflectance values acquired from the utility of Landsat TM and ETM imagery and in situ measurements. Landsat band 3 (red) showed the strongest correlation with in situ data explaining 84% of the variance in Chl-a (r2 = 0.84, p <0.001). We applied this model to all lakes within the region selected from atmospherically corrected Landsat data for the peak algal bloom period (late July to early November) for the entire 28 years. A time series revealed a cyclic stationary pattern in the average Chl-a. This pattern followed the regional patterns of major droughts, especially for the first part of the time period, making climate a major driver in the formation of algal biomass in lakes that, in turn, can lead to the rise of algal blooms. However this climate driver appeared to become less predictable, with elevated algal biomass occurring in both normal and drought years, later in the record.

  2. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  3. Short-term temporal dynamics of algal species in a subtidal kelp bed in relation to changes in environmental conditions and canopy biomass

    NASA Astrophysics Data System (ADS)

    Wernberg, Thomas; Goldberg, Nisse

    2008-01-01

    Understanding temporal variation at the scale of weeks to months is critical to understanding broad temporal patterns in diversity in the same way as understanding diversity across landscapes relies on understanding variation at the scale of meters. However, whereas small-scale spatial variation in temperate reef algal assemblages has been extensively studied, fine-scale temporal changes have not been well addressed. By sampling the macroalgae of a subtidal reef near Perth (Australia), dominated by the small kelp Ecklonia radiata, every ˜40 days over a 2-year period, we were able to test whether temporal changes in species richness, assemblage structure and species turn-over were related to seasonal changes in surface temperature, solar radiation and wave height. A total of 93 macroalgal taxa were identified, and species richness per sampling time ranged from 25 to 64 taxa 1.25 m -2. Biomass of E. radiata was positively correlated with changes in sea surface temperature and light, and negatively correlated with wave height. Species richness, assemblage structure and turn-over of other macroalgae were more associated with seasonal changes in kelp biomass than environmental variables per se. We conclude that seasonal changes in environmental conditions drive changes in the kelp canopy, which in turn drive changes in species richness and assemblage structure. This suggests that habitat-formers such as kelps can exert a strong temporal influence on associated communities, analogous to well-described spatial influences. Thus, as kelp canopy biomass expands and retracts over time-scales of weeks to months, so does available space for colonization and growth, resulting in a high species turn-over. Species richness is therefore increased and maintained through time, in the same way as canopy-gap mosaics increase and maintain species richness across spatial landscapes.

  4. A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A theoretical model for the prediction of biomass concentration under real flue gas emission has been developed. The model considers the CO2 mass transfer rate, the critical SOx concentration and its role on pH based inter-conversion of bicarbonate in model building. The calibration and subsequent v...

  5. Relating Nearshore Algal Blooms Determined Using Satellite Imagery to Nutrient Loading, Watershed Land Use, and Storm Events

    NASA Astrophysics Data System (ADS)

    Stevenson, R. J.; Hyndman, D. W.; Qi, J.; Esselman, P.; Novitski, L.; Kendall, A. D.; Martin, S. L.; Lin, S.

    2014-12-01

    The overarching goal of our project was to relate algal biomass in the coastal zone of the Great Lakes, nutrient concentrations, watershed land use, and storm events. Algal biomass was determined using MODIS and Landsat remote sensing images. Nutrient loading from rivers into coastal zones was estimated with watershed land use, soils, geology, size and precipitation records. Our models of chlorophyll a based on remote sensing images (RS inferred chl a) and nutrient loading in coastal zones were validated with measured chlorophyll concentrations in the Great Lakes and nutrients in rivers. RS-inferred chl a was related to nutrient loading from rivers, which was dependent upon recent storm events and land use in watersheds. RS-inferred chl a was more related to nutrient loads during the week preceeding measurement of chl a than other periods before or during chl measurement. This lag time is presumably related to algal growth following nutrient loading, and was non-linearly related to nutrient loading. Our results indicate that these tools will improve understanding of land use effects on algal blooms in coastal zones of the Great Lakes and will help identify priority watersheds for restoration.

  6. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    PubMed

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth. PMID:20182083

  7. Dewatering as a non-toxic control of nuisance midge larvae in algal wastewater treatment floways.

    PubMed

    Keller, Troy A; Husted, Emily M

    2015-01-01

    Attached-algae floways have tremendous potential for use in wastewater treatment because natural algal communities show high nutrient removal efficiencies, have low operating costs, and are easy to maintain. Algal wastewater floways may also serve as a sustainable option for producing renewable energy because algae grow rapidly, are easily harvested, and can serve as a source of biomass for biofuel. However, pests such as chironomids (Diptera) colonize open channel periphyton floways and their larvae damage the biofilms. While pesticides can control midge larvae, little information is known about alternative, non-toxic controls. This study examined the effectiveness of periodic, short-term dewatering (4 hours every 9 days) on midge abundance and periphyton growth in 16 recirculating, outdoor floways (3 m long, 0.1 m wide). We compared midge abundance and algal accumulation (chlorophyll a, b, c, and pheophytin) among control (n=8) and dewatered (n=8) floways filled with secondarily treated wastewater (27 days, 10 hours of daylight). Dewatered flumes had 42% fewer midges and 28-49% lower algal productivity (as measured by chlorophyll a, b, c, and pheophytin pigments). Chlorophyll a production rates averaged (±1 SD) 0.5±0.2 μg/cm2/day in control floways compared to 0.3±0.1 μg/cm2/day dewatered floways. Short-term dewatering effectively reduced midges but also damaged periphyton. To maximize the recovery of periphyton biomass, operators should harvest periphyton from floways during dewatering events before periphyton is damaged by desiccation or direct exposure to sunlight. PMID:25607663

  8. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products.

    PubMed

    Tian, Chunyan; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Cao, Wei; Lu, Haifeng; Duan, Na; Zhang, Li; Zhang, Tingting

    2015-05-01

    Hydrothermal liquefaction (HTL) allows a direct conversion of algal biomass into biocrude oil, not only solving the environmental issues caused by the over-growing algae but also producing renewable energy. This study reports HTL of algae after separation from eutrophicated Dianchi Lake in China. Conversion efficiency was studied under different operational conditions via an orthogonal design, including holding temperature (HT) (260-340 °C), retention time (RT) (30-90 min) and total solid (TS) (10-20%). A highest biocrude oil yield (18.4%, dry ash-free basis, daf) was achieved at 300 °C, 60 min, and 20% (TS), due to the low contents of lipids (1.9%, daf) and proteins (24.8%, daf), and high contents of ash (41.6%, dry basis) and carbohydrates (71.8%, daf). Operational parameters significantly affected the biocrude yields, and chemical distribution of HTL products. The biocrude production also related to other HTL products, and involved chemical reactions, such as deoxygenation and/or denitrogenation. PMID:25466998

  9. Trends in Sea Ice Cover, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.

    2011-12-01

    The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea

  10. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  11. Connecting Florida Bay algal blooms to freshwater nutrient sources

    NASA Astrophysics Data System (ADS)

    Blakey, T.; Melesse, A. M.

    2013-12-01

    In this study, monthly water quality data collected in the Everglades by the Southeast Environmental Research Center (SERC) and the South Florida Water Management District (SFWMD) from 1991 to 2008 at 28 sampling stations distributed across Florida Bay was analyzed within the context of local geomorphology and seasonal wind and current regimes in order to evaluate the feasibility of the various purported nutrient sources for reoccurring algal blooms. The in situ chlorophyll-a (chl-a) measurements from the SERC dataset were evaluated as the indicator of algal biomass. Significant differences in average monthly chl-a concentrations at stations indicated a seasonality of algal blooms in the north central and west areas that is not evidenced in stations exhibiting low levels of chl-a throughout the typical year. Tukey's pairwise comparisons of monthly chl-a indicated, at the 95% confidence level, peak algal biomass occurs in October and November at the end of the wet season with minimums occurring between February and August depending on the location of the station. By month comparison of chl-a levels across stations suggest seasonal trends in the geographic focus and extent of blooms. Significant differences from Tukey's pairwise comparisons at the 95% confidence level showed stations to the west as having higher levels of chl-a in March through May with north central stations dominating from June to January. The month of February shows no significant difference in chl-a levels across this area. The results support hypotheses centering on a western source of nutrients that are delivered to the bay over the course of the rainy season. Mapping water quality sampling station locations on top of the bathymetry of Florida Bay illustrates the importance of considering coastal morphology in explaining trends in estuarine algal blooms. Coastal geomorphology along with seasonal changes in the direction of winds and magnitude of rains are demonstrated to be the predominant

  12. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterizations of algal proteins and lipids

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1986-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  13. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  14. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude.

    PubMed

    Lavanya, Melcureraj; Meenakshisundaram, Arunachalam; Renganathan, Sahadevan; Chinnasamy, Senthil; Lewis, David Milton; Nallasivam, Jaganathan; Bhaskar, Sailendra

    2016-03-01

    Biocrude was produced from Tetraselmis sp. - a marine alga and Arthrospira platensis - a fresh water alga using hydrothermal liquefaction (HTL) process. Considering the constraints in cultivating algae for replacing 100% petrocrude, this study evaluated the option of blending and co-processing algal biocrude with petrocrude. Biocrudes obtained from algal strains cultivated in fresh water and sea water were blended with petrocrude at 10% concentration and the characteristics were studied using FT-IR and CNS SIMDIST. True Boiling Point (TBP) distillation was carried out to assess yields and properties of distillates of blended biocrudes. Biocrudes obtained from both algae were light crudes and the blended crudes recorded distillate yields of 76-77 wt%. The yield of light naphtha fraction of biocrude blends was 29-30%; whereas the yield of diesel fraction was about 18%. This study proposes blending and co-processing of algal biocrude with petrocrude to produce drop-in biofuels. PMID:26735877

  15. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions. PMID:21977667

  16. Effects of No. 2 Fuel Oil, Nigerian Crude Oil, and Used Crankcase Oil on Attached Algal Communities: Acute and Chronic Toxicity of Water-Soluble Constituents

    PubMed Central

    Bott, Thomas L.; Rogenmuser, Kurt

    1978-01-01

    Water extracts of a no. 2 fuel oil, a Nigerian crude oil, and used crankcase oil were examined for their effects on algal communities in experiments lasting several weeks conducted under near-natural conditions. No. 2 fuel oil extracts depressed algal biomass (chlorophyll a) and resulted in blue-green algal (cyanobacterial) dominance and decreased diatom occurrence. Changes in concentrations of chlorophyll c, which was specific for diatoms in this work, and phycocyanin, which was specific for blue-green algae, confirmed the observations. Used crankcase oil extracts also depressed biomass, but Nigerian crude extracts did not, and both these extracts had less effect on community composition than did no. 2 fuel oil extracts. Photosynthetic 14C incorporation was both stimulated and depressed by exposure to extracts with hydrocarbon concentrations 0.038 to 0.124 mg/liter. Short-term exposure to higher concentrations (1.17 to 15.30 mg of hydrocarbons per liter) of no. 2 fuel oil extracts depressed photosynthetic 14C incorporation by Vaucheria-dominated communities in all tests but one. Toxicity was greater from extracts prepared in the light than from extracts prepared in the dark. PMID:16345329

  17. Effects of no. 2 fuel oil, nigerian crude oil, and used crankcase oil on attached algal communities: acute and chronic toxicity of water-soluble constituents.

    PubMed

    Bott, T L; Rogenmuser, K

    1978-11-01

    Water extracts of a no. 2 fuel oil, a Nigerian crude oil, and used crankcase oil were examined for their effects on algal communities in experiments lasting several weeks conducted under near-natural conditions. No. 2 fuel oil extracts depressed algal biomass (chlorophyll a) and resulted in blue-green algal (cyanobacterial) dominance and decreased diatom occurrence. Changes in concentrations of chlorophyll c, which was specific for diatoms in this work, and phycocyanin, which was specific for blue-green algae, confirmed the observations. Used crankcase oil extracts also depressed biomass, but Nigerian crude extracts did not, and both these extracts had less effect on community composition than did no. 2 fuel oil extracts. Photosynthetic C incorporation was both stimulated and depressed by exposure to extracts with hydrocarbon concentrations 0.038 to 0.124 mg/liter. Short-term exposure to higher concentrations (1.17 to 15.30 mg of hydrocarbons per liter) of no. 2 fuel oil extracts depressed photosynthetic C incorporation by Vaucheria-dominated communities in all tests but one. Toxicity was greater from extracts prepared in the light than from extracts prepared in the dark. PMID:16345329

  18. Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef waters

    NASA Astrophysics Data System (ADS)

    van Duyl, F.; Gast, G.; Steinhoff, W.; Kloff, S.; Veldhuis, M.; Bak, R.

    2002-09-01

    The short-term temporal dynamics of phytoplankton composition was compared among coral reef waters, the adjacent ocean and polluted harbour water from July until October along the south-western coast of Curaçao, southern Caribbean. Temporal variations in phytoplankton pigment 'fingerprints' (zeaxanthin, chlorophyll b, 19'-hexanoyloxyfucoxanthin, fucoxanthin, 19'-butanoyloxyfucoxanthin, chlorophyll c 2 and c 3 relative to chlorophyll a) in the ocean were also observed in waters overlying the reef. However, with respect to specific pigments and algal-size distribution, the algal composition in reef waters was usually slightly different from that in the oceanic water. Phytoplankton biomass (chlorophyll a) was either higher or lower than in the oceanic water. The relative amount of fucoxanthin and peridinin was usually higher, and the relative and absolute amount of zeaxanthin was significantly lower than in oceanic water. Zeaxanthin-containing Synechococci were significantly reduced in reef water. Average algal cell size increased from the open water to the reef and the harbour entrance. Large centric diatoms (>20 m Ø) were better represented in reef than in oceanic water. In reef-overlying waters, the nitrate and nitrite concentrations were higher than in oceanic water. In front of the town, anthropogenic eutrophication (sewage discharge and ground water seepage) resulted in higher NH4, NO3 and PO4 concentrations than at other reef stations. This concurred with significantly enhanced phytoplankton biomass (chlorophyll a), chlorophyll c 2 and peridinin amounts at Town Reef compared with the other reef stations. Polluted harbour water usually showed the highest phytoplankton biomass of all stations, dominated by diatoms and dinoflagellates. Conditions in reef waters and harbour water promoted the occurrence and the relative abundance of diatoms and dinoflagellates. Harbour water did not influence the phytoplankton composition and biomass at reef stations situated >5

  19. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  20. [Changes of algal communities in water body with different proportions of nitrogen and phosphorus].

    PubMed

    Sun, Ling; Jin, Xiangcan; Zhong, Yuan; Zhang, Dongmei; Zhu, Lin; Dai, Shugui; Zhuang, Yuanyi

    2006-07-01

    A simulation test was conducted in aquaria to study the responses of algal communities to different N/P ratios in urban water body. The water sample was taken from a small artificial lake in Tianjin, and its initial N/P ratio was adjusted to 0. 5:1,7.2:1, 25:1 and 50:1, respectively. The results showed that in high N/P ratio groups, the numbers of Chlorophyta species decreased, while those of Cyanophyta species didn' t change very much. The numbers of these two species were both decreased in low N/P ratio group. Algal biomass, cell density and chlorophyll a content in medium and high N groups were higher than those in control and high P groups. The mean value of chlorophyll a reached the highest (69.7 microg x L(-1)) in high N group, and was 54.3, 30.3 and 29.7 microg x L(-1) in medium N, control, and high P groups, respectively. At the mid-late stages of culture, green algae Dictyosphaerium pulchellum was dominant in high P group, while blue algae Phormidium tenue, P. corium, Lyngbya limnetica and Microcystis aeruginosa were dominated in high N/P ratio groups. Control group had the highest species richness, while medium and high N groups had the highest and lowest ecological species dominance, respectively. PMID:17044495

  1. The Response of Phytoplankton Size Spectra and Chlorophyll Biomass to Wind-driven Coastal Upwelling off Northern California During the CoOP-WEST Study.

    NASA Astrophysics Data System (ADS)

    Wilkerson, F. P.; Dugdale, R. C.; Marchi, A.; Hogue, V.; Lassiter, A.; Lew, K.; Lorenzi, A.

    2002-12-01

    During the WEST (Wind Events and Shelf Transport) summer studies of the coastal upwelling region off Bodega Bay, CA, chlorophyll concentrations consistently reached phytoplankton bloom levels following wind driven upwelling events that resulted in high concentrations of pCO2 and nutrients. In most coastal upwelling areas, upwelled nitrate and high rates of new production lie close to the coast in a distinct plume, and their consequences (a band of enhanced chlorophyll) are propagated seaward far beyond the point where upwelled nutrients have been exhausted. Most likely grazing on advected diatoms results in release of regenerated N (ammonium and urea) that is taken up by the small-sized phytoplankton that out-compete diatoms for ammonium and consequently carry coastal new production offshore in the upper layer current system. However in the WEST study area the growing phytoplankton (showing high rates of new production) and productivity are retained on the shelf, and apparently transported alongshore rather than offshore most of the time. The elevated chlorophyll (reaching over 30 μg/l in June 2000) is made up of mostly larger phytoplankton cells with the diatom Chaetoceros spp. dominating during the bloom events. These cells may be grazed or sink and be carried in sub surface currents and re-entrained in the undercurrent, unlike smaller cells that remain in the upper layer. Surface distributions of chlorophyll and phytoplankton size spectra and fluorescence obtained using a CytoSense flow cytometer will be compared between upwelling spring cruises and a non upwelling winter cruise to the CoOP-WEST study site off Bodega Bay, CA.

  2. Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002

    NASA Astrophysics Data System (ADS)

    Gradinger, Rolf

    2009-08-01

    Sea-ice and water samples were collected at 14 stations on the shelves and slope regions of the Chukchi and Beaufort Seas during the spring 2002 expedition as part of the Shelf-Basin Interaction Studies. Algal pigment content, particulate organic carbon and nitrogen, and primary productivity were estimated for both habitats based on ice cores, brine collection and water samples from 5-m depth. The pigment content (0.2-304.3 mg pigments m -2) and primary productivity (0.1-23.0 mg C m -3 h -1) of the sea-ice algae significantly exceeded water-column parameters (0.2 and 1.0 mg pigments m -3; <0.1-0.4 mg C m -3 h -1), making sea ice the habitat with the highest food availability for herbivores in early spring in the Chukchi and Beaufort Seas. Stable isotope signatures for ice and water samples did not differ significantly for δ 15N, but for δ 13C (ice: -25.1‰ to -14.2‰; water: -26.1‰ to -22.4‰). The analysis of nutrient concentrations and the pulse-amplitude-modulated fluorescence signal of ice algae and phytoplankton indicate that nutrients were the prime limiting factor for sea-ice algal productivity. The estimated spring primary production of about 1-2 g C m -2 of sea-ice algae on the shelves requires the use of substantial nutrient reservoirs from the water column.

  3. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    PubMed

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-10-01

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions. PMID:26426026

  4. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    PubMed Central

    Polotow, Tatiana G.; Poppe, Sandra C.; Vardaris, Cristina V.; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F.; Bondan, Eduardo F.; Barros, Marcelo P.

    2015-01-01

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions. PMID:26426026

  5. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    NASA Astrophysics Data System (ADS)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-08-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment.

  6. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    PubMed Central

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  7. From Surface Chlorophyll a to Phytoplankton Community Composition in Oceanic Waters

    NASA Technical Reports Server (NTRS)

    Uitz, Julia; Claustre, Herve; Morel, Andre; Hooker, Stanford B.

    2004-01-01

    The objective of the present study is to examine the potential of using the near-surface total chlorophyll a concentration (C(sub surf)), as it can be derived from ocean color observation, to infer the column-integrated and the vertical distribution of the phytoplanktonic biomass, both in a quantitative way and in a qualitative way (z.e., in terms of community structure). Within this context, a large HPLC (High Performance Liquid Chromatography) pigment database has been analyzed. It includes 2419 vertical pigment profiles, all sampled in Case-1 waters with various trophic states. The relationshps between C(sub surf) and the total chlorophyll alpha vertical distribution, as previously derived by Morel and Berthon, are fully confirmed, as the present results coincide with the previous ones. This agreement allows to go further, namely to examine the possibility of extracting relationships between C(sub surf) and the vertical composition of the algal assemblages. Thanks to the detailed pigment composition available from HPLC measurements, the contribution of three size classes (micro-, nano-, and pico-phytoplankton) to the local total chlorophyll a concentration can be assessed. Corroborating previous findings (e.g., large species dominate in eutrophc environments, whereas tiny phytoplankton prevail in oligotrophic zones), the results lead to a statistically based parameterization. The predictive skill of this parameterization is successfully tested on a separate data set. With such a tool, the vertical total chlorophyll a profiles associated with each size class can be inferred from the sole knowledge of C(sub surf). By combining this tool with satellite ocean color data, it becomes conceivable to quantify on a global scale the phytoplankton biomass associated with each of the three size classes.

  8. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs. PMID:26271287

  9. Use of remote sensing in monitoring and forecasting of harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Stumpf, Richard P.; Tomlinson, Michelle C.

    2005-08-01

    Harmful algal blooms (HABs) have impacts on coastal economies, public health, and various endangered species. HABs are caused by a variety of organisms, most commonly dinoflagellates, diatoms, and cyanobacteria. In the late 1970's, optical remote sensing was found to have a potential for detecting the presence of blooms of Karenia brevis on the US Florida coast. Due to the nearly annual frequency of these blooms and the ability to note them with ocean color imagery, K. brevis blooms have strongly influenced the field of HAB remote sensing. However, with the variability between phytoplankton blooms, heir environment and their relatively narrow range of pigment types, particularly between toxic and non-toxic dinoflagellates and diatoms, techniques beyond optical detection are required for detecting and monitoring HABs. While satellite chlorophyll has some value, ecological or environmental characteristics are required to use chlorophyll. For example, identification of new blooms can be an effective means of identifying HABs that are quie intense, also blooms occurring after specific rainfall or wind events can be indicated as HABs. Several HAB species do not bloom in the traditional sense, in that they do not dominate the biomass. In these cases, remote sensing of SST or chlorophyll can be coupled with linkages to seasonal succession, changes in circulation or currents, and wind-induced transport--including upwelling and downwelling, to indicate the potential for a HAB to occur. An effective monitoring and forecasting system for HABs will require the coupling of remote sensing with an environmental and ecological understanding of the organism.

  10. Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability.

    PubMed

    Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio

    2015-10-15

    This study evaluates the capacity of seven species and a Bloom of microalgae to grow in urban wastewater. Nutrient removal kinetics and biomass harvesting by means of centrifugation and coagulation-flocculation-sedimentation have been also tested. Results show that the best biomass productivities ranged from between 118 and 108 mgSS L(-1) d(-1) for the Bloom (Bl) and Scenedesmus obliquus (Sco). Regarding nutrient removal, microalgae were able to remove the total dissolved phosphorus and nitrogen concentrations by more than 80% and 87% respectively, depending on the species tested. The final total dissolved concentration of nitrogen and phosphorus in the culture media complies with the European Commission Directive 98/15/CE on urban wastewater treatment. Regarding harvesting, the results of coagulation-flocculation sedimentation using a 60 mg L(-1) dose of Ferric chloride were similar between species, exceeding the biomass removal efficiency by more than 90%. The results of centrifugation (time required to remove 90% of solids at 1000 rpm) were not similar between species, with the shortest time being 2.9 min for Sco, followed by the bloom (7.25 min). An overall analysis suggested that the natural bloom and Scenedesmus obliquus seem to be the best candidates to grow in pre-treated wastewater, according to their biomass production, nutrient removal capability and harvestability. PMID:26117372

  11. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  12. Near- and mid-infrared spectroscopic determination of algal composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the feasibility of using near-infrared reflectance spectroscopy (NIRS) and mid-infrared reflectance spectroscopy (MIRS) to determine the composition of algal samples. We assayed a set of algal biomass samples (n=117), collected from algae turf scrubber...

  13. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  14. Effects of algal hydrolysate as reaction medium on enzymatic hydrolysis of lignocelluloses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal biomass has been proposed as a source of lipids and sugars for biofuel productions. However, a substantial portion of potentially valuable algal material remains as a liquid hydrolysate after sugar and lipid extractions. This study examined the effects of an algal hydrolysate on the enzymatic...

  15. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. PMID:23499181

  16. Assessment of predictive models for chlorophyll-a concentration of a tropical lake

    PubMed Central

    2011-01-01

    Background This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC). Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a concentration for eutrophication management of tropical lakes. Results Same data set was used for models development and the data was divided into two sets; training and testing to avoid biasness in results. FL and RANN models were developed using parameters selected through sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH, Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and 0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7, and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this study resulted from the methodology used in measuring

  17. A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle.

    PubMed

    van der Steen, Peter; Rahsilawati, Kuntarini; Rada-Ariza, Angélica M; Lopez-Vazquez, Carlos M; Lens, Piet N L

    2015-01-01

    Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 μmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater. PMID:26204077

  18. The effects of particles and dissolved materials on in situ algal pigment fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Saraceno, J.; Bergamaschi, B. A.; Downing, B. D.

    2013-12-01

    Field deployable sensors that measure algal pigment fluorescence (APF), such as chlorophyll-a (excitation/emission ca. 470/685 nm), and phycocyanin (ca. 590/685 nm), have been used to estimate algal biomass and study food-web dynamics in coastal and oceanic waters for many years. There is also widespread use of these sensors in real time river-observing networks. However, freshwater systems often possess elevated levels of suspended solids and dissolved organic material that can interfere with optical measurements. Data collected under conditions that result in interferences may not be comparable across time and between sites unless the data are appropriately corrected. Using standard reference materials and a surrogate for algal fluorescence (Rhodamine WT), lab experiments were conducted on several commercially available sensors to quantify sensitivity to interferences over a range of naturally occurring surface water conditions (DOC : 0-30 mg/L and turbidity: 0- 1000 FNU ). Chlorophyll-a sensors exhibited a slight but significant positive bias (<1%) at DOC concentrations < 2 mg/L, and a negative, non-linear bias at DOC concentrations >2 mg/L, with signal quenching reaching a maximum of 15% at 30 mg/L DOC. All phycocyanin sensors displayed a positive non-linear bias with DOC concentration, reaching a maximum of 40% difference at 30 mg/L DOC. Both chlorophyll-a and phycocyanin sensors showed a positive linear relationship with suspended solids concentration (as indicated by turbidity).The effect of suspended solids on APF output can be explained by the detection of scattered excitation light (leaking through emission filters). Similar qualitative effects were observed for the sensors tested, though the magnitude of the effect varied among sensor type. This indicates that differences in sensor designs such as geometry, wavelength and signal post processing techniques is related to its sensitivity to interferences. Although sensors exhibited significant cross

  19. Physical control of chlorophyll a, POC, and TPN distributions in the pack ice of the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.; Robinson, Dale H.; Dunbar, Robert B.; Leventer, Amy R.; Lizotte, Michael P.

    2003-10-01

    The pack ice ecosystem of the Ross Sea was investigated along a 1470-km north-south transect during the spring 1998 oceanographic program Research on Ocean-Atmosphere Variability and Ecosystem Response in the Ross Sea (ROAVERRS). Snow and sea ice thickness along the transect varied latitudinally, with thinner snow and ice at the northern ice edge and thin new ice in the vicinity of the Ross Sea polynya. Relative to springtime observations in other sea ice regions, algal chlorophyll a (Chl a) concentrations were low. In contrast, particulate organic carbon (POC), total particulate nitrogen (TPN), and POC:Chl a were all high, indicating either that the ice contained substantial amounts of detritus or nonphotosynthetic organisms, or that the algae had a high POC:Chl a ratio. The abundance of Chl a, POC, and TPN in the sea ice was related to ice age and thickness, as well as to snow depth: older ice had thinner snow cover and contained higher algal biomass while new ice in the polynya had lower biomass. Older pack ice was dominated by diatoms (particularly Fragilariopsis cylindrus) and had vertical distributions of Chl a, POC, and TPN that were related to salinity, with higher biomass at the ice-water interface. Fluorescence-based measurements of photosynthetic competence (Fv/Fm) were higher at ice-water interfaces, and photosynthesis-irradiance characteristics measured for bottom ice algae were comparable to those measured in pack ice communities of other regions. Nutrient concentrations in extracted sea ice brines showed depletion of silicate and nitrate, depletion or regeneration of phosphate and nitrite, and production of ammonium when normalized to seawater salinity; however, concentrations of dissolved inorganic nitrogen, phosphorous, and silica were typically above levels likely to limit algal growth. In areas where pack ice and snow cover were thickest, light levels could be limiting to algal photosynthesis. Enrichment of δ13C-POC in the sea ice was correlated

  20. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  1. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  2. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  3. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  4. Excitation Energy-Transfer Dynamics of Brown Algal Photosynthetic Antennas.

    PubMed

    Kosumi, D; Kita, M; Fujii, R; Sugisaki, M; Oka, N; Takaesu, Y; Taira, T; Iha, M; Hashimoto, H

    2012-09-20

    Fucoxanthin-chlorophyll-a/c protein (FCP) complexes from brown algae Cladosiphon okamuranus TOKIDA (Okinawa Mozuku in Japanese) contain the only species of carbonyl carotenoid, fucoxanthin, which exhibits spectral characteristics attributed to an intramolecular charge-transfer (ICT) property that arises in polar environments due to the presence of the carbonyl group in its polyene backbone. Here, we investigated the role of the ICT property of fucoxanthin in ultrafast energy transfer to chlorophyll-a/c in brown algal photosynthesis using femtosecond pump-probe spectroscopic measurements. The observed excited-state dynamics show that the ICT character of fucoxanthin in FCP extends its absorption band to longer wavelengths and enhances its electronic interaction with chlorophyll-a molecules, leading to efficient energy transfer from fucoxanthin to chlorophyll-a. PMID:26295888

  5. Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79-81°N)

    NASA Astrophysics Data System (ADS)

    Blachowiak-Samolyk, Katarzyna; Søreide, Janne E.; Kwasniewski, Slawek; Sundfjord, Arild; Hop, Haakon; Falk-Petersen, Stig; Nøst Hegseth, Else

    2008-10-01

    The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM m -2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind. m -3) in August. Algal bloom stage, chlorophyll- a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus ( Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological "hot-spots" were associated with Arctic communities.

  6. Production of biofuel using molluscan pseudofeces derived from algal cells

    SciTech Connect

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  7. Novel chlorophyll solar cell

    SciTech Connect

    Ludlow, J.C.

    1981-01-01

    A novel solar battery is being developed which uses chlorophyll a for the generation of a voltage. The battery consists of platinum foil electrode, onto which a mixture of chlorophyll a and lipoic acid is deposited, and a platinum current collector. With such a device, voltages greater than 0.35 volts can reproducibly generated. The dependence of the output of the cell as a function of chlorophyll levels and light intensity has been determined. 9 refs.

  8. Application of NDVI to detecting algal bloom in the Bohai Sea of China from AVHRR

    NASA Astrophysics Data System (ADS)

    Zhao, Dongzhi

    2003-05-01

    This paper analyses the relation between data measured in situ and the NDVI derived from AVHRR of NOAA-14 during algal bloom in the Bohai sea in 1998 to establish surface biomass model of Ceratium furca(EHr.). This model is easy to utilize data received from multi-source satellite in operation, and gets directly the index of phytoplankton biomass. The area and distribution of high biomass is also presented. Based on this model, propagation speed of phytoplankton reveals progress of algal bloom development. The result of this model can discriminate algal bloom water from silt or suspended particle material (SPM).

  9. Revisiting subsurface chlorophyll and phytoplankton distributions

    NASA Astrophysics Data System (ADS)

    Hense, I.; Beckmann, A.

    2008-09-01

    Vertical profiles of chlorophyll concentration and phytoplankton biomass at ALOHA (HOT) are analyzed for the time period 1988 to 2004. Two different methods are applied: in the standard approach the data are averaged over depth horizons and in the alternative approach the profiles are shifted to the depth of the deepest subsurface maximum before averaging. The results show that the latter is the only meaningful way to look at vertical distribution patterns of both chlorophyll and phytoplankton in the oligotrophic ocean. In particular, a pronounced subsurface maximum of phytoplankton biomass appears only if this depth-adjustment method is used. Otherwise the vertical displacement of the subsurface biomass due to changes in the subsurface light field masks the actual signal: the thickness of the subsurface maximum is overestimated and the maximum is reduced. The results of this study have far-reaching consequences for the interpretation of the large number of profiles of chlorophyll and phytoplankton in the oligotrophic ocean. The absence of a subsurface biomass maximum might not be necessarily a result of photoacclimation but of inadequate analyses combined with coarse vertical resolution.

  10. Abundance of a chlorophyll a precursor and the oxidation product hydroxychlorophyll a during seasonal phytoplankton community progression in the Western English Channel

    NASA Astrophysics Data System (ADS)

    Steele, Deborah J.; Tarran, Glen A.; Widdicombe, Claire E.; Woodward, E. Malcolm S.; Kimmance, Susan A.; Franklin, Daniel J.; Airs, Ruth L.

    2015-09-01

    This study presents the first in-situ measurements of the chlorophyll a oxidation product, hydroxychlorophyll a as well as the chlorophyll a precursor, chlorophyll aP276 conducted over an annual cycle. Chlorophyll a oxidation products, such as hydroxychlorophyll a may be associated with the decline of algal populations and can act as an initial step in the degradation of chlorophyll a into products which can be found in the geochemical record, important for studying past climate change events. Here, hydroxychlorophyll a and chlorophyll aP276 were measured at the long-term monitoring station L4, Western Channel Observatory (UK, http://www.westernchannelobservatory.org)

  11. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  12. Photoinduced Biohydrogen Production from Biomass

    PubMed Central

    Amao, Yutaka

    2008-01-01

    Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH), and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a) from higher green plant or artificial chlorophyll analog, zinc porphyrin, are introduced. PMID:19325796

  13. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  14. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  15. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost. PMID:27295924

  16. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    NASA Technical Reports Server (NTRS)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  17. Grazing effects by Nereis diversicolor on development and growth of green algal mats

    NASA Astrophysics Data System (ADS)

    Engelsen, Anna; Pihl, Leif

    2008-08-01

    Nereis diversicolor is generally considered to be a predator and deposit feeder, but have also been found to graze on benthic algae in shallow coastal areas. In this study we investigated the grazing effects on the development and growth of green algae, Ulva spp. Algal growth was studied in an experiment including two levels of sediment thickness; 100 mm sediment including macrofauna and 5 mm sediment without macrofauna, and three treatments of varying algal biomass; sediment with propagules, sediment with low algal biomass (120 g dry weight (dwt) m - 2 ) and sediment with high algal biomass (240 g dwt m - 2 ). In the 100 mm sediment, with a natural population of macrofauna, N. diversicolor was the dominating (60% of total biomass) species. After three weeks of experimentation the result showed that N. diversicolor was able to prevent initial algal growth, affect growth capacity and also partly reduce full-grown algal mats. The weight of N. diversicolor was significantly higher for polychaetes in treatments with algae added compared to non-algal treatments. There were also indications that a rich nutrient supply per algae biomass counteracted the grazing capacity of N. diversicolor.

  18. Marine chlorophyll a analysis

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1979-01-01

    Quantitative distribution maps of chlorophyll a and other important environmental parameters of coastal zones are prepared by regression analysis of sea-truth data and data collected by aircraft multispectral scanners.

  19. Development of a simple means for predicting algal blooms

    SciTech Connect

    Litten, S.; Effler, S.W.; Meyer, M.

    1980-09-01

    A simple technique to predict the future occurrence of algal blooms was evaluated for seven test lake systems proximate to Syracuse, NY during the summer of 1978 and 1979. The selected test systems represent a broad range of trophic status, from mesotrophic to hypereutrophic. The technique includes a simple filtering process followed by the identification of the color imparted to the filter, based on comparison to National Bureau of Standards' color chips. The reference measure of phytoplankton standing crop was chlorophyll-a. Particular colors of filtered particulates were not demonstrated to be useful estimators of chlorophyll-a concentration, though the hues olive and yellow-green were associated with higher chlorophyll-a levels. The particulate color method was demonstrated to be useful in following certain physical/chemical changes in a lake.

  20. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920

  1. Chlorophyll-Protein Complexes of the Cyanophyte, Nostoc sp. 1

    PubMed Central

    Rusckowski, Mary; Zilinskas, Barbara A.

    1980-01-01

    Four chlorophyll-protein complexes have been resolved from the cyanophyte, Nostoc sp., by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis at 4 C. Complexes solubilized by SDS from Spinacia oleracea were run for comparison. As has been well documented, the P700-chlorophyll a-protein complex from the higher plant and blue-green algal samples are similar, and the light-harvesting pigment protein complex is present only in the former. Most noteworthy are two closely migrating chlorophyll proteins in Nostoc sp. which have approximately the same mobility as a single chlorophyll-protein band resolvable from spinach. The absorption maximum of the complex from spinach is at 667 nanometers, and those of the two complexes from Nostoc sp. are at 667 and 669 nanometers; the fluorescence emission maximum at −196 C is at 685 nanometers, and the 735 nanometer fluorescence peak, characteristic of the P700-chlorophyll a-protein complex, is absent. The apoproteins of these new complexes from Nostoc sp. and spinach are in the kilodalton range. It appears that at least one of these two chlorophyll-protein complexes from Nostoc sp. compares with those recently described by others from higher plants and green algae as likely photosystem II complexes, perhaps containing P680, although no photochemical data are yet available. Images PMID:16661198

  2. Energy evaluation of algal cell disruption by high pressure homogenisation.

    PubMed

    Yap, Benjamin H J; Dumsday, Geoff J; Scales, Peter J; Martin, Gregory J O

    2015-05-01

    The energy consumption of high pressure homogenisation (HPH) was analysed to determine the feasibility of rupturing algal cells for biodiesel production. Experimentally, the processing capacity (i.e. flow rate), power draw and cell disruption efficiency of HPH were independent of feed concentration (for Nannochloropsis sp. up to 25%w/w solids). Depending on the homogenisation pressure (60-150 MPa), the solids concentration (0.25-25%w/w), and triacylglyceride (TAG) content of the harvested algal biomass (10-30%), the energy consumed by HPH represented between 6% and 110-times the energy density of the resulting biodiesel. Provided the right species (weak cell wall and high TAG content) is selected and the biomass is processed at a sufficiently high solids concentration, HPH can consume a small fraction of the energy content of the biodiesel produced. This study demonstrates the feasibility of process-scale algal cell disruption by HPH based on its energy requirement. PMID:25435068

  3. Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system.

    PubMed

    Gross, Martin; Wen, Zhiyou

    2014-11-01

    Current algal cultivation has been mainly performed in open ponds or photobioreactors in which algal cells are suspended and harvested through flocculation and centrifugation. A unique attachment based Revolving Algal Biofilm (RAB) cultivation system was recently developed for easy biomass harvest with enhanced biomass productivity. The objective of this research was to evaluate the performance (durability, algal growth, and the geometry) of the RAB system at pilot-scale. A yearlong test of the RAB system was successfully conducted at a greenhouse facility at Boone, Iowa, USA. The RAB resulted in an average of 302% increase in biomass productivity compared to a standard raceway pond, with a maximum biomass productivity (ash free) of 18.9 g/m(2)-day being achieved. The RAB with a vertical configuration generated higher productivity than the triangular RAB. Collectively, the research shows that the RAB as an efficient algal culture system has great potential for being deployed at commercial scale. PMID:25189508

  4. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants. PMID:27220992

  5. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  6. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  7. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  8. How hydrodynamics control algal blooms in the Ythan estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, Khruewan; Hoey, Trevor; Thomas, Rhian

    2016-04-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilizers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as understanding how nutrients and sediments are transported in the estuary is crucial for understanding the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. In order to understand those controls, study of interactions between hydrodynamic factors and water quality, in particular chlorophyll levels, at different time scales has been carried out. The results from the study reveal complex seasonal and event-scale relationships of river flow with the amount of chlorophyll, which provide an initial comprehension of controls over the concentrations of chlorophyll in the estuary. The concentration of chlorophyll changes, whether increasing or decreasing, with regards to changes in river flow. During high flow events, high amounts of chlorophyll are found when the tide is low. During low flow events, high amounts of chlorophyll are found at high tides. These phenomena reveal that both river flow and tidal cycle affect the amount of chlorophyll in the estuary. In addition, the Delft3d flow model, which has been extensively applied to many coastal and estuarine studies is used to simulate hydrodynamic patterns in the estuary during high flow and low flow events. The model is composed of 36,450 fine resolution grids and the upstream/ downstream boundary that represents water level is based on time-series data from river flow and tidal measurements. The bathymetry used for the model domain is

  9. PREDICTING CONCENTRATION OF TOTAL PHOSPHORUS AND CHLOROPHYLL 'A' IN A LAKE WITH SHORT HYDRAULIC RESIDENCE TIME

    EPA Science Inventory

    The relationship between total phosphorus and chlorophyll a concentration was determined for Skinner Lake, Indiana over an annual cycle in 1978-79. Total nitrogen: total phosphorus ratios in the epilimnion ranged from 19 to 220 suggesting a phosphorus-dependent algal yield in the...

  10. Extreme Algal Bloom Detection with MERIS

    NASA Astrophysics Data System (ADS)

    Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.

    2009-05-01

    Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.

  11. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). PMID:27007038

  12. Relations of principal components analysis site scores to algal-biomass, habitat, basin-characteristics, nutrient, and biological-community data in the Upper Wabash River Basin, Indiana, 2003

    USGS Publications Warehouse

    Leer, Donald R.; Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    The values for nutrients (nitrate, total Kjeldahl nitrogen, total nitrogen, and total phosphorus) and chlorophyll a (periphyton and seston) were compared to published U.S. Environmental Protection Agency (USEPA) values for Aggregate Nutrient Ecoregions VI and VII and USEPA Level III Ecoregions 55 and 56. Several nutrient values were greater than the 25th percentile of the published USEPA values. Chlorophyll a (periphyton and seston) values either were greater than the 25th percentile of published USEPA values or extended data ranges in the Aggregate Nutrient and Level III Ecoregions. If the proposed values for the 25th percentile were adopted as nutrient water-quality criteria, many samples in the Upper Wabash River Basin would have exceeded the criteria.

  13. Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations

    SciTech Connect

    Antoine, D.; Morel, A.

    1996-03-01

    This study was performed with two purposes: (1) to develop a method to calculate the cross section for photosynthesis per unit of chlorophyll (psi*), based on standard values for physiological parameters controlling the photosynthetic response of algae; and (2) to perform a sensitivity analysis of the impact of deviations in these parameters. A spectral light-photosynthesis model was used to generate psi* lookup tables for well-mixed or stratified upper layers with uniform or non-uniform chlorophyll vertical profiles. The tables contain values for psi*, the photosynthetically available radiation impinging at the sea surface, the column-integrated chlorphyll content, and the product of these values, the primary production (P) from the chlorophyll concentration. It was numerically verified that linear interpolations provide psi* and P values that are accurate within less than 2% compared to values computed for the specified conditions. Sensitivity analyses made in reference to the lookup tables included the effects of biomass vertical structure, possible light and temperature adaptation, and the presence of degraded pigments. The parameters were arranged in increasing order of their impact on psi* and then on P as follows: (1) the shape of the absorption spectrum of algae in correspondence with a change in dominant species has a minor effect, (2) a similar conclusion applies to inhibition, (3) ignoring or accounting for the nonuniformity of the vertical algal distribution produces serious deviations in the value of psi*, (4) the influence of the scaling irradiance is severe, and (5) the bulk maximum efficiency and the pigment activity index are crucial parameters. 55 refs., 6 figs., 1 tab.

  14. Algal functional annotation tool

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  15. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  16. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  17. Effects of solar ultraviolet radiation on tropical algal communities

    SciTech Connect

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity.

  18. An overview of remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  19. Pulse amplitude modulated chlorophyll fluorometer

    SciTech Connect

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  20. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    NASA Technical Reports Server (NTRS)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in

  1. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  2. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.

    PubMed

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Leal, Lucia Hernandez; Fernandes, Tânia V; Langenhoff, Alette; Zeeman, Grietje

    2016-03-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied. Biodegradation and photolysis led to 60-100% removal of diclofenac, ibuprofen, paracetamol and metoprolol. Removal of carbamazepine and trimethoprim was incomplete and did not exceed 30% and 60%, respectively. Sorption to algal biomass accounted for less than 20% of the micropollutant removal. Furthermore, the presence of micropollutants did not inhibit C. sorokiniana growth at applied concentrations. Algal treatment systems allow simultaneous removal of micropollutants and recovery of nutrients from source separated wastewater. Nutrient rich algal biomass can be harvested and applied as fertilizer in agriculture, as lower input of micropollutants to soil is achieved when algal biomass is applied as fertilizer instead of urine. PMID:26546707

  3. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  4. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest. PMID:21330711

  5. Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters

    NASA Astrophysics Data System (ADS)

    Mélançon, Josiane; Levasseur, Maurice; Lizotte, Martine; Scarratt, Michael; Tremblay, Jean-Éric; Tortell, Philippe; Yang, Gui-Peng; Shi, Guang-Yu; Gao, Huiwang; Semeniuk, David; Robert, Marie; Arychuk, Michael; Johnson, Keith; Sutherland, Nes; Davelaar, Marty; Nemcek, Nina; Peña, Angelica; Richardson, Wendy

    2016-03-01

    Ocean acidification (OA) is likely to have an effect on the fertilizing potential of desert dust in high-nutrient, low-chlorophyll oceanic regions, either by modifying iron (Fe) speciation and bioavailability or by altering phytoplankton Fe requirements and acquisition. To address this issue, short incubations (4 days) of northeast subarctic Pacific waters enriched with either FeSO4 or dust and set at pH 8.0 (in situ) and 7.8 were conducted in August 2010. We assessed the impact of a decrease in pH on dissolved Fe concentration, phytoplankton biomass, taxonomy and productivity, and the production of dimethylsulfide (DMS) and its algal precursor dimethylsulfoniopropionate (DMSP). Chlorophyll a (chl a) remained unchanged in the controls and doubled in both the FeSO4-enriched and dust-enriched incubations, confirming the Fe-limited status of the plankton assemblage during the experiment. In the acidified treatments, a significant reduction (by 16-38 %) in the final concentration of chl a was measured compared to their nonacidified counterparts, and a 15 % reduction in particulate organic carbon (POC) concentration was measured in the dust-enriched acidified treatment compared to the dust-enriched nonacidified treatment. FeSO4 and dust additions had a fertilizing effect mainly on diatoms and cyanobacteria as estimated from algal pigment signatures. Lowering the pH affected mostly the haptophytes, but pelagophyte concentrations were also reduced in some acidified treatments. Acidification did not significantly alter DMSP and DMS concentrations. These results show that dust deposition events in a low-pH iron-limited northeast subarctic Pacific are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean during the few days following fertilization and point to a low initial sensitivity of the DMSP and DMS dynamics to OA.

  6. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris.

    PubMed

    Huang, Yuanxing; Hong, Andy; Zhang, Daofang; Li, Liang

    2014-01-01

    Cell disruption is essential for lipid collection from cultivated microalgae. This study examines the performance of ultrasonication (US), conventional bubbling ozonation (CBO), and pressure-assisted ozonation (PAO) as a cell rupturing technique to obtain algal lipid from a freshwater unicellular microalgae Chlorella vulgaris, which was grown in BG11 medium at a temperature of 25 degrees C and illuminated by artificial lighting with light/dark cycle of 12 h/12 h. Changes in total organic carbon, total nitrogen, total phosphorous, and chlorophyll contents in the algae suspension after ozonation and US treatments were measured to evaluate the effectiveness of cell rupture by these techniques. Lipid yields of 21 and 27 g/100 g biomass were obtained using US and PAO, respectively. Lipid yields of about 5 g/100 g biomass were obtained using CBO. In all rupturing treatments, C16 and C18 compounds were found to be predominant accounting for 90% of the fatty acids. Using US for rupturing, fatty acids of C 16:0, C18:1, and C18:2 were predominant, accounting for 76 +/- 4.2% of all the fatty acids. Using CBO and PAO involving ozone, fatty acids of C16:0 and C18:0 were predominant, accounting for 63-94% of the products. The results suggest that saturated fatty acid methyl ester (FAME) products are predominant with oxidative ozonation rupturing while unsaturated FAME products of lower-melting points predominant with physical ultrasonic rupturing means. PAO was an effective cell rupture method for biodiesel production with high lipid yield and more saturated hydrocarbon products. PMID:24645476

  7. In-vivo absorption properties of algal pigments

    NASA Astrophysics Data System (ADS)

    Bidigare, Robert R.; Ondrusek, Michael E.; Morrow, John H.; Kiefer, Dale A.

    1990-09-01

    Estimates of the in vivo specific absorption coefficients (m2 mg'; 400-750 nm, 2 nm intervals) for the major algal pigment groups (chlorophylls, carotenoids and phycobilins) are presented. "Unpackaged" absorption coefficients were initially obtained by measuring the absorption properties of pure pigment standards spectrophotometrically and "shifting" their absorption maxima to match in vivo positions. Two approaches for estimating the phytoplankton absorption coefficient (spectral reconstruction and spectral decomposition) are compared by linear regression analysis, incorporating concurrent measurements of particulate absorption and pigmentation performed in the Sargasso Sea. Results suggest that "pigment package" effects are minimal for natural assemblages of open-oceanic phytoplankton and that accessory pigments do not always co-vary with chlorophyll a over depth and time.

  8. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria.

    PubMed

    Guillemette, François; Leigh McCallister, S; Del Giorgio, Paul A

    2016-06-01

    Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ(13)C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs. PMID:26623544

  9. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species. PMID:25675371

  10. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.; Warren, Steven D.

    1994-01-01

    Cryptobiotic soil crusts are an important component of semiarid and arid ecosystems. An important role of these crusts is the contribution of fixed nitrogen to cold‐desert ecosystems. This study examines the residual effects of various intensities and combinations of different surface disturbances (raking, scalping, and tracked vehicles) on nitrogenase activity, chlorophyll content, and chlorophyll degradation in these soil crusts. Nine months after disturbance chlorophyll content of disturbed soils was not statistically different from undisturbed controls, except in the scalped treatments, indicating recovery of this characteristic is fairly quick unless surface material is removed. Differences in chlorophyll degradation among treatments were not statistically significant. However, nitrogenase activity in all treatments showed tremendous reductions, ranging from 77–97%, when compared to the control, indicating this characteristic is slow to recover. Consequently, assessment of crustal recovery from disturbance must include not only visual and biomass characteristics but other physiological measurements as well. Areas dominated by these crusts should be managed conservatively until the implications of crustal disturbance is better understood.

  11. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  12. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  13. Associations between chlorophyll a and various microcystin health advisory concentrations

    PubMed Central

    Hollister, Jeffrey W.; Kreakie, Betty J.

    2016-01-01

    Cyanobacteria harmful algal blooms (cHABs) are associated with a wide range of adverse health effects that stem mostly from the presence of cyanotoxins. To help protect against these impacts, several health advisory levels have been set for some toxins. In particular, one of the more common toxins, microcystin, has several advisory levels set for drinking water and recreational use. However, compared to other water quality measures, field measurements of microcystin are not commonly available due to cost and advanced understanding required to interpret results. Addressing these issues will take time and resources. Thus, there is utility in finding indicators of microcystin that are already widely available, can be estimated quickly and in situ, and used as a first defense against high levels of microcystin. Chlorophyll a is commonly measured, can be estimated in situ, and has been shown to be positively associated with microcystin. In this paper, we use this association to provide estimates of chlorophyll a concentrations that are indicative of a higher probability of exceeding select health advisory concentrations for microcystin. Using the 2007 National Lakes Assessment and a conditional probability approach, we identify chlorophyll a concentrations that are more likely than not to be associated with an exceedance of a microcystin health advisory level. We look at the recent US EPA health advisories for drinking water as well as the World Health Organization levels for drinking water and recreational use and identify a range of chlorophyll a thresholds. A 50% chance of exceeding one of the specific advisory microcystin concentrations of 0.3, 1, 1.6, and 2 μg/L is associated with chlorophyll a concentration thresholds of 23, 68, 84, and 104 μg/L, respectively. When managing for these various microcystin levels, exceeding these reported chlorophyll a concentrations should be a trigger for further testing and possible management action. PMID:27127617

  14. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study

    NASA Astrophysics Data System (ADS)

    Li, Qinqin; Hu, Weiping; Zhai, Shuhua

    2016-01-01

    Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading.

  15. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study.

    PubMed

    Li, Qinqin; Hu, Weiping; Zhai, Shuhua

    2016-01-01

    Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading. PMID:26296739

  16. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  17. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  18. A comparison of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages

    USGS Publications Warehouse

    Potapova, M.; Coles, J.F.; Giddings, E.M.P.; Zappia, H.

    2005-01-01

    Patterns of stream benthic algal assemblages along urbanization gradients were investigated in three metropolitan areas-Boston (BOS), Massachusetts; Birmingham (BIR), Alabama; and Salt Lake City (SLC), Utah. An index of urban intensity derived from socioeconomic, infrastructure, and land-use characteristics was used as a measure of urbanization. Of the various attributes of the algal assemblages, species composition changed along gradients of urban intensity in a more consistent manner than biomass or diversity. In urban streams, the relative abundance of pollution-tolerant species was often higher than in less affected streams. Shifts in assemblage composition were associated primarily with increased levels of conductivity, nutrients, and alterations in physical habitat. Water mineralization and nutrients were the most important determinants of assemblage composition in the BOS and SLC study areas; flow regime and grazers were key factors in the BIR study area. Species composition of algal assemblages differed significantly among geographic regions, and no particular algal taxa were found to be universal indicators of urbanization. Patterns in algal biomass and diversity along urban gradients varied among study areas, depending on local environmental conditions and habitat alteration. Biomass and diversity increased with urbanization in the BOS area, apparently because of increased nutrients, light, and flow stability in urban streams, which often are regulated by dams. Biomass and diversity decreased with urbanization in the BIR study area because of intensive fish grazing and less stable flow regime. In the SLC study area, correlations between algal biomass, diversity, and urban intensity were positive but weak. Thus, algal responses to urbanization differed considerably among the three study areas. We concluded that the wide range of responses of benthic algae to urbanization implied that tools for stream bioassessment must be region specific. ?? 2005 by the

  19. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  20. An algal solution to large scale wastewater amelioration

    SciTech Connect

    Adey, W.H.

    1995-06-01

    Wastewater nutrients can be lowered to oligotrophic levels through uptake by algal biomass, while photosynthetic oxygen removes bacterial BOD, and oxygen-based ions, with UV application, can break down xenobiotic organic compounds. Algae also uptake heavy metals in cell walls, and the high pH from CO{sub 25} removal precipitates metals, earth metals and phosphorus. Algal biomass produced from many wastewaters has valuable commercial applications. Algal Turf Scrubbing (ATS) was developed as a tool to control water quality in ecosystem models, often at oligotrophic levels. ATS has routinely achieved biomass production (and water amelioration capability) of over 50 g (dry mass) m{sup -2} day{sup -1} in secondary sewage. Engineering innovations, with mechanized harvest, have brought ATS to large scale with a pilot sewage plant in central California. This is a low cost, modular unit, at 1000 cubic meters per day, and plans are underway to expand to city capacity for Tertiary-Quinary water recovery. A wide variety of wastewater applications, from agricultural, to aquacultural to industrial will be discussed.

  1. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  2. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation. PMID:25149444

  3. Chlorophyll a + b content and chlorophyll fluorescence in avocado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One Tonnage (T) and one Simmonds (S) avocado tree and four TxS crosses were evaluated for differences in chlorophyll content and maximal quantum yield of photosystem II in sun and shade-type leaves. Total chlorophyll content by area (Chl a+bar) ranged from 981 mg m-2 in TxS240 to 4339 mg m-2 in Simm...

  4. Landscape drivers of regional variation in the relationship between total phosphorus and chlorophyll in lakes

    USGS Publications Warehouse

    Wagner, T.; Soranno, P.A.; Webster, K.E.; Cheruvelil, K.S.

    2011-01-01

    For north temperate lakes, the well-studied empirical relationship between phosphorus (as measured by total phosphorus, TP), the most commonly limiting nutrient and algal biomass (as measured by chlorophyll a, CHL) has been found to vary across a wide range of landscape settings. Variation in the parameters of these TP-CHL regressions has been attributed to such lake variables as nitrogen/phosphorus ratios, organic carbon and alkalinity, all of which are strongly related to catchment characteristics (e.g. natural land cover and human land use). Although this suggests that landscape setting can help to explain much of the variation in ecoregional TP-CHL regression parameters, few studies have attempted to quantify relationships at an ecoregional spatial scale. We tested the hypothesis that lake algal biomass and its predicted response to changes in phosphorus are related to both local-scale features (e.g. lake and catchment) and ecoregional-scale features, all of which affect the availability and transport of covarying solutes such as nitrogen, organic carbon and alkalinity. Specifically, we expected that land use and cover, acting at both local and ecoregional scales, would partially explain the spatial pattern in parameters of the TP-CHL regression. We used a multilevel modelling framework and data from 2105 inland lakes spanning 35 ecoregions in six US states to test our hypothesis and identify specific local and ecoregional features that explain spatial heterogeneity in TP-CHL relationships. We include variables such as lake depth, natural land cover (for instance, wetland cover in the catchment of lakes and in the ecoregions) and human land use (for instance, agricultural land use in the catchment of lakes and in the ecoregions). There was substantial heterogeneity in TP-CHL relationships across the 35 ecoregions. At the local scale, CHL was negatively and positively related to lake mean depth and percentage of wooded wetlands in the catchment, respectively. At

  5. Mediterranean Ocean Colour Chlorophyll Trends.

    PubMed

    Colella, Simone; Falcini, Federico; Rinaldi, Eleonora; Sammartino, Michela; Santoleri, Rosalia

    2016-01-01

    In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity). Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication). Monitoring chlorophyll (Chl) concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020) and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean) algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I) and coastal (i.e., Case II) waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However, the trends

  6. Mediterranean Ocean Colour Chlorophyll Trends

    PubMed Central

    Colella, Simone; Falcini, Federico; Rinaldi, Eleonora; Sammartino, Michela; Santoleri, Rosalia

    2016-01-01

    In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity). Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication). Monitoring chlorophyll (Chl) concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the “good environmental status” (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020) and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean) algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I) and coastal (i.e., Case II) waters. We apply the Mann-Kendall test and the Sens’s method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However, the

  7. Phytoplankton dynamics with a special emphasis on harmful algal blooms in the Mar Piccolo of Taranto (Ionian Sea, Italy).

    PubMed

    Caroppo, Carmela; Cerino, Federica; Auriemma, Rocco; Cibic, Tamara

    2016-07-01

    The response of phytoplankton assemblages to the closure of urban sewage outfalls (USOs) was examined for the Mar Piccolo of Taranto (Mediterranean Sea), a productive semi-enclosed coastal marine ecosystem devoted to shellfish farming. Phytoplankton dynamics were investigated in relation to environmental variables, with a particular emphasis on harmful algal blooms (HABs). Recent analyses evidenced a general reduction of the inorganic nutrient loads, except for nitrates and silicates. Also phytoplankton biomass (chlorophyll a) and abundances were characterized by a decrease of the values, except for the inner area of the basin (second inlet). The phytoplankton composition changed, with nano-sized species, indicators of oligotrophic conditions, becoming dominant over micro-sized species. If the closure of the USOs affected phytoplankton dynamics, however, it did not preserve the Mar Piccolo from HABs and anoxia crises. About 25 harmful species have been detected throughout the years, such as the potentially domoic acid producers Pseudo-nitzschia cf. galaxiae and P seudo-nitzschia cf. multistriata, identified for the first time in these waters. The presence of HABs represents a threat for human health and aquaculture. Urgent initiatives are needed to improve the communication with authorities responsible for environmental protection, economic development, and public health for a sustainable mussel culture in the Mar Piccolo. PMID:26206123

  8. Fuels from biomass and wastes

    NASA Astrophysics Data System (ADS)

    Klass, D. L.; Emert, G. H.

    The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

  9. Optimizing chlorophyll content in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, leaf chlorophyll content has not been among the target traits for improving crop yield. However, current chlorophyll concentrations may be in excess of the amount that would maximize the season integral of photosynthesis in a crop monoculture, such as soybean, that achieves a high lea...

  10. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  11. Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously.

    PubMed

    Wu, Yin-Hu; Yu, Yin; Hu, Hong-Ying

    2015-09-01

    Nutrient deprivation is a commonly-used trigger for microalgal lipid accumulation, but its adverse impact on microalgal growth seems to be inevitable. In this study, Scenedesmus sp. LX1 was found to show similar physiological and biochemical variation under oligotrophic and eutrophic conditions during growth with intracellular phosphorus. Under both conditions microalgal chlorophyll content and photosynthesis activity was stable during this growth process, leading to significant increase of single cell weight and size. Therefore, while algal density growth rate dropped significantly to below 1.0 × 10(5)cells mL(-1) d(-1) under oligotrophic condition, the biomass dry weight growth rate still maintained about 40 mg L(-1) d(-1). Meanwhile, the lipid content in biomass and triacylglycerols (TAGs) content in lipids increased significantly to about 35% and 65%, respectively. Thus, high biomass growth rate and high lipid/TAG content were achieved simultaneously at the late growth phase with intracellular phosphorus. Besides, microalgal biomass produced was rich in carbohydrate with low protein content. PMID:26056779

  12. Simulating pH effects in an algal-growth hydrodynamics model(1).

    PubMed

    James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T

    2013-06-01

    Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. PMID:27007048

  13. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  14. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE PAGESBeta

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    2015-02-10

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  15. Anaerobic bioassay of methane potential of microalgal biomass

    NASA Astrophysics Data System (ADS)

    Yen, Hong-Wei

    This study was undertaken to investigate the feasibility of using anaerobic digestion as a technique to recover solar energy embodied in excess algal biomass production harvested from Clemson University's high rate algal based Partitioned Aquaculture System (PAS) as an energy source to support PAS operations. In this study, four different organic substrates were loaded to anaerobic digesters in eight experimental trials, to ascertain the optimal combination of operational variables and effect of algal, or modified algal substrate upon methane production rate. The four substrates used in this study were: (1) a synthetic feedstock consisting of molasses and dog food, (2) a commercially obtained, readily degradable algal biomass (Spirulina ) in dry form, (3) PAS harvested and dewatered algal sludge, and (4) algal biomass blended with shredded waste paper or molasses as a carbon supplement for the adjustment of algal C/N ratio. Eight experimental trials using combinations of the four substrates were conducted in 15 liter digesters to investigate the effects of controlled digester parameters upon digester performance. Digesters operating at 20 days HRT, mesophilic digestion (35°C), and twice per day mixing at maximal loading rates produced maximal methane gas using PAS algal sludge. However, under these conditions overall methane production was less than 1000 ml CH4/l day. This low level of energy recovery from the fermentation of algal biomass (alone) is not energetically or economically favorable. Co-digestion of algal sludge and waste paper was investigated as a way to increase methane production. The data obtained from these trials suggest an optimum C/N ratio for co-digestion of algal sludge and waste paper in the range of 20--25/l. A balanced C/N ratio along with the stimulated increase in cellulase activity is suggested as likely reasons for increased methane production seen in co-digestion of algal sludge and waste paper. Yeast extract addition to anaerobic

  16. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.

    PubMed

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-12-01

    When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge. PMID:25189477

  17. Remote sensing of ALGAL pigments to determine coastal phytoplankton dynamics in Florida Bay

    SciTech Connect

    Richardson, L.L.; Ambrosia, V.G.

    1997-06-01

    An important component of remote sensing of marine and coastal environments is the detection of phytoplankton to estimate biological activity. Traditionally the focus has been on detection of chlorophyll a, a photosynthetic pigment common to all algal groups. Recent advances in remote sensing instrumentation, in particular the development of hyperspectral imaging sensors, allow detection of additional algal pigments that include taxonomically significant photosynthetic and photoprotective accessory pigments. We are working with the hyperspectral imaging sensor AVIRIS (the Airborne Visible-Infrared Imaging Spectrometer) to characterize phytoplankton blooms in Florida Bay. Our data analysis focuses on intersection of image data (and image-derived spectral data) with our in-house library of algal pigment signatures.

  18. Numerical simulation of an algal bloom in Dianshan Lake

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lin, Weiqing; Zhu, Jianrong; Lu, Shiqiang

    2016-01-01

    A hydrodynamic model and an aquatic ecology model of Dianshan Lake, Shanghai, were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D, which is an integrated modelling suite offered by Deltares. The simulated water elevation, current velocity, and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data, as well as simulated results. In 2008, the dominant algae in Dianshan Lake was Bacillariophyta from February to March, while it was Chlorophyta from April to May, and Cyanophyta from July to August. In summer, the biomass of Cyanophyta grew quickly, reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however, increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions, resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.

  19. Mechanism of algal aggregation by Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2014-07-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  20. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  1. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors.

    PubMed

    Posadas, Esther; García-Encina, Pedro-Antonio; Soltau, Anna; Domínguez, Antonio; Díaz, Ignacio; Muñoz, Raúl

    2013-07-01

    The mechanisms of carbon and nutrient removal in an open algal-bacterial biofilm reactor and an open bacterial biofilm reactor were comparatively evaluated during the treatment of centrates and domestic wastewater. Comparable carbon removals (>80%) were recorded in both bioreactors, despite the algal-bacterial biofilm supported twice higher nutrient removals than the bacterial biofilm. The main carbon and nitrogen removal mechanisms in the algal-bacterial photobioreactor were assimilation into algal biomass and stripping, while stripping accounted for most carbon and nitrogen removal in the bacterial biofilm. Phosphorus was removed by assimilation into algal-bacterial biomass while no effective phosphorous removal was observed in the bacterial biofilm. Carbon, nitrogen and phosphorus removals of 91 ± 3%, 70 ± 8% and 85 ± 9%, respectively, were recorded in the algal-bacterial bioreactor at 10d of hydraulic retention time when treating domestic wastewater. However, the high water footprint recorded (0.5-6.7 Lm(-2)d(-1)) could eventually compromise the environmental sustainability of this microalgae-based technology. PMID:23644070

  2. A Geospatial Analysis of Harmful Algal Blooms along the California Coast

    NASA Astrophysics Data System (ADS)

    Jensen, C.; Rothwell, R.; Johnson, E.; Condamoor, M.; Patil, M.; Largier, J. L.; Schmidt, C.

    2012-12-01

    Algal blooms are natural phenomena consisting of the rapid growth of phytoplankton populations. Some blooms have negative ecological or public health effects due to toxin production and removal of oxygen from the water column. In recent years, such "harmful algal blooms" (HABs) have been linked to human illness, economic loss from decreased fishing, and ecological damage related to marine life mortality as well as eutrophication. A notable HAB event occurred along the coast of northern California in August 2011, resulting in economic and ecological impacts of approximately $82 million. This was one of several algal blooms that occurred in fall 2011, with similar northward propagating algal blooms occurring in autumn of other years. Although the scale of the bloom impact is well-known, the spatial and temporal extent of the bloom boundary is still unclear. This study tracked the space-time pattern of numerous blooms during August-October 2011 using multiple NASA Earth observing systems in an effort to quantify and understand the structure of these recurrent bloom events. Aqua MODIS images were used to quantify surface chlorophyll-α levels, and thus to map the extent and development of all autumn algal blooms. The relation between sea surface temperature, ocean surface topography, and algal blooms was further explored with AVHRR and Jason-2 satellite data. A Generalized Additive Model (GAM) was used to identify the environmental factors most statistically influential in algal blooms and specifically in HAB events. Results from this study will assist California's Departments of Public Health and Fish & Game in mitigating and managing the impact of future harmful algal blooms.

  3. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  4. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  5. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms.

    PubMed

    Koziol, Adam G; Borza, Tudor; Ishida, Ken-Ichiro; Keeling, Patrick; Lee, Robert W; Durnford, Dion G

    2007-04-01

    The light-harvesting complexes (LHCs) of land plants and green algae have essential roles in light capture and photoprotection. Though the functional diversity of the individual LHC proteins are well described in many land plants, the extent of this family in the majority of green algal groups is unknown. To examine the evolution of the chlorophyll a/b antennae system and to infer its ancestral state, we initiated several expressed sequence tag projects from a taxonomically broad range of chlorophyll a/b-containing protists. This included representatives from the Ulvophyceae (Acetabularia acetabulum), the Mesostigmatophyceae (Mesostigma viride), and the Prasinophyceae (Micromonas sp.), as well as one representative from each of the Euglenozoa (Euglena gracilis) and Chlorarachniophyta (Bigelowiella natans), whose plastids evolved secondarily from a green alga. It is clear that the core antenna system was well developed prior to green algal diversification and likely consisted of the CP29 (Lhcb4) and CP26 (Lhcb5) proteins associated with photosystem II plus a photosystem I antenna composed of proteins encoded by at least Lhca3 and two green algal-specific proteins encoded by the Lhca2 and 9 genes. In organisms containing secondary plastids, we found no evidence for orthologs to the plant/algal antennae with the exception of CP29. We also identified PsbS homologs in the Ulvophyceae and the Prasinophyceae, indicating that this distinctive protein appeared prior to green algal diversification. This analysis provides a snapshot of the antenna systems in diverse green algae, and allows us to infer the changing complexity of the antenna system during green algal evolution. PMID:17307901

  6. Selective algicidal action of peptides against harmful algal bloom species.

    PubMed

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  7. Plant chlorophyll content meter

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A plant chlorophyll content meter is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels are processed using photo detectors and amplifiers. An analog to digital converter is described which provides a digital representation of the level of light collected by the lens and falling within the two channels. A controller provided in the meter device compares the level of light reflected from a target plant with a level of light detected from a light source, such as light reflected by a target having 100% reflectance, or transmitted through a diffusion receptor. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio which indicates a relative level of plant physiological stress. A method of compensating for electronic drift is described where a sample is taken when a collection lens is covered to prevent light from entering the device. This compensation method allows for a more accurate reading by reducing error contributions due to electronic drift from environmental conditions at the location where a hand-held unit is used.

  8. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  9. Water-quality parameters and benthic algal communities at selected streams in Minnesota, August 2000 - Study design, methods and data

    USGS Publications Warehouse

    Lee, K.E.

    2002-01-01

    This report describes the study design, sampling methods, and summarizes the physical, chemical, and benthic algal data for a component of the multiagency study that was designed to document diurnal water-quality measurements (specific conductance, pH, water temperature, and dissolved oxygen), benthic algal community composition and chlorophyll-a content, and primary productivity at 12 stream sites on 6 streams in Minnesota during August 2000. Specific conductance, pH, water temperature, dissolved oxygen concentrations and percent dissolved oxygen saturation measurements were made with submersible data recorders at 30 minute intervals for a period of 3-6 days during August 2000. Benthic algae collected from wood and rock substrate were identified and enumerated. Biovolume (volume of algal cells per unit area), density (number of cells per unit area), and chlorophyll-a content from benthic algae were determined. These data can be used as part of the multiagency study to develop an understanding of the relations among nutrient concentrations, algal abundance, algal community composition, and primary production and respiration processes in rivers of differing ecoregions in Minnesota.

  10. BENTHIC AMPHIPOD COMMUNITY RESPONSE TO STRESS INDUCED BY ALGAL MATS IN A PACIFIC NORTHWEST ESTUARY

    EPA Science Inventory

    Amphipod, algal biomass and sediment samples were taken at two- to four-week intervals from June through December, 2000 along lines perpendicular to two transects in Yaquina Bay, OR, extending from within the Zostera marina bed at the river channel edge through intertidal burrowi...

  11. Assessment of factors limiting algal growth in acidic pit lakes-a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability. PMID:26593729

  12. Evaluation of High Density Algal Cultivation for Secondary Wastewater Polishing.

    PubMed

    Xu, Meng; Xu, Shengnan; Bernards, Matthew; Hu, Zhiqiang

    2016-01-01

    This study evaluated the performance of an algal membrane bioreactor (A-MBR) for secondary wastewater effluent polishing and determined the membrane fouling behavior and dominance of algae in the A-MBR. The continuous flow A-MBR (effective volume = 7.2 L) was operated with low biomass wastage for more than 180 days, resulting in an average algal mixed liquor suspended solid concentration of 4922 mg/L. At the influent concentrations of 43 mg/L COD, 1.6 mg/L total phosphorus (TP), and 11.8 mg/L total nitrogen (TN), the effluent COD, TP and TN concentrations were 26 ± 6 mg/L, 0.7 ± 0.3 mg/L, and 9.6 ± 1.2 mg/L, respectively. High-density algae cultivation facilitated P adsorption and chemical precipitation. However, the TN removal efficiency was only 14% because of low biomass wastage. Although bacteria represented less than 2% of the total biomass in the A-MBR, bacterial growth in the secondary wastewater effluent accelerated membrane fouling. PMID:26803026

  13. Monitoring of Harmful Algal Blooms through Drinking Water Treatment Facilities Located on Lake Erie in the 2014 and 2015 Bloom Seasons

    EPA Science Inventory

    A number of drinking water treatment plants on Lake Erie have supplied water samples on a monthly basis for analysis related to the occurrence of harmful algal blooms (HABs). General water quality parameters including total organic carbon (TOC), orthophosphate, and chlorophyll-A ...

  14. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  15. Algal Growth Potential of Microcystis aeruginosa from Reclaimed Water.

    PubMed

    Joo, Jin Chul; Ahn, Chang Hyuk; Lee, Saeromi; Jang, Dae-Gyu; Lee, Woo Hyoung; Ryu, Byong Ro

    2016-01-01

    Algal growth potential (AGP) of the cyanobacterium Microcystis aeruginosa (M. aeruginosa, NIES-298) using reclaimed water from various wastewater reclamation pilot plants was investigated to evaluate the feasibility of the reclaimed water usage for recreational purposes. After completing the coagulation and ultrafiltration processes, the concentrations of most contaminants in the reclaimed water were lower than the reuse guidelines for recreational water. However, M. aeruginosa successfully adapted to low levels of soluble reactive phosphorus (PO(3-)(4)) concentrations. The AGP values of M. aeruginosa decreased with the progression of treatment processes, and with the increases in the dilution volume. Also, both the AGP and chlorophyll-a values can be estimated a priori without conducting the AGP tests. Therefore, aquatic ecosystems in locations prone to environmental conditions favorable for the growth of M. aeruginosa require more rigorous nutrient management plans (e.g., reverse osmosis and dilution with clean water resources) to reduce the nutrient availability. PMID:26803027

  16. Marine Algae: a Source of Biomass for Biotechnological Applications.

    PubMed

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development. PMID:26108496

  17. Primary production of edaphic algal communities in a Mississippi salt marsh

    SciTech Connect

    Sullivan, M.J.; Moncreiff, C.A.

    1988-03-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by /sup 14/C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m/sup 2/ in Juncus roemerianus Scheele to a high of 163 mg C/m/sup 2/ beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R/sup 2/; however, virtually all variables selected were diatom taxa. R/sup 2/ was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m/sup 2/) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes.

  18. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II).

    PubMed

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g(-1) and 112, 77 and 67 mg Cu g(-1) for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  19. Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg.

    PubMed

    Carrias, J-F; Céréghino, R; Brouard, O; Pélozuelo, L; Dejean, A; Couté, A; Corbara, B; Leroy, C

    2014-09-01

    The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics. PMID:24400863

  20. 90% Below 10m: Summer Biomass and Productivity are Invisible to Satellites and Surface Transects in Modern Lake Michigan

    NASA Astrophysics Data System (ADS)

    Cuhel, R. L.; Aguilar, C.

    2013-12-01

    Deep biomass maxima, often identified through in vivo chlorophyll fluorescence profiles (DCM or deep chlorophyll maximum), have been common 'forever' in Lake Michigan. Usually present in the upper thermocline zone of 15-25m, summer DCM populations were characteristically dominated by diatoms. Increased light transmission in quagga mussel (QM) engineered Lake Michigan waters now has enabled phytoplankton to proliferate in discrete layers as deep as 50m. Instances of multiple fluorescence maxima and transmission minima, often not coincident, document the habitat diversity available in clear, often sequentially stratified offshore waters and MidLake Reef Complex locations. Phytoplankton population structure has also changed, and diatoms have become a much smaller component of algal biomass. Discrete layers of chromatically adapted picoplankton now dominate the deepest biomass maxima. Photosynthetic characteristics differ substantially among leading edge, principal biomass or fluorescence, and deep trailing edge populations. Saturation coefficients are often as low as 25 uEin/m2/sec, or 1% of midday summer surface radiance. In vivo fluorescence is only loosely related to biomass, which is greatest in shallower zones of beam transmission minima. On a daily basis, areal primary productivity post-QM is less than half of previous levels, and seasonality has been muted. Spring bloom enhancement no longer exists, and the depth zone of maximum productivity is 10-20m deeper than during the diatom epoch. Altered phytoplankton community structure and decreased productivity left strong signals in biogeochemical time series measurements. A clear discontinuity in silicate cycling indicates dampened diatom productivity and consequently lower silica loss through deposition and burial. Porewater analysis pre- and post-QM shows evidence of reduced organic sedimentation overall, with an especially strong signal in decreased potential silicate efflux. Biogeochemical consequences include

  1. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. PMID:27008510

  2. Arctic spring awakening - Steering principles behind the phenology of vernal ice algal blooms

    NASA Astrophysics Data System (ADS)

    Leu, E.; Mundy, C. J.; Assmy, P.; Campbell, K.; Gabrielsen, T. M.; Gosselin, M.; Juul-Pedersen, T.; Gradinger, R.

    2015-12-01

    Marine ecosystems at high latitudes are characterized by extreme seasonal changes in light conditions, as well as a limited period of high primary production during spring and early summer. As light returns at the end of winter to Arctic ice-covered seas, a first algal bloom takes place in the bottom layer of the sea ice. This bottom ice algae community develops through three distinct phases in the transition from winter to spring, starting with phase I, a predominantly net heterotroph community that has limited interaction with the pelagic or benthic realms. Phase II begins in the spring once light for photosynthesis becomes available at the ice bottom, although interaction with the water column and benthos remains limited. The transition to the final phase III is then mainly driven by a balance of atmospheric and oceanographic forcing that induce structural changes in the sea ice and ultimately the removal of algal biomass from the ice. Due to limited data availability an incomplete understanding exists of all the processes determining ice algal bloom phenology and the considerable geographic differences in sympagic algal standing stocks and primary production. We present here the first pan-Arctic compilation of available time-series data on vernal sea ice algal bloom development and identify the most important factors controlling its development and termination. Using data from the area surrounding Resolute Bay (Nunavut, Canada) as an example, we support previous investigations that snow cover on top of the ice influences sea ice algal phenology, with highest biomass development, but also earliest termination of blooms, under low snow cover. We also provide a pan-Arctic overview of sea ice algae standing stocks and primary production, and discuss the pertinent processes behind the geographic differences we observed. Finally, we assess potential future changes in vernal algal bloom phenology as a consequence of climate change, including their importance to

  3. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps.

    PubMed

    Norvill, Zane N; Shilton, Andy; Guieysse, Benoit

    2016-08-01

    Whereas the fate of emerging contaminants (ECs) during 'conventional' and 'advanced' wastewater treatment (WWT) has been intensively studied, little research has been conducted on the algal WWT ponds commonly used in provincial areas. The long retention times and large surface areas exposed to light potentially allow more opportunities for EC removal to occur, but experimental evidence is lacking to enable definite predictions about EC fate across different algal WWT systems. This study reviews the mechanisms of EC hydrolysis, sorption, biodegradation, and photodegradation, applying available knowledge to the case of algal WWT. From this basis the review identifies three main areas that need more research due to the unique environmental and ecological conditions occurring in algal WWT ponds: i) the effect of diurnally fluctuating pH and dissolved oxygen upon removal mechanisms; ii) the influence of algae and algal biomass on biodegradation and sorption under relevant conditions; and iii) the significance of EC photodegradation in the presence of dissolved and suspended materials. Because of the high concentration of dissolved organics typically found in algal WWT ponds, most EC photodegradation likely occurs via indirect mechanisms rather than direct photolysis in these systems. PMID:27135171

  4. Biological control of harmful algal blooms: A modelling study

    NASA Astrophysics Data System (ADS)

    Solé, Jordi; Estrada, Marta; Garcia-Ladona, Emilio

    2006-07-01

    A multispecies dynamic simulation model (ERSEM) was used to examine the influence of allelopathic and trophic interactions causing feeding avoidance by predators, on the formation of harmful algal blooms, under environmental scenarios typical of a Mediterranean harbour (Barcelona). The biological state variables of the model included four functional groups of phytoplankton (diatoms, toxic and non-toxic flagellates and picophytoplankton), heterotrophic flagellates, micro- and mesozooplankton and bacteria. The physical-chemical forcing (irradiance, temperature and major nutrient concentrations) was based on an actual series of measurements taken along a year cycle in the Barcelona harbour. In order to evaluate potential effects of advection, some runs were repeated after introducing a biomass loss term. Numerical simulations showed that allelopathic effects of a toxic alga on a non-toxic but otherwise similar competitor did not have appreciable influence on the dynamics of the system. However, induction of avoidance of the toxic alga by predators, which resulted on increased predation pressure on other algal groups had a significant effect on the development of algal and predator populations. The presence of advection overrided the effect of these interactions and only allowed organisms with sufficiently high potential growth rates to thrive.

  5. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  6. Promotion of harmful algal blooms by zooplankton predatory activity

    PubMed Central

    Mitra, Aditee; Flynn, Kevin J

    2006-01-01

    The relationship between algae and their zooplanktonic predators typically involves consumption of nutrients by algae, grazing of the algae by zooplankton which in turn enhances predator biomass, controls algal growth and regenerates nutrients. Eutrophication raises nutrient levels, but does not simply increase normal predator–prey activity; rather, harmful algal bloom (HAB) events develop often with serious ecological and aesthetic implications. Generally, HAB species are outwardly poor competitors for nutrients, while their development of grazing deterrents during nutrient stress ostensibly occurs too late, after the nutrients have largely been consumed already by fast-growing non-HAB species. A new mechanism is presented to explain HAB dynamics under these circumstances. Using a multi-nutrient predator–prey model, it is demonstrated that these blooms can develop through the self-propagating failure of normal predator–prey activity, resulting in the transfer of nutrients into HAB growth at the expense of competing algal species. Rate limitation of this transfer provides a continual level of nutrient stress that results in HAB species exhibiting grazing deterrents protecting them from top-down control. This process is self-stabilizing as long as nutrient demand exceeds supply, maintaining the unpalatable status of HABs; such events are most likely under eutrophic conditions with skewed nutrient ratios. PMID:17148360

  7. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  8. Approaches for the detection of harmful algal blooms using oligonucleotide interactions.

    PubMed

    Bruce, Karen L; Leterme, Sophie C; Ellis, Amanda V; Lenehan, Claire E

    2015-01-01

    Blooms of microscopic algae in our waterways are becoming an increasingly important environmental concern. Many are sources of harmful biotoxins that can lead to death in humans, marine life and birds. Additionally, their biomass can cause damage to ecosystems such as oxygen depletion, displacement of species and habitat alteration. Globally, the number and frequency of harmful algal blooms has increased over the last few decades, and monitoring and detection strategies have become essential for managing these events. This review discusses developments in the use of oligonucleotide-based 'molecular probes' for the selective monitoring of algal cell numbers. Specifically, hybridisation techniques will be a focus. PMID:25381608

  9. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.

    PubMed

    Muñoz, Raul; Alvarez, Maria Teresa; Muñoz, Adriana; Terrazas, Enrique; Guieysse, Benoit; Mattiasson, Bo

    2006-05-01

    The residual algal-bacterial biomass from photosynthetically supported, organic pollutant biodegradation processes, in enclosed photobioreactors, was tested for its ability to accumulate Cu(II), Ni(II), Cd(II), and Zn(II). Salicylate was chosen as a model contaminant. The algal-bacterial biomass combined the high adsorption capacity of microalgae with the low cost of the residual biomass, which makes it an attractive biosorbent for environmental applications. Cu(II) was preferentially taken-up from the medium when the metals were present both separately and in combination. There was no observed competition for adsorption sites, which suggested that Cu(II), Ni(II), Cd(II), and Zn(II) bind to different sites and that active Ni(II), Cd(II) and Zn(II) binding groups were present at very low concentrations. Therefore, special focus was given to Cu(II) biosorption. Cu(II) biosorption by the algal-bacterial biomass was characterized by an initial fast cell surface adsorption followed by a slower metabolically driven uptake. pH, Cu(II), and algal-bacterial concentration significantly affected the biosorption capacity for Cu(II). Maximum Cu(II) adsorption capacities of 8.5+/-0.4 mg g-1 were achieved at an initial Cu(II) concentration of 20 mg l-1 and at pH 5 for the tested algal-bacterial biomass. These are consistent with values reported for other microbial sorbents under similar conditions. The desorption of Cu(II) from saturated biomass was feasible by elution with a 0.0125 M HCl solution. Simultaneous Cu(II) and salicylate removal in a continuous stirred tank photobioreactor was not feasible due to the high toxicity of Cu(II) towards the microbial culture. The introduction of an adsorption column, packed with the algal-bacterial biomass, prior to the photobioreactor reduced Cu(II) concentration, thereby allowing the subsequent salicylate biodegradation in the photobioreactor. PMID:16307789

  10. The impact of algal fluorescence on the underwater polarized light field

    NASA Astrophysics Data System (ADS)

    Tonizzo, A.; Ibrahim, A.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S.

    2010-04-01

    Multiangular, hyperspectral measurements of the underwater polarization light field, as well as comprehensive measurements of IOPs were collected in several cruise campaigns in the Chesapeake/Virginia area and New York Harbor/Hudson River areas. The waters examined were mostly eutropic water with Chlorophyll a concentration up to approximately 57 μg/L. It is found that Chlorophyll a fluorescence markedly impacts (reduces) the underwater degree of polarization (DOP) in the 650 - 700 nm spectral region. By taking note of the unpolarized nature of algal fluorescence and the partially polarized properties of elastic scattering, particularly by non-algal particles, we were able to separate the Chlorophyll a fluorescence signal from the total radiance. The analysis is based on comparisons of the underwater multiangular, hyperspectral polarization measurements which include fluorescence, compared with adding - doubling polarized radiative transfer simulations of elastic scattering which use measured IOPs as input, and which do not include fluorescence. The difference between the two shows the impact of fluorescence. These relationships are examined in detail, and the efficacy of using DOP measurements for underwater fluorescence retrieval is evaluated for different scattering geometries and water conditions.

  11. High Resolution Monitoring of Algal Growth Dynamics in a Hypereutrophic River in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Henson, S. S.; Dahlgren, R.; van Nieuwenhuyse, E.; O'Geen, A. T.; Gallo, E. L.; Ahearn, D. S.

    2005-05-01

    The lower San Joaquin River in California's Central Valley experiences periods of hypoxia during the late summer and fall that is detrimental to aquatic organisms and migration of fall-run chinook salmon and steelhead trout. Hypoxia is attributable, in part, to excess nutrients from urban waste water and agricultural runoff, which contribute to growth of high concentrations of phytoplankton. This study examined spatial and temporal growth patterns that control algal loading using continuous fluorescence measurements at three sites along a 50 km section of the lower San Joaquin River between April and October. A strong diel fluorescence signal was observed and associated grab samples verified that fluorescence was an accurate measure of chlorophyll. Peak chlorophyll concentrations occurred between 18:00 and 20:00 and minimum concentrations between 10:00 and 12:00. Maximum concentrations were nearly two times greater than minimum concentrations although this ratio varied temporally and spatially. Although the mechanism for the diel chlorophyll signal is not very well understood several parameters including temperature, irradiance, turbidity, residence time, stream depth, and zooplankton grazing were considered within the scope of this study. This study highlights the importance of considering high resolution sampling on algal loading rates within heavily impacted riverine systems.

  12. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  13. The Eastern Equatorial Pacific Chlorophyll Dynamics: Update of the `Equatorial Box' Project

    NASA Astrophysics Data System (ADS)

    Westberry, T.; Wang, X.; Murtugudde, R.; Behrenfeld, M.; Roesler, C.

    2006-12-01

    The `Equatorial Box' Project utilizes the mooring observations along the 125 and 140 TAO lines to provide carbon component data, including chlorophyll, primary production, POC and DOC. These parameters together with other oceanographic properties can be used to validate ocean circulation-ecosystem models. In turn, a validated model can offer considerable promise for not only filling the gaps in the spatial and temporal coverage from the available observations, but also enhancing our understanding of the mechanisms underlying the variability. Here, we present both measured and simulated vertical-meridional chlorophyll distributions and primary production along 125W and 140W. While there is a permanent layer of deep chlorophyll maximum at 30-60 m, there is no deep maximum in phytoplankton carbon biomass or primary production. Our analyses focus on impact of nutrient stress and light conditions on chlorophyll dynamics in the eastern equatorial Pacific. We also compare modeled primary productivity with ocean color derived rates.

  14. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  15. Generic calibration of chlorophyll meter values for leaf chlorophyll content using spectral reflectances and transmittances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Minolta SPAD-502 chlorophyll meter measures leaf transmittances at 650 and 940 nm to provide a relative value of total chlorophyll a and b contents based on Beer's Law. Many studies have calibrated chlorophyll meter values with measured chlorophyll contents, and generally found that different e...

  16. Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limit...

  17. Sentinel 3 for Inland Water Quality Monitoring- Advanced in Earth Observation Based Technologies to Assist Algal Management

    NASA Astrophysics Data System (ADS)

    Malthus, Tim J.; Anstee, Janet; Botha, Hannelie; Hestir, Erin; Dekker, Arnold

    2015-12-01

    Using both modeled and real measurements of spectral reflectance over Australian inland water bodies of varying water quality the potential of the Sentinel 3 OLCI sensor for monitoring inland optical water quality dynamics, notably algal greening, was investigated. Established semi-empirical water quality algorithms for chlorophyll were tested for their potential to form the basis of an algal alerting system for water managers. Given the possession of the additional spectral band at ~705-710 nm both Sentinels 3 and 2 will be better able to resolve chlorophyll and NAP than conventional MS sensors lacking this spectral band. Such algorithms will have an accuracy sufficient for alerting algal blooms/green-up with semi-empirical algorithms displaying RMSEs of ~4 - 9 mg m-3 Chl and RMSEs for semi-analytical inversion approaches within a similar range (~7- 8 mg m-3 Chl). Whilst the results bode well for S3, the potential for S2 for accurate retrieval of chlorophyll estimates will be highly dependent on its SNR. We further report on some other challenges before such sensors can be used as an inland water quality monitoring tool.

  18. Cross-system comparison of factors influencing chlorophyll-a concentration in Oregon estuaries

    EPA Science Inventory

    Water column chlorophyll-a (chla) is a proxy for phytoplankton biomass and is often used as a biological response indicator of eutrophication. Although watershed nutrient loading may influence chla concentration in estuaries, factors such as freshwater inflow, residence time, and...

  19. Plankton studies in San Francisco Bay; I, Chlorophyll distributions and hydrographic properties, July 1977-December 1979

    USGS Publications Warehouse

    Alpine, Andrea E.; Cloern, James E.; Cole, Brian E.

    1981-01-01

    This report summarizes the distribution of phytoplankton biomass and selected hydrographic properties measured in the San Francisco Bay Estuary, on a near-monthly basis, from July 1977 through December 1979. Parameters measured were: chlorophyll a, phaeopigments, in-vivo fluorescence, turbidity, size distribution of phytoplankton, salinity and temperature. (USGS)

  20. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  1. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  2. Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide

    PubMed Central

    Wernand, Marcel R.; van der Woerd, Hendrik J.; Gieskes, Winfried W. C.

    2013-01-01

    Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major ‘greenhouse gas’, and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans – but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of ‘the’ ocean. PMID:23776435

  3. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    PubMed

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. PMID:25899246

  4. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  5. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    PubMed

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups. PMID:22767355

  6. Spectral modeling for the identification and quantification of algal blooms: A test of approach

    SciTech Connect

    Malthus, T.J.; Grieve, L.; Harwar, M.D.

    1997-06-01

    The aim of this paper is to develop and test a Monte Carlo modelling approach for the characterization of reflectance for different bloom-forming marine phytoplankton species. The model was tested on optical data for four species (Dunaliella salina, Pavlova pinguis, Emiliania huxleyi and Synechocystes spp.) and simulations performed over a range of chlorophyll concentrations. Discriminant analysis identified 10 key wavelengths which could be used to maximize the separation between the four species. The resulting wavelengths were combined in a neural network to show 100% accuracy in classifying species type. Further simulations were undertaken to investigate the effect of aquatic humus on reflectance characteristics and the change in wavelengths for algal discrimination. The implications for the development of algorithms for the identification of algal bloom species type by remote sensing are briefly discussed.

  7. Photosynthetic pigments as indicators of algal activity in the Upper Potomac Estuary

    NASA Astrophysics Data System (ADS)

    Sze, P.

    1981-10-01

    The Potomac River was monitored at Key Bridge from May - September, 1981. Temperature, major nutrients, photosynthetic pigments, abundance of major groups of photoplankton (direct counts), and potential photosynthetic production (oxygen method) were measured weekly in surface samples collected near mid-river. Chlorophyll A showed the same general trends as the cell counts and production with greatest algal activity in late May and August and a minimum in June. Centric diatoms and chlorococcalean green algae were the major planktonic algae in 1981, as in previous years. Overall, the activity of photoplankton did not show any significant change from previous years, and there was no evidence for prolonged nutrient depletion as a result of algal activity in the river.

  8. Quantifying Cyanobacteria and High Biomass Bloms from Satellite to Support Environmental Management and Public Use of U.S. Lakes and Estuaries

    NASA Astrophysics Data System (ADS)

    Tomlinson, Michelle C.; Stumpf, Richard P.; Dupuy, Danielle; Wynne, Timothy T.; Briggs, Travis

    2015-12-01

    Algal blooms of high biomass and cyanobacteria are on the rise, occurring both nationally and internationally. These blooms can foul beaches, clog water intakes, produce toxins that contaminate drinking water, and pose a threat to human and domestic animal health. A quantitative tool can aid in the management needs to respond to these issues. These blooms can affect many lakes within a state management district, pointing to the need for a synoptic and timely assessment. The 300 m Medium Resolution Imaging Spectrometer (MERIS) satellite imagery provided by the European Space Agency from 2002 to 2012 has led to advances in our ability to monitor these systems. Algorithms specific to quantifying high biomass blooms have been developed for use by state managers through a comparison of field radiometry, water quality and cell enumeration measurements, and remotely-sensed satellite data. These algorithms are designed to detect blooms even with atmospheric interference and suspended sediments. Initial evaluations were conducted for Florida lakes and the St. Johns River, Florida, USA and showed that cyanobacteria blooms, especially of Microcystis, can be identified and their biomass can be estimated (as chlorophyll concentration and other metrics). Forecasts and monitoring have been demonstrated for Lake Erie and for Florida. A multi-agency (NASA, EPA, NOAA, and USGS) project, “Cyanobacteria Assessment Network (CyAN)” intends to apply these methods to Sentinel-3 data in near real-time on a U.S. national scale, in order to support state management agencies in protecting public health and the environment.

  9. Interannual variability in chlorophyll-a on the southern Queensland continental shelf and its relationship to ENSO

    NASA Astrophysics Data System (ADS)

    Tran, Dien V.; Gabric, Albert; Cropp, Roger

    2015-12-01

    Coastal phytoplankton blooms can result from upwelling of colder nutrient-rich water, seasonal fluvial or anthropogenic point sources of nutrient. Here we analyze 15-year time series of monthly mean and 8-day satellite-derived chlorophyll-a (Chl-a) and sea surface temperature (SST) on the southern Queensland continental shelf (24.25-28.25°S) from March 2000 to February 2015. We examine the interannual variability in these parameters and its relationship to algal bloom dynamics. Seasonal climatological means are computed and analyzed. Empirical orthogonal function (EOF) analysis is applied to these time series. Cross-correlation and spatial correlation analyses are used to investigate the relationship between the multivariate ENSO index (MEI), Chl-a and SST. Computed eigenvectors of the time series of Chl-a and SST present a strong seasonal variability on the first EOF modes. Thus, the seasonal variability was removed by computing monthly and 8-day Chl-a and SST anomalies. The EOF analysis was then applied to the anomaly time series. Correlation analysis results show a positive correlation between MEI and the eigenvector of the first EOF of the monthly Chl-a anomaly with time lag of three to four months. We find a negative correlation between MEI and the eigenvector of the second EOF of the monthly Chl-a anomaly with time lag of three to four months. There is no correlation between MEI and eigenvectors of the monthly SST anomaly. There are significant correlations between eigenvectors of the first and second EOF modes of 8-day Chl-a and the first and second EOF modes of 8-day SST respectively. Negative correlation coefficients between 8-day anomalies of Chl-a and SST are found on the continental shelf to the east of Fraser Island and Stradbroke Island. Analysis of a particular algal bloom event indicates a negative SST anomaly and negative curl of wind stress in the waters to the southeast of Fraser Island suggesting that wind stress is possibly a secondary but

  10. From MERIS To OLCI And Sentinel 2: Harmful Algal Bloom Applications & Modelling In South Africa

    NASA Astrophysics Data System (ADS)

    Robertson Lain, L.; Bernard, S.; Evers-King, H.; Matthews, M. W.; Smith, M.

    2013-12-01

    The Sentinel 2 and 3 missions offer new capabilities for Harmful Algal Bloom (HAB) observations in Southern Africa and further afield on the African continent where there is a great need for improved monitoring of water quality: both in freshwater resources where eutrophication is common, and in vulnerable coastal ecosystems. Two well validated algorithms - Equivalent Algal Populations (EAP) & Maximum Peak Height (MPH) - available for operational use on eutrophic waters are described. Spectral remote sensing reflectances (Rrs) and inherent optical properties (IOPs) are characterised via measurement and modelling of phytoplankton assemblages typical of high biomass algal blooms of the Southern Benguela and inland waters of South Africa. Sensitivity to phytoplankton functional types (PFTs) is investigated, with focus on optically significant biological characteristics e.g. particle size distribution and intracellular structure (including vacuoles).

  11. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology.

    PubMed

    Ding, Yi; Wang, Wei; Liu, Xingpo; Song, Xinshan; Wang, Yuhui; Ullman, Jeffrey L

    2016-11-01

    High rate algal pond (HRAP) was combined with constructed wetland (CW) to intensify nitrogen removal through optimizing nitrification and denitrification. Nitrification and denitrification process mainly depends on the oxygen content and carbon source level in CWs. Algal biomass was enriched in HRAP, and dissolved oxygen (DO) concentration was increased via photosynthesis. Algal debris increased COD as degradable bioresource. The results showed that HRAP-CW hybrid systems effectively promoted the nitrogen removal performance due to rich DO and COD. The extension of hydraulic retention time in HRAP significantly improved NH4-N and TN removals by 10.9% and 11.1% in hybrid systems, respectively. The highest NH4-N and TN removals in hybrid systems respectively reached 67.2% and 63.5%, which were significantly higher than those in single CW. The study suggested that the hybrid system had the application potentials in nitrogen removal from wastewater. PMID:27544265

  12. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content. PMID:25909734

  13. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.

    PubMed

    Chen, Lin; Li, Runzhi; Ren, Xiaoli; Liu, Tianzhong

    2016-08-01

    High moisture content in wet algal biomass hinders effective performance of current lipid extraction methods. An improved aqueous extraction method combing thermal and enzymatic lysis was proposed and performed in algal slurry of Nannochloropsis oceanica (96.0% moisture) in this study. In general, cell-wall of N. oceanica was disrupted via thermal lysis and enzymatic lysis and lipid extraction was performed using aqueous surfactant solution. At the optimal conditions, high extraction efficiencies for both lipid (88.3%) and protein (62.4%) were obtained, which were significantly higher than those of traditional hexane extraction and other methods for wet algal biomass. Furthermore, an excessive extraction of polar lipid was found for wet biomass compared with dry biomass. The advantage of this method is to efficiently extract lipids from high moisture content algal biomass and avoid using organic solvent, indicating immense potential for commercial microalgae-based biofuel production. PMID:27132220

  14. Fuel oil effect on the population growth, species diversity and chlorophyll (a) content of freshwater microalgae.

    PubMed

    El-Dib, M A; Abou-Waly, H F; El-Naby, A H

    2001-06-01

    Fresh water algae were subjected to different concentrations (0.03, 0.07, 0.12, 0.25 and 0.5 g x l(-1)) of aqueous extract of reference fuel oil (EPA, USA, API Oil No. 2, 38% aromatic, 1274). Significant decrease in Chlorophyll. (a) was observed as the concentration of fuel oil was increased. The EC50 value of fuel oil after 7 days was 0.29 g x l(-1). Total algal counts and growth rate decreased in response to the studied fuel oil. High diversity values in diatoms were observed in all treated aqueous cultures. High concentrations of fuel oil significantly decreased carbohydrate and protein contents of algal cells. PMID:11382351

  15. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system.

    PubMed

    Ma, Xiaochen; Zhou, Wenguang; Fu, Zongqiang; Cheng, Yanling; Min, Min; Liu, Yuhuan; Zhang, Yunkai; Chen, Paul; Ruan, Roger

    2014-09-01

    Centrate, a type of nutrient-rich municipal wastewater was used to determine the effect of wastewater-borne bacteria on algal growth and nutrients removal efficiency in this study. The characteristics of algal and bacterial growth profiles, wastewater nutrient removal and effect of initial algal inoculums were systematically examined. The results showed that initial algal concentration had apparent effect on bacterial growth, and the presence of bacteria had a significant influence on algal growth pattern, suggesting symbiotic relationship between algae and bacteria at the initial stage of algae cultivation. The maximum algal biomass of 2.01 g/L with 0.1g/L initial algal inoculums concentration can be obtained during algae cultivation in raw centrate medium. The synergistic effect of centrate-borne bacteria and microalgae on algae growth and nutrient removal performance at initial fast growth stage has great potential to be applied to pilot-scale wastewater-based algae wastewater system cultivated in continuous or semi-continuous mode. PMID:24968106

  16. An evaluation of the latitudinal gradient of chlorophyll in the California Current

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be

  17. Impact of eddies on surface chlorophyll in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Dufois, Francois; Hardman-Mountford, Nick; Greenwood, Jim; Richardson, Anthony; Feng, Ming; Herbette, Steven; Matear, Richard

    2015-04-01

    A unique feature of the subtropical South Indian Ocean is the existence of anticyclonic eddies that have higher chlorophyll concentrations than cyclonic eddies. Off Western Australia, this anomalous behavior is related to the seeding of anticyclonic eddies with shelf water enriched in phytoplankton biomass and nutrients. Further off-shore, two mechanisms have been suggested to explain the eddy/chlorophyll relationship: (i) eddies originating from the Australian coast maintain their chlorophyll anomaly while propagating westward; and (ii) eddy-induced Ekman upwelling (downwelling) enhances (dampens) nutrient supply in anticyclonic (cyclonic) eddies. Here we describe the relationship between eddies and surface chlorophyll within the South Indian Ocean, and discuss possible mechanisms to explain the anomalous behavior in light of new analyses performed using satellite chlorophyll data. We show that anticyclonic eddies exhibit higher surface chlorophyll concentration than cyclonic eddies across the entire South Indian Ocean basin (from 20 to 28°S), particularly in winter. Using Self Organizing Maps we analyze the chlorophyll patterns within anticyclonic eddies and cyclonic eddies and highlight their complexity. Our analysis suggests that multiple mechanisms may underlie the observed eddy/chlorophyll relationship. Based on Argo float data, we postulate the relationship may be partly related to seasonal adjustment of the mixed layer depth within eddies. Deeper mixing in anticyclonic eddies is expected to enhance nutrient supply to the mixed layer, while shallower mixing in cyclonic eddies is expected to reduce it. This could explain why the observed winter surface chlorophyll bloom is stronger in anticyclonic eddies than in cyclonic eddies.

  18. Impact of eddies on surface chlorophyll in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Dufois, François; Hardman-Mountford, Nick J.; Greenwood, Jim; Richardson, Anthony J.; Feng, Ming; Herbette, Steven; Matear, Richard

    2014-11-01

    A unique feature of the subtropical South Indian Ocean is the existence of anticyclonic eddies that have higher chlorophyll concentrations than cyclonic eddies. Off Western Australia, this anomalous behavior is related to the seeding of anticyclonic eddies with shelf water enriched in phytoplankton biomass and nutrients. Further off-shore, two mechanisms have been suggested to explain the eddy/chlorophyll relationship: (i) eddies originating from the Australian coast maintain their chlorophyll anomaly while propagating westward; and (ii) eddy-induced Ekman upwelling (downwelling) enhances (dampens) nutrient supply in anticyclonic (cyclonic) eddies. Here we describe the relationship between eddies and surface chlorophyll within the South Indian Ocean, and discuss possible mechanisms to explain the anomalous behavior in light of new analyses performed using satellite chlorophyll data. We show that anticyclonic eddies exhibit higher surface chlorophyll concentration than cyclonic eddies across the entire South Indian Ocean basin (from 20 to 28°S), particularly in winter. Using Self Organizing Maps we analyze the chlorophyll patterns within anticyclonic eddies and cyclonic eddies and highlight their complexity. Our analysis suggests that multiple mechanisms may underlie the observed eddy/chlorophyll relationship. Based on Argo float data, we postulate the relationship may be partly related to seasonal adjustment of the mixed layer depth within eddies. Deeper mixing in anticyclonic eddies is expected to enhance nutrient supply to the mixed layer, while shallower mixing in cyclonic eddies is expected to reduce it. This could explain why the observed winter surface chlorophyll bloom is stronger in anticyclonic eddies than in cyclonic eddies.

  19. Application of a pulsed laser for measurements of bathymetry and algal fluorescence.

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Hogg, J. E.; Friedman, E. J.; Ghovanlou, A. H.

    1973-01-01

    The technique of measuring water depths with an airborne pulsed dye laser is studied, with emphasis on the degrading effect of some environmental and operational parameters on the transmitted and reflected laser signals. Extrapolation of measurements of laser stimulated fluorescence, performed as a function of both the algal cell concentration and the distance between the algae and the laser/receiver, indicate that a laser system operating from a height of 500 m should be capable of detecting chlorophyll concentrations as low as 1.0 mg/cu m.-

  20. Virginia Water Resources: Utilizing NASA Earth Observations to Monitor the Extent of Harmful Algal Blooms in Virginia Rivers

    NASA Astrophysics Data System (ADS)

    Lubkin, S. H.; Morgan, C.

    2015-12-01

    Harmful algal bloom species have had an increasing ecological impact on the Chesapeake Bay Watershed where they disrupt water chemistry, kill fish and cause human illness. In Virginia, scientists from Virginia Institute of Marine Science and Old Dominion University monitor HABs and their effect on water quality; however, these groups lack a method to monitor HABs in real time. This limits the ability to document associated water quality conditions and predict future blooms. Band reflectance values from Landsat 8 Surface Reflectance data (USGS Earth Explorer) and MODIS Chlorophyll imagery (NOAA CoastWatch) were cross calibrated to create a regression model that calculated concentrations of chlorophyll. Calculations were verified with in situ measurements from the Virginia Estuarine and Coastal Observing System. Imagery produced with the Chlorophyll-A calculation model will allow VIMS and ODU scientists to assess the timing, magnitude, duration and frequency of HABs in Virginia's Chesapeake watershed and to predict the environmental and water quality conditions that favor bloom development.

  1. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla. PMID:26634608

  2. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues

    PubMed Central

    2014-01-01

    Background Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed. It is believed that along with biodiesel from algae, the high protein de-oiled algal residue may become an alternative feed supplement option in the future. This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species, Thalassiosira weissflogii, Selenarstrum capricornutum, Scenedesmus sp., and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean (Glycine max) meal and alfalfa (Medicago sativa) hay. Results With the exception of T. weissflogii, algal residue had higher concentrations of Cu, Zn, and Mn and lower concentration of Ca, Mg, and K than soybean meal and alfalfa hay. The algal residue CP (crude protein) concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues. In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%. The gas production curve, interpreted with a dual pool logistic model, confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay, and the fermenting rate of the fractions was also low. Conclusions Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen. PMID:25093078

  3. The P-700-chlorophyl alpha-protein complex and two major light-harvesting complexes of Acrocarpia paniculata and other brown seaweeds.

    PubMed

    Barrett, J; Anderson, J M

    1980-05-01

    Acrocarpia paniculata thylakoids were fragmented with Triton X-100 and the pigment-protein complexes so released were isolated by sucrose density gradient centrifugation. Three main chlorophyll-carotenoid-protein complexes with distinct pigment compositions were isolated. (1) A P-700-chlorophyll a-protein complex, with a ratio of 1 P-700: 38 chlorophyll a: 4 beta-carotene molecules, had similar absorption and fluorescence characteristics to the chlorophyll-protein complex 1 isolated with Triton X-100 from higher plants, green algae and Ecklonia radiata. (2) an orange-brown complex had a chlorophyll a : c2 : fucoxanthin molar ratio of 2 : 1 : 2. this complex had no chlorophyll c1 and contained most of the fucoxanthin present in the chloroplasts. This pigment complex is postulated to be the main light-harvesting complex of brown seaweeds. (3) A green complex had a chlorophyll a : c1 : c2 : violaxanthin molar ratio of 8 : 1 : 1. This also is a light-harvesting complex. the absorption and fluorescence spectral characteristics and other physical properties were consistent with the pigments of these three major complexes being bound to protein. Differential extraction of brown algal thylakoids with Triton X-100 showed that a chlorophyll c2-fucoxanthin-protein complex was a minor pigment complex of these thylakoids. PMID:7378391

  4. Algal Flocculation with Synthetic Organic Polyelectrolytes

    PubMed Central

    Tenney, Mark W.; Echelberger, Wayne F.; Schuessler, Ronald G.; Pavoni, Joseph L.

    1969-01-01

    The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported. PMID:5370666

  5. Algal biosensor array on a single electrode.

    PubMed

    Tatsuma, Tetsu; Yoshida, Yutaka; Shitanda, Isao; Notsu, Hideo

    2009-02-01

    An algal array was prepared on a single transparent electrode, and photosynthetic activity of each algal channel and its inhibition by a toxin were monitored with a single-channel potentiostat by successive light irradiation with a LED array. PMID:19173040

  6. TEXAS HARMFUL ALGAL BLOOM COORDINATION MX964014

    EPA Science Inventory

    Harmful algal blooms (HAB) are an expanding problem in coastal Texas. Nearly � of the known harmful algal blooms along the Texas coast have occurred in the past ten years and have led to significant resource and tourism losses. For example, there are at least two types of toxic...

  7. Measuring in-stream productivity: the potential of continuous chlorophyll and dissolved oxygen monitoring for assessing the ecological status of surface waters.

    PubMed

    Jarvie, H P; Love, A J; Williams, R J; Neal, C

    2003-01-01

    Continuous (hourly) measurements of dissolved oxygen and chlorophyll (determined by fluorimetry) were made for an inter-linked lowland river and canal system. The dissolved oxygen data were used to estimate daily rates of re-aeration, photosynthesis and respiration, using a process-based analytical technique (the Delta method). In-situ fluorimeter measurements of chlorophyll were ground-truthed on a fortnightly basis using laboratory methanol extraction of chlorophyll and spectrophotometric analysis. Water samples were also analysed for algal species on a fortnightly basis. The river and canal exhibited very similar rates of photosynthesis and respiration during the summer of 2001, despite much higher chlorophyll concentrations and total algal counts, indicating that benthic algae and/or aquatic macrophytes may be making an important contribution to photosynthesis rates in the river. Suspended algal populations in the canal are dominated by planktonic species, whereas the river has a higher proportion of species which are predominantly benthic in habitat. The river exhibited higher rates of respiration, reflecting a higher organic loading from external (e.g. sewage effluent) sources. PMID:15137170

  8. Defining Chlorophyll-a Reference Conditions in European Lakes

    PubMed Central

    Alves, Maria Helena; Argillier, Christine; van den Berg, Marcel; Buzzi, Fabio; Hoehn, Eberhard; de Hoyos, Caridad; Karottki, Ivan; Laplace-Treyture, Christophe; Solheim, Anne Lyche; Ortiz-Casas, José; Ott, Ingmar; Phillips, Geoff; Pilke, Ansa; Pádua, João; Remec-Rekar, Spela; Riedmüller, Ursula; Schaumburg, Jochen; Serrano, Maria Luisa; Soszka, Hanna; Tierney, Deirdre; Urbanič, Gorazd; Wolfram, Georg

    2010-01-01

    The concept of “reference conditions” describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator—the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between “high” and “good” status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets. PMID:20401659

  9. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  10. Mining a Sea of Data: Deducing the Environmental Controls of Ocean Chlorophyll

    PubMed Central

    Irwin, Andrew J.; Finkel, Zoe V.

    2008-01-01

    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics. PMID:19043583

  11. Mining a sea of data: deducing the environmental controls of ocean chlorophyll.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V

    2008-01-01

    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics. PMID:19043583

  12. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  13. ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1).

    PubMed

    Veraart, Annelies J; Romaní, Anna M; Tornés, Elisabet; Sabater, Sergi

    2008-06-01

    Nutrient input in streams alters the density and species composition of attached algal communities in open systems. However, in forested streams, the light reaching the streambed (rather than the local nutrient levels) may limit the growth of these communities. A nutrient-enrichment experiment in a forested oligotrophic stream was performed to test the hypothesis that nutrient addition has only minor effects on the community composition of attached algae and cyanobacteria under light limitation. Moderate nutrient addition consisted of increasing basal phosphorus (P) concentrations 3-fold and basal nitrogen (N) concentrations 2-fold. Two upstream control reaches were compared to a downstream reach before and after nutrient addition. Nutrients were added continuously to the downstream reach for 1 year. Algal biofilms growing on ceramic tiles were sampled and identified for more than a year before nutrient addition to 12 months after. Diatoms were the most abundant taxonomic group in the three stream reaches. Nutrient enrichment caused significant variations in the composition of the diatom community. While some taxa showed significant decreases (e.g., Achnanthes minutissima, Gomphonema angustum), increases for other taxa (such as Rhoicosphenia abbreviata and Amphora ovalis) were detected in the enriched reach (for taxonomic authors, see Table 2). Epiphytic and adnate taxa of large size were enhanced, particularly during periods of favorable growth conditions (spring). Nutrients also caused a change in the algal chl a, which increased from 0.5-5.8 to 2.1-10.7 μg chl · cm(-2) . Our results indicate that in oligotrophic forested streams, long-term nutrient addition has significant effects on the algal biomass and community composition, which are detectable despite the low light availability caused by the tree canopy. Low light availability moderates but does not detain the long-term tendency toward a nutrient-tolerant community. Furthermore, the effects

  14. Rachael Carson Lecture - Algal Toxins in the Deep Blue Sea: an Environmental Concern?

    NASA Astrophysics Data System (ADS)

    Silver, M. W.; Bargu, S.

    2008-05-01

    Many land plants are known to possess toxins, presumably for grazer deterrence, whereas toxins in marine phytoplankton are a much rarer phenomenon, particularly in open ocean (blue water) environments. Several dozen phytoplankton species, frequently dinoflagellates but also some diatoms, form "harmful algal blooms" nearshore: here their toxins can contaminate filter-feeding shellfish resulting in poisoning "syndromes" when humans consume the tainted shellfish. The present rise in such coastal events is a likely consequence of human activities. In blue water, open ocean environments, the filamentous cyanobacterium Trichodesmium (a blue green alga) is one of the few bloom-forming toxin producers and hosts a consortium of microorganisms that may be partially immune to its toxins. Pseudo-nitzschia, a ubiquitous genus of diatoms recently has been shown to include coastal species that produce domoic acid (DA), a neurotoxin that passes through the food web, sometimes with resulting deaths of marine birds and mammals. Oceanic species of Pseudo-nitzschia also exist but are less well known, and DA has not yet been found in them. Here we review some general features of toxic marine phytoplankton, recent studies on DA in coastal ecosystems and describe some of our findings on blue water Pseudo-nitzschia. We will summarize laboratory experiments that show complex patterns of DA retention and release into the water when Fe is added to coastal Pseudo-nitzschia cultures. In oceanic species, equivalent experiments on cell physiology are limited and the natural species and abundance patterns poorly known. Here we present our recent discovery that DA occurs in oceanic Pseudo-nitzschia and review evidence from the literature that this genus may be preferentially enhanced when iron is added to HNLC (high nutrient, low chlorophyll) waters: areas where nitrogen and phosphorus are not yet depleted, but iron concentrations and phytoplankton biomass are low. The rapid growth of these DA

  15. Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean

    NASA Astrophysics Data System (ADS)

    Feng, Jianfeng; Durant, Joël. Marcel; Stige, Leif Chr.; Hessen, Dag Olav; Hjermann, Dag Øystein; Zhu, Lin; Llope, Marcos; Stenseth, Nils Chr.

    2015-12-01

    In this study we analyze large-scale satellite-derived data using generalized additive models to characterize the global correlation patterns between environmental forcing and marine phytoplankton biomass. We found systematic differences in the relationships between key environmental drivers (temperature, light, and wind) and ocean chlorophyll in the subtropical/tropical and temperate oceans. For the subtropical/tropical and equatorial oceans, the chlorophyll generally declined with increasing temperature and light, while in temperate oceans, chlorophyll was best explained by bell-shaped or positive functions of temperature and light. The relationship between chlorophyll and wind speed is generally positive in low-latitude oceans and bell shaped in temperate oceans. Our analyses also demonstrated strong and geographically consistent positive autoregressive effects of chlorophyll from 1 month to the next and negative autoregressive effects for measurements 2 months apart. These findings imply possibly different regional phytoplankton responses to environmental forcing, suggesting that future environmental change could affect the tropical and temperate upper ocean chlorophyll levels differently.

  16. Estimating global chlorophyll changes over the past century

    NASA Astrophysics Data System (ADS)

    Boyce, Daniel G.; Dowd, Michael; Lewis, Marlon R.; Worm, Boris

    2014-03-01

    Marine phytoplankton account for approximately half of the production of organic matter on earth, support virtually all marine ecosystems, constrain fisheries yields, and influence climate and weather. Despite this importance, long-term trajectories of phytoplankton abundance or biomass are difficult to estimate, and the extent of changes is unresolved. Here, we use a new, publicly-available database of historical shipboard oceanographic measurements to estimate long-term changes in chlorophyll concentration (Chl; a widely used proxy for phytoplankton biomass) from 1890 to 2010. This work builds upon an earlier analysis (Boyce et al., 2010) by taking published criticisms into account, and by using recalibrated data, and novel analysis methods. Rates of long-term chlorophyll change were estimated using generalized additive models within a multi-model inference framework, and post hoc sensitivity analyses were undertaken to test the robustness of results. Our analysis revealed statistically significant Chl declines over 62% of the global ocean surface area where data were present, and in 8 of 11 large ocean regions. While Chl increases have occurred in many locations, weighted syntheses of local- and regional-scale estimates confirmed that average chlorophyll concentrations have declined across the majority of the global ocean area over the past century. Sensitivity analyses indicate that these changes do not arise from any bias between data types, nor do they depend upon the method of spatial or temporal aggregation, nor the use of a particular statistical model. The wider consequences of this long-term decline of marine phytoplankton are presently unresolved, but will need to be considered in future studies of marine ecosystem structure, geochemical cycling, and fishery yields.

  17. Estimation of algal and suspended sediment loads (singly and combined) using hyperspectral sensors and integrated mesocosm experiments

    SciTech Connect

    Schalles, J.F.; Schiebe, F.R.; Starks, P.J.

    1997-06-01

    Most remote sensing algorithms for materials in water are based on studies on natural waters with complex and variable optical properties, or of small indoor microcosm containers. We used sunlit, cylindrical, black mesocosm tanks (80m{sup 3}, 3 m depth) and a hyperspectral radiometer to examine reflectances of algal blooms and suspended kaolin white clay. In three integrated experiments, algae and clay levels were carefully manipulated: (1) Algal bloom water in one tank was pumped to a second which began with clear water, and clear make-up water was pumped to the first to obtain a well graded series (Chl. a = 0 - 62 {mu}g/L). (2) White, kaolin clay was added stepwise to clear water, resulting in an organic seston range of 0 - 40 mg/L. (3) Algal bloom water from a single source was divided between two tanks to establish Chi. a loads of 31 and 57 {mu}g/L. Then, identical additions of clay were made to both tanks to achieve a range of 0 - 72 mg/L inorganic matter while conserving the algal loads. The first experiment revealed a strong interplay between algal scattering and absorption. Pigment absorbance dominated below 510 nm, while increasing cell scattering in regions of low pigment activity caused green and NIR peaks to form near 560 and 700 nm. In spite of strong chlorophyll absorbance near 675 nm, this region had small reflectance increases with increased algae. In the second experiment, white clay had high albedo. At seston levels above 40 mg/L, green reflectance exceeded 50% and NIR reflectance at 800 nm exceeded 9%. In the third experiment, algal pigments strongly attenuated clay reflectance in a dose dependent manner, even at green wavelengths. Clay particles greatly amplified but also preserved algal reflectance patterns. Our findings affirm the importance of high spectral resolution at diagnostic wavelengths in turbid Case 2 coastal and inland waters.

  18. Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes

    NASA Astrophysics Data System (ADS)

    Guillemette, François; McCallister, S. Leigh; Giorgio, Paul A.

    2013-07-01

    It has often been hypothesized that the dissolved organic carbon (DOC) pool of algal origin in lakes is more bioavailable than its terrestrial counterpart, but this hypothesis has seldom been directly tested. Here we test this hypothesis by tracking the production and isotopic signature of bacterial respiratory CO2 in 2 week lake water incubations and use the resulting data to reconstruct and model the bacterial consumption dynamics of algal and terrestrial DOC. The proportion of algal DOC respired decreased systematically over time in all experiments, suggesting a rapid consumption and depletion of this substrate. Our results further show that the algal DOC pool was used in proportions and at rates twice and 10 times as high as the terrestrial DOC pool, respectively. On the other hand, the absolute amount of labile terrestrial DOC was on average four times higher than labile algal DOC, accounting for almost the entire long-term residual C metabolism, but also contributing to short-term bacterial C consumption. The absolute amount of labile algal DOC increased with chlorophyll a concentrations, whereas total phosphorus appeared to enhance the amount of terrestrial DOC that bacteria could consume, suggesting that the degradation of these pools is not solely governed by their respective chemical properties, but also by interactions with nutrients. Our study shows that there is a highly reactive pool of terrestrial DOC that is processed in parallel to algal DOC, and because of interactions with nutrients, terrestrial DOC likely supports high levels of bacterial metabolism and CO2 production even in more productive lakes.

  19. BIOMASS UTILIZATION

    EPA Science Inventory

    The biomass utilization task consists of the evaluation of a biomass conversion technology including research and development initiatives. The project is expected to provide information on co-control of pollutants, as well as, to prove the feasibility of biomass conversion techn...

  20. Biomass pretreatment

    SciTech Connect

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  1. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations. PMID:25300549

  2. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.

    PubMed

    Drira, Neila; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2016-04-01

    In this study, the harvesting of a biomass from a high rate algal pond (HRAP) of a real-scale domestic wastewater treatment facility and its potential as a biomaterial for the production of biodiesel were investigated. Increasing the medium pH to 12 induced high flocculation efficiency of up to 96% of the biomass through both sweep flocculation and charge neutralization. Lipids extracted by ultrasounds from this biomass contained around 70% of fatty acids, with palmitic and stearic acids being the most abundant. The extract obtained by supercritical CO2 contained 86% of fatty acids. Both conventional solvents extracts contained only around 10% of unsaturated fats, whereas supercritical CO2 extract contained more than 40% of unsaturated fatty acids. This same biomass was also subject to direct extractive-transesterification in a microwave reactor to produce fatty acid methyl esters, also known as, raw biodiesel. PMID:26866759

  3. Algal-based, single-step treatment of urban wastewaters.

    PubMed

    Henkanatte-Gedera, S M; Selvaratnam, T; Caskan, N; Nirmalakhandan, N; Van Voorhies, W; Lammers, Peter J

    2015-08-01

    Currently, urban wastewaters (UWW) laden with organic carbon (BOD) and nutrients (ammoniacal nitrogen, N, and phosphates, P) are treated in multi-stage, energy-intensive process trains to meet the mandated discharge standards. This study presents a single-step process based on mixotrophic metabolism for simultaneous removal of carbon and nutrients from UWWs. The proposed system is designed specifically for hot, arid environments utilizing an acidophilic, thermotolerant algal species, Galdieria sulphuraria, and an enclosed photobioreactor to limit evaporation. Removal rates of BOD, N, and P recorded in this study (14.93, 7.23, and 1.38 mg L(-1) d(-1), respectively) are comparable to literature reports. These results confirm that the mixotrophic system can reduce the energy costs associated with oxygen supply in current UWW treatment systems, and has the potential to generate more energy-rich biomass for net energy extraction from UWW. PMID:25898089

  4. Simulation of algal bloom dynamics in a river with the ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghyun; Park, Minji; Min, Joong-Hyuk; Ryu, Ingu; Kang, Mi-Ri; Park, Lan Joo

    2014-11-01

    A simulation framework of algal bloom in a river channel with data assimilation (DA) was developed by employing two numerical models coupled to simulate a watershed and the embedded river channel. The Hydrological Simulation Program-Fortran (HSPF) model simulates flow discharge and water quality from the subwatersheds and the Environmental Fluid Dynamics Code (EFDC) model takes the subwatershed model outputs at the watershed-river confluence points as boundary forcing to simulate river hydrodynamics and water quality. The ensemble Kalman filter (EnKF) was used for assimilation of water quality variables in the framework, linking uncertainty of model simulation and observation. The simulation uncertainty of the HSPF was quantified at the confluence points as simple stochastic error models developed by comparing the model simulation and the observation. The error models reflect uncertainty of both hydrologic and water quality simulation, including uncertainty associated with point and non-point pollution sources in the watershed. The outputs of the HSPF at the confluence points were perturbed with the error models before used in the following ensemble simulation of the EFDC for the main river. DA was conducted with weekly chlorophyll-a data observed along the river to update chlorophyll-a concentrations of the EFDC model grids. The results showed that the model performance was improved by the assimilation: the root mean square error (RMSE) and the mean continuous probability rank score (CPRS) significantly decreased compared to the open-loop simulation. The updated spatial distribution of chlorophyll-a concentration along the river channel was in reasonable agreement with the observation. Although only chlorophyll-a data was involved in the assimilation, phosphate was selected among other water quality variables for update in order to evaluate the effect of chlorophyll-a assimilation on those variables. It turned out that the phosphate simulation was not much

  5. Analysis of pollutant enhanced bacterial-blue-green algal interrelationships potentiating surface water contamination by noxious blue-green algal blooms. Completion report

    SciTech Connect

    Bedell, G.W.

    1984-02-01

    Sulfate-reducing bacteria from the genus Desulfovibro can stimulate the blue-green alga (Cyanobacterium) Anabaena variabilis (Strain 6411) into increasing its dry weight biomass production by more than 200 percent over that of the control as the total phosphate in the medium approaches zero. Results suggest that methods which utilize total nitrogen to phosphorus ratios in waters as predictors of blue-green algal 'blooms' may be unreliable when the waters are very low in phosphorus yet remain high in sulfate with conditions favorable for sulfate-reducing bacterial growth in benthic sediments. Otherwise, if the phosphate levels alone in the aqueous systems are reduced below threshold levels under these conditions, the magnitude of the blue-green algal blooms may be increased substantially.

  6. Efficient Chlorophyll Fluorescence Measurements of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with many crops, chlorophyll fluorescence emission is a promising tool for measuring responses of sugarcane (Saccharum spp.) to biotic and abiotic stresses. Chlorophyll fluorescence can be easily measured using portable fluorometers. However, several factors should be considered in order to op...

  7. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  8. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  9. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  10. The impact of advection on stratification and chlorophyll variability in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Dave, Apurva C.; Lozier, M. Susan

    2015-06-01

    Previously reported global-scale correlations between interannual variability in upper ocean stratification and chlorophyll a (a proxy for phytoplankton biomass) have been shown to be driven by strong associations between the two properties in the central and western equatorial Pacific. Herein, we present evidence that these correlations are not causal but instead result from the advection of heat, salt, and nutrients in the region. Specifically, we demonstrate that stratification and chlorophyll are simultaneously influenced by shifts in the horizontal advective inputs of cold/saline/nutrient-rich waters from upwelling regions to the east and warm/fresh/nutrient-poor waters to the west. We find that horizontal advection contributes substantially to the annual surface layer nutrient budget and, together with vertical advection, significantly impacts interannual variability in chlorophyll. These results highlight the importance of a three-dimensional framework for examining nutrient supply in the upper ocean—a crucial requirement for assessing future marine ecosystem responses to a changing climate.

  11. Effect of nutrients and salinity pulses on biomass and growth of Vallisneria americana in lower St Johns River, FL, USA

    PubMed Central

    Boustany, Ronald G.; Michot, Thomas C.; Moss, Rebecca F.

    2015-01-01

    We determined the interactive effects of nutrient loading and salinity pulsing on Vallisneria americana Michx., the dominant submerged aquatic vegetation species in the lower St Johns River (LSJR), FL, USA, and its associated algal community. Five hundred and ninety 6-inch diameter intact plant plugs of Vallisneria were collected from the LSJR in March 2003 and transported to US Geological Survey mesocosm facilities in Lafayette, LA, USA. A 3×3 experimental design consisting of three nutrient levels (control, 1/3 control and 3× control) and three salinity pulsing regimes (no pulse, 1-pulse at 18 ppt and 2-pulse at 12 and 18 ppt) was implemented with three replicates per treatment for a total of 27 experimental tanks. Salinity pulsing significantly reduced all measured Vallisneria growth parameters including above- and below-ground biomass, areal productivity and leaf area index. Nutrient levels had little effect on plants subjected to salinity pulses, but in non-salinity pulse treatments we observed higher mean macrophyte biomass in the low-nutrient loading treatments. Macroalgal components (epiphytes and surface algal mats) were not significantly different ( p=0.2998 and p=0.2444, respectively), but water column chlorophyll a (phytoplankton) was significantly higher ( p<0.0001) in all salinity pulse treatments except for the 1-pulse, low-nutrient treatment. A single salinity pulse at 18 ppt resulted in 22% pot mortality and two consecutive pulses of 18 and 12 ppt resulted in an additional 14% mortality. Individual leaves and ramets lost 59.7% and 67.8%, respectively, in the combined salinity pulse treatments. Nutrient loading tends to have a long-term effect on Vallisneria through complex community interactions while salinity pulsing frequency and intensity has an immediate and direct influence on growth and distribution. PMID:26064592

  12. The electrophoretic isolation and partial characterization of three chlorophyll-protein complexes from blue-green algae.

    PubMed

    Reinman, S; Thornber, J P

    1979-08-14

    Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 +/- 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 +/- 8000, and resembles the previously described P-700-chlorophyll a-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 +/- 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II. PMID:111710

  13. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    2016-01-01

    Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively. PMID:27533866

  14. Decadal Changes in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.

  15. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle.

    PubMed

    Stamey, J A; Shepherd, D M; de Veth, M J; Corl, B A

    2012-09-01

    Fish oil is used as a ration additive to provide n-3 fatty acids to dairy cows. Fish do not synthesize n-3 fatty acids; they must consume microscopic algae or other algae-consuming fish. New technology allows for the production of algal biomass for use as a ration supplement for dairy cattle. Lipid encapsulation of the algal biomass protects n-3 fatty acids from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Our objective was to examine the use of algal products as a source for n-3 fatty acids in milk. Four mid-lactation Holsteins were assigned to a 4×4 Latin square design. Their rations were supplemented with 1× or 0.5× rumen-protected (RP) algal biomass supplement, 1× RP algal oil supplement, or no supplement for 7 d. Supplements were lipid encapsulated (Balchem Corp., New Hampton, NY). The 1× supplements provided 29 g/d of docosahexaenoic acid (DHA), and 0.5× provided half of this amount. Treatments were analyzed by orthogonal contrasts. Supplementing dairy rations with rumen-protected algal products did not affect feed intake, milk yield, or milk component yield. Short- and medium-chain fatty acid yields in milk were not influenced by supplements. Both 0.5× and 1× RP algae supplements increased daily milk fat yield of DHA (0.5 and 0.6±0.10 g/d, respectively) compared with 1× RP oil (0.3±0.10 g/d), but all supplements resulted in milk fat yields greater than that of the control (0.1±0.10g/d). Yield of trans-18:1 fatty acids in milk fat was also increased by supplementation. Trans-11 18:1 yield (13, 20, 27, and 15±3.0 g/d for control, 0.5× RP algae, 1× RP algae, and 1× RP oil, respectively) was greater for supplements than for control. Concentration of DHA in the plasma lipid fraction on d 7 showed that the DHA concentration was greatest in plasma phospholipid. Rumen-protected algal biomass provided better DHA yield than algal oil. Feeding lipid-encapsulated algae supplements

  16. Relationships between primary production and irradiance in coral reef algal communities

    SciTech Connect

    Not Available

    1985-07-01

    Shallow water algal turf communities are the major primary producers on coral reefs. High rates of primary production are maintained despite extremely high light intensities and exposure to ultraviolet wavelengths. The relationships between the light intensity and primary production in these assemblages are typical of algae adapted to a high light environment (low ..cap alpha.. (initial slope), high I/sub k/ (saturating light intensity), and high I/sub c/ (compensation point light intensity)). Seasonal variations in algal standing crop due to herbivory and daylength result in some characteristic photoadaptive changes in ..cap alpha.. I/sub k/, and I/sub c/ and changes in Pnet/sub max/ rates (maximum net photosynthetic rate achieved at light saturation) on both a chlorophyll ..cap alpha.. and an areal basis. Exposure to UV wavelength results in significantly higher respiration rates but no changes in ..cap alpha.., Pnet/sub max/, or I/sub k/, when compared with these parameters for the same algal communities incubated at the same light intensities without UV wavelengths. The apparent lack of photoinhibition in these algae allows calculation of the daily integrated production from the P vs. I parameters. This integrated production is highest in July (3.1 +/- 0.2 g C m/sup -2/d/sup -1/) and is reduced by 30% from this maximum in December (2.1 +/- 0.1 g C m/sup -2/d/sup -1/).

  17. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  18. Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom

    PubMed Central

    González, José M.; Simó, Rafel; Massana, Ramon; Covert, Joseph S.; Casamayor, Emilio O.; Pedrós-Alió, Carlos; Moran, Mary Ann

    2000-01-01

    The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δ Proteobacteria) were primarily found in deeper waters (200 to 500 m). PMID:11010865

  19. Applications of MODIS Fluorescence Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity in Coastal and Estuarine Waters

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.

    2012-12-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths

  20. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigate how species richness affects temporal stability of biomass production by analyzing 27 recent biodiversity experiments conducted in grassland and freshwater algal communities. We find that, in grasslands, increasing species richness stabilizes whole-community biomass pro...

  1. Potentials for Indication of Potentially Harmful Toxic Algal Blooms Using PROBA1-CHRIS Hyperspectral Imagery- A Case Study in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Beiermann, Timo

    2010-12-01

    Toxic algal blooms are an issue affecting water quality and can cause harmful health impacts. The aim of the conducted case study is to assess such blooms by chlorophyll a and phycocyanin detection as indicators of the occurrence. Using demonstrated single reflectance ratio algorithms published as in [7] and processed with provided tools for hyperspectral Proba1-CHRIS imagery in a study site including Loumbila reservoir near Ouagadougou, capital of Burkina Faso to investigate potentials of this approach.

  2. Study of polyethyleneimine- and amidoxime-functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    2015-11-01

    This study investigates the potential application of the polyethyleneimine- (PEI) and amidoxime-modified Spirulina (Arthrospira) platensis biomasses for the removal of uranium ion in batch mode using the native biomass as a control system. The uranium ion adsorption was also characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra, zeta potential analysis, and surface area measurement studies. The effects of pH, biomass amount, contact time, initial uranium ion concentration, and ionic strength were evaluated by using native and modified algal biomass preparations. The uranium ion removal was rapid, with more than 70% of total adsorption taking place in 40 min, and equilibrium was established within 60 min. From the experimental data, it was found that the amount of adsorption uranium ion on the algal preparations decreased in the following series: amidoxime-modified algal biomass > PEI-modified algal biomass > native algal biomass. Maximum adsorption capacities of amidoxime- and PEI-modified, and native algal biomasses were found to be 366.8, 279.5, and 194.6 mg/g, respectively, in batchwise studies. The adsorption rate of U(VI) ion by amidoxime-modified algal biomass was higher than those of the native and PEI-modified counterparts. The adsorption processes on all the algal biomass preparations followed by the Dubinin-Radushkevitch (D-R) and Temkin isotherms and pseudo-second-order kinetic models. The thermodynamic parameters were determined at four different temperatures (i.e., 15, 25, 35, and 45 °C) using the thermodynamics constant of the Temkin isotherm model. The ΔH° and ΔG° values of U(VI) ion adsorption on algal preparations show endothermic heat of adsorption; higher temperatures favor the process. The native and modified algal biomass preparations were regenerated using 10 mM HNO3. These results show that amidoxime-modified algal biomass can be a potential candidate for effective removal of U(VI) ion from

  3. Pigment-based chemotaxonomy--a quick alternative to determine algal assemblages in large shallow eutrophic lake?

    PubMed

    Tamm, Marju; Freiberg, René; Tõnno, Ilmar; Nõges, Peeter; Nõges, Tiina

    2015-01-01

    Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive. PMID:25803038

  4. Monitoring the algal bloom event in Lake Okeechobee, Florida under Tropical Cyclone Fay impacts using MODIS/Terra images

    NASA Astrophysics Data System (ADS)

    Daranpob, Ammarin; Chang, Ni-Bin; Jin, Kang-Ren; Yang, Y. Jeffrey

    2009-08-01

    Lake Okeechobee, Florida is the largest freshwater lake in the southeastern U.S. It is a key component in the hydrologic system of South Florida providing water supply for agriculture, the environment, and urban areas. Excessive phosphorus loads, from the Okeechobee watershed over the last few decades have led to increased eutrophication of this lake. Much of the excess phosphorus has been sequestered into the sediments. Sediment water interactions, including diffusive fluxes and sediment resuspension are a source of available phosphorus for phytoplankton. As a consequence, nutrient-enriched lake water has led to phytoplankton blooms from time to time. These blooms are often quantified by measurement of chlorophyll-a concentrations. While the in-situ water quality monitoring is time-consuming, sporadic, and costly, multispectral remote sensing sensors onboard satellites can detect chlorophyll-a contained in most phytoplankton efficiently. The objective of this study is to demonstrate the use of MODIS/Terra Surface Reflectance 1- Day images to capture the unique algal bloom event one week after the landfall of the hurricane Fay in mid-Sept. 2008. Use of the genetic programming model permits sound information retrieval for spatial mapping of chlorophyll-a concentrations, which help explain the mechanism as to why the algal bloom event occurred.

  5. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  6. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.

    PubMed

    Mulbry, Walter; Kondrad, Shannon; Pizarro, Carolina; Kebede-Westhead, Elizabeth

    2008-11-01

    Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m2 each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants. PMID:18487042

  7. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system.

    PubMed

    Allen, K D; Staehelin, L A

    1991-04-01

    Conventional native "green gel" systems resolve at most 10 chlorophyll-protein complexes from thylakoid membranes of higher plants and green algae. Such analyses suggest a simplicity of the thylakoid membrane that is not supported by a growing body of evidence on the heterogeneity of photosystems I and II (PSI and PSII) and their associated antennae (LHCI and LHCII). We report here the development and characterization of a low ionic strength native "green gel" system that resolves from 16 to 20, mostly large chlorophyll-protein complexes from a variety of higher plant and green algal species with very little release of free pigment. In Chlamydomonas, this system resolves multiple PSI-LHCI complexes, multiple PSII-LHCII complexes, four oligomeric LHCII complexes, as well as several low electrophoretic mobility reaction center complexes, and a number of small complexes. We have obtained similar resolution with a large number of higher plant and green algal species. We also demonstrate how this system can be used as a sort of "fingerprinting" technique to distinguish thylakoids of different species, and for the analysis of photosynthetic mutants, using the chlorophyll b-less chlorina f2 mutant of barley as an example. PMID:1867380

  8. Microflotation performance for algal separation.

    PubMed

    Hanotu, James; Bandulasena, H C Hemaka; Zimmerman, William B

    2012-07-01

    The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm. In contrast, continuous air flow at the same rate through the same diffusers yielded an average bubble size of 1,059 µm, 28 times larger than the pore size. Following microbubble generation, the separation of algal cells under fluidic oscillator generated microbubbles was investigated by varying metallic coagulant types, concentration and pH. Best performances were recorded at the highest coagulant dose (150 mg/L) applied under acidic conditions (pH 5). Amongst the three metallic coagulants studied, ferric chloride yielded the overall best result of 99.2% under the optimum conditions followed closely by ferric sulfate (98.1%) and aluminum sulfate with 95.2%. This compares well with conventional dissolved air flotation (DAF) benchmarks, but has a highly turbulent flow, whereas microflotation is laminar with several orders of magnitude lower energy density. PMID:22290221

  9. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  10. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  11. Algal fluorescence: impact and potential for retrieval from measurements of the underwater degree of polarization

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Tonizzo, A.; Ibrahim, A.; Gilerson, A.; Gross, B.; Moshary, F.

    2012-09-01

    Algorithms for retrieving inherent optical properties (IOPs) in coastal waters from remote sensing of water leaving reflectance spectra, are increasingly focused on red and near infrared (NIR) spectral bands, since the simple blue - green ratio approaches, valid in open oceans, fail when in coastal waters with strongly scattering inorganic particles and colored dissolved organic matter (CDOM). NIR spectra can however be significantly impacted by overlapping chlorophyll a fluorescence, and considerable progress has been made to quantify its contribution, and hence achieve more accurate [Chl] retrievals. Recently we have been studying multiangular hyperspectral polarization characteristics of underwater scattered light, using our recently developed Stokes vector polarimeter to fully measure Stokes parameters. From these studies, information on IOPs, in particular the characteristics of non - algal particles (NAP), which are the primary source of underwater polarized elastic scattering, can be obtained. Multiangular hyperspectral polarization measurements, combined with those of IOPs collected in eutrophic waters of Chesapeake/Virginia and New York Harbor/Hudson River areas, showed that chlorophyll a fluorescence markedly impacts (reduces) the underwater degree of polarization (DOP) in the 650 - 700 nm spectral region. By noting the unpolarized nature of algal fluorescence and the partially polarized properties of elastic scattering, we are able to separate the chlorophyll a fluorescence signal from the total reflectance. The analysis is based on comparisons of experimental measurements with vector/scalar radiative transfer computations using measured IOPs as inputs. Relationships between change in observed DOP and fluorescence contributions are examined, and the possibility of using DOP measurements for underwater fluorescence retrieval is evaluated for different scattering geometries.

  12. MACROALGAL VOLUME: A SURROGATE FOR BIOMASS IN SOME GREEN ALGAE

    EPA Science Inventory

    Two green algal morphotypes, filamentous species (e.g., Chaetomorpha spp.) and flattened or tubular (e.g.,Ulva spp. and Enteromorpha spp.) were collected from 63 sites within the Yaquina Bay estuary (Newport, OR) and used to compare an in situ volumetric biomass estimator to the...

  13. Plankton studies in San Francisco Bay; IX, Chlorophyll distributions and hydrographic properties of South San Francisco Bay, 1984-86

    USGS Publications Warehouse

    Alpine, Andrea A.; Wienke, Sally M.; Cloern, James E.; Cole, Brian E.

    1988-01-01

    This report summarizes the distribution of phytoplankton biomass and selected hydrographic properties in South San Francisco Bay during 1984- 1986. There were a total of 67 cruises during the three-year period with the most frequent sampling occurring during the spring. Parameters measured were chlorophyll a, phaeopigments, in-vivo fluorescence, turbidity, salinity, and temperature.

  14. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. PMID:24015819

  15. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  16. Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic

    USGS Publications Warehouse

    Hanshaw, M.N.; Lozier, M.S.; Palter, J.B.

    2008-01-01

    Past studies have shown that surface chlorophyll-a concentrations increase in the wake of hurricanes. Given the reported increase in the intensity of North Atlantic hurricanes in recent years, increasing chlorophyll-a concentrations, perhaps an indication of increasing biological productivity, would be an expected consequence. However, in order to understand the impact of variable hurricane activity on ocean biology, the magnitude of the hurricane-induced chlorophyll increase relative to other events that stir or mix the upper ocean must be assessed. This study investigates the upper ocean biological response to tropical cyclones in the North Atlantic from 1997-2005. Specifically, we quantitatively compare the anomalous chlorophyll-a concentrations created by cyclone activity to the total distribution of anomalies in the subtropical waters. We show that the cyclone-induced chlorophyll-a increase has minimal impact on the integrated biomass budget, a result that holds even when taking into consideration the lagged and asymmetrical response of ocean color. Copyright 2008 by the American Geophysical Union.

  17. [Monitoring of the Moskva River Water Using Microbiological Parameters and Chlorophyll a Fluorescence].

    PubMed

    Mosharova, I V; Il'inskii, V V; Matorin, D N; Mosharov, S A; Akulova, A Yu; Protopopov, F F

    2015-01-01

    The results of investigations of three Moskva River sites with different degree of pollution using a complex of microbiological characteristics and the parameters of chlorophyll a fluorescence are presented. We determined that the bacterioplankton seasonal dynamics at less polluted waters (Tushino and Vorobyovy Gory) were similar and differed significantly from one in more polluted waters (Dzerzhinskii). The number of bacteria with active electron transport chain, as well as their share in the bacterioplankton structure, was higher in the water of Dzerzhinskii (average annual values of 0.23 x 10(6) cells/mL and 14%), that in the less polluted water of Tushino and Vorobyovy Gory (0.14 x 10(6) cells/mL; 6% and 0.15 x 10(6) cells/mL; 7%, respectively). From April to October, the content of chlorophyll a and its photosynthetic activity were the highest in Tushino. In Dzerzhinskii, during spring the increase in photosynthetic activity commenced earlier and was more intensive that the increase in chlorophyll a content, i.e., the increase in phytoplankton biomass was temporarily suppressed. We suggest association of this phenomenon with suppression of organic matter synthesis by phytoplankton due to the high water pollution in Dzerzhinskii. The second autumn peak of chlorophyll a content, that was typical of clear water and was observed in Tushino, did not occur in Dzerzhinskii. We recommend combined application of these microbiological parameters and characteristics of chlorophyll a fluorescence for a monitoring. PMID:26964361

  18. Canopy chlorophyll estimation with hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Jincheng

    In this research, proximal measurements of hyperspectral reflectance were used to develop models for estimating chlorophyll content in tallgrass prairie at leaf and canopy scales. Models were generated at the leaf scale and then extended to the canopy scale. Three chlorphyll estimation models were developed, one based on reflectance spectra and two derived from derivative transformations of the reflectance spectra. The triangle chlorophyll index (TCI) model was derived from the reflectance spectrum, whereas the first and second derivative indices (FDI and SDI) models were developed from the derivative transformed spectra. The three models were found to be well-correlated with the chlorophyll content measured with solvent extraction. The result indicated that the three models were effective for the leaf scale estimates of chlorophyll content. The three chlorophyll models developed at the leaf scale were further extended to the canopy scale and fine-scale images. The three models were found to be conditionally effective for estimating canopy chlorophyll content. The TCI model was more effective in dense vegetation, and the FDI and SDI models were better in sparser vegetation. This research suggests that the extension of chlorophyll models from the leaf scale to canopy scale is complex and affected not only by soil background, but also by canopy structure and components.

  19. Rapid algal culture diagnostics for open ponds using multispectral image analysis.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2014-01-01

    This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. PMID:24265121

  20. Population dynamics of an algal bacterial cenosis in closed ecological system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  1. Photosynthetic bark: Use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans; Schlerf, Martin

    2013-08-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not available. We set out to assess Boswellia papyrifera tree bark chlorophyll content and to provide an appropriate bark chlorophyll estimation technique using hyperspectral remote sensing techniques. In contrast to the leaves, the bark of B. papyrifera has several outer layers masking the inner photosynthetic bark layer. Thus, our interest includes understanding how much light energy is transmitted to the photosynthetic inner bark and to what extent the inner photosynthetic bark chlorophyll activity could be remotely sensed during both the wet and the dry season. In this study, chlorophyll estimation using the chlorophyll absorption continuum index (CACI) yielded a higher R2 (0.87) than others indices and methods, such as the use of single band, simple ratios, normalized differences, and conventional red edge position (REP) based estimation techniques. The chlorophyll absorption continuum index approach considers the increase or widening in area of the chlorophyll absorption region, attributed to high concentrations of chlorophyll causing spectral shifts in both the yellow and the red edge. During the wet season B. papyrifera trees contain more bark layers than during the dry season. Having less bark layers during the dry season (leaf off condition) is an advantage for the plants as then their inner photosynthetic bark is more exposed to light, enabling them to trap light energy. It is concluded that B. papyrifera bark chlorophyll content can be reliably estimated using the chlorophyll absorption continuum index analysis. Further research on the use of bark signatures is recommended, in order to discriminate the deciduous B. papyrifera from other species during the dry season.

  2. Phytoplankton biomass, production and growth limitations on the Huanghe (Yellow River) continental shelf

    NASA Astrophysics Data System (ADS)

    Turner, R. Eugene; Rabalais, Nancy N.; Zhang, Zhi Nan

    1990-06-01

    We examined phytoplankton populations in coastal waters of the Huanghe (Yellow River) estuary during two cruises in the annual high and normal discharge periods: August 1986 and October 1987, respectively. Strong salinity, nutrient, and phytoplankton pigment concentration gradients occur along the 5 m isobath. Landward of these gradients the phytoplankton growth potential (PGP) appears strongly phosphorus-limited and light limitation of PGP, paradoxically, appears less significant than it does further offshore where the euphotic zone depth is greater. Phytoplankton pigments are sparse both in the river and far offshore, and the peak accumulation (9 μg l -1 chlorophyll a) is centered broadly between 20 and 25 ppt, thus straddling the region of the hypopycnal plume from the hyperpycnal plunge point to where Secchi disk depth exceeds 1 m. As the suspended matter falls out (sharply) near the 25 ppt isohaline, light conditions improve, the N:P ratio drops to below 100, and nitrate concentrations continue to decrease in an offshore direction. Phytoplankton production rates reach a maximum and large algal cells accumulate where the suspended particulate matter concentration drops to less than 10 mg l -1. Both phytoplankton biomass and production declines beyond approximately 32 ppt. Sedimentary pigment accumulations also increase going from land to sea. Phosphorus and nitrogen dominate the suite of nutrients tested to determine which nutrients limit PGP. Phosphorus is probably the major nutrient limiting phytoplankton growth (not necessarily biomass accumulation) in most of the Huanghe estuary. This conclusion is based on the very high N:P ratios of dissolved nutrients, the results of an extensive array of addition and deletion bioassay experiments, and the results of P addition experiments. Where trace metals and EDTA limit PGP, they are usually limiting in concert with other nutrients and do not act alone. Comparison with other large river plumes are made.

  3. Detection of ocean chlorophyll from earth orbit

    NASA Technical Reports Server (NTRS)

    Duntley, S. Q.

    1972-01-01

    Calculations were made of the magnitude of the optical signature of ocean chlorophyll available to any remote sensor in earth orbit. It was desired to ascertain whether commercially significant concentrations of chlorophyll-A pigments in the ocean would produce a sufficient optical signal at orbital altitudes to operate optical remote sensors, such as those planned for the earth observatory satellite, on clear and hazy days. It was also desired to explore the effect of solar altitude on these optical signals. The best orientation was desired for the field of view for a remote sensor in orbit in order to optimize its ability to detect ocean chlorophyll.

  4. Role of initial cell density of algal bioassay of toxic chemicals.

    PubMed

    Singh, Prashant Kumar; Shrivastava, Alok Kumar

    2016-07-01

    A variety of toxicants such as, metal ions, pesticides, dyes, etc. are continuously being introduced anthropogenically in the environment and adversely affect to the biotic component of the ecosystem. Therefore, the assessment of negative effects of these toxicants is required. However, toxicity assessment anticipated by chemical analysis are extremely poor, therefore the application of the living systems for the same is an excellent approach. Concentration of toxicant as well as cell density both influenced the result of the algal toxicity assay. Here, Scenedesmus sp, a very fast growing green microalgae was selected for study the effects of initial cell densities on the toxicity of Cu(II), Cd(II), Zn(II), paraquat and 2,4-D. Results demonstrated concentration dependent decrease in biomass and specific growth rate of Scenedesmus sp. on exposure of abovesaid toxicants. Paraquat and 2,4-D emerged as extremely toxic to the test alga which reflected from the lowest EC value and very steep decline in biomass was evident with increasing concentration of paraquat and 2,4-D in the medium. Result also demonstrated that initial cell density is a very important parameter than specific growth rate for algal bioassay of various toxicants. Present study clearly illustrated that the use of smaller cell density is always recommended for assaying toxicity of chemicals in algal assays. PMID:26593761

  5. Interaction of triplet sensitizers with chlorophyll: Formation of singlet chlorophyll

    SciTech Connect

    Bohne, C.; Scaiano, J.C. )

    1989-03-29

    The interaction of several triplet sensitizers with chlorophyll a (Chla) has been examined using laser techniques. For the carbonyl sensitizers (with triplet energies > 53 kcal/mol) it was possible to measure the quenching rate constants; these were systematically {>=} 10{sup 10} M{sup {minus}1} s{sup {minus}1}. In the cases of acetone, benzophenone, and p-methoxyacetophenone the quenching process leads to the formation of the fluorescent singlet state of Chla. For benzophenone (k{sub q} = 2.4 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1}) approximately 3% of the quenching events lead to the formation of excited Chla. Several sensitizers (decafluorobenzophenone, benzil, and fluorenone) do not induce Chla fluorescence (or do it very inefficiently) in spite of having triplet energies above the S{sub 1} level of Chla. In light of their results the most probable mechanism involves energy transfer from the triplet sensitizer to an upper triple state of Chla ({sup 3}Chla**) which can undergo reverse intersystem crossing to the singlet manifold of Chla and thus induce fluorescence. The inefficient sensitizers are those where electron transfer between the excited singlet of Chla or {sup 3}Chla** and ground-state sensitizers is energetically favorable, leading to rapid in-cage quenching of the initially formed excited states of Chla. Formation of radical-ion pair between the triplet sensitizer and Chla followed by the generation of singlet Chla in the recombination of the radical ions could not be completely discarded.

  6. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  7. Subsurface chlorophyll maxima in the Skagerrak-processes and plankton community structure

    NASA Astrophysics Data System (ADS)

    Karlson, Bengt; Edler, Lars; Granéli, Wilhelm; Sahlsten, Elisabeth; Kuylenstierna, Mats

    1996-02-01

    Subsurface chlorophyll maxima are common phenomena in both the coastal and open ocean. The main objective of this study was to clarify possible differences in the structure and function of the plankton community in subsurface chlorophyll maxima and at the surface. Sampling was performed at seven stations in the Skagerrak, northeast Atlantic, during five cruises in May and August 1992 and April, May and August 1993. Subsurface chlorophyll fluorescence maxima (FM) occurred on 25 out of 32 sampling occasions. The FMs were usually situated below the pycnocline and associated with the nutricline. The ratio of chlorophyll a to particulate carbon and the light-saturated primary production were higher for plankton at the FM than at the surface, although assimilation numbers (primary production rate: chlorophyll a) were not different from surface plankton. The light protective pigment diadinoxanthin occurred in higher concentrations relative to chlorophyll a in surface plankton than in FM plankton. Respiration was higher in the FM than at the surface. This was not related to abundance of bacteria or bacterial production since no differences between surface and FM values were detected for these parameters. FM plankton was characterized by high nutrient uptake rates, but in this study there were no significant differences compared to surface plankton. 'New' production was on average 25%, but up to about 50% in the western Skagerrak in spring. The average nitrogen uptake rates were dominated by the regenerated nutrients ammonium and urea, accounting for about 50 and 25%, respectively. The <3 μm size fraction contributed significantly to concentrations of total chlorophyll a, particulate carbon, and nitrogen as well as to nitrogen uptake. Its contribution was highest when total values were low. Microscopical investigations and analysis of pigments specific to algal groups showed that diatoms dominated in the FMs in spring and that peridinin-containing dinoflagellates dominated

  8. Malt house wastewater treatment with settleable algal-bacterial flocs.

    PubMed

    Stříteský, Luboš; Pešoutová, Radka; Hlavínek, Petr

    2015-01-01

    This paper deals with biological treatment of malt house wastewater using algal-bacterial flocs. During three months of testing, optimisation of growth conditions and biomass separation leads to maximisation of biomass production, improved flocs settleability and increased pollutant removal efficiency while maintaining low energy demand. At a high food to microorganism ratio (0.16 to 0.29 kg BOD5 kg(-1) TSS d(-1)), the biological oxygen demand (BOD5), chemical oxygen demand (CODCr), total phosphorus (Ptot) and total suspended solids (TSS) removal efficiencies were all higher than 90%. At a food to microorganism ratio of 0.06 kg BOD5 kg(-1) TSS d(-1), BOD5, CODCr, total nitrogen (Ntot), Ptot and TSS removal efficiencies of 99.5%, 97.6%, 91.5%, 97.8% and 98.4%, respectively, were achieved. The study also proved a strong dependence of removal efficiencies on solar radiation. The results suggest the algae-bacteria system is suitable for treatment of similar wastewater in locations with available land and sufficient solar radiation and temperature during the whole year. PMID:26540541

  9. Posidonia oceanica meadow: a low nutrient high chlorophyll (LNHC) system?

    PubMed Central

    Gobert, Sylvie; Laumont, Noémie; Bouquegneau, Jean-Marie

    2002-01-01

    Background In spite of very low nutrient concentrations in its vicinity – both column and pore waters-, the Posidonia oceanica of the Revellata Bay displays high biomass and productivity. We measured the nutrient fluxes from the sediment into the water enclosed among the leaf shoots ("canopy water") to determine if it is possible source of nutrients for P. oceanica leaves. Results During the summer, the canopy water appears to act as a nutrient reservoir for the plant. During that period, the canopy water layer displays both a temperature 0.5°C cooler than the upper water column, and a much higher nutrient content, as shown in this work using a very simple original technique permitting to sample water with a minimal disturbance of the water column's vertical structure. Despite low nutrient concentrations in pore water, mean net fluxes were measured from the sediment to the canopy water. These fluxes are sufficient to provide 20% of the mean daily nitrogen and phosphorus requirement of the P. oceanica shoots. Conclusion An internal cycling of nutrients from P. oceanica senescent leaves was previously noted as an efficient strategy to help face low nutrient availability. The present study points out a second strategy which consists in holding back, in the canopy, the nutrients released at the water-sediment interface. This process occurs when long leaves, during poor nutrient periods in the water column, providing, to P. oceanica, the possibility to develop, high biomass, high chlorophyll quantities in low nutrient environment (a Low Nutrients High Chlorophyll system). PMID:12188926

  10. Update on the biochemistry of chlorophyll breakdown.

    PubMed

    Hörtensteiner, Stefan

    2013-08-01

    In land plants, chlorophyll is broken down to colorless linear tetrapyrroles in a highly conserved multi-step pathway. The pathway is termed the 'PAO pathway', because the opening of the chlorine macrocycle present in chlorophyll catalyzed by pheophorbide a oxygenase (PAO), the key enzyme of the pathway, provides the characteristic structural basis found in all further downstream chlorophyll breakdown products. To date, most of the biochemical steps of the PAO pathway have been elucidated and genes encoding many of the chlorophyll catabolic enzymes been identified. This review summarizes the current knowledge on the biochemistry of the PAO pathway and provides insight into recent progress made in the field that indicates that the pathway is more complex than thought in the past. PMID:22790503

  11. Monolayers and multilayers of chlorophyll [correction of chlorophyl] a on a mercury electrode.

    PubMed

    Moncelli, M R; Becucci, L; Dolfi, A; Tadini Buoninsegni, F; Agostiano, A

    2002-05-15

    A novel experimental technique used to investigate chlorophyll films on a hanging mercury drop electrode is described. Two different procedures are employed to prepare self-assembled chlorophyll monolayers and multilayers on the mercury electrode. Upon illuminating the chlorophyll a (Chl)-coated mercury electrode with an appropriate light source, the photocurrents generated by the Chl aggregates are measured under short-circuit conditions in the absence of photoartefacts. The preliminary results obtained by this novel technique are presented. PMID:12009465

  12. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  13. Evidence for a structural role for chlorophyll in chlorophyll-protein complexes.

    PubMed

    Jennings, R C; Garlaschi, F M; Forti, G; Gerola, P D

    1979-11-23

    1. Chymotrypsin treatment of spinach chloroplast membranes does not change the electrophoretic mobility of either chlorophyll-protein complex 1 or 2. 2. The extraction of lipids with 80% acetone after treatment of the membranes with chymotrypsin reveals that the polypeptide components of both chlorophyll-protein complexes had been extensively digested. The extraction of carotenes with petroleum ether under the same conditions does not change the electrophoretic mobility of the chlorophyll-protein complexes. 3. Fluorescence polarisation studies of chlorophyll-protein complex 2 reveal that the chymotrypsin digestion of this complex does not result in changes of mutual orientation or distance apart of chlorophyll a, chlorophyll b or carotenoid. 4. Two polypeptide components have been detected after lipid extraction of electrophoretically purified chlorophyll-protein complexes 1 and 2. The SDS molecular weights are 24 000 and 27 000 for complex 2, and 68 000 and 64 000 for complex 1. 5. We conclude that chlorophyll performs an important structural function in both chlorophyll-protein complexes. PMID:508798

  14. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    SciTech Connect

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  15. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGESBeta

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  16. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  17. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    PubMed

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review. PMID:25957270

  18. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption. PMID:22528997

  19. Production of algal-based biofuel using non-fresh water sources.

    SciTech Connect

    Sun, Amy Cha-Tien; Reno, Marissa Devan

    2007-09-01

    The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual simulation framework and historical data are based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The overall water balance ignores both transportation options and water chemistry and is broken down by county level. The resulting model contains an algal growth module, a dairy module, an oil production module, and a gas production module. A user interface is also created for controlling the adjustable parameters in the model. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil- and gas-produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

  20. Rangeland biomass estimation demonstration. [Texas Experimenta Ranch

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Boyd, W. E.; Clark, B. V.

    1982-01-01

    Because of their sensitivity to chlorophyll density, green leaf density, and leaf water density, two hand-held radiometers which have sensor bands coinciding with thematic mapper bands 3, 4, and 5 were used to calibrate green biomass to LANDSAT spectral ratios as a step towards using portable radiometers to speed up ground data acquisition. Two field reflectance panels monitored incoming radiation concurrently with sampling. Software routines were developed and used to extract data from uncorrected tapes of MSS data provided in NASA LANDSAT universal format. A LANDSAT biomass calibration curve estimated the range biomass over a four scene area and displayed this information spatially as a product in a format of use to ranchers. The regional biomass contour map is discussed.

  1. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept

    PubMed Central

    Balboa, Elena M.; Moure, Andrés; Domínguez, Herminia

    2015-01-01

    The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts. Hydrothermal processing is proposed to fractionate the algal biomass and to solubilize the fucoidan and phlorotannin fractions. Membrane technology was proposed to concentrate these fractions and obtain salt- and arsenic-free saccharidic fractions. Based on these technologies, this study presents a multipurpose process to obtain six different products with potential applications for nutraceutical, cosmetic and pharmaceutical industries. PMID:26110896

  2. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept.

    PubMed

    Balboa, Elena M; Moure, Andrés; Domínguez, Herminia

    2015-06-01

    The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts. Hydrothermal processing is proposed to fractionate the algal biomass and to solubilize the fucoidan and phlorotannin fractions. Membrane technology was proposed to concentrate these fractions and obtain salt- and arsenic-free saccharidic fractions. Based on these technologies, this study presents a multipurpose process to obtain six different products with potential applications for nutraceutical, cosmetic and pharmaceutical industries. PMID:26110896

  3. Evaluation of the MERIS terrestrial Chlorophyll Index

    NASA Astrophysics Data System (ADS)

    Dash, J.; Curran, P.

    The MEdium Resolution Imaging Spectrometer (MERIS), one of the payloads on Envisat, has fine spectral resolution, moderate spatial resolution and a three day repeat cycle. This makes MERIS a potentially valuable sensor for the measurement and monitoring of terrestrial environments at regional to global scales. The red edge, which results from an abrupt change in reflectance in red and near-infrared wavelengths has a location that is related directly to the chlorophyll content of vegetation. A new index called the MERIS terrestrial chlorophyll index (MTCI) uses data in three red and NIR wavebands centred at 681.25nm, 705nm and 753.75nm (bands 8, 9 and 10 in the MERIS standard band setting). The MTCI is easy to calculate and can be automated. Preliminary indirect evaluation using model, field and MERIS data suggested its sensitivity, notably to high values of chlorophyll content and its limited sensitivity to spatial resolution and atmospheric effects. As a result this index is now a standard level-2 product of the European Space Agency. For direct MTCI evaluation two different approaches were used. First, the MTCI/chlorophyll content relationship were determined using a surrogate of chlorophyll content for sites in southern Vietnam and second, the MTCI/chlorophyll relationship was determined using actual chlorophyll content for sites in the New Forest, UK and for plots in a greenhouse. Forests in southern Vietnam were contaminated heavily with Agent Orange during the Vietnam War. The contamination levels were so high that it led to a long term decrease in chlorophyll content within forests that have long since regained full canopy cover. In this approach the amount of Agent Orange dropped onto the forest between 1965 and 1971 was used as a surrogate for contemporary chlorophyll content and was related to current MTCI at selected forest sites. The resulting relationship was positive. Further per pixel investigation of the MTCI/Agent Orange concentration relationship

  4. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  5. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  6. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  7. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  8. Satellite analysis of temporal and spatial chlorophyll patterns on the West Florida Shelf (1997-2003)

    NASA Astrophysics Data System (ADS)

    Vanderbloemen, Lisa Anne

    The objective of this dissertation is to gain a better understanding of the environmental and climatic effects on the temporal and spatial variability of phytoplankton biomass along the West Florida Shelf (WFS). Chapter 1 examines temporal and spatial patterns in chlorophyll concentrations using satellite data collected between 1997 and 2003. Chlorophyll data derived from the SeaWiFS sensor are validated with in-situ data and analyzed. Wind, current, sea surface temperature, river, and rain data are used to better understand the factors responsible for the patterns observed in the satellite data. My question is whether the standard OC-4 algorithm is adequate for studying short-term variability of chlorophyll concentrations along the WFS. I will examine temporal and spatial trends using the OC-4 and compare them to the Carder semi-analytical algorithm which uses remote sensing reflectances at 412nm, 443nm, 490nm, and 555nm to estimate chlorophyll concentrations separately from CDOM estimates (Carder et al 1999, Hu et al 2003). In Chapters 2 and 3 the potential problems due to CDOM and bottom reflectance are examined. In Chapter 2 I analyze the influence of riverine-induced CDOM. Water-leaving radiances (nLw) are analyzed in an effort to discriminate true chlorophyll patterns from CDOM-contaminated signals. Chapter 3 examines the impact of bottom reflectance on the satellite signal by using the percentage of remote sensing reflectance at lambda=555 (Rrs(555)) to differentiate between optically shallow waters and optically deep waters. Optically shallow waters are defined as those with the percentage of Rrs(555) due to bottom reflectance (%bt_555) ≥ 25%, while optically deep waters have %bt_555 ≤ 25%. These analyses will help assess the validity of the temporal and spatial patterns of chlorophyll concentration observed with the SeaWiFS data described in Chapter 1.

  9. Assessment of chlorophyll meter calibrations for chlorophyll content using leaf spectral transmittances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Konica-Minolta SPAD-502 leaf chlorophyll meters provide a relative value of plant nitrogen status useful for agricultural nutrient management. From previous studies, there is not a single accurate calibration equation between leaf chlorophyll content (µg chl. a+b cm-2) and SPAD-502 value. We deter...

  10. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca.

    PubMed

    Suganya, Tamilarasan; Renganathan, Sahadevan

    2012-03-01

    In this present investigation, kinetic studies on oil extraction were performed in marine macroalgae Ulva lactuca. The algal biomass was characterized by scanning electron microscopy and Fourier Transform-Infra Red Spectroscopy. Six different pre-treatment methods were carried out to evaluate the best method for maximum oil extraction. Optimization of extraction parameters were performed and high oil yield was obtained at 5% moisture content, 0.12 mm particle size, 500 rpm stirrer speed, 55°C temperature, 140 min time and solvent-to-solid ratio as 6:1 with 1% diethyl-ether and 10% methylene chloride in n-hexane solvent mixture. After optimization, 10.88% (g/g) of oil extraction yield was achieved from 30 g of algal biomass. The rate constant was obtained for the first order kinetic study by differential method. The activation energy (Ea) was calculated as 63.031 kJ/mol. From the results obtained in the investigation, U. lactuca biomass was proved to be a suitable source for the biodiesel production. PMID:22209436

  11. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  12. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  13. How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics.

    PubMed

    Ryan, Aoife A; Senge, Mathias O

    2015-04-01

    As the world strives to create a more sustainable environment, green chemistry has come to the fore in attempts to minimize the use of hazardous materials and shift the focus towards renewable sources. Chlorophylls, being the definitive "green" chemical are rarely used for such purposes and this article focuses on the exploitation of this natural resource, the current applications of chlorophylls and their derivatives whilst also providing a perspective on the commercial potential of large-scale isolation of these pigments from biomass for energy and medicinal applications. PMID:25683614

  14. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  15. AL HARMFUL ALGAL BLOOM (HAB) INFORMATION EXCHANGE

    EPA Science Inventory

    This project proposes to implement an integrated web site that will serve as an Alabama Harmful Algal Bloom (HAB) Information Exchange Network. This network will be a stand-alone site where HAB data from all agencies and research efforts in the State of Alabama will be integrate...

  16. Using hyperspectral imagery to monitor algal persence

    SciTech Connect

    Anderson, J.M.; Monk, J.; Yan, Gu; Brignal, W.

    1997-08-01

    This paper illustrates how an inexpensive and easily deployable imaging spectrometer can be used to monitor and identify algal blooms at short notice, thus making practical the addition of airborne data to the usual in-situ measurements. Two examples are described, one in the Irish Sea and the other in a reservoir system in the London area.

  17. Bowel perforation detection using metabolic fluorescent chlorophylls

    NASA Astrophysics Data System (ADS)

    Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook

    2016-03-01

    Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.

  18. Effects of magnetite nanoparticles on soybean chlorophyll.

    PubMed

    Ghafariyan, Mohammad H; Malakouti, Mohammad J; Dadpour, Mohammad R; Stroeve, Pieter; Mahmoudi, Morteza

    2013-09-17

    Nanoparticles (NPs) have emerged as one of the most innovative and promising application in agriculture. Since plants are recognized as essential component of all ecosystems, the effects of NPs on plants may pave a new insight to the ecosystems. Here, uptake and translocation of superparamagnetic iron oxide NPs (SPIONs), with various surface charges, on soybean has been probed; in addition, the effects of SPIONs on variations of chlorophyll, in hydroponic condition, together with their ability for reduction of iron deficiency chlorosis were explored. We find that SPIONs, which were entered and translocated in the soybean, increased chlorophyll levels, with no trace of toxicity. Furthermore, it was found that physicochemical characteristics of the SPIONs had a crucial role on the enhancement of chlorophyll content in subapical leaves of soybean. The equivalent ratio of chlorophyll a to b, in all treatments with conventional growth medium iron chelate and SPIONs (as iron source), indicated no significant difference on the photosynthesis efficiency. Finally, it was observed that the effect of SPIONs on the soybean chlorophyll content may have influence on both biochemical and enzymatic efficiency in different stages of the photosynthesis reactions. PMID:23951999

  19. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  20. Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies

    SciTech Connect

    Vunjak-Novakovic, G.; Kim, Y.; Wu, X.X.; Berzin, I.; Merchuk, J.C.

    2005-08-03

    Air-lift reactors (ALRs) have great potential for industrial bioprocesses, because of the low level and homogeneous distribution of hydrodynamic shear. One growing field of application is the flue-gas treatment using algae for the absorption of CO{sub 2}, In this paper, we discuss the requirements for photosynthetic biomass growth in an ALR. The effects of the operating variables are analyzed using a mathematical model that accounts for the effects of ALR geometry, fluid flow, and illumination on the biomass growth. On the basis of the ALR principles and the specific requirements of photosynthetic processes, we developed a 'triangular' ALR configuration that is particularly suitable for algal growth. We describe the design and operation of this novel bioreactor and present the first series of experimental data obtained for two different algal species in a pilot-scale unit supplied with flue gases from a small power plant. The measured removal efficiency of CO{sub 2} was significant (82.3 12.5% on sunny days and 50.1 6.5% on cloudy days) and consistent with the increase in the algal biomass.

  1. Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems.

    PubMed

    Michael, Clayton; del Ninno, Matteo; Gross, Martin; Wen, Zhiyou

    2015-03-01

    This work is to use thin film nano-materials as light filters to selectively transmit certain wavelengths from natural sunlight to algal culture. A red light filter (620-710 nm) and blue filter (450-495 nm) were evaluated. Algae were grown in flasks, flat panel reactors, and rotating algal biofilm (RAB) system. It was found that the light filters did not improve algal growth in flask cultures, probably due to the additional reflection of light by the glass wall of the flasks. However, the light filters significantly (P<0.05) improved biomass yield (13-34%) in flat panel reactors and biomass productivity (70-100%) in RAB system, depending on the growth mode and lighter filters. Such improvements may be due to the eliminating the ultra-violet (UV) damaging the cellular structure. The biomass compositions did not change significantly among different light-filter cultures (P>0.05). The research shows a great potential of using light filters to improve microalgal growth. PMID:25575207

  2. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. PMID:26716890

  3. Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells.

    PubMed

    Wang, Huan; Lu, Lu; Liu, Dongmei; Cui, Fuyi; Wang, Peng

    2015-11-01

    The objective of this study was to investigate behavior of algal organic matter (AOM) during bioelectrochemical oxidation in microbial fuel cell in terms of compositions and structures. Study revealed that the AOM derived from blue-green algae Microcystis aeruginosa could be degraded more completely (82% COD removal) in microbial fuel cells (MFCs) than by anaerobic fermentation (24% COD removal) in a control reactor without closed-circuit electrode and electricity was produced simultaneously. A variety of techniques were used to characterize the changes in AOM compositions and structures during bioelectrochemical oxidation. The presence of syntrophic interactions between electrochemical active bacteria and fermentative bacteria to degrade large molecular organics into small molecular substances, which could be oxidized by electrode but not by fermentation. The dominant tryptophan protein-like substances, humic acid-like substances and Chlorophyll a in AOM were highly degraded during MFC treatment. PMID:26081162

  4. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    PubMed

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. PMID:26172107

  5. NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents.

    PubMed

    Nestle, N F; Kimmich, R

    1996-09-01

    In this contribution, an NMR imaging study of heavy metal absorption in alginate, immobilized-cell biosorbents, and kombu (Laminaria japonica) algal biomass is presented. This method provides the good possibility of directly monitoring the time evolution of the spatial distribution of the ions in the materials. From these results, we demonstrate that rare earth ions are absorbed with a steep reaction front that can be described very well with a modified shrinking core model, while copper ions are absorbed with a more diffuse front. PMID:18629817

  6. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Trainer, V. L.; Pitcher, G. C.; Reguera, B.; Smayda, T. J.

    2010-04-01

    Comparison of harmful algal bloom (HAB) species in eastern boundary upwelling systems, specifically species composition, bloom densities, toxin concentrations and impacts are likely to contribute to understanding these phenomena. We identify and describe HABs in the California, Canary, Benguela and Humboldt Current systems, including those that can cause the poisoning syndromes in humans called paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), as well as yessotoxins, ichthyotoxins, and high-biomass blooms resulting in hypoxia and anoxia. Such comparisons will allow identification of parameters, some unique to upwelling systems and others not, that contribute to the development of these harmful blooms.

  7. Effect of discharge on the chlorophyll a distribution in the tidally-influenced Potomac River

    USGS Publications Warehouse

    Bennett, J.P.; Woodward, J.W.; Shultz, D.J.

    1986-01-01

    In the tidal Potomac River, high river discharges during the spring are associated with high chlorophyll a concentrations in the following in the following summer, assuming that summertime light and temperature conditions are favorable. Spring floods deliver large loads of particulate N and P to the tidal river. This particulate N and P could be mineralized by bacteria to inorganic N and P and released to the water column where it is available for phytoplankton use during summertime. However, during the study period relatively low concentrations of chlorophyll a (less than 50 ??g l-1 occurred in the tidal river if average monthly discharge during July or August exceeded 200 m3s-1. Discharge and other conditions combined to produce conditions favorable for nuisance levels of chlorophyll a (greater than 100 ??g l-1 approximately one year out of four. Chlorophyll a maxima occurred in the Potomac River transition zone and estuary during late winter (dinoflagellates) and spring (diatoms). Typical seasonal peak concentrations were achieved at discharges as high as 970 m3 s-1, but sustained discharges greater than 1,100 m3 s-1 retarded development. Optimum growth conditions occurred following runoff events of 10 to 15 d duration which produced transit times to the transition zone of 7 to 10 d. Wet years with numerous moderate-sized runoff events, such as 1980, tend to produce greater biomass in the transition zone and estuary than do dry years such as 1981. ?? 1986 Estuarine Research Federation.

  8. Stimulation of delta-Aminolevulinic Acid Formation in Algal Extracts by Heterologous RNA.

    PubMed

    Weinstein, J D; Mayer, S M; Beale, S I

    1986-12-01

    Formation of the chlorophyll and heme precursor delta-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond

  9. Algal and Water-Quality Data for the Yellowstone River and Tributaries, Montana and Wyoming, 1999-2000

    USGS Publications Warehouse

    Peterson, David A.

    2009-01-01

    Streams of the Yellowstone River Basin in Montana and Wyoming were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Algal communities were sampled in 1999 in conjunction with other ecological sampling and in 2000 during synoptic sampling. Water-quality measurements related to the algal sampling included light attenuation and dissolved-oxygen concentrations. Sites were sampled on the main-stem Yellowstone River, major tributaries such as the Clarks Fork Yellowstone River and the Bighorn River, and selected minor tributaries. Some of the data collected, such as the phytoplankton chlorophyll-a data, were referenced or summarized in previous U.S. Geological Survey reports but were not previously published in tabular form, and therefore are presented in this report, prepared in cooperation with the Montana Department of Environmental Quality. Data presented in this report include chlorophyll-a concentrations in phytoplankton and periphyton samples, as well as light attenuation and dissolved-oxygen production data from 1999-2000.

  10. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize.

    PubMed

    McClanahan, T R; Cokos, B A; Sala, E

    2002-06-01

    The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p < 0.06) in the fertilized compared to open-top cages. Algal species composition was influenced by all

  11. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions. PMID:25896488

  12. Effect of algal extract on H2 production by a photosynthetic bacterium Rhodobium marinum A-501: analysis of stimulating effect using a kinetic model.

    PubMed

    Kawaguchi, Hideo; Nagase, Hiroyasu; Hashimoto, Kyoko; Kimata, Shiho; Doi, Mikio; Hirata, Kazumasa; Miyamoto, Kazuhisa

    2002-01-01

    We have established a system for hydrogen (H2) production from algal starch via lactic acid using a mixed culture of a lactic acid bacterium, Lactobacillus amylovorus, and a photosynthetic bacterium, Rhodobium marinum A-501. We found that the H2 production from lactate was stimulated in the presence of algal extract, which was obtained from algal biomass homogenate used as a substrate in the system by removing settleable solids including starch. To analyze the stimulating effect of algal extract on H2 production, we developed a kinetic model for H2 production by R. marinum A-501. The model revealed that approximately 20% of lactate was consumed for cell mass production, and the remaining portion was a source of reducing power to drive hydrogen production or other cellular processes. In the presence of algal extract, the model indicated that the conversion efficiency from lactate to the reducing power increased from 0.56 to 0.80 and nitrogenase activity increased up to twofold, resulting in the increase in yield of hydrogen from lactate from 29% to 48%. These results suggest that algal extract can attenuate the limitation process in lactate catabolism by which the supplementation of reducing power to drive H2 production was suppressed. PMID:16233271

  13. Photoprotection in sequestered plastids of sea slugs and respective algal sources

    PubMed Central

    Cruz, Sónia; Cartaxana, Paulo; Newcomer, Rebecca; Dionísio, Gisela; Calado, Ricardo; Serôdio, João; Pelletreau, Karen N.; Rumpho, Mary E.

    2015-01-01

    Some sea slugs are capable of retaining functional sequestered chloroplasts (kleptoplasts) for variable periods of time. The mechanisms supporting the maintenance of these organelles in animal hosts are still largely unknown. Non-photochemical quenching (NPQ) and the occurrence of a xanthophyll cycle were investigated in the sea slugs Elysia viridis and E. chlorotica using chlorophyll fluorescence measurements and pigment analysis. The photoprotective capacity of kleptoplasts was compared to that observed in their respective algal source, Codium tomentosum and Vaucheria litorea. A functional xanthophyll cycle and a rapidly reversible NPQ component were found in V. litorea and E. chlorotica but not in C. tomentosum and E. viridis. To our knowledge, this is the first report of the absence of a functional xanthophyll cycle in a green macroalgae. The absence of a functional xanthophyll cycle in C. tomentosum could contribute to the premature loss of photosynthetic activity and relatively short-term retention of kleptoplasts in E. viridis. On the contrary, E. chlorotica displays one of the longest functional examples of kleptoplasty known so far. We speculate that different efficiencies of photoprotection and repair mechanisms of algal food sources play a role in the longevity of photosynthetic activity in kleptoplasts retained by sea slugs. PMID:25601025

  14. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes.

    PubMed Central

    Chen, F; Suttle, C A; Short, S M

    1996-01-01

    Algal-virus-specific PCR primers were used to amplify DNA polymerase gene (pol) fragments (683 to 689 bp) from the virus-sized fraction (0.02 to 0.2 microns) concentrated from inshore and offshore water samples collected from the Gulf of Mexico. Algal-virus-like DNA pol genes were detected in five samples collected from the surface and deep chlorophyll maximum. PCR products from an offshore station were cloned, and the genetic diversity of 33 fragments was examined by restriction fragment length polymorphism and sequence analysis. The five different genotypes or operational taxonomic units (OTUs) that were identified on the basis of restriction fragment length polymorphism banding patterns were present in different relative abundances (9 to 34%). One clone from each OTU was sequenced, and phylogenetic analysis showed that all of the OTUs fell within the family Phycodnaviridae. Four of the OTUs fell within a group of viruses (MpV) which infect the photosynthetic picoplankter Micromonas pusilla. The genetic diversity among these genotypes was as large as that previously found for MpV isolates from different oceans. The remaining genotype formed its own clade between viruses which infect M. pusilla and Chrysochromulina brevifilum. These results imply that marine virus communities contain a diverse assemblage of MpV-like viruses, as well as other unknown members of the Phycodnaviridae. PMID:8702280

  15. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Willoughby, Nik

    2013-08-01

    Growth characteristics of two strains of microalgae in bubble column photobioreactors were investigated under different cultivation conditions. Chlorella vulgaris and Gloeothece membranacea were cultivated in luminescent acrylic photobioreactors at different seed culture densities. Luminescent acrylic photobioreactors in blue, green, yellow, orange, and red colours capable of spectral conversion of light were used. The results indicated that the red luminescent photobioreactor enhanced biomass production in both strains of microalgae while pigmentation was induced under different light colours. Green light promoted chlorophyll production in C. vulgaris however chlorophyll production in G. membranacea cultures was less influenced by the light condition or culture density. Phycobiliproteins were the dominant pigments in G. membranacea and red light favoured synthesis of these pigments. PMID:23735796

  16. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  17. Monitoring Algal Blooms in a Southwestern U.S. Reservoir System

    NASA Astrophysics Data System (ADS)

    Tarrant, Philip; Neuer, Susanne

    2009-02-01

    In recent years, several studies have explored the potential of higher-resolution sensor data for monitoring phytoplankton primary production in coastal areas and lakes. Landsat data have been used to monitor algal blooms [Chang et al., 2004; Vincent et al., 2004], and Moderate Resolution Imaging Spectroradiometer (MODIS) 250-meter and Medium Resolution Imaging Spectrometer (MERIS) full-resolution (300-meter) bands have been utilized to detect cyanobacterial blooms [Reinart and Kutser, 2006] as well as to monitor water quality [Koponen et al., 2004]. Field sampling efforts and MODIS 250-meter data are now being combined to develop a cost-effective method for monitoring water quality in a southwestern U.S. reservoir system. In the Phoenix, Ariz., metropolitan area, the Salt River reservoirs supply more than 3.5 million people, a population expected to rise to more than 6 million by 2030. Given that reservoir capacities have physical limitations, maintaining water quality will become critical as the population expands. Potentially noxious algal blooms that can release toxins and may affect water quality by modifying taste and odor have become a major concern in recent years. While frequent field sampling regimes are expensive, satellite imagery can be applied cost-effectively to monitor algal biomass trends remotely, and this information could provide early warning of blooms in these reservoirs.

  18. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents.

    PubMed

    Wang, Changhui; Bai, Leilei; Jiang, He-Long; Xu, Huacheng

    2016-07-01

    Lake eutrophication typically occurs with a syndrome of algae breeding and biomass accumulation (e.g., algal blooms). Therefore, the effect of algal bloom sedimentation on eutrophication control by phosphorus (P) inactivating agents was assessed herein. Three commercial products, including aluminum (Al) sulfate, iron (Fe) sulfate, and a lanthanum-modified clay (Phoslock®), as well as one easily available by-product, drinking water treatment residue (DWTR), were selected. The most important finding was that during algae sedimentation, P immobilization from the overlying water by Al, Phoslock®, and DWTR was dominated by a long-term slow phase (>150d), while Fe has limited effectiveness on the immobilization. Further analysis indicated that the algae sedimentation effect was mainly due to the slow release of P from algae, leading to relatively limited P available for the inactivating agents. Then, a more unfavorable effect on the P immobilization capability of inactivating agents was caused by the induced anaerobic conditions, the released organic matter from algae, and the increased sulfide in the overlying water and sediments during sedimentation. Overall, algae sedimentation induced variable control of eutrophication by P inactivating agents. Accordingly, recommendations for future works about algal lake restoration were also proposed. PMID:27017078

  19. Identification of genes associated with chlorophyll accumulation in flower petals.

    PubMed

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  20. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals

    PubMed Central

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  1. Continuous flocculation-sedimentation for harvesting Nannochloropsis salina biomass.

    PubMed

    Chatsungnoen, Tawan; Chisti, Yusuf

    2016-03-20

    A continuous flow process is developed for recovery of the biomass of the marine microalga Nannochloropsis salina. Flocculation-sedimentation is used to recover the biomass from an algal suspension with an initial dry biomass concentration of 0.5 g L(-1), as would be typical of a raceway-based biomass production system. More than 85% of the biomass initially in suspension could be settled by gravity in a flocculation-sedimentation device with a total residence time of ∼148 min. Aluminum sulfate was used as an inexpensive, readily available and safe flocculant. The optimal flocculant dosage (as Al2(SO4)3) was 229 mg L(-1). Relative to a highly effective 62-min batch flocculation-sedimentation process for the same alga and flocculant, the continuous flow operation took longer and required nearly double the flocculant dose. The design of the flocculation-sedimentation system is explained. PMID:26880538

  2. Retrieval of chlorophyll a and suspended solid concentrations by hyperspectral remote sensing in Taihu Lake, China

    NASA Astrophysics Data System (ADS)

    Yang, Dingtian; Pan, Delu; Zhang, Xiaoyu; Zhang, Xiaofeng; He, Xianqiang; Li, Shujing

    2006-12-01

    Chlorophyll a (chl- a) and suspended solid concentrations are two frequently used water quality parameters for monitoring a lake. Traditional measurement of chl- a and suspended solids, requiring laborious laboratory work, which is often expensive and time consuming. Hyperspectral remote-sensing measurement provides a fast and easy tool for estimating water trophic status. In situ hyperspectral data on March 7 8, July 6 7, September 20 and December 7 8, 2004 and the corresponding water chemical data were used to regress the algorithm of water quality parameters. Results showed that the peak of water leaving radiance around 700 nm ( R 700) varied proportionally with chl- a concentration, and moved to infrared when algal bloom occurred. The reflectance ratio of R 702/ R 685 was well correlated with chl- a when water surface in no algal bloom case and the correlation coefficient was better if absorption of phycocyanin was considered. The reflectance ratio R 620/ R 531 was highly correlated to the concentration of suspended solids. The relationship between suspended solids and other band groups were also compared. Secchi disk depth could be calculated by non-linear correlation with suspended solids concentration.

  3. MERIS/Envisat- Images for Modeling of Chlorophyll Concentration Fields for Novosibirks Reservoir (South West Siberia)

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Nelley; Kirillov, Vladimir; Kirilllova, Tatiana; Lovtskaya, Olga

    2010-12-01

    In the recent decades, concerns regarding the state of the environment have increased as human induced pollution affects not only the functioning of ecosystems, but also the quality of life. Clean water is essential to sustain human life, but it is in danger of contamination from various pollutants. Indeed, lakes and rivers are large ecosystems containing a large diversity of flora and fauna that need to be protected. In this paper, in situ data from the Novosibirsk reservoir on Southwest Siberia (180 km long, 1070 km2 water area) are used to evaluate the water constituent estimations. The reservoir was designed in 1957 mainly as a source of hydropower but it also serves as a source of drinking water. Excessive algal blooms in summer limits the intake of reservoir water for the water supply system; hence, real- time data about the algal development in this reservoir is vital. The objective of the study is to validate MERIS lake water processors, that allow the retrieval of water quality parameters, using in situ data from Novosibirsk reservoir. Interpretation of MERIS/Envisat data is done in conjunction with a survey of chlorophyll concentration that serves as indicator of phytoplankton development. Due to the significant heterogeneity of observed biological elements, a more detailed zoning of the reservoir is required; the research is planned to be continued along this line. Data provided by the European Space Agency.

  4. Seasonal, Diurnal and Vertical Variation of Chlorophyll Fluorescence on Phyllostachys humilis in Ireland

    PubMed Central

    Van Goethem, Davina; De Smedt, Sebastiaan; Valcke, Roland; Potters, Geert; Samson, Roeland

    2013-01-01

    In recent years, temperate bamboo species have been introduced in Europe not only as an ornamental plant, but also as a new biomass crop. To measure adaptation stress of bamboo to the climate of Western Europe, chlorophyll fluorescence was measured on a diurnal and seasonal basis in Ballyboughal, Co. Dublin, Ireland. Measurements were attained on the leaves of each node of Phyllostachys humilis. The most frequently used parameter in chlorophyll fluorescence is the photosynthetic efficiency (Fv/Fm). A seasonal dip - as well as a larger variation - of Fv/Fm in spring compared to the rest of the year was observed. Over the year, the upper leaves of the plant perform better than the bottom leaves. These findings were linked to environmental factors such as light intensity, air temperature and precipitation, as increased light intensities, decreasing air temperatures and their interactions, also with precipitation levels have an effect on the photosynthetic efficiency (Fv/Fm) in these plants. PMID:23967282

  5. Microalgal biomass production pathways: evaluation of life cycle environmental impacts

    PubMed Central

    2013-01-01

    Background Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of −46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae’s life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae’s direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Conclusions Given the high variability in microalgae’s energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative

  6. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  7. Green-fleshed watermelon contains chlorophyll

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many popular and technical reports on watermelon ignore an uncommon color, green, even though mention of this color has been in the literature since 1901. However, what causes the green hue has not been reported. Since some cucurbits have chloroplasts, and chlorophyll in the flesh tissue, we surmi...

  8. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    ERIC Educational Resources Information Center

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  9. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors. PMID:24960016

  10. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  11. Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae.

    PubMed

    Ni, Lixiao; Acharya, Kumud; Ren, Gaoxiang; Li, Shiyin; Li, Yiping; Li, Yong

    2013-04-01

    The objectives of this work were to prepare and characterize an anti-algal sustained-release granule, then study its mode of action on Microcystis aeruginosa. The anti-algal sustained-release granule was prepared with artemisinin using alginate-chitosan microcapsule technology and characterized by a high performance liquid chromatography with an evaporative light-scattering detector, Fourier transform infrared spectral analysis, and a scanning electron microscope. The optimum preparation (in %, w/v) using the orthogonal method was: 2.5 sodium alginate; 0.25 chloride; 0.6 artemisinin; 2 calcium chloride; and 1.5 mL of the cross-linking agent, glutaraldehyde. These artemisinin sustained-release granules had a high encapsulation efficiency (up to 68%) and good release properties (release time of more than 40 d). Artemisinin sustained-release granules released cumulatively in a solution containing M. aeruginosa, and the stress on algae increased gradually within 30 d. Artemisinin sustained-release granules decreased the content of the soluble protein, Chlorophyll a in 30 d, increased the superoxide dismutase activity of M. aeruginosa, but exerted no effect on the soluble sugar content. Compared to direct dosing of artemisinin, algae can be inhibited longer and more effectively by the artemisinin sustained-release granules. The results of our research can aid in the development of new anti-algal sustained-release granules and lead to further study of their application in the field. PMID:23352147

  12. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998

    NASA Astrophysics Data System (ADS)

    Chang, Jeng; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Chiang, Kuo Ping

    2003-03-01

    Spatial variations of the phytoplankton carbon-to-chlorophyll a ratio (C:chl a) in the East China Sea were investigated during a June 1998 cruise. Based on a regression analysis between particulate organic carbon and chlorophyll a concentrations measured at 2-m depths, estimated values of C:chl a were 13.0 and 92.8 g g -1 for coastal and offshore waters, respectively. In addition, water samples were collected from 5-m depths at three stations with different hydrographic characteristics, and phytoplankton carbon biomass was estimated from microscope-measured cell volumes. At the coastal zone station, chlorophyll a concentration reached 7.9 mg m -3 with Skeletonema costatum as the dominant species. The total phytoplankton carbon was 142.8 mg m -3, and the estimated C:chl a was 18.0 g g -1. At the midshelf station, Synechococcus spp. and Pseudosolenia calcar-avis were the major contributors to phytoplankton carbon. The chlorophyll a concentration was 1.3 mg m -3, and C:chl a was 67.4 g g -1. In contrast, chlorophyll a concentration decreased to 0.1 mg m -3 at the Kuroshio station, where the filamentous cyanobacteria Trichodesmium spp., contributed to most of the phytoplankton carbon, and C:chl a was estimated to be 94.4 g g -1. The C:chl a ratios estimated by the two methods were in close agreement, and a linear relationship was established between the logarithm of chlorophyll a concentration and phytoplankton carbon. The estimated carbon biomass was used to calculate intrinsic growth rates of phytoplankton in the East China Sea. The results indicate that phytoplankton grow actively in the coastal zone, with growth rates often higher than 1.4 day -1, but much lower rates were observed near the margin of the continental shelf.

  13. The preparation, identification and properties of chlorophyll derivatives

    NASA Technical Reports Server (NTRS)

    Katz, J. J.; Pennington, F. C.; Strain, H. H.; Svec, W. A.

    1968-01-01

    In the investigation of 10-hydroxy chlorophylls a and b novel techniques included modification of chromatography and the use of fully-deuterated compounds isolated from fully-deuterated autotropic algae to determine the molecular structure of the chlorophylls.

  14. MANUFACTURE OF PHOTOVOLTAIC SOLAR CELL USING PLANT CHLOROPHYLL

    EPA Science Inventory

    To date, we have successfully manufactured working chlorophyll sensitized solar cells using chlorophyll (and b mixture) from spinach leaves. We have evaluated the electronic characteristics (voltage, current, and power outputs using different loading resistors) of this solar c...

  15. Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary

    2004-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.

  16. Detecting harmful algal blooms using Geostationary Ocean Color Imager (GOCI) data in Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Mingzhu; Gao, Zhiqiang; Liu, Chaoshun

    2015-09-01

    Bohai Sea is a semi-enclosed inland sea with serious environmental problems. Harmful algal blooms (HABs) in Bohai Sea happen almost every year covering a large area for a long duration. Real time detection of the HABs can significantly reduce economic loss and assure human safety. Remote sensing technology can monitor the sea surface over a large area and detect HABs. Geo-stationary Ocean Color Imager (GOCI) is the world's first geostationary ocean color imager with high spatial and temporal resolution for monitoring the Bohai Sea. Rapid scanning of the GOCI allows enough cloud-free observations to accumulate for detection of HABs. Many approaches exist for detecting the HABs with GOCI data, but the approaches are rarely validated.. In this paper, an Aureococcus anophagefferens bloom that happened in Qinhuangdao is used to evaluate several HAB detecting approaches: abnormal chlorophyll concentration, red tide index (RI) and MODIS red tide index (MRI). Validations with field observations showed that the HAB was best detected with MRI, second with chlorophyll concentration abnormity and worst with RI. These results show that the MRI best detects the Aureococcus anophagefferens algae.

  17. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  18. Structural Impacts on Thallus and Algal Cell Components of Two Lichen Species in Response to Low-Level Air Pollution in Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Ra, Hyung-Shim Y.; Rubin, Laura; Crang, Richard F. E.

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  19. Algal pigments record shifts in dominant primary productivity through the Holocene in an arctic lake

    NASA Astrophysics Data System (ADS)

    Florian, C.; Miller, G. H.; Fogel, M. L.

    2011-12-01

    The character and magnitude of primary productivity in arctic lakes is largely controlled by climate. Organic compounds derived from pigments and preserved in lake sediments allow reconstruction of past abundances of algae that do not leave silicious microfossils. Fossil algal pigments are abundant in lake sediment and can be accurately quantified using High Pressure Liquid Chromatography (HPLC). Several groups of algae produce unique pigments that can be used to reconstruct their past abundance. In Qivitu Highlands Lake, eastern central Baffin Island, the ratio of pigments diatoxantin and lutein exhibits coherent changes through the Holocene. Diatoxanthin is produced by diatoms and chrysophytes, whereas lutein is produced by green algae and higher plants. Because these pigments are the dominant carotenoids in the sediment, they serve as proxies for the dominant group of primary producers. During the Holocene Thermal Maximum and the past century, lutein is much more abundant than diatoxanthin. During Neoglacial cooling and into the Little Ice Age, diatoxanthin becomes the dominant carotenoid. This shift reveals that there was a change in not only the magnitude of algal production, but also the most abundant type. The adaptation of aquatic algal assemblages to changing climate suggests that gross changes in primary productivity may not be suitable to track the abundance of one type of algal microfossil (such as diatoms) without considering the other algal groups. Higher plants also produce lutein, and its abundance is additionally influenced by the presence of terrestrial organic matter as well as aquatic macrophyte plants. We hypothesize that the prevalence of lutein during warm summers is due to a longer ice-free season, allowing the development of a greater biomass of green algae and macrophyte plants as well as possible increases of terrestrial higher plant communities. This is part of a larger study where the lutein to diatoxanthin ratio is compared to organic

  20. Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores.

    PubMed

    Taylor, David I; Schiel, David R

    2010-01-01

    Consumers that forage across habitats can affect communities by altering the abundance and distribution of key species. In marine communities, studies of trophic interactions have generally focused on the effects of herbivorous and predatory invertebrates on benthic algae and mussel populations. However, large mobile consumers that move across habitats, such as fishes, can strongly affect community dynamics through consumption of habitat-dominating species, but their effects often vary over environmental gradients. On temperate rocky shores, herbivorous fishes are generally a small part of the fish fauna compared to the tropics, and there is sparse evidence that they play a major direct role in algal community dynamics, particularly of large brown algae that dominate many reefs. In New Zealand, however, a wide-ranging herbivorous fish, Odax pullus, feeds exclusively on macroalgae, including Durvillaea antarctica, a large low-intertidal fucoid reaching 10 m in length and 70 kg in mass. In four experiments we tested the extent of fish herbivory and how it was affected by algal canopy structure across a gradient of wave exposure at multiple sites. Exclusion experiments showed that fish impacts greatly reduced the cover and biomass of Durvillaea and that these effects decreased with increasing wave stress and algal canopy cover, effectively restricting the alga to exposed conditions. Almost all plants were entirely removed by fish where there was a sparse algal canopy in sheltered and semi-exposed sites, but there was significantly less grazing in exposed sites. Recruit Durvillaea beneath canopies were less affected by fish grazing, but they grew slowly. Successful natural recruitment, therefore, occurred almost exclusively on exposed shores outside canopies where many plants escaped severe grazing, and growth to maturity was far greater than elsewhere. Such large and direct impacts on the local and regional distribution of large brown algal populations by mobile

  1. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    PubMed

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. PMID:27039331

  2. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    PubMed

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa. PMID:25997810

  3. Effects of intracellular structural associations on degradation of algal chloropigments in natural oxic and anoxic seawaters

    NASA Astrophysics Data System (ADS)

    Ding, Haibing; Sun, Ming-Yi

    2005-09-01

    To understand the effects of intracellular structural associations on degradation of algal chloropigments, we conducted a series of microcosm experiments by incubating Emiliania huxleyi cells (a marine haptophyte) in natural oxic and anoxic seawaters collected from a stratified water column in the Cariaco Basin. The incubated cell detritus were sequentially treated with two buffer solutions to separate pigment components into soluble and insoluble fractions. By using non-denaturing gel electrophoresis, several chlorophyll-complexes, free chlorophyll, and another unknown chlorophyll-containing component were further separated from the soluble fraction. The chlorophyll-complexes included those bound with high molecular weight core-proteins (CP-I and CP43+CP47) and low molecular weight polypeptides (LHC-I and LHC-II) in the cellular photosystems PS-I and PS-II. Overall pigment recovery from these fractions and gel bands was well equivalent to the total amount from direct acetone extraction of the cells. We followed the time-dependent concentration changes of chlorophyll-a (Chl-a), phaeophorbide-a (Ppb-a), and phaeophytin-a (Ppt-a) in all fractions and complexes to estimate the degradation rate constants of chloropigments in natural oxic and anoxic seawaters. Our experimental results demonstrated that the intracellular structural associations had important influences on degradation of chloropigments under different redox conditions. In general, total Chl-a degraded faster (˜4X) in oxic seawater than in anoxic seawater. However, the rate differences between oxic and anoxic conditions varied among the fractions and complexes. Degradation rate constants of Chl-a in soluble fraction were much higher (>10X) than those in insoluble fraction under both oxic and anoxic conditions. Chl-a bound with the complexes in PS-II appeared to be more reactive (˜2X) than that in PS-I under oxic conditions but the difference in degradation rate constants between two photosystems became

  4. [Development and succession of biological soil crusts and the changes of microbial biomasses].

    PubMed

    Wu, Li; Zhang, Gao-Ke; Chen, Xiao-Guo; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-04-01

    Biological soil crusts (BSCs) play important ecological roles in vegetation and ecological restoration in desert regions, and different crust developmental and successional stages have different ecological functions. In this experiment, the BSCs in Shapotou region (at southeast edge of Tengger Desert) were investigated to study crust development and succession through field investigation, microscopic observation combined with quantitative analysis of microbial biomasses. The results showed that BSCs in this region generally developed and succeeded from algal crusts, lichen crusts to moss crusts. With the development and succession of BSCs, crust photosynthetic biomass gradually increased, while microalgal biomass showed a first increasing and then decreasing trend. Among the crust algae (cyanobacteia), Microcoleus vaginatus, as the first dominant species, occupied the most algal biomass and reached a maximum of 0.33 mm3 x g(-1) crusts in algal crusts; while Scytonema javanicum and Nostoc sp. have their maximal biomasses in the later lichen crusts. In addition, it was found that the heterotrophic microbial biomass began to increase in algal crusts, and then decreased in lichen crusts; followed by another increase and the increase achieved the maximum at last in moss crusts. Through the correlation analysis, it was found that bacterial biomass significantly positively correlated with crust organic carbon and Na+ content, while fungal biomass positively correlated with K+ and Na+ content (P < 0.05). In conclusion, this study investigated the developmental and successional patterns of BSCs in Shapotou region, and discussed the effects of crust development and succession on several microbial biomasses from the point of view of environmental adaptation and functional requirement, which may be helpful for us to understand crust development and succession, and provide theoretical and practical significances for crust maintenance and management in ecological restoration of

  5. Effects of changing continuous iron input rates on a Southern Ocean algal assemblage

    NASA Astrophysics Data System (ADS)

    Hare, C. E.; DiTullio, G. R.; Riseman, S. F.; Crossley, A. C.; Popels, L. C.; Sedwick, P. N.; Hutchins, D. A.

    2007-05-01

    The upwelling of nutrients and iron (Fe) sustains biological production in much of the Southern Ocean. Using a shipboard natural community continuous culture system (Ecostat), we supplied a single added Fe concentration at two dilution rates chosen to examine the effects of variations in realistic growth and loss rates on an Fe-limited algal community in the Antarctic Zone south of Australia. A parallel growout experiment provided "no-dilution" +Fe and -Fe controls. In the continuous flow experiment, phytoplankton biomass was lower and more constant throughout the incubation and major nutrients were never depleted. Nanophytoplankton abundance remained similar in both growout treatments, and therefore, growth of this group did not appear to be Fe-limited. The addition of Fe in a continuous fashion resulted in a community co-dominated by both small diatoms and nanophytoplankton. Increases in dilution rate favored diatom species that were smaller and faster-growing, as well as non-silicified algal groups. Particulate carbon (PC) to particulate nitrogen (PN) ratios increased above the Redfield ratio when Fe was added in a continuous fashion, while biogenic silica (BSi) to PC and PN ratios decreased 2-3 fold in the continuous flow experiment compared to the initial conditions and the parallel growout control experiment. Photosynthetic efficiency increased in the continuous flow treatments above the control but remained significantly lower than in the 1.4 nM Fe addition. The results of our shipboard continuous flow experiments are compared and contrasted with those of the mesoscale Southern Ocean Iron RElease Experiment (SOIREE) carried out at the same site. Our results suggest that increases in natural dilution rates (i.e. vertical turbulent diffusion) in polar Antarctic waters could shift the algal community towards smaller, faster-growing algal species, thus having a major effect on nutrient cycling and carbon export in the Southern Ocean.

  6. Degradation of algal lipids by deep-sea benthic foraminifera: An in situ tracer experiment

    NASA Astrophysics Data System (ADS)

    Nomaki, Hidetaka; Ohkouchi, Naohiko; Heinz, Petra; Suga, Hisami; Chikaraishi, Yoshito; Ogawa, Nanako O.; Matsumoto, Kouhei; Kitazato, Hiroshi

    2009-09-01

    We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C 15,anteiso-C 17, and C 17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4-6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.

  7. Satellite Remote Sensing of Harmful Algal Blooms at the University of Miami Center for Oceans and Human Health

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Carvalho, G.; Baringer, W.; Banzon, V.

    2007-05-01

    As part of the NSF-NIEHS Center for Oceans and Human Health at the University of Miami, research is being conducted into the remote sensing of ocean color signatures associated with the occurrence of Harmful Algal Blooms (HABs). Data from the MODerate-resolution Imaging Spectroradiometer (MODIS) are down-linked at the University of Miami's Center for Southeastern Tropical Advanced Remote Sensing (CSTARS) and processed in near-real time to produce mapped fields of water leaving radiance in the ocean color bands, derived quantities including inherent optical properties (IOPs) of seawater, chlorophyll concentration, and sea-surface temperature. Images of these fields are available in near-real time on a web-server. The server also provides access to the data files themselves. One of the applications currently being researched using these data is the identification of HABs over the Central West Florida Shelf where blooms of the toxic dinoflagellate Karenia brevis have a nearly annual occurance. Since chlorophyll concentration alone cannot be used as a unique variable to determine algal taxonomy, other spectral features or optical properties must be brought into play to discriminate among different phytoplankton types. A published technique developed for SeaWiFS (Sea-viewing Wide Field-of-view Sensor) to detect K. brevis (based on high concentration of chlorophyll and low particulate backscatter) was transitioned to measurements of Terra MODIS and replicated the results. These were confirmed by comparisons with in situ measurements. This technique is currently being applied to a multi-year time series of remote measurements from the Aqua MODIS and tested against ship-based data.

  8. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  9. Properties of protein-chlorophyll complexes from pea (Pisum sativum L.) leaves. The organization of chlorophyll.

    PubMed Central

    Scott, B; Gregory, R P

    1975-01-01

    Chlorophyll-protein-detergent complexes were prepared from pea chloroplasts by using sodium dodecylbenzenesulphonate and polyacrylamide-gel electrophoresis. Circular-dichroism spectra showed that complex CPI has a dimeric arrangement of chlorophyll a, with additional weaker interactions. Ellipticities were determined for both complexes and for purified chlorophylls in solution, and it is argued that the circular dichroism of complex CPII is derived from chlorophyll-protein interaction rather than from interaction between chlorophylls a and b. The detergent could be removed from the complexes by using urea and gel filtration, leaving the chlorophyll-protein in solution, although in each case a diminished ellipticity indicated some loss of organization. Three-peaked circular-dichroism spectra of chloroplast fragments before and after addition of detergent were compared with a curve obtained by summing graphically the spectra of complexes CPI, CPII and the free-pigment fraction. There was good correspondence at 650 nm, and the longer-wavelength peaks agreed in form and magnitude, but with discrepancies in position. It was concluded that complexes CPI and CPII pre-exist in the original material, but that there is an environmental effect which is destroyed when the complexes are extracted. PMID:1180902

  10. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  11. A review of ocean chlorophyll algorithms and primary production models

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  12. Characterisation of chlorophyll a solubilised in sodium lauryl sulphate micelles

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Sapre, A. V.; Mittal, Jai P.

    1980-01-01

    Poisson statistics has been applied to the problem of solubilisation of chlorophyll a in sodium lauryl sulphate micelles. Dilution experiments have been carried out to support the finding that each unit of chlorophyll a contributing to the 740 nm band contains just one chlorophyll a molecule.

  13. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-04-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.

  14. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition:

  15. Winter distribution of algal pigments in small- and large-size particles in the northeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Méjanelle, L.; Laureillard, J.; Fillaux, J.; Saliot, A.; Lambert, C.

    1995-01-01

    Particles were collected by filtration on GF/F filters and by vertical hauls of 50 μm mesh-sized net throughout the water column (50-1700 m) in the northeastern Atlantic in January 1989 during the Medatlante t cruise, in the framework of the French JGOFS program. Particles were analysed for their organic carbon and algal chlorophyll and carotenoid pigments by high-performance liquid chromatography coupled with UV absorbance and fluorescence detection. Complementary analyses were performed on a surface sample for sterols and fatty acids by gas chromatography and gas chromatography/mass spectrometry. Organic carbon concentrations were 2-3 orders of magnitude higher in GF/F (10-50 μg l-1) than in net particles (0.01-0.06μg l-1). The same ratio was encountered for pigments: 4-603 ng l-1 and 0.003-0.037 ng l1¯, respectively. Among 11 GF/F samples collected between 500 and 1700 m, four samples contained pigments in detectable amounts (4-106 ng l-1). Their pigment distribution pattern was close to deep GF/F samples, but differed from the pigment pattern of deep net-collected particles, mainly composed of fecal pellets. This latter sinking material was enriched in chlorophyll degradation pigments and showed higher values of the ratio (sum of carotenoids)/(sum of chlorophylls) than those observed in small-size particles. The combined information from pigments, sterols and fatty acids shows that Prymnesiophytes in a post bloom situation contributed to a major part of the surface autotrophs. Two processes of rapid transfer of organic matter between the surface and the deep Mediterranean water are discussed: fecal pellets of herbivorous plankton and sedimentation of aggregates partly linked to the presence of Prymnesiophytes.

  16. Biotechnology of biomass conversion

    SciTech Connect

    Wayman, M.; Parekh, S.R.

    1990-01-01

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion.

  17. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA. PMID:24530948

  18. Algal sludge from Taihu Lake can be utilized to create novel PGPR-containing bio-organic fertilizers.

    PubMed

    Zhang, Miao; Li, Rong; Cao, Liangliang; Shi, Juanjuan; Liu, Hongjun; Huang, Yan; Shen, Qirong

    2014-01-01

    Large amounts of refloated algal sludge from Taihu Lake result in secondary environmental pollution due to annual refloatation. This study investigated the possibility to produce bio-organic fertilizer (BIO) using algal sludge as a solid-state fermentation (SSF) medium. Results showed that addition of algal sludge contributed to efficient SFF by a plant growth-promoting rhizobacteria (PGPR) strain SQR9 and improved the nutrient contents in the novel BIO. The optimum water content and initial inoculation size were 45% and 5%, respectively. After 6 days of SSF, the biomass of strain SQR9 was increased to a cell density of more than 5 × 10(7) CFU g(-1). Microcystins were rapidly degraded, and a high germination index value was observed. Plant growth experiments showed that the produced BIO efficiently promoted plant growth. Additional testing showed that the novel SSF process was also suitable for other PGPR strains. This study provides a novel way of high-value utilization of algal sludge from Taihu Lake by producing low-cost but high-quality BIOs. PMID:24321283

  19. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder

    USGS Publications Warehouse

    Depew, David C.; Stevens, Andrew W.; Smith, Ralph E.H.; Hecky, Robert E.

    2009-01-01

    A high-frequency echosounder was used to detect and characterize percent cover and stand height of the benthic filamentous green alga Cladophora sp. on rocky substratum of the Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal stand characteristics (percent cover, stand height) derived from the acoustic data show good agreement for algal stands that exceeded the height threshold for detection by acoustics (~7.5 cm). Backscatter intensity and volume scattering strength were unable to provide any predictive power for estimating algal biomass. A comparative analysis between the only current commercial software (EcoSAV™) and an alternate method using a graphical user interface (GUI) written in MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height classification on adjustable thresholds that can be visualized by a trained analyst. This study documents the successful characterization of nuisance quantities of filamentous algae on hard substrate using an acoustic system and demonstrates the potential to significantly increase the efficiency of collecting information on the distribution of nuisance macroalgae. This study also highlights the need for further development of more flexible classification algorithms that can be used in a variety of aquatic ecosystems.

  20. Direct observation of energy transfer in a photosynthetic membrane: Chlorophyll b to chlorophyll a transfer in LHC

    SciTech Connect

    Eads, D.D.; Castner, E.W. Jr.; Alberte, R.S.; Mets, L.; Fleming, G.R. )

    1989-12-28

    Subpicosecond fluorescence upconversion has been used to measure the rate of chlorophyll b to chlorophyll a electronic energy transfer in situ within the LHC pigment proteins of Chlamydomonas reinhardtii mutant C2. The time scale of energy transfer is 0.5 {plus minus} 0.2 ps as determined from the rise time of chlorophyll a fluorescence following chlorophyll b excitation. Estimates of the energy-transfer rate based on Foerster weak coupling theory are discussed.

  1. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  2. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and sterilization. New test containers may contain substances which inhibit growth of algae. They.... (A) Formulation and sterilization of nutrient medium used for algal culture and preparation of...

  3. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  4. Nutrient and chlorophyll relations in selected streams of the New England Coastal Basins in Massachusetts and New Hampshire, June-September 2001

    USGS Publications Warehouse

    Riskin, Melissa L.; Deacon, J.R.; Liebman, M.L.; Robinson, K.W.

    2003-01-01

    The U.S. Environmental Protection Agency is developing guidance to assist states with defining nutrient criteria for rivers and streams and to better describe nutrient-algal relations. As part of this effort, 13 wadeable stream sites were selected, primarily in eastern Massachusetts, for a nutrient-assessment study during the summer of 2001. The sites represent a range of water-quality impairment conditions (reference, moderately impaired, impaired) based on state regulatory agency assessments and previously assessed nitrogen, phosphorus, and dissolved-oxygen data. In addition, a combination of open- and closed-canopy locations were sampled at six of the sites to investigate the effect of sunlight on algal growth. Samples for nutrients and for chlorophyll I from phytoplankton and periphyton were collected at all stream sites. Total nitrogen (dissolved nitrite + nitrate + total ammonia + organic nitrogen) and total phosphorus (phosphorus in an unfiltered water sample) concentrations were lowest at reference sites and highest at impaired sites. There were statistically significant differences (p < 0.05) among reference, moderately impaired, and impaired sites for total nitrogen and total phosphorus. Chlorophyll a concentrations from phytoplankton were not significantly different among site impairment designations. Concentrations of chlorophyll a from periphyton were highest at nutrient-impaired open-canopy sites. Chlorophyll a concentrations from periphyton samples were positively correlated with total nitrogen and total phosphorus at the open- and closed-canopy sites. Correlations were higher at open-canopy sites (p < 0.05, rho = 0.64 to 0.71) than at closed-canopy sites (p < 0.05, rho = 0.36 to 0.40). Statistically significant differences in the median concentrations of chlorophyll a from periphyton samples were observed between the open- and closed-canopy sites (p < 0.05). Total nitrogen and total phosphorus data from moderately impaired and impaired sites in this

  5. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. PMID:24582427

  6. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy

    2011-04-01

    A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

  7. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    PubMed

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals. PMID:23455221

  8. Fractal structures in casting films from chlorophyll

    NASA Astrophysics Data System (ADS)

    Pedro, G. C.; Gorza, F. D. S.; de Souza, N. C.; Silva, J. R.

    2014-04-01

    Chlorophyll (Chl) molecules are important because they can act as natural light-harvesting devices during the photosynthesis. In addition, they have potential for application as component of solar cell. In this work, we have prepared casting films from chlorophyll (Chl) and demonstrated the occurrence of fractal structures when the films were submitted to different concentrations. By using optical microscopy and the box-count method, we have found that the fractal dimension is Df = 1.55. This value is close to predicted by the diffusion-limited aggregation (DLA) model. This suggests that the major mechanism - which determines the growth of the fractal structures from Chl molecules - is the molecular diffusion. Since the efficiencies of solar cells depend on the morphology of their interfaces, these finds can be useful to improve this kind of device.

  9. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  10. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply.

    PubMed

    Abdelaziz, Ahmed E M; Leite, Gustavo B; Hallenbeck, Patrick C

    2013-01-01

    Microalgae hold promise for the production of sustainable replacement of fossil fuels due to their high growth rates, ability to grow on non-arable land and their high content, under the proper conditions, of high energy compounds that can be relatively easily chemically converted to fuels using existing technology. However, projected large-scale algal production raises a number of sustainability concerns concerning land use, net energy return, water use and nutrient supply. The state-of-the-art of algal production of biofuels is presented with emphasis on some possible avenues to provide answers to the sustainability questions that have been raised. Here, issues concerning algal strains and supply of nutrients for large-scale production are discussed. Since sustainability concerns necessitate the use of wastewaters for supply of bulk nutrients, emphasis is placed on the composition and suitability of different wastewater streams. At the same time, algal cultivation has proven useful in waste treatment processes, and thus this aspect is also treated in some detail. PMID:24350435

  11. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  12. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings.

    PubMed

    Uddling, J; Gelang-Alfredsson, J; Piikki, K; Pleijel, H

    2007-01-01

    Relationships between chlorophyll concentration ([chl]) and SPAD values were determined for birch, wheat, and potato. For all three species, the relationships were non-linear with an increasing slope with increasing SPAD. The relationships for birch and wheat were strong (r (2) approximately 0.9), while the potato relationship was comparatively weak (r (2) approximately 0.5). Birch and wheat had very similar relationships when the chlorophyll concentration was expressed per unit leaf area, but diverged when it was expressed per unit fresh weight. Furthermore, wheat showed similar SPAD-[chl] relationships for two different cultivars and during two different growing seasons. The curvilinear shape of the SPAD-[chl] relationships agreed well with the simulated effects of non-uniform chlorophyll distribution across the leaf surface and multiple scattering, causing deviations from linearity in the high and low SPAD range, respectively. The effect of non-uniformly distributed chlorophyll is likely to be more important in explaining the non-linearity in the empirical relationships, since the effect of scattering was predicted to be comparatively weak. The simulations were based on the algorithm for the calculation of SPAD-502 output values. We suggest that SPAD calibration curves should generally be parameterised as non-linear equations, and we hope that the relationships between [chl] and SPAD and the simulations of the present study can facilitate the interpretation of chlorophyll meter calibrations in relation to optical properties of leaves in future studies. PMID:17342446

  13. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. PMID:25479688

  14. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  15. Eddy and deep chlorophyl maximum response to wind-shear in the lee of Gran Canaria

    NASA Astrophysics Data System (ADS)

    Basterretxea, G.; Barton, E. D.; Tett, P.; Sangrá, P.; Navarro-Perez, E.; Arístegui, J.

    2002-06-01

    The physical and biological properties of the warm wake of Gran Canaria were examined during a survey carried out in June 1998. The sampling region was dominated by the presence of a warm triangular region downwind the island and an anticyclonic eddy spun off the island. Convergent and divergent frontal regions were generated by the wind shear zones extending along either side of the sheltered region of the warm wake. With increasing distance from shore, evidence of convergent/divergent frontal regions weakened, but the influence of the eddy increased. Both structures, frontal regions and the eddy, clearly altered the vertical phytoplankton biomass distribution as indicated by chlorophyll-fluorescence. Downwelling on the convergent boundary moved the 26.2 kg m -3 isopycnal and its associated deep chlorophyll maximum (DCM) below the 1% light zone. Upwelling at the divergent boundary not only elevated the DCM with its associated isopycnal but also, because of the increased light levels, allowed a shift in the DCM to higher (deeper) density surfaces (26.4 kg m -3). However, the highest integrated chlorophyll occurred in the central wake.

  16. Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie

    2015-04-01

    The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.

  17. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Algal acute toxicity test. 797.1050 Section 797.1050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1050 Algal acute toxicity test. (a) Purpose. The...

  18. What is causing the harmful algal blooms in Lake Erie?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmful and nuisance algal blooms have been increasing in size and extent since about 2000. In recent years, the release of the algal toxin microcystin has become a growing concern and has resulted in the inability to use water from Lake Erie as a drinking water source to the 400,000 residents of T...

  19. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  20. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  1. Method and system of culturing an algal mat

    SciTech Connect

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  2. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  3. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  4. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  5. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  6. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2013-09-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m-2 in cell volume or 13 mg carbon m-2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season.

  7. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Mehrabadi, Abbas; Craggs, Rupert J

    2016-02-01

    Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity and CO2 augmentation is often used to overcome this limitation in summer. However, the implications of carbon limitation during winter are poorly understood. This paper investigates the effects of 0.5%, 2%, 5% and 10% CO2 addition on the winter-time performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, photosynthetic efficiency, biomass production and nutrient removal rates, along with community composition. Varying percentage CO2 addition and associated change in culture pH resulted in 3 distinct microalgal communities. Light absorption by the microalgae increased by up to 144% with CO2 addition, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. Carbon augmentation increased the maximum rate of photosynthesis by up to 172%, which led to increased microalgal biovolume by up to 181% and an increase in total organic biomass for all treatments except 10% CO2. While 10% CO2 improved light absorption and photosynthesis this did not translate to enhanced microalgal productivity. Increased microalgal productivity with CO2 addition did not result in increased dissolved nutrient (nitrogen and phosphorus) removal. This experiment demonstrated that winter-time carbon augmentation up to 5% CO2 improved microalgal light absorption and utilisation, which ultimately increased microalgal biomass and is likely to enhance total annual microalgal areal productivity in HRAPs. PMID:26707731

  8. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  9. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    SciTech Connect

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  10. Evaluation of anticoagulant activity of two algal polysaccharides.

    PubMed

    Faggio, C; Pagano, M; Dottore, A; Genovese, G; Morabito, M

    2016-09-01

    Marine algae are important sources of phycocolloids like agar, carrageenans and alginates used in industrial applications. Algal polysaccharides have emerged as an important class of bioactive products showing interesting properties. The aim of our study was to evaluate the potential uses as anticoagulant drugs of algal sulphate polysaccharides extracted from Ulva fasciata (Chlorophyta) and Agardhiella subulata (Rhodophyta) collected in Ganzirri Lake (Cape Peloro Lagoon, north-eastern Sicily, Italy). Toxicity of algal extracts through trypan blue test and anticoagulant action measured by activated partial thromboplastin time (APTT), prothrombin time (PT) test has been evaluated. Algal extracts showed to prolong the PT and APTT during the coagulation cascade and to avoid the blood coagulation of samples. Furthermore, the algal extracts lack toxic effects towards cellular metabolism and their productions are relatively at low cost. This permits to consider the algae as the biological source of the future. PMID:26360806

  11. Uniform algal growth in photobioreactors using surface scatterers

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed S.; Pereyra, Brandon; Erickson, David

    2014-03-01

    Cultures of algae, such as cyanobacteria, are a promising source of renewable energy. However, algal growth is highly dependent on light intensity and standard photobioreactors do a poor job of distributing light uniformly for algal utilization due to shading effects in dense algal cultures. Engineered scattering schemes are already employed in current slab-waveguide technologies, like edge-lit LEDs. Stacking such slab-waveguides that uniformly distribute light could potentially yield photobioreactors to overcome the shading effect and grow extremely high densities of algal cultures that would lower monetary and energetic costs. Here, we characterize and design a scattering scheme for specific application within photobioreactors which employs a gradient distribution of surface scatterers with uniform lateral scattering intensity. This uniform scattering scheme is shown to be superior for algal cultivation.

  12. The contribution of bacteria to algal growth by carbon cycling.

    PubMed

    Bai, Xue; Lant, Paul; Pratt, Steven

    2