Science.gov

Sample records for algal community structure

  1. [Effects of outbreak and extinction of algal blooms on the microbial community structure in sediments of Chaohu Lake].

    PubMed

    Diao, Xiao-jun; Li, Yi-wei; Wang, Shu-guang

    2015-01-01

    Although impacts of algal bloom on the physicochemical and biological properties of water and sediment in many lakes have been largely studied, less attention is paid to the impact of outbreak and extinction of algal blooms on the microbial community structure in sediment. In this study, outbreak and extinction of algal blooms and their effects on the microbial community structure in sediment of Chaohu Lake were studied by PCR-DGGE method. The results showed that algal blooms formed between May 15 and June 20, sustained from June 20 to September 5, and then went into extinction. In the region without algal blooms, PCR-DGGE analysis showed that microbial species, Shannon-Wiener diversity index and Simpson dominance index changed slightly over time; moreover, the microbial community structure had high similarity during the whole study. Temperature may be the main factor affecting the fluctuation of the microbial community structure in this region. In the region with algal blooms, however, microbial species and Shannon-Wiener diversity index were higher during the formation and extinction of algal blooms and lower in the sustaining blooms stage than those in the region without algal blooms. But the Simpson dominance index showed the opposite trend over time. In addition, the microbial community structure had low similarity during the whole study. The results suggested that outbreak and extinction of algal blooms produced different effects on the microbial community structure and the dominant microbial species, which may be related to the variation of water properties caused by temperature and algal blooms. This study showed that outbreak and extinction of algal blooms caused different effects on microbes in lake sediment, and this is significantly important to deeply evaluate the effects of algal bloom on the aquatic ecosystem of the lake and effectively control algal blooms using sediment microbes.

  2. Relations between water physico-chemistry and benthic algal communities in a northern Canadian watershed: defining reference conditions using multiple descriptors of community structure.

    PubMed

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2015-09-01

    Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure.

  3. Relations between water physico-chemistry and benthic algal communities in a northern Canadian watershed: defining reference conditions using multiple descriptors of community structure.

    PubMed

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2015-09-01

    Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure. PMID:26255271

  4. Seasonal variation in the structure of three Mediterranean algal communities in various light conditions

    NASA Astrophysics Data System (ADS)

    Martí, Ruth; Uriz, Maria J.; Ballesteros, Enric; Turon, Xavier

    2005-09-01

    Three algal communities subjected to different light conditions were analysed using structure descriptors such as α-diversity (Shannon diversity index), similarity (Kulczynski index), diversity/area and similarity/area curves, the number and size of patches and their spatial distribution (Morisita index). The data used to calculate the structure descriptors were obtained from 20 pictures taken at random in each community in June (Spring) and November (Autumn) to assess seasonal variation. The value of α-diversity was quite similar in all communities. The structural minimal area obtained from the spectra of diversity at increasing areas was higher in the photophilic and the hemisciaphilic communities than in the sciaphilic. Moreover, this area was smaller in November than in June in the three communities. Seasonal variation was also detected for the Kulczynski similarity index in the photophilic and hemisciaphilic communities, with similarity values higher in November than in June, which points to the stronger homogeneity of the communities in November. As for the distribution patterns, the number of species with a clumped distribution decreased from the sciaphilic to the photophilic communities. Species distribution showed seasonal variation in the photophilic and, to a lesser extent, in the hemisciaphilic community. These communities had smaller but more numerous patches in November than in June. It is concluded that most of the used descriptors indicate a higher seasonal variation of community structure in the most illuminated communities (i.e. the photophilic and to a lesser extent the hemisciaphilic communities) than in the least illuminated one (i.e. the sciaphilic).

  5. Spatial variability, structure and composition of crustose algal communities in Diadema africanum barrens

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Sansón, Marta; Díaz-Villa, Tania; Hernández, José Carlos; Clemente, Sabrina; Afonso-Carrillo, Julio

    2014-12-01

    Crustose algal communities were studied in Diadema africanum urchin barrens around Tenerife (Canary Islands, NE Atlantic). A hierarchical nested sampling design was used to study patterns of community variability at different spatial scales (sectors, three sides of the island; sites within each sector, 5-10 km apart; stations within each site, 50-100 m apart). Although noncrustose species contributed the most to community richness, cover was dominated by crustose forms, like the coralline algae Hydrolithon farinosum, H. samoënse, H. onkodes, Neogoniolithon orotavicum and N. hirtum, and the phaeophycean Pseudolithoderma adriaticum. The structure of these communities showed high spatial variability, and we found differences in the structure of urchin barrens when compared across different spatial scales. Multivariate analysis showed that variability in community structure was related to the five environmental variables studied (wave exposure, urchin density, substrate roughness, productivity and depth). Wave exposure was the variable that contributed most to community variability, followed by urchin density and substrate roughness. Productivity and depth had limited influence. The effects of these variables differed depending on the spatial scale; wave exposure and productivity were the main variables influencing community changes at the largest scale (between different sectors of the island), while D. africanum density, roughness and depth were the most influential at medium and small scales.

  6. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.

    PubMed

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E

    2015-08-01

    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors.

  7. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). PMID:27007038

  8. Influence of Diadema antillarum populations (Echinodermata: Diadematidae) on algal community structure in Jardines de la Reina, Cuba.

    PubMed

    Martín Blanco, Félix; Clero Alonso, Lídice; González Sansón, Gaspar; Amargós Fabián, Pina

    2011-09-01

    The 1983-1984 mass mortality of Diadema antillarum produced severe damages on Caribbean reefs contributing to substantial changes in community structure that still persist. Despite the importance of Diadema grazing in structuring coral reefs, available information on current abundances and algal-urchin interactions in Cuba is scarce. We analyzed spatial variations in Diadema abundance and its influence on algal community structure in 22 reef sites in Jardines de la Reina, in June/2004 and April/2005. Urchins were counted in five 30 x 2m transects per site, and algal coverage was estimated in randomly located 0.25m side quadrats (15 per site). Abundances of Diadema were higher at reef crests (0.013-1.553 ind/m2), while reef slope populations showed values up to three orders of magnitude lower and were overgrown by macroalgae (up to 87%, local values). Algal community structure at reef slopes were dominated by macroalgae, especially Dictyota, Lobophora and Halimeda while the most abundant macroalgae at reef crests were Halimeda and Amphiroa. Urchin densities were negatively and positively correlated with mean coverage of macroalgae and crustose coralline algae, respectively, when analyzing data pooled across all sites, but not with data from separate habitats (specially reef crest), suggesting, along with historical fish biomass, that shallow reef community structure is being shaped by the synergistic action of other factors (e.g. fish grazing) rather than the influence of Diadema alone. However, we observed clear signs of Diadema grazing at reef crests and decreased macroalgal cover according to 2001 data, what suggest that grazing intensity at this habitat increased at the same time that Diadema recruitment began to be noticeable. Furthermore, the excessive abundance of macroalgae at reef slopes and the scarcity of crustose coralline algae seems to be due by the almost complete absence of D. antillarum at mid depth reefs, where local densities of this urchin were

  9. The Effect of Zebra Mussels on Algal Community Structure in an Impounded River System

    NASA Astrophysics Data System (ADS)

    Trumble, A. F.; Luttenton, M.

    2005-05-01

    The zebra mussel, Dreissena polymorpha, invaded the Great Lakes Region in the mid 1980's, and subsequently colonized inland lakes and coastal river systems through secondary invasions. The Muskegon River below Croton Dam was colonized by zebra mussels in 2000 following their introduction into Croton impoundment in the late 1990's. No zebra mussels were found below Croton Dam in 1999 but had increased to 25,000 m-2 by 2001. We examined the affect of zebra mussels on epilithic periphyton communities by comparing plots that were and were not colonized by zebra mussels. Chlorophyll a increased in both treatments over time but was significantly higher in control plots than in zebra mussel plots. The concentration of chlorophyll a in the control plots increased from 14 µgcm-2 to 26 µgcm-2 and the concentration in the zebra mussel plots started at 12 µgcm-2, peaked at 19 µgcm-2, and then decreased to 15 µgcm-2 over a 6 week period. In a related experiment using artificial streams, chlorophyll a increased with increasing zebra mussel density, but differences were not significant. The different trends observed between the two experiments may be explained in part by arthropod invertebrates associated with zebra mussel populations.

  10. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  11. Effects of solar ultraviolet radiation on tropical algal communities

    SciTech Connect

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity.

  12. Employment of CEPEX enclosures for monitoring toxicity of Hg and Zn on in situ structural and functional characteristics of algal communities of River Ganga in Varanasi, India.

    PubMed

    Rai, L C; Singh, A K; Mallick, N

    1990-10-01

    Effects of Hg and Zn on in situ nitrogen fixation, autotrophic index, pigment diversity, 14CO2 uptake, and change in algal community structure of Ganges water have been studied for the first time using CEPEX chambers in aquatic ecosystem of India. A concentration-dependent decrease in in situ nitrogenase activity of Ganges water with Hg and Zn has been noticed. No ethylene production was observed at 0.8 microgram/ml of Hg. However, an increase in the autotrophic index was observed in CEPEX enclosures treated with Hg and Zn. The AI value was maximum at 0.8 microgram/ml Hg after an incubation of 15 days. An increase in pigment diversity also followed the pattern of AI with the test metals used. Inhibition of 14CO2 uptake of phytoplankton of Ganges water was maximum at 0.8 microgram/ml Hg (79%) followed by Zn (69%). Carbon fixation showed an increase for 1 hr, after which no appreciable change was noticed. Maximum inhibition of algal number was observed at 0.8 microgram/ml Hg followed by 8.0 micrograms/ml of Zn in the CEPEX chamber. Members of Chlorophyceae showed more tolerance than Cyanophyceae and Bacillariophyceae. The filamentous forms were more tolerant to Hg and Zn. In contrast, unicellular forms were more sensitive to Hg. The test of significance (ANOVA) showed that metal-induced variations in pigment diversity, the autotrophic index, and the 14CO2 uptake were highly significant (P less than 0.001).

  13. Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species.

    PubMed

    Naik, Ravidas Krishna; Hegde, Sahana; Anil, Arga Chandrashekar

    2011-11-01

    Harmful algal blooms (HABs) have been documented along the coasts of India and the ill effects felt by society at large. Most of these reports are from the Arabian Sea, west coast of India, whereas its counterpart, the Bay of Bengal (BOB), has remained unexplored in this context. The unique characteristic features of the BOB, such as large amount of riverine fresh water discharges, monsoonal clouds, rainfall, and weak surface winds make the area strongly stratified. In this study, 19 potentially harmful species which accounted for approximately 14% of the total identified species (134) of dinoflagellates were encountered in surface waters of the BOB during November 2003 to September 2006. The variations in species abundance could be attributed to the seasonal variations in the stratification observed in the BOB. The presence of frequently occurring HAB species in low abundance (≤ 40 cell L( -1)) in stratified waters of the BOB may not be a growth issue. However, they may play a significant role in the development of pelagic seed banks, which can serve as inocula for blooms if coupled with local physical processes like eddies and cyclones. The predominance of Ceratium furca and Noctiluca scintillans, frequently occurring HAB species during cyclone-prone seasons, point out their candidature for HABs.

  14. Seasonal variation of a snow algal community on an Alaskan glacier

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.

    2003-12-01

    There are cold tolerant algae (snow algae) growing on the surface of glaciers. Several species of snow algae have been reported on Alaskan glaciers. Seasonal variation of the snow algal community was investigated on Gulkana Glacier in the Alaska Range from May to September, 2001. Chlorophyll, nutrients, and stable isotope for carbon and nitrogen (particulate organic matter) were also measured. The snow algal community on this glacier varied with time, in particular changed with snow melting and nutrients in the snow. When the glacier is covered with snow (May), the algal community consisted of mainly only one species of alga (Chlamydomonas nivalis, alga of red snow). The algal biomass and chlorophyll concentration increased with snow melting in early summer. When the glacial ice surface appeared, the community structure changed drastically. The community on the ice consisted of some of different species. The community structure and biomass kept almost constant after the ice surface appeared. Nutrients measurements showed that nitrogen was likely limited on the algal growth rather than phosphate. Especially, the nitrate was depleted from August to September. Results of stable isotope measurements also support the nitrogen limitation of the snow algae in late summer.

  15. Responses of algal communities to gradients in herbivore biomass and water quality in Marovo Lagoon, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Albert, S.; Udy, J.; Tibbetts, I. R.

    2008-03-01

    Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.

  16. Algal communities attached to free-drifting, Antarctic icebergs

    NASA Astrophysics Data System (ADS)

    Robison, Bruce H.; Vernet, Maria; Smith, Kenneth L., Jr.

    2011-06-01

    Disintegration of the Antarctic Peninsula's eastern ice shelves has increased the population of icebergs traversing the Weddell Sea, but until recently little was known about their ecological impact on the pelagic environment. Here we describe a class of algal communities that occur on the submerged flanks of large, free-drifting, glacially-derived tabular icebergs. We used remotely operated vehicles to examine these icebergs directly for the first time, to survey the algal communities and collect material for shipboard laboratory studies. The communities, principally diatoms, were associated with a characteristic cupped configuration of the ice surface, and they served as feeding sites for aggregations of Antarctic krill. Production rate measurements indicate that these communities are providing a substantial contribution to regional primary production in summer. As the number of icebergs grows, the number of algae communities may also be increasing, along with their cumulative contribution to organic carbon flux.

  17. Stable and sporadic symbiotic communities of coral and algal holobionts

    PubMed Central

    Hester, Eric R; Barott, Katie L; Nulton, Jim; Vermeij, Mark JA; Rohwer, Forest L

    2016-01-01

    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial–temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution. PMID:26555246

  18. Stable and sporadic symbiotic communities of coral and algal holobionts.

    PubMed

    Hester, Eric R; Barott, Katie L; Nulton, Jim; Vermeij, Mark Ja; Rohwer, Forest L

    2016-05-01

    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial-temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution.

  19. Variations of algal communities cause darkening of a Greenland glacier.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G

    2014-08-01

    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.

  20. Distribution of epipelic algal communities in an oligotrophic Adirondack lake

    SciTech Connect

    Roberts, D.A.

    1987-01-01

    The biovolume and species composition of algae on the sediment along depth gradients were determined before and after artificial neutralization of an oligotrophic lake in the Adirondack Park in New York State. The epipelic algal community of Woods Lake (Herkimer Co., NY) was dominated by diatoms and cyanobacteria prior to and following liming. Distinct depth-zonation patterns of community composition were evident and unaffected by the base (CaCO/sub 3/) addition. Prior to liming, there was an increase in total algal biovolume with depth, due to the presence of a dense cyanobacterial community on the sediments in deeper water (5 m to 8 m). This mat was dominated by a single species of cyanobacteria, Hapalosiphon pumilus, which accounted for the late summer maximum in total biovolume at 7 m. The shallower (1 m-4 m) epipelic communities were dominated by diatoms, which showed a spring maximum in total biovolume. Woods Lake, one of the sites of the Lake Acidification Mitigation Project (LAMP), was treated with CaCO/sub 3/ on May 31, 1985. Among other physical and chemical changes, the base treatment increased the pH from 5.0 to above 9.0, ANC from 0 to > 400 ..mu..eq/L. Water clarity was reduced immediately after liming and cleared gradually over an eight-week period.

  1. A trait-based framework for stream algal communities.

    PubMed

    Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David

    2016-01-01

    The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a

  2. Preliminary evaluation of an in vivo fluorometer to quantify algal periphyton biomass and community composition

    USGS Publications Warehouse

    Harris, Theodore D.; Graham, Jennifer

    2015-01-01

    The bbe-Moldaenke BenthoTorch (BT) is an in vivo fluorometer designed to quantify algal biomass and community composition in benthic environments. The BT quantifies total algal biomass via chlorophyll a (Chl-a) concentration and may differentiate among cyanobacteria, green algae, and diatoms based on pigment fluorescence. To evaluate how BT measurements of periphytic algal biomass (as Chl-a) compared with an ethanol extraction laboratory analysis, we collected BT- and laboratory-measured Chl-a data from 6 stream sites in the Indian Creek basin, Johnson County, Kansas, during August and September 2012. BT-measured Chl-a concentrations were positively related to laboratory-measured concentrations (R2 = 0.47); sites with abundant filamentous algae had weaker relations (R2 = 0.27). Additionally, on a single sample date, we used the BT to determine periphyton biomass and community composition upstream and downstream from 2 wastewater treatment facilities (WWTF) that discharge into Indian Creek. We found that algal biomass increased immediately downstream from the WWTF discharge then slowly decreased as distance from the WWTF increased. Changes in periphyton community structure also occurred; however, there were discrepancies between BT- and laboratory-measured community composition data. Most notably, cyanobacteria were present at all sites based on BT measurements but were present at only one site based on laboratory-analyzed samples. Overall, we found that the BT compared reasonably well with laboratory methods for relative patterns in Chl-a but not as well with absolute Chl-aconcentrations. Future studies need to test the BT over a wider range of Chl-aconcentrations, in colored waters, and across various periphyton assemblages.

  3. In-depth characterization of wastewater bacterial community in response to algal growth using pyrosequencing.

    PubMed

    Lee, Jangho; Lee, Juyoun; Lee, Tae Kwon; Woo, Sung-Geun; Baek, Gyu Seok; Park, Joonhong

    2013-10-28

    Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment. PMID:23867704

  4. A comprehensive study on algal-bacterial communities shift during thiocyanate degradation in a microalga-mediated process.

    PubMed

    Ryu, Byung-Gon; Kim, Woong; Nam, Kibok; Kim, Sungwhan; Lee, Bongsoo; Park, Min S; Yang, Ji-Won

    2015-09-01

    Changes in algal and bacterial communities during thiocyanate (SCN(-)) decomposition in a microalga-mediated process were studied. Pyrosequencing indicated that Thiobacillus bacteria and Micractinium algae predominated during SCN(-) hydrolysis, even after its complete degradation. Principal components analysis and evenness profiles (based on the Pareto-Lorenz curve) suggested that the changes in the bacterial communities were driven by nitrogen and sulfur oxidation, pH changes, and photoautotrophic conditions. The populations of predominant microalgae remained relatively stable during SCN(-) hydrolysis, but the proportion of bacteria - especially nitrifying bacteria - fluctuated. Thus, the initial microalgal population may be crucial in determining which microorganisms dominate when the preferred nitrogen source becomes limited. The results also demonstrated that microalgae and SCN(-)-hydrolyzing bacteria can coexist, that microalgae can be effectively used with these bacteria to completely treat SCN(-), and that the structure of the algal-bacterial community is more stable than the community of nitrifying bacteria alone during SCN(-) degradation.

  5. A comprehensive study on algal-bacterial communities shift during thiocyanate degradation in a microalga-mediated process.

    PubMed

    Ryu, Byung-Gon; Kim, Woong; Nam, Kibok; Kim, Sungwhan; Lee, Bongsoo; Park, Min S; Yang, Ji-Won

    2015-09-01

    Changes in algal and bacterial communities during thiocyanate (SCN(-)) decomposition in a microalga-mediated process were studied. Pyrosequencing indicated that Thiobacillus bacteria and Micractinium algae predominated during SCN(-) hydrolysis, even after its complete degradation. Principal components analysis and evenness profiles (based on the Pareto-Lorenz curve) suggested that the changes in the bacterial communities were driven by nitrogen and sulfur oxidation, pH changes, and photoautotrophic conditions. The populations of predominant microalgae remained relatively stable during SCN(-) hydrolysis, but the proportion of bacteria - especially nitrifying bacteria - fluctuated. Thus, the initial microalgal population may be crucial in determining which microorganisms dominate when the preferred nitrogen source becomes limited. The results also demonstrated that microalgae and SCN(-)-hydrolyzing bacteria can coexist, that microalgae can be effectively used with these bacteria to completely treat SCN(-), and that the structure of the algal-bacterial community is more stable than the community of nitrifying bacteria alone during SCN(-) degradation. PMID:25911193

  6. A catchment-scale palaeolimnological investigation into multiple forcings of algal community change

    NASA Astrophysics Data System (ADS)

    Moorhouse, H. L.; McGowan, S.; Jones, M.; Brayshaw, S.; Barker, P.; Leavitt, P.

    2013-12-01

    A catchment-scale palaeolimnological investigation of sedimentary algal pigments spanning the past ~200 years was undertaken on lakes which drain into Windermere, England's largest and longest lake. We aimed to determine the relative influence of past regional (climatic, atmospheric deposition) and local (land-use, hydrological modification, point-source pollution) drivers of algal community change by comparing three fertile lowland lakes (Blelham Tarn, Esthwaite Water and Rydal Water) and two upland tarns (Stickle and Easedale Tarns) to better inform a catchment-wide management strategy for Windermere. Drivers of change at the upland sites included atmospheric acid deposition, climatic change and structural modifications caused by dam installation, whereas the influence of agriculture and point-source pollution is greater in the lakes in the lowland parts of the catchment. As a result, contrasting algal responses were noted in the lakes. For example, the cyanobacterial pigment zeaxanthin and the cryptophte pigment alloxanthin increased at Stickle Tarn (359% and 321% respectively) corresponding with the establishment of a dam at the outflow of the tarn in 1838. However, post-1900's the concentration of these pigments declined both at Stickle and at Easedale Tarn coincident with increased storm events and in the later decades of the century (~1980s onwards) decreases in acid deposition. In the lowland sites the cyanobacterial pigment aphanizophyll increased by 400-7000% and the indicator of total algal production β-carotene increased as much as six-fold indicating a substantial degradation in water quality and the onset of cyanobacterial blooms since the 1950's. In the lowland sites, degradation of water quality was closely linked to sewage installations and treatment work upgrades during the 1950's-70's and intensification of agricultural practices most notably increases in sheep stocking densities, which expanded in the 1950's. In lowland lakes with a higher

  7. The response of the Benthic Algal Community of Saginaw Bay, near the Charity Islands, to changes in light penetration

    SciTech Connect

    Litteral, R.L.; Pillsbury, R.W.; Lowe, R.L.

    1995-06-01

    The spread of the zebra mussel (Dreissena polymorpha) into the Great Lakes has been associated with changes in water clarity. Mussel colonies, as dense as 115,000/m{sup 2}, remove large amounts of phytoplankton from the water column, resulting in significant increases in light penetration to the benthos. Saginaw Bay, Lake Huron is an area that has recently been inundated by zebra mussels. While the first mussels appeared in the summer of 1991, they now dominate nearly the entire bay. A study site was chosen two kilometers north of Charity Island in Saginaw Bay. To assess the impact of changing light intensity on the benthic algal community, light was manipulated by covering the tops of cages with shade cloth, which reduced light penetration by 58%. Natural rock substrates were used. Our data show that this is similar to light penetration prior to zebra mussels infestation. Algal community composition was determined and biovolumes were calculated to assess changes in community structure and population shifts. Our 1993 results indicate a trend of increasing dominance by green algae, with diatoms favoring pre-Dreissena light conditions. Results also indicate that green filaments that composed 93% of the community structure in 1993 are not present in 1994. Green algal biovolume for 1994 comprised 29% of the community structure, a decrease from 94% in 1993. These changes are accompanied by increases in diatom biovolume and decreasing light penetration in 1994.

  8. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  9. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L. PMID:26961083

  10. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  11. Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg.

    PubMed

    Carrias, J-F; Céréghino, R; Brouard, O; Pélozuelo, L; Dejean, A; Couté, A; Corbara, B; Leroy, C

    2014-09-01

    The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics. PMID:24400863

  12. Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions.

    PubMed

    Schmitt-Jansen, Mechthild; Altenburger, Rolf

    2005-02-01

    Various test strategies are in use in ecotoxicology to assess the potential risks of toxicants on aquatic communities. The species-sensitivity distribution concept (SSD) works by arranging single-species laboratory test data in a cumulative frequency distribution. The pollution-induced community tolerance concept (PICT) uses observable community responses by measuring increases in community tolerance caused by the replacement of sensitive species after exposure. The aim of this study was to compare these two concepts in assessing the effects of three herbicides. Atrazine, prometryn, and isoproturon were found to increase community tolerance by a factor up to six. Atrazine increased community tolerance only at higher test concentrations (0.125 mg L(-1)). Species-sensitivity distributions correspond well to community responses: The median effective concentrations (EC50s) of untreated periphyton communities tested covered 55 to 65% of affected species represented in the SSD. The sensitivities of tolerant algal communities shifted to the right end of the SSDs. In the microcosm experiments, higher test concentrations affected biomass, species numbers, and community structure. Community tolerance could not be induced any further, suggesting that these concentrations represent a maximum of functional redundancy of a functional group. At higher concentrations, even the least-sensitive species are affected. These results can be interpreted as a confirmation of the SSD concept by observed algal community responses, when applied to photosystem II (PSII)-inhibiting herbicides.

  13. Algal 'greening' and the conservation of stone heritage structures.

    PubMed

    Cutler, Nick A; Viles, Heather A; Ahmad, Samin; McCabe, Stephen; Smith, Bernard J

    2013-01-01

    In humid, temperate climates, green algae can make a significant contribution to the deterioration of building stone, both through unsightly staining ('greening') and, possibly, physical and chemical transformations. However, very little is known about the factors that influence the deteriorative impact and spatial distribution of green algal biofilms, hindering attempts to model the influence of climate change on building conservation. To address this problem, we surveyed four sandstone heritage structures in Belfast, UK. Our research had two aims: 1) to investigate the relationships between greening and the deterioration of stone structures and 2) to assess the impacts of environmental factors on the distribution of green biofilms. We applied an array of analytical techniques to measure stone properties indicative of deterioration status (hardness, colour and permeability) and environmental conditions related to algal growth (surface and sub-surface moisture, temperature and surface texture). Our results indicated that stone hardness was highly variable but only weakly related to levels of greening. Stone that had been exposed for many years was, on average, darker and greener than new stone of the same type, but there was no correlation between greening and darkening. Stone permeability was higher on 'old', weathered stone but not consistently related to the incidence of greening. However, there was evidence to suggest that thick algal biofilms were capable of reducing the ingress of moisture. Greening was negatively correlated with point measurements of surface temperature, but not moisture or surface texture. Our findings suggested that greening had little impact on the physical integrity of stone; indeed the influence of algae on moisture regimes in stone may have a broadly bioprotective action. Furthermore, the relationship between moisture levels and greening is not straightforward and is likely to be heavily dependent upon temporal patterns in moisture

  14. Microbial dynamics of an epilithic algal-bacterial mat community in an oligotrophic, high alpine stream

    SciTech Connect

    McFeters, G.A.; Haack, T.K.

    1982-04-01

    Previous studies of an epilithic algal-bacterial community in a pristine mountain stream suggested that heterotrophic bacteria were responding to the metabolic activities of the photorophic population. Subsequent studies were performed to follow the flow of labeled carbon, from its initial inorganic form, through the trophic levels of the mat community. A majority of primary production metabolites were excreted by the algal population during active growth; this shifted to an incorporation into cellular material as phototrophic activity declined. Results suggest that there was a direct flux of soluble algal products to the bacterial population, with little heterotrophic utilization of dissolved organics from the overlying stream water. Both phototrophic productivity and bacterial utilization of algal products peaked at approximately the same time of year. Activity of the diatom-dominated algal population declined as silica concentrations in the stream water dropped, leading to a situation in which the sessile bacteria were substrate limited. These events resulted in an almost complete disappearance of the community in early September.

  15. Seasonal variations of epipelic algal community in relation to environmental factors in the Istanbul Strait (the Bosphorus), Turkey.

    PubMed

    Aktan, Y; Balkıs, N; Balkıs, N

    2014-04-15

    This study was implemented to investigate the species composition, abundance, seasonal variations and diversity of epipelic algae, to determine environmental variables affecting them and to reveal the accumulation of total organic carbon in the sediment in the coastal zone of the Istanbul Strait, Turkey. Epipelic algal community consisted of 44 taxa with a low diversity. The sediment structure which is highly unstable due to the high hydrodynamism of the zone played a dominant role as the main factor in the epipelic algal flora along the coasts of Istanbul Strait. Low TOC and high carbonate values also support this result. The dominance of cyanobacteria in some periods and, as a result of this, the record of the lowest diversity index values indicated the effect of nutrient enrichment and the risk of coastal eutrophication. High dominance of cyanobacteria may also be explicated by climate changes considering its effect in the other areas. PMID:24467854

  16. Seasonal variations of epipelic algal community in relation to environmental factors in the Istanbul Strait (the Bosphorus), Turkey.

    PubMed

    Aktan, Y; Balkıs, N; Balkıs, N

    2014-04-15

    This study was implemented to investigate the species composition, abundance, seasonal variations and diversity of epipelic algae, to determine environmental variables affecting them and to reveal the accumulation of total organic carbon in the sediment in the coastal zone of the Istanbul Strait, Turkey. Epipelic algal community consisted of 44 taxa with a low diversity. The sediment structure which is highly unstable due to the high hydrodynamism of the zone played a dominant role as the main factor in the epipelic algal flora along the coasts of Istanbul Strait. Low TOC and high carbonate values also support this result. The dominance of cyanobacteria in some periods and, as a result of this, the record of the lowest diversity index values indicated the effect of nutrient enrichment and the risk of coastal eutrophication. High dominance of cyanobacteria may also be explicated by climate changes considering its effect in the other areas.

  17. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef

    NASA Astrophysics Data System (ADS)

    den Haan, Joost; Visser, Petra M.; Ganase, Anjani E.; Gooren, Elfi E.; Stal, Lucas J.; van Duyl, Fleur C.; Vermeij, Mark J. A.; Huisman, Jef

    2014-12-01

    Algal turf communities are ubiquitous on coral reefs in the Caribbean and are often dominated by N2-fixing cyanobacteria. However, it is largely unknown (1) how much N2 is actually fixed by turf communities and (2) which factors affect their N2 fixation rates. Therefore, we compared N2 fixation activity by turf communities at different depths and during day and night-time on a degraded versus a less degraded coral reef site on the island of Curaçao. N2 fixation rates measured with the acetylene reduction assay were slightly higher in shallow (5-10-m depth) than in deep turf communities (30-m depth), and N2 fixation rates during the daytime significantly exceeded those during the night. N2 fixation rates by the turf communities did not differ between the degraded and less degraded reef. Both our study and a literature survey of earlier studies indicated that turf communities tend to have lower N2 fixation rates than cyanobacterial mats. However, at least in our study area, turf communities were more abundant than cyanobacterial mats. Our results therefore suggest that turf communities play an important role in the nitrogen cycle of coral reefs. N2 fixation by turfs may contribute to an undesirable positive feedback that promotes the proliferation of algal turf communities while accelerating coral reef degradation.

  18. [Impacts of large hydropower station on benthic algal communities].

    PubMed

    Jia, Xing-Huan; Jiang, Wan-Xiang; Li, Feng-Qing; Tang, Tao; Duan, Shu-Gui; Cai, Qing-Hua

    2009-07-01

    To investigate the impacts of large hydropower station in Gufu River on benthic algae, monthly samplings were conducted from September 2004 to June 2007 at the site GF04 which was impacted by the hydropower station, with the site GL03 in Gaolan River as reference. During sampling period, no significant differences were observed in the main physicochemical variables between GF04 and GL03, but the hydrodynamics differed significantly. GL03 was basically at a status of slow flow; while GF04, owing to the discharging from the reservoir, was at a riffle status during more than 60% of the sampling period. Such a difference in hydrodynamics induced significant differences in the community similarity of benthic algae and the relative abundance of unattached diatoms, erect diatoms, and stalked diatoms between GF04 and GL03, which could better reflect the impacts of irregular draw-off by large hydropower station on river eco-system.

  19. Relationships between primary production and irradiance in coral reef algal communities

    SciTech Connect

    Not Available

    1985-07-01

    Shallow water algal turf communities are the major primary producers on coral reefs. High rates of primary production are maintained despite extremely high light intensities and exposure to ultraviolet wavelengths. The relationships between the light intensity and primary production in these assemblages are typical of algae adapted to a high light environment (low ..cap alpha.. (initial slope), high I/sub k/ (saturating light intensity), and high I/sub c/ (compensation point light intensity)). Seasonal variations in algal standing crop due to herbivory and daylength result in some characteristic photoadaptive changes in ..cap alpha.. I/sub k/, and I/sub c/ and changes in Pnet/sub max/ rates (maximum net photosynthetic rate achieved at light saturation) on both a chlorophyll ..cap alpha.. and an areal basis. Exposure to UV wavelength results in significantly higher respiration rates but no changes in ..cap alpha.., Pnet/sub max/, or I/sub k/, when compared with these parameters for the same algal communities incubated at the same light intensities without UV wavelengths. The apparent lack of photoinhibition in these algae allows calculation of the daily integrated production from the P vs. I parameters. This integrated production is highest in July (3.1 +/- 0.2 g C m/sup -2/d/sup -1/) and is reduced by 30% from this maximum in December (2.1 +/- 0.1 g C m/sup -2/d/sup -1/).

  20. An Application of Lagrangian Coherent Structures to Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Kocak, H.

    2009-04-01

    Karenia brevis is present in low concentrations in vast areas of the Gulf of Mexico (GoM). This toxic dinoflagellate sporadically develops blooms anywhere in the GoM, except in the southern portion of West Florida Shelf (WFS). There, these harmful algal blooms (HABs) are recurrent events whose frequency and intensity are increasing. HABs on the WFS are usually only evident once they have achieved high concentrations that can be detected by observation of discolored water, which may be apparent in satellite imagery; by ecological problems such as fish kills; or human health problems. Because the early development stages of HABs are usually not detected, there is limited understanding of the environmental conditions that lead to their development. Analysis of simulated surface ocean currents reveals the presence of a persistent large-scale Lagrangian coherent structure (LCS) on the southern portion of the WFS. A LCS can be regarded as a distinguished material line which divides immiscible fluid regions with distinct advection properties. Consistent with satellite-tracked drifter trajectories, this LCS on the WFS constitutes a cross-shelf barrier for the lateral transport of passive tracers. We hypothesize that such a LCS provides favorable conditions for the development of HABs. LCSs are also employed to trace the early location of an observed HAB on the WFS. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of this HAB. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by simulated surface ocean currents. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located near shore and likely due to land runoff.

  1. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    PubMed

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems. PMID:27273089

  2. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    PubMed

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems.

  3. Tropical harmful algal blooms: an emerging threat to coral reef communities?

    PubMed

    Bauman, Andrew G; Burt, John A; Feary, David A; Marquis, Elise; Usseglio, Paolo

    2010-11-01

    Tropical harmful algal blooms (HABs) are increasing in frequency and intensity and are substantially affecting marine communities. In October/November 2008 a large-scale HAB event (> 500 km(2), dinoflagellate Cochlodinium polykrikoides) in the Gulf of Oman caused the complete loss of the branching corals, Pocillopora and Acropora spp., and substantial reductions in the abundance, richness and trophic diversity of the associated coral reef fish communities. Although the causative agents of this C. polykrikoides bloom are unknown, increased coastal enrichment, natural oceanographic mechanisms, and the recent expansion of this species within ballast water discharge are expected to be the main agents. With rapid changes in oceanic climate, enhanced coastal eutrophication and increased global distribution of HAB species within ballast water, large-scale HAB events are predicted to increase dramatically in both intensity and distribution and can be expected to have increasingly negative effects on coral reef communities globally.

  4. Influence of global change-related impacts on the mercury toxicity of freshwater algal communities.

    PubMed

    Val, Jonatan; Muñiz, Selene; Gomà, Joan; Navarro, Enrique

    2016-01-01

    The climatic-change related increase of temperatures, are expected to alter the distribution and survival of freshwater species, ecosystem functions, and also the effects of toxicants to aquatic biota. This study has thus assessed, as a first time, the modulating effect of climate-change drivers on the mercury (Hg) toxicity of freshwater algal photosynthesis. Natural benthic algal communities (periphyton) have been exposed to Hg under present and future temperature scenarios (rise of 5 °C). The modulating effect of other factors (also altered by global change), as the quality and amount of suspended and dissolved materials in the rivers, has been also assessed, exposing algae to Hg in natural river water or a synthetic medium. The EC50 values ranged from the 0.15-0.74 ppm for the most sensitive communities, to the 24-40 ppm for the most tolerant. The higher tolerance shown by communities exposed to higher Hg concentrations, as Jabarrella was in agreement with the Pollution Induced Community Tolerance concept. In other cases, the dominance of the invasive diatom Didymosphenia geminata explained the tolerance or sensitivity of the community to the Hg toxicity. Results shown that while increases in the suspended solids reduced Hg bioavailability, changes in the dissolved materials - such as organic carbon - may increase it and thus its toxic effects on biota. The impacts of the increase of temperatures on the toxicological behaviour of periphyton (combining both changes at species composition and physiological acclimation) would be certainly modulated by other effects at the land level (i.e., alterations in the amount and quality of dissolved and particulate substances arriving to the rivers).

  5. Influence of global change-related impacts on the mercury toxicity of freshwater algal communities.

    PubMed

    Val, Jonatan; Muñiz, Selene; Gomà, Joan; Navarro, Enrique

    2016-01-01

    The climatic-change related increase of temperatures, are expected to alter the distribution and survival of freshwater species, ecosystem functions, and also the effects of toxicants to aquatic biota. This study has thus assessed, as a first time, the modulating effect of climate-change drivers on the mercury (Hg) toxicity of freshwater algal photosynthesis. Natural benthic algal communities (periphyton) have been exposed to Hg under present and future temperature scenarios (rise of 5 °C). The modulating effect of other factors (also altered by global change), as the quality and amount of suspended and dissolved materials in the rivers, has been also assessed, exposing algae to Hg in natural river water or a synthetic medium. The EC50 values ranged from the 0.15-0.74 ppm for the most sensitive communities, to the 24-40 ppm for the most tolerant. The higher tolerance shown by communities exposed to higher Hg concentrations, as Jabarrella was in agreement with the Pollution Induced Community Tolerance concept. In other cases, the dominance of the invasive diatom Didymosphenia geminata explained the tolerance or sensitivity of the community to the Hg toxicity. Results shown that while increases in the suspended solids reduced Hg bioavailability, changes in the dissolved materials - such as organic carbon - may increase it and thus its toxic effects on biota. The impacts of the increase of temperatures on the toxicological behaviour of periphyton (combining both changes at species composition and physiological acclimation) would be certainly modulated by other effects at the land level (i.e., alterations in the amount and quality of dissolved and particulate substances arriving to the rivers). PMID:26024757

  6. Stress-Survival Gene Identification From an Acid Mine Drainage Algal Mat Community

    NASA Astrophysics Data System (ADS)

    Urbina-Navarrete, J.; Fujishima, K.; Paulino-Lima, I. G.; Rothschild-Mancinelli, B.; Rothschild, L. J.

    2014-12-01

    Microbial communities from acid mine drainage environments are exposed to multiple stressors to include low pH, high dissolved metal loads, seasonal freezing, and desiccation. The microbial and algal communities that inhabit these niche environments have evolved strategies that allow for their ecological success. Metagenomic analyses are useful in identifying species diversity, however they do not elucidate the mechanisms that allow for the resilience of a community under these extreme conditions. Many known or predicted genes encode for protein products that are unknown, or similarly, many proteins cannot be traced to their gene of origin. This investigation seeks to identify genes that are active in an algal consortium during stress from living in an acid mine drainage environment. Our approach involves using the entire community transcriptome for a functional screen in an Escherichia coli host. This approach directly targets the genes involved in survival, without need for characterizing the members of the consortium.The consortium was harvested and stressed with conditions similar to the native environment it was collected from. Exposure to low pH (< 3.2), high metal load, desiccation, and deep freeze resulted in the expression of stress-induced genes that were transcribed into messenger RNA (mRNA). These mRNA transcripts were harvested to build complementary DNA (cDNA) libraries in E. coli. The transformed E. coli were exposed to the same stressors as the original algal consortium to select for surviving cells. Successful cells incorporated the transcripts that encode survival mechanisms, thus allowing for selection and identification of the gene(s) involved. Initial selection screens for freeze and desiccation tolerance have yielded E. coli that are 1 order of magnitude more resistant to freezing (0.01% survival of control with no transcript, 0.2% survival of E. coli with transcript) and 3 orders of magnitude more resistant to desiccation (0.005% survival of

  7. Water-quality parameters and benthic algal communities at selected streams in Minnesota, August 2000 - Study design, methods and data

    USGS Publications Warehouse

    Lee, K.E.

    2002-01-01

    This report describes the study design, sampling methods, and summarizes the physical, chemical, and benthic algal data for a component of the multiagency study that was designed to document diurnal water-quality measurements (specific conductance, pH, water temperature, and dissolved oxygen), benthic algal community composition and chlorophyll-a content, and primary productivity at 12 stream sites on 6 streams in Minnesota during August 2000. Specific conductance, pH, water temperature, dissolved oxygen concentrations and percent dissolved oxygen saturation measurements were made with submersible data recorders at 30 minute intervals for a period of 3-6 days during August 2000. Benthic algae collected from wood and rock substrate were identified and enumerated. Biovolume (volume of algal cells per unit area), density (number of cells per unit area), and chlorophyll-a content from benthic algae were determined. These data can be used as part of the multiagency study to develop an understanding of the relations among nutrient concentrations, algal abundance, algal community composition, and primary production and respiration processes in rivers of differing ecoregions in Minnesota.

  8. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high quality headwater streams

    USGS Publications Warehouse

    Honeyfield, Dale C.; Maloney, Kelly O.

    2015-01-01

    Fatty acids are integral components of periphyton and differ among algal taxa. We examined seasonal patterns in periphyton fatty acids in six minimally disturbed headwater streams in Pennsylvania’s Appalachian Mountains, USA. Environmental data and periphyton were collected across four seasons for fatty acid and algal taxa content. Non-metric multidimensional scaling ordination suggested significant seasonal differences in fatty acids; an ordination on algal composition revealed similar seasonal patterns, but with slightly weaker separation of summer and fall. Summer and fall fatty acid profiles were driven by temperature, overstory cover, and conductivity and winter profiles by measures of stream size. Ordination on algal composition suggested that summer and fall communities were driven by overstory and temperature, whereas winter communities were driven by velocity. The physiologically important fatty acid 18:3ω6 was highest in summer and fall. Winter samples had the highest 20:3ω3. Six saturated fatty acids differed among the seasons. Periphyton fatty acids profiles appeared to reflect benthic algal species composition. This suggests that periphyton fatty acid composition can be useful in characterizing basal food resources and stream water quality.

  9. Coral–algal phase shifts alter fish communities and reduce fisheries production

    PubMed Central

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  10. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species.

  11. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  12. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms.

    PubMed

    Rosi-Marshall, Emma J; Kincaid, Dustin W; Bechtold, Heather A; Royer, Todd V; Rojas, Miguel; Kelly, John J

    2013-04-01

    Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.

  13. Algal and Invertebrate Community Composition along Agricultural Gradients: A Comparative Study from Two Regions of the Eastern United States

    USGS Publications Warehouse

    Calhoun, Daniel L.; Gregory, M. Brian; Weyers, Holly S.

    2008-01-01

    Benthic algal and invertebrate communities in two Coastal Plain regions of the Eastern United States?the Delmarva Peninsula (27 sites) and Georgia Upper Coastal Plain (29 sites)?were assessed to determine if aspects of agricultural land use and nutrient conditions (dissolved and whole-water nitrogen and phosphorus) could be linked to biological community compositions. Extensive effort was made to compile land-use data describing the basin and riparian conditions at multiple scales to determine if scale played a role in these relations. Large differences in nutrient condition were found between the two study areas, wherein on average, the Delmarva sites had three times the total phosphorus and total nitrogen as did the sites in the Georgia Upper Coastal Plain. A statistical approach was undertaken that included multivariate correlations between Bray-Curtis similarity matrices of the biological communities and Euclidean similarity matrices of instream nutrients and land-use categories. Invertebrate assemblage composition was most associated with land use near the sampled reach, and algal diatom assemblage composition was most associated with land use farther from the streams and into the watersheds. Link tree analyses were conducted to isolate portions of nonmetric multidimensional scaling ordinations of community compositions that could be explained by break points in abiotic datasets. Invertebrate communities were better defined by factors such as agricultural land use near streams and geographic position. Algal communities were better defined by agricultural land use at the basin scale and instream nutrient chemistry. Algal autecological indices were more correlated with gradients of nutrient condition than were typically employed invertebrate metrics and may hold more promise in indicating nutrient impairment in these regions. Nutrient conditions in the respective study areas are compared to draft nutrient criteria established by the U.S. Environmental Protection

  14. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    PubMed

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  15. Impacts of agricultural irrigation on nearby freshwater ecosystems: the seasonal influence of triazine herbicides in benthic algal communities.

    PubMed

    Lorente, Carmen; Causapé, Jesús; Glud, Ronnie N; Hancke, Kasper; Merchán, Daniel; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2015-01-15

    A small hydrological basin (Lerma, NE Spain), transformed from its natural state (steppe) to rain-fed agriculture and recently to irrigation agriculture, has been monitored across four seasons of an agricultural year. The goal of this study was to assess how and whether agricultural activities impacted the nearby freshwater ecosystems via runoff. Specifically, we assessed the toxicity of three triazine herbicides, terbuthylazine, atrazine and simazine on the photosynthetic efficiency and structure of algal benthic biofilms (i.e., phototropic periphyton) in the small creek draining the basin. It was expected that the seasonal runoff of the herbicides in the creek affected the sensitivity of the periphyton in accord with the rationale of the Pollution Induced Community Tolerance (PICT): the exposure of the community to pollutants result in the replacement of sensitive species by more tolerant ones. In this way, PICT can serve to establish causal linkages between pollutants and the observed biological impacts. The periphyton presented significantly different sensitivities against terbuthylazine through the year in accord with the seasonal application of this herbicide in the crops nowadays. The sensitivity of already banned herbicides, atrazine and simazine does not display a clear seasonality. The different sensitivities to herbicides were in agreement with the expected exposures scenarios, according to the agricultural calendar, but not with the concentrations measured in water, which altogether indicates that the use of PICT approach may serve for long-term monitoring purposes. That will provide not only causal links between the occurrence of chemicals and their impacts on natural communities, but also information about the occurrence of chemicals that may escape from traditional sampling methods (water analysis). In addition, the EC50 and EC10 of periphyton for terbuthylazine or simazine are the first to be published and can be used for impact assessments.

  16. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    SciTech Connect

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.; Raymer, Michelle; Collins, Aaron M.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing, Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.

  17. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2013-09-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m-2 in cell volume or 13 mg carbon m-2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season.

  18. Assessment of nutrient enrichment by use of algal-, invertebrate-, and fish-community attributes in wadeable streams in ecoregions surrounding the Great Lakes

    USGS Publications Warehouse

    Frey, Jeffrey W.; Bell, Amanda H.; Hambrook Berkman, Julie A.; Lorenz, David L.

    2011-01-01

    CWPE, algae exhibited greater differences than invertebrates and fish between all of the nutrient categories for both TN and TP; however, in the lower nutrient gradient in the streams of the GNE, invertebrates exhibited greater differences between the nutrient categories. Certain species of algae, invertebrates, and fish were more prevalent in low- and high-nutrient categories within each of the diatom ecoregions. Breakpoint analysis was used to identify the concentration at which the relations between the response variable (biological attribute) and the stressor variable (TN and TP) change. There were significant breakpoints for nutrients (TN and TP) and multiple attributes for algae, invertebrates, and fish communities within the CWPE and GNE diatom ecoregions. In general, more significant breakpoints, with lower concentrations, were found in the GNE than the more nutrient-rich CWPE. The breakpoints from all biological communities were generally about 3-5 times higher in the south (CWPE) than the north (GNE). In the north, breakpoints with similar lower concentrations were found for TN from all biological communities (around 0.60 milligram per liter) and for TP (between 0.02 and 0.03 milligram per liter) for the algae and invertebrate communities. The findings from our study suggest that the range in breakpoints for TN and TP from the GNE can be used as oligotrophic and eutrophic boundaries derived from biological response based on this ecoregion having (1) a gradient with sufficiently low to high nutrient concentrations, (2) distinctive differences in the biological communities in the low- to high-nutrient streams, (3) similarity of breakpoints within algal, invertebrate, and fish communities, (4) significant attributes with either direct relations to nutrients or traditional changes in community structure (that is, decreases in sensitive species or increases in tolerant species), and (5) similar breakpoints in other studies in this and other regions. In nutrie

  19. Parasites alter community structure.

    PubMed

    Wood, Chelsea L; Byers, James E; Cottingham, Kathryn L; Altman, Irit; Donahue, Megan J; Blakeslee, April M H

    2007-05-29

    Parasites often play an important role in modifying the physiology and behavior of their hosts and may, consequently, mediate the influence hosts have on other components of an ecological community. Along the northern Atlantic coast of North America, the dominant herbivorous snail Littorina littorea structures rocky intertidal communities through strong grazing pressure and is frequently parasitized by the digenean trematode Cryptocotyle lingua. We hypothesized that the effects of parasitism on host physiology would induce behavioral changes in L. littorea, which in turn would modulate L. littorea's influence on intertidal community composition. Specifically, we hypothesized that C. lingua infection would alter the grazing rate of L. littorea and, consequently, macroalgal communities would develop differently in the presence of infected versus uninfected snails. Our results show that uninfected snails consumed 40% more ephemeral macroalgal biomass than infected snails in the laboratory, probably because the digestive system of infected snails is compromised by C. lingua infection. In the field, this weaker grazing by infected snails resulted in significantly greater expansion of ephemeral macroalgal cover relative to grazing by uninfected snails. By decreasing the per-capita grazing rate of the dominant herbivore, C. lingua indirectly affects the composition of the macroalgal community and may in turn affect other species that depend on macroalgae for resources or habitat structure. In light of the abundance of parasites across systems, we suggest that, through trait-mediated indirect effects, parasites may be a common determinant of structure in ecological communities. PMID:17517667

  20. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities

    USGS Publications Warehouse

    Rosen, Barry H.; Ann St. Amand,

    2015-09-14

    Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.

  1. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities

    USGS Publications Warehouse

    Rosen, Barry H.; Ann St. Amand

    2015-01-01

    Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.

  2. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  3. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  4. Development and application of indices to assess the condition of benthic algal communities in U.S. streams and rivers

    USGS Publications Warehouse

    Potapova, Marina; Carlisle, Daren M.

    2011-01-01

    Multi-metric indices (MMIs) are a measure of a combination of characteristics of biological communities and are used as indicators of water quality and ecological health. Although MMIs for algal communities have been developed for specific regions of the United States, none of the indices have national applicability. The MMIs described in this report were developed by the National Water-Quality Assessment Program of the U.S. Geological Survey to assess the overall health of benthic algal communities in U.S. streams and rivers within five geographic regions that encompass the conterminous United States.The traditional procedure for developing MMIs (also referred to as indices of biological integrity) is to select individual metrics that, separately, can distinguish between undisturbed sites (selected for this study as reference sites) and predetermined disturbed sites. The metrics are then combined into a single index. In addition to traditional approaches for selecting individual metrics, the current study used stepwise logistic regressions to select sets of metrics that best predicted whether sites were in an undisturbed or a disturbed condition. Multi-metric indices and logistic regression models were developed for five regions of the United States using calibration datasets and were evaluated using independent validation datasets.

  5. Primary production of edaphic algal communities in a Mississippi salt marsh

    SciTech Connect

    Sullivan, M.J.; Moncreiff, C.A.

    1988-03-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by /sup 14/C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m/sup 2/ in Juncus roemerianus Scheele to a high of 163 mg C/m/sup 2/ beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R/sup 2/; however, virtually all variables selected were diatom taxa. R/sup 2/ was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m/sup 2/) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes.

  6. Algal community characteristics and response to nitrogen and phosphorus concentrations in streams in the Ozark Plateaus, Southern Missouri, 1993-95 and 2006-07

    USGS Publications Warehouse

    Femmer, Suzanne R.

    2012-01-01

    Nutrient and algae data were collected in the 1990s and 2000s by the U.S. Geological Survey for the National Water- Quality Assessment program in the Ozark Highlands, southern Missouri. These data were collected at sites of differing drainage area, land use, nutrient concentrations, and physiography. All samples were collected at sites with a riffle/pool structure and cobble/gravel bed material. A total of 60 samples from 45 sites were available for analyses to determine relations between nutrient concentrations and algal community structure in this region. This information can be used by the Missouri Department of Natural Resources to develop the State's nutrient criteria plan. Water samples collected for this study had total nitrogen concentrations ranging from 0.07 to 4.41 milligram per liter (mg/L) with a median of 0.26 mg/L, and total phosphorus concentrations ranging from 0.003 to 0.78 mg/L with a median of 0.007 mg/L. These nutrient concentrations were transformed into nutrient categories consisting of varying percentiles of data. Algal community data were entered into the U.S. Geological Survey's Algae Data Analysis System for the computation of more than 250 metrics. These metrics were correlated with nutrient categories, and four metrics with the strongest relation with the nutrient data were selected. These metrics were Organic Nitrogen Tolerance, Oxygen Tolerance, Bahls Pollution Class, and the Saprobien index with the 25th and 80th percentile nutrient categories. These data indicate that near the 80th percentile (Total Nitrogen = 0.84 mg/L, Total Phosphorus = 0.035 mg/L) the algae communities significantly changed from nitrogen-fixing species dominance to those species more tolerant of eutrophic conditions.

  7. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    USGS Publications Warehouse

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    and water-quality sample data from 2006 to 2008 were combined with parts of a larger discrete-sample and continuous water-quality monitoring dataset and examined to identify patterns in water-quality and algal conditions since 1991, with a particular emphasis on 2003–08. Longitudinal plankton surveys were conducted in 2006–08 at six sites between river miles (RM) 24.5 and 3.4 at 2- to 3-week intervals, or 5–6 per season, and in-situ bioassay experiments were conducted in 2008 to examine the potential effects of wastewater treatment facility (WWTF) effluent and phosphorus additions on phytoplankton biomass and algal photosynthesis. Phytoplankton and zooplankton community composition, streamflow, and water-quality data were analyzed using multivariate statistical techniques to gain insights into plankton dynamics to determine what factors might be most tied to the abundance and characteristics of the phytoplankton assemblages, and identify possible causes of their declines. The connection between low-DO events and algal declines was clearly evident, as bloom crashes were nearly always followed by periods of low DO. Algal blooms occurred each year during 2006–08, producing maximum chlorophyll-a (Chl-a) values in June or July generally in the range of 50–80 micrograms per liter (µg/L). Bloom crashes and absence of sufficient algal photosynthesis in mid- to late-summer contributed to minimum DO concentrations that were less than the State standard of 6.5 milligrams per liter (mg/L) based on the 30-day mean daily concentration, for 62–74 days each year. At times, the absolute minimum State standard (4 mg/L DO) also was not met. To learn more about why low-DO events occurred, specific algal declines during 2003–08 were scrutinized to determine their likely causal factors. From this information, a series of hypotheses were formulated and evaluated in terms of their ability to explain recent declines in algal populations in the river in late summer

  8. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.

    PubMed

    Silverstein, Rachel N; Cunning, Ross; Baker, Andrew C

    2015-01-01

    Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from

  9. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    USGS Publications Warehouse

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    and water-quality sample data from 2006 to 2008 were combined with parts of a larger discrete-sample and continuous water-quality monitoring dataset and examined to identify patterns in water-quality and algal conditions since 1991, with a particular emphasis on 2003–08. Longitudinal plankton surveys were conducted in 2006–08 at six sites between river miles (RM) 24.5 and 3.4 at 2- to 3-week intervals, or 5–6 per season, and in-situ bioassay experiments were conducted in 2008 to examine the potential effects of wastewater treatment facility (WWTF) effluent and phosphorus additions on phytoplankton biomass and algal photosynthesis. Phytoplankton and zooplankton community composition, streamflow, and water-quality data were analyzed using multivariate statistical techniques to gain insights into plankton dynamics to determine what factors might be most tied to the abundance and characteristics of the phytoplankton assemblages, and identify possible causes of their declines. The connection between low-DO events and algal declines was clearly evident, as bloom crashes were nearly always followed by periods of low DO. Algal blooms occurred each year during 2006–08, producing maximum chlorophyll-a (Chl-a) values in June or July generally in the range of 50–80 micrograms per liter (µg/L). Bloom crashes and absence of sufficient algal photosynthesis in mid- to late-summer contributed to minimum DO concentrations that were less than the State standard of 6.5 milligrams per liter (mg/L) based on the 30-day mean daily concentration, for 62–74 days each year. At times, the absolute minimum State standard (4 mg/L DO) also was not met. To learn more about why low-DO events occurred, specific algal declines during 2003–08 were scrutinized to determine their likely causal factors. From this information, a series of hypotheses were formulated and evaluated in terms of their ability to explain recent declines in algal populations in the river in late summer

  10. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance

  11. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  12. Assessment of potential effects of water produced from coalbed natural gas development on macroinvertebrate and algal communities in the Powder River and Tongue River, Wyoming and Montana, 2010

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Feldman, David L.

    2011-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case

  13. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  14. Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester

    PubMed Central

    Ellis, Joshua T.; Tramp, Cody; Sims, Ronald C.; Miller, Charles D.

    2012-01-01

    The microbial diversity and metabolic potential of a methanogenic consortium residing in a 3785-liter anaerobic digester, fed with wastewater algae, was analyzed using 454 pyrosequencing technology. DNA was extracted from anaerobic sludge material and used in metagenomic analysis through PCR amplification of the methyl-coenzyme M reductase α subunit (mcrA) gene using primer sets ML, MCR, and ME. The majority of annotated mcrA sequences were assigned taxonomically to the genera Methanosaeta in the order Methanosarcinales. Methanogens from the genus Methanosaeta are obligate acetotrophs, suggesting this genus plays a dominant role in methane production from the analyzed fermentation sample. Numerous analyzed sequences within the algae fed anaerobic digester were unclassified and could not be assigned taxonomically. Relative amplicon frequencies were determined for each primer set to determine the utility of each in pyrosequencing. Primer sets ML and MCR performed better quantitatively (representing the large majority of analyzed sequences) than primer set ME. However, each of these primer sets was shown to provide a quantitatively unique community structure, and thus they are of equal importance in mcrA metagenomic analysis. PMID:23724331

  15. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  16. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates.

    PubMed

    Gregg, Ak; Hatay, M; Haas, Af; Robinett, Nl; Barott, K; Vermeij, Mja; Marhaver, Kl; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community.

  17. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates.

    PubMed

    Gregg, Ak; Hatay, M; Haas, Af; Robinett, Nl; Barott, K; Vermeij, Mja; Marhaver, Kl; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  18. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates

    PubMed Central

    Hatay, M; Haas, AF; Robinett, NL; Barott, K; Vermeij, MJA; Marhaver, KL; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  19. Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Burt, Alexis; Wang, Feiyue; Pućko, Monika; Mundy, Christopher-John; Gosselin, Michel; Philippe, Benoît; Poulin, Michel; Tremblay, Jean-Éric; Stern, Gary A.

    2013-09-01

    In this study, we examine mercury bioaccumulation by a first-year sea-ice (FYI) algal community in the western Canadian Arctic during the spring of 2008. Total mercury concentration in bottom sea-ice particulate ([PHg]T) ranged 0.004-0.022 µg/g dw and was limited by the amount of mercury available for uptake when the spring bloom commenced. Mercury in ice algae originated from a combination of brine and seawater as sources, while atmospheric mercury depletion events did not appear to significantly contribute as a source in a coupled manner. We show that the bottom sea-ice brine presents a chemically and biologically unique niche from which inorganic Hg makes its way into the food web. Once incorporated into algae, mercury can be transported spatially and trophically within the ecosystem by a range of processes including grazing, resuspension, remineralization, and sedimentation. Ice algae contribute 10-60% of the annual primary production in the Arctic and are thought to become even more productive and abundant under a mild climate change scenario. Replacement of multiyear ice with FYI in the Beaufort Sea alone could result in an additional influx of ˜48 kg/yr of particle bound Hg. Further studies are thus warranted to elucidate mechanisms by which mercury transformation processes and transfer into the Arctic marine food web are impacted by the interaction between sea ice, brine, and seawater.

  20. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  1. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels.

  2. Voluntary Associations and Community Structure.

    ERIC Educational Resources Information Center

    Dillman, Don A.; And Others

    This study examined overlapping membership of voluntary associations as the basis of a statistical technique for analyzing community structure. An underlying assumption was that organizations select certain membership linkages in preference to others within a community. Thus one would expect to find points of integration and cleavage among…

  3. Effects of intracellular structural associations on degradation of algal chloropigments in natural oxic and anoxic seawaters

    NASA Astrophysics Data System (ADS)

    Ding, Haibing; Sun, Ming-Yi

    2005-09-01

    To understand the effects of intracellular structural associations on degradation of algal chloropigments, we conducted a series of microcosm experiments by incubating Emiliania huxleyi cells (a marine haptophyte) in natural oxic and anoxic seawaters collected from a stratified water column in the Cariaco Basin. The incubated cell detritus were sequentially treated with two buffer solutions to separate pigment components into soluble and insoluble fractions. By using non-denaturing gel electrophoresis, several chlorophyll-complexes, free chlorophyll, and another unknown chlorophyll-containing component were further separated from the soluble fraction. The chlorophyll-complexes included those bound with high molecular weight core-proteins (CP-I and CP43+CP47) and low molecular weight polypeptides (LHC-I and LHC-II) in the cellular photosystems PS-I and PS-II. Overall pigment recovery from these fractions and gel bands was well equivalent to the total amount from direct acetone extraction of the cells. We followed the time-dependent concentration changes of chlorophyll-a (Chl-a), phaeophorbide-a (Ppb-a), and phaeophytin-a (Ppt-a) in all fractions and complexes to estimate the degradation rate constants of chloropigments in natural oxic and anoxic seawaters. Our experimental results demonstrated that the intracellular structural associations had important influences on degradation of chloropigments under different redox conditions. In general, total Chl-a degraded faster (˜4X) in oxic seawater than in anoxic seawater. However, the rate differences between oxic and anoxic conditions varied among the fractions and complexes. Degradation rate constants of Chl-a in soluble fraction were much higher (>10X) than those in insoluble fraction under both oxic and anoxic conditions. Chl-a bound with the complexes in PS-II appeared to be more reactive (˜2X) than that in PS-I under oxic conditions but the difference in degradation rate constants between two photosystems became

  4. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification

    PubMed Central

    Kamenos, Nicholas A; Burdett, Heidi L; Aloisio, Elena; Findlay, Helen S; Martin, Sophie; Longbone, Charlotte; Dunn, Jonathan; Widdicombe, Stephen; Calosi, Piero

    2013-01-01

    Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80 days to one of three pH treatments: (i) current pH (control); (ii) low pH (7.7) representing OA change; and (iii) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, weaknesses in the calcite skeleton, with evidence of dissolution and molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2

  5. Cost structures and life cycle impacts of algal biomass and biofuel production

    NASA Astrophysics Data System (ADS)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  6. Effect of black wattle (Acacia mearnsii) extract on blue-green algal bloom control and plankton structure optimization: a field mesocosm experiment.

    PubMed

    Zhou, Lirong; Bi, Yonghong; Jiang, Lihe; Wang, Zhiqiang; Chen, Wenqing

    2012-12-01

    A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L(-1) black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L(-1). In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem. PMID:23342945

  7. Effect of black wattle (Acacia mearnsii) extract on blue-green algal bloom control and plankton structure optimization: a field mesocosm experiment.

    PubMed

    Zhou, Lirong; Bi, Yonghong; Jiang, Lihe; Wang, Zhiqiang; Chen, Wenqing

    2012-12-01

    A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L(-1) black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L(-1). In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem.

  8. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    PubMed Central

    Egerton, Todd A.; Morse, Ryan E.; Marshall, Harold G.; Mulholland, Margaret R.

    2014-01-01

    Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days). Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations. PMID:27694775

  9. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    PubMed Central

    Egerton, Todd A.; Morse, Ryan E.; Marshall, Harold G.; Mulholland, Margaret R.

    2014-01-01

    Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days). Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations.

  10. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    SciTech Connect

    Holderman, Charlie; Anders, Paul; Shafii, Bahman

    2009-07-01

    , and a meandering reach. The study design included 14 sampling sites: an upstream, unimpounded reference site (KR-14), four control (non-fertilized) canyon sites downstream from Libby Dam, but upstream from nutrient addition (KR-10 through KR-13), two treatment sites referred to collectively as the nutrient addition zone (KR-9 and KR-9.1, located at and 5 km downstream from the nutrient addition site), two braided reach sites (KR-6 and KR-7), and four meander reach sites (KR-1 through KR-4). A series of qualitative evaluations and quantitative analyses were used to assess baseline conditions and effects of experimental nutrient addition treatments on chlorophyll, primary productivity, and taxonomic composition and metric arrays for the diatom and green algae communities. Insufficient density in the samples precluded analyses of bluegreen algae taxa and metrics for pre- and post-nutrient addition periods. Chlorophyll a concentration (mg/m{sup 2}), chlorophyll accrual rate (mg/m{sup 2}/30d), total chlorophyll concentration (chlorophyll a and b) (mg/m{sup 2}), and total chlorophyll accrual rate (mg/m{sup 2}/30d) were calculated. Algal taxa were identified and grouped by taxonomic order as Cyanophyta (blue-greens), Chlorophyta (greens), Bacillariophyta (diatoms), Chrysophyta (goldens), and dominant species from each sample site were identified. Algal densities (number/ml) in periphyton samples were calculated for each sample site and sampling date. Principal Component Analysis (PCA) was performed to reduce the dimension of diatom and algae data and to determine which taxonomic groups and metrics were contributing significantly to the observed variation. PCA analyses were tabulated to indicate eigenvalues, proportion, and cumulative percent variation, as well as eigenvectors (loadings) for each of the components. Biplot graphic displays of PCA axes were also generated to characterize the pattern and structure of the underlying variation. Taxonomic data and a series of

  11. Structure and Dynamics of North-western Mediterranean Rocky Benthic Communities along a Depth Gradient

    NASA Astrophysics Data System (ADS)

    Garrabou, J.; Ballesteros, E.; Zabala, M.

    2002-09-01

    The structure and dynamics of four Mediterranean communities along a depth gradient (5 to 20 m depth) were investigated. The main environmental factors relevant to the organization of benthic communities varied predictably with depth, decreasing both in magnitude and in temporal variability. The following hypotheses were tested on the organization of communities as depth increases: (1) community structure increases in complexity, (2) community dynamics decrease, and (3) temporal (seasonal) variations both in community structure and dynamics become dampened. A series of photographs (310 cm2 each) of 12 permanent plots were taken monthly over a 2-year period. Plots belonged to one of four communities, two algal- and two animal-dominated by animals. In the analysis of photographs, a novel methodological approach was employed using techniques borrowed from landscape ecology. Community structure was quantified using three landscape pattern indices: number of patches, mean patch size and Shannon's diversity index. Community dynamics were measured by calculating spatially explicit area changes over time by overlaying drawings corresponding to different sampling times. The results support the hypotheses tested. Firstly, the shallower, algae-dominated communities, had, in general, significantly lower structure (i.e. patch-mosaics were less heterogeneous), than were deeper communities dominated by animals. Secondly, community dynamics were significantly larger in shallower communities than in deeper communities. Thirdly, temporal changes in community structure and dynamics were generally dampened with depth showing, in some cases, significant temporal patterns in structure and dynamics, which were consistent with seasonal variations. These depth-related trends in community structure and dynamics in subtidal Mediterranean communities may respond to strong changes in community determining factors (nutrient availability, physical disturbance, predation). Finally, it is

  12. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  13. Effect of Silicate Grain Shape, Structure, and Location on the Biomass and Community Structure of Colonizing Marine Microbiota

    PubMed Central

    Nickels, Janet S.; Bobbie, Ronald J.; Martz, Robert F.; Smith, Glen A.; White, David C.; Richards, Norman L.

    1981-01-01

    Microbiota colonizing silica grains of the same size and water pore space, but with a different microtopography, showed differences in biomass and community structure after 8 weeks of exposure to running seawater. The absence of surface cracks and crevices resulted in a marked diminution of the total microbial biomass measured as lipid phosphate and total extractable palmitic acid. With increasing smoothness of the sand grain surface, examination of the community structure showed a marked decrease in procaryotes and algal microeucaryotes, with a relative increase in microeucaryotic grazers. A comparison of the colonizing sediment incubated in running seawater or at 32 m on the sea floor with a sediment core showed a decreased bacterial biomass with a different community structure and a decreased total microeucaryotic population of both grazers and algae. The quantitative differences in microbial biomass and community structure between the microcosms and the actual benthic population in the core were determined. Images PMID:16345778

  14. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  15. A trait based dynamic energy budget approach to explore emergent microalgal community structure

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Bouskill, N.; Karaoz, U.; Geng, H.; Lane, T.; Pett-Ridge, J.; Mayali, X.; Brodie, E.

    2015-12-01

    Microalgae play important roles in the global carbon budget. Phytoplankton, including microalgae, are responsible for around 50% of global primary production, and also hold promise as a viable renewable biofuel source. Research has been underway for decades to realize the full potential of algal biofuels at the commercial scale, however, uni-algal ponds are typically threatened by collapse due to microalgal grazing and parasite invasions. Recently, it has been proposed that functionally diverse microalgal-bacterial communities can achieve high biomass and/or lipid yields, and are more stable (less susceptible to invasion) than a monoculture. Similar positive diversity-productivity relationships have been observed in a wide range of ecosystem studies, but the purposeful maintenance of a diverse microbiome is less common in managed systems. In our work, a trait based dynamic energy budget model was developed to explore emergent microalgal community structure under various environmental (e.g. light, temperature, nutrient availability) conditions. The complex algal community can be reduced into functional groups (guilds). Each guild (algae or bacteria) is characterized by distinct physiological traits (e.g. nutrient requirement, growth rate, substrate affinity, lipid production) constrained by biochemical trade-offs. These trait values are derived from literature and information encoded in genomic data. Metabolism of the algae and the bacterial species (symbiotic or non-symbiotic) are described within a dynamic energy budget framework. The model offers a mechanistic framework to predict the optimal microalgal community assemblage towards high productivity and resistance to invasion under prevailing environmental conditions.

  16. Algal sensory photoreceptors.

    PubMed

    Hegemann, Peter

    2008-01-01

    Only five major types of sensory photoreceptors (BLUF-proteins, cryptochromes, phototropins, phytochromes, and rhodopsins) are used in nature to regulate developmental processes, photosynthesis, photoorientation, and control of the circadian clock. Sensory photoreceptors of algae and protists are exceptionally rich in structure and function; light-gated ion channels and photoactivated adenylate cyclases are unique examples. During the past ten years major progress has been made with respect to understanding the function, photochemistry, and structure of key sensory players of the algal kingdom.

  17. Detection of community structure in networks based on community coefficients

    NASA Astrophysics Data System (ADS)

    Lu, Hu; Wei, Hui

    2012-12-01

    Determining community structure in networks is fundamental to the analysis of the structural and functional properties of those networks, including social networks, computer networks, and biological networks. Modularity function Q, which was proposed by Newman and Girvan, was once the most widely used criterion for evaluating the partition of a network into communities. However, modularity Q is subject to a serious resolution limit. In this paper, we propose a new function for evaluating the partition of a network into communities. This is called community coefficient C. Using community coefficient C, we can automatically identify the ideal number of communities in the network, without any prior knowledge. We demonstrate that community coefficient C is superior to the modularity Q and does not have a resolution limit. We also compared the two widely used community structure partitioning methods, the hierarchical partitioning algorithm and the normalized cuts (Ncut) spectral partitioning algorithm. We tested these methods on computer-generated networks and real-world networks whose community structures were already known. The Ncut algorithm and community coefficient C were found to produce better results than hierarchical algorithms. Unlike several other community detection methods, the proposed method effectively partitioned the networks into different community structures and indicated the correct number of communities.

  18. The effects of water flow and sedimentation on interactions between massive Porites and algal turf

    NASA Astrophysics Data System (ADS)

    Gowan, Jennifer C.; Tootell, Jesse S.; Carpenter, Robert C.

    2014-09-01

    Interactions between scleractinian corals and benthic algae can be an important process structuring reef communities, yet interaction dynamics are not fixed and may be influenced by abiotic factors such as sedimentation, a process often underlying reef degradation. However, rates of sedimentation and the effects of trapped sediments may be influenced by water flow. The first goal of this study was to quantify gradients in sedimentation and flow along fringing and back reefs of the north shore of Moorea, French Polynesia, and determine whether such gradients correlate with changes in the frequency and outcomes of massive Porites-algal turf interactions. On the back reef, the frequency of Porites-algal turf interactions and the competitive success of algal turfs increased significantly with decreasing flow. Sedimentation, however, was not a significant driver of the observed patterns. Along fringing reefs, in the absence of a flow gradient, it was the gradient in sedimentation that best explained spatial variation in Porites-algal turf interaction frequencies and the competitive success of algal turfs. The second goal was to quantify the separate and combined effects of flow and sedimentation on Porites-algal turf interactions in a laboratory setting. The combined effects of low flow and sedimentation significantly increased the area of Porites tissue damaged when in contact with algal turf, while high flow attenuated the negative effects of sedimentation. Together, these results implicate flow and sedimentation as important drivers of biological interactions between massive Porites and algal turf.

  19. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  20. Algal functional annotation tool

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  1. The influence of protozoa with a filtered and non-filtered seawater culture of Tetraselmis sp., and effects to the bacterial and algal communities over 10 days.

    PubMed

    Erkelens, Mason; Ball, Andrew S; Lewis, David M

    2014-12-01

    In this study a filter was used to remove protozoa and its effects on a Tetraselmis sp. culture were evaluated in terms of final total lipid, final total dry weight, cell counts, and both the bacterial and algal communities. The protozoa species observed within this study was identified as Cohnilembus reniformis. It was observed that on the final day no C. reniformis were present in filtered cultures compared to the non-filtered culture which contained 40±3 C. reniformis/mL. The presence of C. reniformis within the culture did not affect the total lipid or the total dry weight recovered, suggesting that Tetraselmis sp. was capable of surviving and growing in the presence of C. reniformis. Overall it is suggested that an 11 μm filter was effective at removing protozoa, though growing a microalgae culture without filtration did not show any significant effect.

  2. Effects of fish density and river fertilization on algal standing stocks, invertebrates communities, and fish production in an Arctic River

    USGS Publications Warehouse

    Deegan, Linda A.; Peterson, B.J.; Golden, H.; McIvor, C.C.; Miller, M.C.

    1997-01-01

    This study examined the relative importance of bottom-up and top-down controls of an arctic stream food web by simultaneous manipulation of the top predator and nutrient availability. We created a two-step trophic system (algae to insects) by removal of the top predator (Arctic grayling, Thymallus arcticus) in fertilized and control stream reaches. Fish abundance was also increased 10 times to examine the effect of high fish density on stream ecosystem dynamics and fish. We measured the response of epilithic algae, benthic and drifting insects, and fish to nutrient enrichment and to changes in fish density. Insect grazers had little effect on algae and fish had little effect on insects. In both the control and fertilized reaches, fish growth, energy storage, and reproductive response of females declined with increased fish density. Fish growth and energy storage were more closely correlated with per capita insect availability than with per capita algal standing stock

  3. Microbial-algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South China

    NASA Astrophysics Data System (ADS)

    Luo, Genming; Wang, Yongbiao; Grice, Kliti; Kershaw, Steve; Algeo, Thomas J.; Ruan, Xiaoyan; Yang, Hao; Jia, Chengling; Xie, Shucheng

    2013-06-01

    Microbialites flourished globally immediately following the latest Permian mass extinction. In this study, lipid biomarker records were analyzed in the Cili section (Hunan Province, South China) in order to determine the types of microbes involved in microbialite formation and their response to contemporaneous environmental changes. Various biomarkers were identified in the aliphatic and aromatic fractions using gas chromatography (GC) and GC-mass spectrometry (GC-MS). Low abundance of steranes in the microbialite layer suggests that it did not contain large amounts of algae, in striking contrast to the abundant algal fossils and algal-derived steranes present in the underlying (pre-crisis) skeletal limestone. Although pristine/phytane (Pr/Ph) ratios increased in the microbialite layer, covariation of Pr/Ph with the ratio of low- to high-molecular-weight n-alkanes (C20 -/C20 +) suggests that the former proxy was controlled by microbial (particularly cyanobacterial) inputs rather than by redox conditions. The microbialite also yielded low ratios of hopanes to short-chain n-alkanes (HP/Lalk) and high abundances of C21n-alkylcyclohexane, indicating that, in addition to cyanobacteria, anaerobic bacteria, archaea, and possibly acritarchs flourished in the aftermath of the marine extinction event. The upper part of the thinly bedded micritic limestone overlying the microbialite exhibits a bimodal distribution of n-alkanes as well as increased abundances of extended tricyclic terpanes and steranes, suggesting a return of habitable shallow-marine conditions for eukaryotic algae several hundred thousand years after the latest Permian mass extinction. Increases in the dibenzofuran ratio (i.e., DBF/(DBF + DBT + F)) and in the coronene to phenanthrene ratio (Cor/P) in the skeletal limestone immediately below the microbialite are evidence of enhanced soil erosion rates and wildfire intensity, marking the collapse of terrestrial ecosystems. The terrestrial crisis thus slightly

  4. Community detection in networks: Structural communities versus ground truth

    NASA Astrophysics Data System (ADS)

    Hric, Darko; Darst, Richard K.; Fortunato, Santo

    2014-12-01

    Algorithms to find communities in networks rely just on structural information and search for cohesive subsets of nodes. On the other hand, most scholars implicitly or explicitly assume that structural communities represent groups of nodes with similar (nontopological) properties or functions. This hypothesis could not be verified, so far, because of the lack of network datasets with information on the classification of the nodes. We show that traditional community detection methods fail to find the metadata groups in many large networks. Our results show that there is a marked separation between structural communities and metadata groups, in line with recent findings. That means that either our current modeling of community structure has to be substantially modified, or that metadata groups may not be recoverable from topology alone.

  5. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  6. Tracing the Early Development of Harmful Algal Blooms on the West Florida Shelf with the Aid of Lagrangian Coherent Structures

    PubMed Central

    Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Koçak, H.

    2008-01-01

    Several theories have been proposed to explain the development of harmful algal blooms (HABs) produced by the toxic dinoflagellate Karenia brevis on the West Florida Shelf. However, because the early stages of HAB development are usually not detected, these theories have been so far very difficult to verify. In this paper we employ simulated Lagrangian coherent structures (LCSs) to trace potential early locations of the development of a HAB in late 2004 before it was transported to a region where it could be detected by satellite imagery. The LCSs, which are extracted from surface ocean currents produced by a data-assimilative HYCOM (HYbrid-Coordinate Ocean Model) simulation, constitute material fluid barriers that demarcate potential pathways for HAB evolution. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of the HAB in question. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by surface ocean currents produced by the above HYCOM simulation. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located nearshore and possibly due to land runoff. PMID:19137076

  7. Tracing the Early Development of Harmful Algal Blooms on the West Florida Shelf with the Aid of Lagrangian Coherent Structures.

    PubMed

    Olascoaga, M J; Beron-Vera, F J; Brand, L E; Koçak, H

    2008-01-01

    Several theories have been proposed to explain the development of harmful algal blooms (HABs) produced by the toxic dinoflagellate Karenia brevis on the West Florida Shelf. However, because the early stages of HAB development are usually not detected, these theories have been so far very difficult to verify. In this paper we employ simulated Lagrangian coherent structures (LCSs) to trace potential early locations of the development of a HAB in late 2004 before it was transported to a region where it could be detected by satellite imagery. The LCSs, which are extracted from surface ocean currents produced by a data-assimilative HYCOM (HYbrid-Coordinate Ocean Model) simulation, constitute material fluid barriers that demarcate potential pathways for HAB evolution. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of the HAB in question. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by surface ocean currents produced by the above HYCOM simulation. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located nearshore and possibly due to land runoff.

  8. Green algal infection of American horseshoe crab (Limulus polyphemus) exoskeletal structures.

    PubMed

    Braverman, Hillary; Leibovitz, Louis; Lewbart, Gregory A

    2012-09-15

    Degenerative lesions in the dorsum of the horseshoe crab (Limulus polyphemus) exoskeleton, eyes, arthrodial membrane, and base of the telson were documented in a population of wild caught laboratory animals. The disease can lead to loss of tissue structure and function, deformed shells, abnormal molting, loss of ocular structures, erosion of interskeletal membranes, and cardiac hemorrhage. Microscopy, histopathology, and in vitro culture confirmed the causative agent to be a green algae of the family Ulvaceae. Further research may explain how green algae overcome horseshoe crab innate immunity leading to external and internal damage. PMID:22709543

  9. Green algal infection of American horseshoe crab (Limulus polyphemus) exoskeletal structures.

    PubMed

    Braverman, Hillary; Leibovitz, Louis; Lewbart, Gregory A

    2012-09-15

    Degenerative lesions in the dorsum of the horseshoe crab (Limulus polyphemus) exoskeleton, eyes, arthrodial membrane, and base of the telson were documented in a population of wild caught laboratory animals. The disease can lead to loss of tissue structure and function, deformed shells, abnormal molting, loss of ocular structures, erosion of interskeletal membranes, and cardiac hemorrhage. Microscopy, histopathology, and in vitro culture confirmed the causative agent to be a green algae of the family Ulvaceae. Further research may explain how green algae overcome horseshoe crab innate immunity leading to external and internal damage.

  10. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  11. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, T.J.; Loftin, C.S.; Tsomides, L.; Difranco, J.L.; Connors, B.

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  12. Characteristics of the phytoplankton community and bioaccumulation of heavy metals during algal blooms in Xiangjiang River (Hunan, China).

    PubMed

    Li, Jie; Peng, Fuli; Ding, Dongbo; Zhang, Shubing; Li, Deliang; Zhang, Ting

    2011-10-01

    The frequency of algal blooms has increased in the mid and downstream reaches of the Xiangjiang River (Hunan, China), one of the most heavily polluted rivers in China. We identified the bloom-forming species in a bloom that occurred mid-late September 2010. In addition, we determined the extent of metal bioaccumulation in the algae and measured the toxicity of the algae using a mouse bioassay. Water samples were collected at upstream (Yongzhou), midstream (Hengyang), and downstream (Zhuzhou, Xiangtan, and Changsha) sites. The dominant species was Aulacoseira granulata, formerly known as Melosira granulata. The heaviest bloom occurred at Xiangtan and Changsha, where the number of A. granulata peaked at 1.3×10(5) filaments L(-1) and chlorophyll a at 0.04 mg L(-1). Concentrations of Al, Fe, and Mn were 4.4×10(3), 768.4, and 138.7 mg kg(-1) dry weight in the phytoplankton. The bioaccumulation factor was 4.0×10(5), 7.7×10(5), and 3.2×10(3), respectively. The heavy metal Pb had the greatest tendency to bioaccumulate among the highly toxic heavy metals, with a concentration of 19.2 mg kg(-1) dry weight and bioaccumulation factor of 9.6×10(3). The mouse bioassay suggested the bloom was toxic. The LD(50) was 384 mg kg(-1) and all surviving mice lost weight during the first 72 h after exposure. Our results demonstrate that blooms of A. granulata in rivers contaminated with heavy metals pose a threat to freshwater ecosystems and human health. Thus, measures should be taken to control eutrophication and heavy metal pollution in such rivers. PMID:22038005

  13. Lagrangian Coherent Structures (LCS) and the dispersion of algal bloom and marine debris in the Yellow and East China Sea

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Choi, B.; Son, Y. B.; Shim, W. J.; Hwang, J. H.; Park, Y.

    2012-12-01

    Series of satellite images show that the development and migration of green macroalgal bloom (known as Ulva prolifera) in the Yellow Sea (YS) and Eastern China Sea (ECS). This presentation will utilize the Lagrangian Coherent Structures (LCS) analysis to demonstrate the dispersion pattern of algal bloom patches. Analyzing LCS such as stable and unstable manifolds is one of emerging technologies for characterizing Lagrangian pathways in aquatic environments. This approach is based on the assumption that unstable manifolds such as ridges (i.e., high values) in the finite-time Lyapunov exponent (FTLE) fields coincide with material transport barriers. In this study, the FTLE fields were computed from gridded trajectories using flow fields provided by Regional Ocean Modeling System (ROMS) in the YS/ECS during summer 2011. The results show that there exist two strong transport barriers that lie along the east-west direction, at least, for the simulation period; one is located from the north of Changjiang River mouth to the middle of the Yellow Sea and the other one is stretched from the south of Shandong Peninsular toward east/southeast. This LCS analysis suggests that patches of green algae developed in the coastal region of Jiangsu Province during summer may migrate toward east into the middle of the YS or even toward Korean coast rather than extending along the Jiangsu coast, which is consistent with the observation results derived from the satellite ocean color data. In the very same manner, the utilization of LCS results to evaluate the distribution/transport pattern of marine debris in the YS/ECS will also be discussed during the presentation.

  14. Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog

    PubMed Central

    Premkumar, Lakshmanane; Greenblatt, Harry M.; Bageshwar, Umesh K.; Savchenko, Tatyana; Gokhman, Irena; Sussman, Joel L.; Zamir, Ada

    2005-01-01

    Protein molecular adaptation to drastically shifting salinities was studied in dCA II, an α-type carbonic anhydrase (EC 4.2.1.1) from the exceptionally salt-tolerant unicellular green alga Dunaliella salina. The salt-inducible, extracellular dCA II is highly salt-tolerant and thus differs from its mesophilic homologs. The crystal structure of dCA II, determined at 1.86-Å resolution, is globally similar to other α-type carbonic anhydrases except for two extended α-helices and an added Na-binding loop. Its unusual electrostatic properties include a uniformly negative surface electrostatic potential of lower magnitude than that observed in the highly acidic halophilic proteins and an exceptionally low positive potential at a site adjoining the catalytic Zn2+ compared with mesophilic homologs. The halotolerant dCA II also differs from typical halophilic proteins in retaining conformational stability and solubility in low to high salt concentrations. The crucial role of electrostatic features in dCA II halotolerance is strongly supported by the ability to predict the unanticipated halotolerance of the murine CA XIV isozyme, which was confirmed biochemically. A proposal for the functional significance of the halotolerance of CA XIV in the kidney is presented. PMID:15894606

  15. Efficiently inferring community structure in bipartite networks

    NASA Astrophysics Data System (ADS)

    Larremore, Daniel B.; Clauset, Aaron; Jacobs, Abigail Z.

    2014-07-01

    Bipartite networks are a common type of network data in which there are two types of vertices, and only vertices of different types can be connected. While bipartite networks exhibit community structure like their unipartite counterparts, existing approaches to bipartite community detection have drawbacks, including implicit parameter choices, loss of information through one-mode projections, and lack of interpretability. Here we solve the community detection problem for bipartite networks by formulating a bipartite stochastic block model, which explicitly includes vertex type information and may be trivially extended to k-partite networks. This bipartite stochastic block model yields a projection-free and statistically principled method for community detection that makes clear assumptions and parameter choices and yields interpretable results. We demonstrate this model's ability to efficiently and accurately find community structure in synthetic bipartite networks with known structure and in real-world bipartite networks with unknown structure, and we characterize its performance in practical contexts.

  16. Community structure in the phonological network.

    PubMed

    Siew, Cynthia S Q

    2013-01-01

    Community structure, which refers to the presence of densely connected groups within a larger network, is a common feature of several real-world networks from a variety of domains such as the human brain, social networks of hunter-gatherers and business organizations, and the World Wide Web (Porter et al., 2009). Using a community detection technique known as the Louvain optimization method, 17 communities were extracted from the giant component of the phonological network described in Vitevitch (2008). Additional analyses comparing the lexical and phonological characteristics of words in these communities against words in randomly generated communities revealed several novel discoveries. Larger communities tend to consist of short, frequent words of high degree and low age of acquisition ratings, and smaller communities tend to consist of longer, less frequent words of low degree and high age of acquisition ratings. Real communities also contained fewer different phonological segments compared to random communities, although the number of occurrences of phonological segments found in real communities was much higher than that of the same phonological segments in random communities. Interestingly, the observation that relatively few biphones occur very frequently and a large number of biphones occur rarely within communities mirrors the pattern of the overall frequency of words in a language (Zipf, 1935). The present findings have important implications for understanding the dynamics of activation spread among words in the phonological network that are relevant to lexical processing, as well as understanding the mechanisms that underlie language acquisition and the evolution of language.

  17. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  18. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet

    PubMed Central

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-01-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet. PMID:23018772

  19. Community structure revealed by phase locking.

    PubMed

    Zhou, Ming-Yang; Zhuo, Zhao; Cai, Shi-min; Fu, Zhongqian

    2014-09-01

    Community structure can naturally emerge in paths to synchronization, and scratching it from the paths is a tough issue that accounts for the diverse dynamics of synchronization. In this paper, with assumption that the synchronization on complex networks is made up of local and collective processes, we proposed a scheme to lock the local synchronization (phase locking) at a stable state, meanwhile, suppress the collective synchronization based on Kuramoto model. Through this scheme, the network dynamics only contains the local synchronization, which suggests that the nodes in the same community synchronize together and these synchronization clusters well reveal the community structure of network. Furthermore, by analyzing the paths to synchronization, the relations or overlaps among different communities are also obtained. Thus, the community detection based on the scheme is performed on five real networks and the observed community structures are much more apparent than modularity-based fast algorithm. Our results not only provide a deep insight to understand the synchronization dynamics on complex network but also enlarge the research scope of community detection.

  20. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds.

    PubMed

    Geng, Haifeng; Tran-Gyamfi, Mary B; Lane, Todd W; Sale, Kenneth L; Yu, Eizadora T

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are "keystone" OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota

  1. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE PAGES

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-07-26

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure

  2. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    PubMed Central

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota

  3. The spatial organization and microbial community structure of an epilithic biofilm.

    PubMed

    Cutler, Nick A; Chaput, Dominique L; Oliver, Anna E; Viles, Heather A

    2015-03-01

    Microbial biofilms are common on lithic surfaces, including stone buildings. However, the ecology of these communities is poorly understood. Few studies have focused on the spatial characteristics of lithobiontic biofilms, despite the fact that spatial structure has been demonstrated to influence ecosystem function (and hence biodegradation) and community diversity. Furthermore, relatively few studies have utilized molecular techniques to characterize these communities, even though molecular methods have revealed unexpected microbial diversity in other habitats. This study investigated (1) the spatial structure and (2) the taxonomic composition of an epilithic biofilm using molecular techniques, namely amplicon pyrosequencing and terminal restriction fragment length polymorphism. Dispersion indices and Mantel correlograms were used to test for the presence of spatial structure in the biofilm. Diversity metrics and rank-abundance distributions (RADs) were also generated. The study revealed spatial structure on a centimetre scale in eukaryotic microbes (fungi and algae), but not the bacteria. Fungal and bacterial communities were highly diverse; algal communities much less so. The RADs were characterized by a distinctive 'hollow' (concave up) profile and long tails of rare taxa. These findings have implications for understanding the ecology of epilithic biofilms and the spatial heterogeneity of stone biodeterioration.

  4. Finding local community structure in networks

    NASA Astrophysics Data System (ADS)

    Clauset, Aaron

    2005-08-01

    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(k2d) for general graphs when d is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time consuming, the running time is linear, O(k) . We show that on computer-generated graphs the average behavior of this technique approximates that of algorithms that require global knowledge. As an application, we use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer.

  5. Structure, Relationships, and Community Responsibility.

    ERIC Educational Resources Information Center

    DiTomaso, Nancy; Parks-Yancy, Rochelle; Post, Corinne

    2003-01-01

    Offers several suggestions about how educators' efforts have gone wrong and makes recommendations about what they need to teach students about ethics and management to prepare students more adequately. Concludes that ethics are about structures, processes, and the relationships that endure, get reproduced, and that generate outcomes that affect…

  6. Arctic spring awakening - Steering principles behind the phenology of vernal ice algal blooms

    NASA Astrophysics Data System (ADS)

    Leu, E.; Mundy, C. J.; Assmy, P.; Campbell, K.; Gabrielsen, T. M.; Gosselin, M.; Juul-Pedersen, T.; Gradinger, R.

    2015-12-01

    Marine ecosystems at high latitudes are characterized by extreme seasonal changes in light conditions, as well as a limited period of high primary production during spring and early summer. As light returns at the end of winter to Arctic ice-covered seas, a first algal bloom takes place in the bottom layer of the sea ice. This bottom ice algae community develops through three distinct phases in the transition from winter to spring, starting with phase I, a predominantly net heterotroph community that has limited interaction with the pelagic or benthic realms. Phase II begins in the spring once light for photosynthesis becomes available at the ice bottom, although interaction with the water column and benthos remains limited. The transition to the final phase III is then mainly driven by a balance of atmospheric and oceanographic forcing that induce structural changes in the sea ice and ultimately the removal of algal biomass from the ice. Due to limited data availability an incomplete understanding exists of all the processes determining ice algal bloom phenology and the considerable geographic differences in sympagic algal standing stocks and primary production. We present here the first pan-Arctic compilation of available time-series data on vernal sea ice algal bloom development and identify the most important factors controlling its development and termination. Using data from the area surrounding Resolute Bay (Nunavut, Canada) as an example, we support previous investigations that snow cover on top of the ice influences sea ice algal phenology, with highest biomass development, but also earliest termination of blooms, under low snow cover. We also provide a pan-Arctic overview of sea ice algae standing stocks and primary production, and discuss the pertinent processes behind the geographic differences we observed. Finally, we assess potential future changes in vernal algal bloom phenology as a consequence of climate change, including their importance to

  7. Centrality measures for networks with community structure

    NASA Astrophysics Data System (ADS)

    Gupta, Naveen; Singh, Anurag; Cherifi, Hocine

    2016-06-01

    Understanding the network structure, and finding out the influential nodes is a challenging issue in large networks. Identifying the most influential nodes in a network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is being done to devise centrality measures which could efficiently identify the most influential nodes in a network. There are two major approaches to this problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are of prime importance. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed here that requires information only at the community level. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies, an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.

  8. The Crystal Structure of an Algal Prolyl 4-Hydroxylase Complexed with a Proline-rich Peptide Reveals a Novel Buried Tripeptide Binding Motif*

    PubMed Central

    Koski, M. Kristian; Hieta, Reija; Hirsilä, Maija; Rönkä, Anna; Myllyharju, Johanna; Wierenga, Rik K.

    2009-01-01

    Plant and algal prolyl 4-hydroxylases (P4Hs) are key enzymes in the synthesis of cell wall components. These monomeric enzymes belong to the 2-oxoglutarate dependent superfamily of enzymes characterized by a conserved jelly-roll framework. This algal P4H has high sequence similarity to the catalytic domain of the vertebrate, tetrameric collagen P4Hs, whereas there are distinct sequence differences with the oxygen-sensing hypoxia-inducible factor P4H subfamily of enzymes. We present here a 1.98-Å crystal structure of the algal Chlamydomonas reinhardtii P4H-1 complexed with Zn2+ and a proline-rich (Ser-Pro)5 substrate. This ternary complex captures the competent mode of binding of the peptide substrate, being bound in a left-handed (poly)l-proline type II conformation in a tunnel shaped by two loops. These two loops are mostly disordered in the absence of the substrate. The importance of these loops for the function is confirmed by extensive mutagenesis, followed up by enzyme kinetic characterizations. These loops cover the central Ser-Pro-Ser tripeptide of the substrate such that the hydroxylation occurs in a highly buried space. This novel mode of binding does not depend on stacking interactions of the proline side chains with aromatic residues. Major conformational changes of the two peptide binding loops are predicted to be a key feature of the catalytic cycle. These conformational changes are probably triggered by the conformational switch of Tyr140, as induced by the hydroxylation of the proline residue. The importance of these findings for understanding the specific binding and hydroxylation of (X-Pro-Gly)n sequences by collagen P4Hs is also discussed. PMID:19553701

  9. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar

    2013-04-01

    The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.

  10. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  11. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  12. Resilience and recovery: the effect of triclosan exposure timing during development, on the structure and function of river biofilm communities.

    PubMed

    Lawrence, J R; Topp, E; Waiser, M J; Tumber, V; Roy, J; Swerhone, G D W; Leavitt, P; Paule, A; Korber, D R

    2015-04-01

    Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l(-1) TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p<0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism. Direct counts of protozoans indicated that TCS was suppressive, whereas micrometazoan populations were, in some instances, stimulated. These results indicate that even a relatively brief exposure of a river biofilm community to relatively low levels of TCS alters both the trajectory and final community structure. Although some evidence of recovery was observed, removal of TCS did not result in a return to the unexposed reference condition.

  13. Resilience and recovery: the effect of triclosan exposure timing during development, on the structure and function of river biofilm communities.

    PubMed

    Lawrence, J R; Topp, E; Waiser, M J; Tumber, V; Roy, J; Swerhone, G D W; Leavitt, P; Paule, A; Korber, D R

    2015-04-01

    Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l(-1) TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p<0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism. Direct counts of protozoans indicated that TCS was suppressive, whereas micrometazoan populations were, in some instances, stimulated. These results indicate that even a relatively brief exposure of a river biofilm community to relatively low levels of TCS alters both the trajectory and final community structure. Although some evidence of recovery was observed, removal of TCS did not result in a return to the unexposed reference condition. PMID

  14. Structural Impacts on Thallus and Algal Cell Components of Two Lichen Species in Response to Low-Level Air Pollution in Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Ra, Hyung-Shim Y.; Rubin, Laura; Crang, Richard F. E.

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  15. Structural impacts on thallus and algal cell components of two lichen species in response to low-level air pollution in pacific northwest forests.

    PubMed

    Ra, Hyung-Shim Y; Rubin, Laura; Crang, Richard F E

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  16. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  17. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model.

  18. School, Community Leadership, and Election Structure

    ERIC Educational Resources Information Center

    Allen, Ann

    2008-01-01

    This article examines how the political structure of school elections contributes to leadership perspectives related to school-community engagement. Interview data from school superintendents, school board presidents, and city mayors across four cities and two election types were analyzed to determine if differences in school election structure…

  19. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. PMID:26231415

  20. Direct Effect of Carbon Dioxide Concentration on Phytoplankton Community Structure in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Tortell, P. D.; Payne, C. D.; Dunbar, R. B.; Ditullio, G. R.

    2006-12-01

    As the largest high-nutrient low-chlorophyll (HNLC) region on the planet, the Southern Ocean plays a critical role in global biogeochemical cycling and climate modulation. Primary productivity and phytoplankton community structure in the waters surrounding Antarctica have demonstrated unique sensitivity to small changes in major and trace element availability and vertical mixing. However, the capacity of changing atmospheric CO2 to restructure Antarctic phytoplankton communities has only recently been proposed. During the austral summer of 2005-2006, the "Controls on Ross Sea Algal Community Structure" (CORSACS) project performed an integrated series of shipboard incubations coupled with polynya water column sampling designed to investigate the interplay of iron, light, and CO2 levels as determinants of primary production and phytoplankton community structure. Results from the CORSACS CO2 manipulation incubation experiment demonstrate substantial shifts in the taxonomic distribution of phytoplankton exposed to an experimental CO2 gradient. Triplicate semi-continuous culture bottles were bubbled with air mixtures containing 100, 370, and 800 ppm CO2, designed to approximate bloom conditions under glacial, modern, and projected future levels of carbon dioxide. At the conclusion of the 18-day incubation, the 100 ppm community was dominated by the small, finely silicified pennate diatom Pseudonitzschia subcurvata, while the abundance of larger, colonial Chaetoceros species increased significantly in the 800 ppm community. These results represent the first evidence that perturbations in atmospheric CO2 have the potential to reorganize phytoplankton community structure in the Southern Ocean, and have implications for both the glacial productivity paradox and the future of polar trophic structure.

  1. Cross-habitat interactions among bivalve species control community structure on intertidal flats.

    PubMed

    Donadi, Serena; van der Heide, Tjisse; van der Zee, Els M; Eklöf, Johan S; van de Koppel, Johan; Weerman, Ellen J; Piersma, Theunis; Olff, Han; Eriksson, Britas Klemens

    2013-02-01

    Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea, promote abundances of the burrowing bivalve Cerastoderma edule L. (cockle) in neighboring habitats at relatively long distances coastward from mussel beds. Field surveys within and around three mussel beds showed a peak in cockle densities at 50-100 m toward the coast from the mussel bed, while cockle abundances elsewhere in the study area were very low. Field transplantation of cockles showed higher survival of young cockles (2-3 years old) and increased spat fall coastward of the mussel bed compared to within the bed and to areas without mussels, whereas growth decreased within and coastward of the mussel bed. Our measurements suggest that the observed spatial patterns in cockle numbers resulted from (1) inhibition effects by the mussels close to the beds due to preemptive algal depletion and deteriorated sediment conditions and (2) facilitation effects by the mussels farther away from the beds due to reduction of wave energy. Our results imply that these spatial, scale-dependent interactions between reef-forming ecosystem engineers and surrounding communities of sedentary benthic organisms can be an important determinant of the large-scale community structure in intertidal ecosystems. Understanding this interplay between neighboring communities of sedentary species is therefore essential for effective conservation and restoration of soft-bottom intertidal communities.

  2. Cross-habitat interactions among bivalve species control community structure on intertidal flats.

    PubMed

    Donadi, Serena; van der Heide, Tjisse; van der Zee, Els M; Eklöf, Johan S; van de Koppel, Johan; Weerman, Ellen J; Piersma, Theunis; Olff, Han; Eriksson, Britas Klemens

    2013-02-01

    Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea, promote abundances of the burrowing bivalve Cerastoderma edule L. (cockle) in neighboring habitats at relatively long distances coastward from mussel beds. Field surveys within and around three mussel beds showed a peak in cockle densities at 50-100 m toward the coast from the mussel bed, while cockle abundances elsewhere in the study area were very low. Field transplantation of cockles showed higher survival of young cockles (2-3 years old) and increased spat fall coastward of the mussel bed compared to within the bed and to areas without mussels, whereas growth decreased within and coastward of the mussel bed. Our measurements suggest that the observed spatial patterns in cockle numbers resulted from (1) inhibition effects by the mussels close to the beds due to preemptive algal depletion and deteriorated sediment conditions and (2) facilitation effects by the mussels farther away from the beds due to reduction of wave energy. Our results imply that these spatial, scale-dependent interactions between reef-forming ecosystem engineers and surrounding communities of sedentary benthic organisms can be an important determinant of the large-scale community structure in intertidal ecosystems. Understanding this interplay between neighboring communities of sedentary species is therefore essential for effective conservation and restoration of soft-bottom intertidal communities. PMID:23691667

  3. The nested structure of a scavenger community

    PubMed Central

    Selva, Nuria; Fortuna, Miguel A

    2007-01-01

    Scavenging is a widespread phenomenon in vertebrate communities which has rarely been accounted for, in spite of playing an essential role in food webs by enhancing nutrient recycling and community stability. Most studies on scavenger assemblages have often presented an oversimplified view of carrion foraging. Here, we applied for the first time the concept of nestedness to the study of a species-rich scavenger community in a forest ecosystem (Białowieża Primeval Forest, Poland) following a network approach. By analysing one of the most complete datasets existing up to now in a pristine environment, we have shown that the community of facultative scavengers is not randomly assembled but highly nested. A nested pattern means that species-poor carcasses support a subset of the scavenger assemblage occurring at progressively species-rich carcasses. This result contradicts the conventional view of facultative scavenging as random and opportunistic and supports recent findings in scavenging ecology. It also suggests that factors other than competition play a major role in determining community structure. Nested patterns in scavenger communities appear to be promoted by the high diversity in carrion resources and consumers, the differential predictability of the ungulate carcass types and stressful environmental conditions. PMID:17301021

  4. Phylogenetic structure in tropical hummingbird communities

    PubMed Central

    Graham, Catherine H.; Parra, Juan L.; Rahbek, Carsten; McGuire, Jimmy A.

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world. PMID:19805042

  5. Pyrosequencing of plastid 23S rRNA genes reveals diverse and dynamic cyanobacterial and algal populations in two eutrophic lakes.

    PubMed

    Steven, Blaire; McCann, Sage; Ward, Naomi L

    2012-12-01

    Pyrosequencing of plastid 23S rRNA genes was performed to determine the usefulness of this methodology for describing spatial and temporal patterns of algal diversity in two eutrophic lakes. The majority of the sequences were identified as known cyanobacteria or eukaryotic algae (> 70% of sequence reads), indicating this approach can specifically recover algal sequences from complex communities. Furthermore, estimated coverage of the data sets indicated that the majority of the 23S rRNA genetic diversity was recovered in these surveys. Communities from algal mats could be clearly distinguished from algae in the water column, and the communities could be readily differentiated between the two lakes, suggesting that the plastid 23S rRNA sequencing was able to distinguish niche and biogeographic partitioning of algal communities. Within the sequence data sets, the ratio of cyanobacteria to eukaryotic algae fluctuated over the course of sampling, with cyanobacteria 23S rRNA sequences being more abundant in later samples. In addition, the eukaryotic algae communities showed large shifts in composition over the course of sampling. Taken together, these data demonstrate the usefulness of targeted plastid 23S rRNA sequencing for describing the structure and dynamics of complex algal communities.

  6. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  7. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.

  8. Modularity and community structure in networks.

    PubMed

    Newman, M E J

    2006-06-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as "modularity" over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

  9. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  10. Identifying community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  11. A cheating limit for structured communities

    SciTech Connect

    Perelson, Alan S; Gerrish, Philip J

    2008-01-01

    The constructive creativity of natural selection originates from its paradoxical ability to foster cooperation through competition. Cooperating communities ranging from complex societies to somatic tissue are constantly under attack, however, by non-cooperating mutants or transformants, called 'cheaters'. Structure in these communities promotes the formation of cooperating clusters whose competitive superiority can alone be sufficient to thwart outgrowths of cheaters and thereby maintain cooperation. But we find that when cheaters appear too frequently -- exceeding a threshold mutation or transformation rate -- their scattered outgrowths infiltrate and break up cooperating clusters, resulting in a cascading loss of community integrity, a switch to net positive selection for cheaters, and ultimately in the loss of cooperation. We find that this threshold mutation rate is directly proportional to the fitness support received from each cooperating neighbor minus the individual fitness benefit of cheating. When mutation rate also evolves, this threshold is crossed spontaneously after thousands of generations, at which point cheaters rapidly invade. In a structured community, cooperation can persist only if the mutation rate remains below a critical value.

  12. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  13. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  14. A multi-decade time series of kelp forest community structure at San Nicolas Island, California

    USGS Publications Warehouse

    Lafferty, Kevin D.; Kenner, Michael C.; Estes, James A.; Tinker, M. Tim; Bodkin, James L.; Cowen, Robert K.; Harrold, Christopher; Novak, Mark; Rassweiler, Andrew; Reed, Daniel C.

    2013-01-01

    San Nicolas Island is surrounded by broad areas of shallow subtidal habitat, characterized by dynamic kelp forest communities that undergo dramatic and abrupt shifts in community composition. Although these reefs are fished, the physical isolation of the island means that they receive less impact from human activities than most reefs in Southern California, making San Nicolas an ideal place to evaluate alternative theories about the dynamics of these communities. Here we present monitoring data from seven sampling stations surrounding the island, including data on fish, invertebrate, and algal abundance. These data are unusual among subtidal monitoring data sets in that they combine relatively frequent sampling (twice per year) with an exceptionally long time series (since 1980). Other outstanding qualities of the data set are the high taxonomic resolution captured and the monitoring of permanent quadrats and swaths where the history of the community structure at specific locations has been recorded through time. Finally, the data span a period that includes two of the strongest ENSO events on record, a major shift in the Pacific decadal oscillation, and the reintroduction of sea otters to the island in 1987 after at least 150 years of absence. These events provide opportunities to evaluate the effects of bottom-up forcing, top-down control, and physical disturbance on shallow rocky reef communities.

  15. [Phytoplankton pigment patterns and community structure in the Yangtze Estuary and its adjacent areas].

    PubMed

    Lai, Jun-xiang; Yu, Zhi-ming; Song, Xiu-xian; Han, Xiao-tian; Cao, Xi-hua; Yuan, Yong-quan

    2013-09-01

    Three cruises were carried out in the Yangtze Estuary and its adjacent areas in May, November, June during 2009-2010. The spatial variations of phytoplankton community structure were investigated based on RP-HPLC analysis of pigments and CHEMTAX processing of the pigment data. 21 kinds of pigments were detected, among which chlorophyll a, peridinin, fucoxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll b, diadinoxanthin, alloxanthin and zeaxanthin were the major pigments in the Yangtze Estuary and its adjacent areas. Chlorophyll a was the most abundant in all pigments, followed by fuxoxanthin. Other pigments generally contributed a minor proportion to the total pigments. High concentrations of fucoxanthin and peridinin were observed in May 2009 and June 2010, indicating blooms of diatoms and dinoflagellates. The results showed that the composition and distribution of phytoplankton pigments were influenced by environmental factors. The phytoplankton community, as determined by biomarker pigment concentration using HPLC and CHEMTAX, was composed mainly of diatoms, dinoflagellates, cryptophytes, chlorophytes, cyanobacteria, prymnesiophytes, chrysophytes and prasinophytes. The dominant algal groups were diatoms, dinoflagellates and chlorophytes in May 2009. The phytoplankton community was characterized by high contribution of diatoms in November 2009. Diatoms, dinoflagellates and cryptophytes accounted for 62.5% of chlorophyll a in June 2010, and the relative abundance of cyanobacteria was higher in this cruise. The spatial variations of phytoplankton community structure featured distinct regionality. Diatoms, chlorophytes and cryptophytes were the main groups in the inshore waters, and the abundances of prymnesiophytes, chrysophytes and cyanobacteria were increasing from inshore to the open sea. PMID:24288983

  16. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  17. Taxonomies of networks from community structure

    PubMed Central

    Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2014-01-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977

  18. Epidemic spreading on complex networks with community structures

    NASA Astrophysics Data System (ADS)

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-07-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities.

  19. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  20. Epidemic spreading on complex networks with community structures.

    PubMed

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S H

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  1. Submesoscale dynamics and planktonic community structure

    NASA Astrophysics Data System (ADS)

    Franks, P. J.; Taniguchi, D. A.

    2012-12-01

    The vertical velocities associated with submesoscale dynamics occur on time scales that are resonant with planktonic growth and grazing rates. This resonance may cause submesoscale dynamics to be disproportionately important to planktonic productivity and carbon sequestration. To investigate the role of submesoscale motions on planktonic community structure, we used a continuum size-structured planktonic ecosystem model. The model is based on a traditional NPZ framework, but allows for size dependence of all biological processes. The model was carefully parameterized with data from the literature, and reproduces realistic planktonic size spectra. Perturbing the model with a nutrient pulse similar to that driven by submesoscale upwelling leads to significant perturbations to the ecosystem. Pulses of enhanced biomass propagate from small to large organisms over time scales of days to weeks. We explore the model stability and dynamics, and their dependence on the parameter values, to gain understanding of the potential for submesoscale physical motions to influence planktonic ecosystem dynamics.

  2. [Structural variability of the lithorheophile macrobenthos communities].

    PubMed

    Chertoprud, M V

    2007-01-01

    The relationship between the abundance of taxa and life forms of lithorheophile macrobenthos and its variability were studied based on 200 quantitative samples from six territories of the Palaearctic (Moscow province, northwestern Caucasus, eastern Carpathians, northern Karelia, South Urals, and Altai mountains). The set of taxa predominant in the communities and their ecology are described. It is found that community structure varies strongly, depending on the characteristics of each region, on the size of the watercourse, and on the season. Six types of biocenoses are recognized by means of the Braun-Blanquet method, each characterized by its peculiar set of predominant life forms and families rather similar in different territories. The differences between these types are related to the size and the hydrological conditions of the watercourse. Biocenosis 1 is typical to smal brooks (up to 0.01-0.1 m3/s), characterised by the predominance of detritophagous animals non-specific to the type of food (Gammarus, Nemoura, Limnephilidae). In biocenosis 2a (large brooks with water flow 0.03-0.3 m3/s and velocity 0.1-0.3 m/s), almost immobile shell scrapers (Ancylus, Silo, Agapetes, Glossosoma) are predominant. Biocenosis 2b (large brooks with velocity 0.3-0.5 m/s) have a more or less balanced set of fundamental lithorheophile life forms. Biocenosis 2c (large mountain brooks with velocity 0.5-1 m/s) is characterised by specialized scrapers of the rapids (Epeorus and Diomesa) and filterers (Simuliidae). In biocenosis 3 (small rivers), sedentary filterers (Hydropsychidae, Simulliidae) are predominant; scrapers also play a significant role. Biocenosis 4 (rivers with water flow more than 3 m3/s, thick incrustations, and silted stones on the bottom) has predominant filterers (Hydropsychidae) and vermiform algophagous animals inside the incrustations (Orthocladius, Psychomyia). Significant variability in community structure unrelated to the environmental factors is revealed

  3. [Structural variability of the lithorheophile macrobenthos communities].

    PubMed

    Chertoprud, M V

    2007-01-01

    The relationship between the abundance of taxa and life forms of lithorheophile macrobenthos and its variability were studied based on 200 quantitative samples from six territories of the Palaearctic (Moscow province, northwestern Caucasus, eastern Carpathians, northern Karelia, South Urals, and Altai mountains). The set of taxa predominant in the communities and their ecology are described. It is found that community structure varies strongly, depending on the characteristics of each region, on the size of the watercourse, and on the season. Six types of biocenoses are recognized by means of the Braun-Blanquet method, each characterized by its peculiar set of predominant life forms and families rather similar in different territories. The differences between these types are related to the size and the hydrological conditions of the watercourse. Biocenosis 1 is typical to smal brooks (up to 0.01-0.1 m3/s), characterised by the predominance of detritophagous animals non-specific to the type of food (Gammarus, Nemoura, Limnephilidae). In biocenosis 2a (large brooks with water flow 0.03-0.3 m3/s and velocity 0.1-0.3 m/s), almost immobile shell scrapers (Ancylus, Silo, Agapetes, Glossosoma) are predominant. Biocenosis 2b (large brooks with velocity 0.3-0.5 m/s) have a more or less balanced set of fundamental lithorheophile life forms. Biocenosis 2c (large mountain brooks with velocity 0.5-1 m/s) is characterised by specialized scrapers of the rapids (Epeorus and Diomesa) and filterers (Simuliidae). In biocenosis 3 (small rivers), sedentary filterers (Hydropsychidae, Simulliidae) are predominant; scrapers also play a significant role. Biocenosis 4 (rivers with water flow more than 3 m3/s, thick incrustations, and silted stones on the bottom) has predominant filterers (Hydropsychidae) and vermiform algophagous animals inside the incrustations (Orthocladius, Psychomyia). Significant variability in community structure unrelated to the environmental factors is revealed

  4. Macroinvertebrate and algal community sample collection methods and data collected at selected sites in the Eagle River watershed, Colorado, 2000-07

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.

    2010-01-01

    State and local agencies are concerned about the effects of increasing urban development and human population growth on water quality and the biological condition of regional streams in the Eagle River watershed. In response to these needs, the U.S. Geological Survey initiated a study in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service. As part of this study, previously collected macroinvertebrate and algal data from the Eagle River watershed were compiled. This report includes macroinvertebrate data collected by the U.S. Geological Survey and(or) the U.S. Department of Agriculture Forest Service from 73 sites from 2000 to 2007 and algal data collected from up to 26 sites between 2000 and 2001 in the Eagle River watershed. Additionally, a brief description of the sample collection methods and data processing procedures are presented.

  5. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    ERIC Educational Resources Information Center

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  6. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  7. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables

  8. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    PubMed

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. PMID:27090691

  9. Opinion Dynamics in Populations with Implicit Community Structure

    NASA Astrophysics Data System (ADS)

    Si, Xiameng; Liu, Yun; Zhang, Zhenjiang

    Web encounter facilitate contacts between people from different communities outside space and time. Implicit Community Structure is exhibited because of highly connected links within community and sparse encounters between communities. Considering the imperceptible influence of encounter on opinions, Sznajd updating rules are used to mimic people's behaviors after encountering a stranger in another community. We introduce a model for opinion evolution, in which the interconnectivity between different communities is represented as encounter frequency, and leadership is introduced to control the strength of community's opinion guide. In this scenario, the effects of Implicit Community Structure of contact network on opinion evolution, for asymmetric and random initial distribution but with heterogeneous opinion guide, are investigated respectively. It is shown that large encounter frequency favors consensus of the whole populations and successful opinion spreading, which is qualitatively agree with the results observed in Majority model defined on substrates with predefined community structure.

  10. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  11. Community Structure and Vietnamese Refugee Adaptation: The Significance of Context.

    ERIC Educational Resources Information Center

    Starr, Paul D.; Roberts, Alden E.

    1982-01-01

    Describes research investigating the effects of community structure on the adjustment of Vietnamese refugees in America. Emphasizes how congruence between individual characteristics and characteristics of the receiving community determine successful refugee adaptation to a new environment. (MJL)

  12. Bipartite Community Structure of eQTLs

    PubMed Central

    Platig, John; DeMeo, Dawn; Quackenbush, John

    2016-01-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network “hub” SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits. PMID:27618581

  13. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  14. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits. PMID:27618581

  15. Dynamics and control of diseases in networks with community structure.

    PubMed

    Salathé, Marcel; Jones, James H

    2010-04-08

    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  16. Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    PubMed Central

    Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.

    2011-01-01

    Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the

  17. Drifting algae and zoobenthos — Effects on settling and community structure

    NASA Astrophysics Data System (ADS)

    Bonsdorff, Erik

    Shallow (5 to 10 m) sandy bottoms in the Baltic Sea are important areas for zoobenthic production. The infaunal communities are generally governed by the hydrographical conditions are transport of the sediment through wind effects. With increasing eutrophication in the Baltic Sea, drifting mats of annual algae ( Cladophora, Stictyosiphon, Polysiphonia, Rhodemela, Sphacelaria, Pilayella, Furcellaria, Ceramium, etc) have become increasingly common, adding to the structuring and regulating factors for the infauna. In 1990 and 91, a field-study (SCUBA diving; zoobenthos and algae sampling) was carried out in the Åland archipelogo, in thennorthern and their structuring effect on the zoobenthos. Algal biomass increased from 150 ± 19 g DW·m -2 in 1990 to 832±60 g DW·m -2 in 1991, having no effect on oxygen saturation in 1990, but showing signs of reduced oxygen saturation in 1991. Organic content of the sediment remained stable (0.60 to 0.74%) during the entire study period. The zoobenthic community showed significant responses to the drifting algae at population level and in terms of community structure (by 1991: significantly reduced species number; low similarity values (40 to 65%) between bare sand and under the algae). The main species affected were the dominating bivalve Macoma balthica, the polychaetes Pygospio elegans and Manayunkia aestuarina, and the amphipod Corophium volutator. The settlement of M. balthica spat was significantly reduced by the algae (>70% in 1990/91), and no individuals of the dominating polychaetes were recorded under the mat. C. volutator, however, benefited from the algae, and greatly increased in numbers. The results clearly demonstrate the types of physical effects drift-algae will have no sandy-bottom benthos, and show that significant changes in the communities over large areas can be expected with increasing eutrophication.

  18. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    USGS Publications Warehouse

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  19. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  20. Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores.

    PubMed

    Taylor, David I; Schiel, David R

    2010-01-01

    Consumers that forage across habitats can affect communities by altering the abundance and distribution of key species. In marine communities, studies of trophic interactions have generally focused on the effects of herbivorous and predatory invertebrates on benthic algae and mussel populations. However, large mobile consumers that move across habitats, such as fishes, can strongly affect community dynamics through consumption of habitat-dominating species, but their effects often vary over environmental gradients. On temperate rocky shores, herbivorous fishes are generally a small part of the fish fauna compared to the tropics, and there is sparse evidence that they play a major direct role in algal community dynamics, particularly of large brown algae that dominate many reefs. In New Zealand, however, a wide-ranging herbivorous fish, Odax pullus, feeds exclusively on macroalgae, including Durvillaea antarctica, a large low-intertidal fucoid reaching 10 m in length and 70 kg in mass. In four experiments we tested the extent of fish herbivory and how it was affected by algal canopy structure across a gradient of wave exposure at multiple sites. Exclusion experiments showed that fish impacts greatly reduced the cover and biomass of Durvillaea and that these effects decreased with increasing wave stress and algal canopy cover, effectively restricting the alga to exposed conditions. Almost all plants were entirely removed by fish where there was a sparse algal canopy in sheltered and semi-exposed sites, but there was significantly less grazing in exposed sites. Recruit Durvillaea beneath canopies were less affected by fish grazing, but they grew slowly. Successful natural recruitment, therefore, occurred almost exclusively on exposed shores outside canopies where many plants escaped severe grazing, and growth to maturity was far greater than elsewhere. Such large and direct impacts on the local and regional distribution of large brown algal populations by mobile

  1. Growing networks of overlapping communities with internal structure.

    PubMed

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks. PMID:27627327

  2. Growing networks of overlapping communities with internal structure

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.

  3. Pinning controllability of complex networks with community structure.

    PubMed

    Miao, Qingying; Tang, Yang; Kurths, Jürgen; Fang, Jian-an; Wong, W K

    2013-09-01

    In this paper, we study the controllability of networks with different numbers of communities and various strengths of community structure. By means of simulations, we show that the degree descending pinning scheme performs best among several considered pinning schemes under a small number of pinned nodes, while the degree ascending pinning scheme is becoming more powerful by increasing the number of pinned nodes. It is found that increasing the number of communities or reducing the strength of community structure is beneficial for the enhancement of the controllability. Moreover, it is revealed that the pinning scheme with evenly distributed pinned nodes among communities outperforms other kinds of considered pinning schemes. PMID:24089950

  4. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy.

  5. The Community Structure of the Global Corporate Network

    PubMed Central

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  6. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  7. Macroalgal blooms alter community structure and primary productivity in marine ecosystems.

    PubMed

    Lyons, Devin A; Arvanitidis, Christos; Blight, Andrew J; Chatzinikolaou, Eva; Guy-Haim, Tamar; Kotta, Jonne; Orav-Kotta, Helen; Queirós, Ana M; Rilov, Gil; Somerfield, Paul J; Crowe, Tasman P

    2014-09-01

    Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and

  8. Enhancing community detection by using local structural information

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  9. A new dynamic null model for phylogenetic community structure

    PubMed Central

    Pigot, Alex L; Etienne, Rampal S

    2015-01-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion – often attributed to negative biotic interactions – are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure. PMID:25560516

  10. A new dynamic null model for phylogenetic community structure.

    PubMed

    Pigot, Alex L; Etienne, Rampal S

    2015-02-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.

  11. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae. PMID:26841229

  12. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae.

  13. Similarity between community structures of different online social networks and its impact on underlying community detection

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  14. Effects of a synthetic oil on zooplankton community structure

    SciTech Connect

    Hook, L.A.

    1988-01-01

    This study assessed the effects of a coal-derived oil on the structure of zooplankton communities of laboratory pond microcosms and outdoor experimental ponds. Several measures of community structure and multivariate statistical techniques were used to reveal changes in the patterns of zooplankton community structure caused by the perturbation. From these results the basic ecological mechanisms responsible for maintenance of zooplankton community structure were inferred. The comparison of the field, laboratory microcosm, and laboratory bioassay results for the effects of oil provided an empirical basis for predicting pollutant effects on aquatic ecosystems. The responses of the microcosm and pond zooplankton communities to oil treatment were quite similar. Changes in cladoceran densities were the most sensitive indicators of stress in the zooplankton communities. Copepods were slightly less sensitive, and rotifers were least sensitive to oil treatment.

  15. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  16. The effects of top-down versus bottom-up control on benthic coral reef community structure.

    PubMed

    Smith, Jennifer E; Hunter, Cynthia L; Smith, Celia M

    2010-06-01

    While climate change and associated increases in sea surface temperature and ocean acidification, are among the most important global stressors to coral reefs, overfishing and nutrient pollution are among the most significant local threats. Here we examined the independent and interactive effects of reduced grazing pressure and nutrient enrichment using settlement tiles on a coral-dominated reef via long-term manipulative experimentation. We found that unique assemblages developed in each treatment combination confirming that both nutrients and herbivores are important drivers of reef community structure. When herbivores were removed, fleshy algae dominated, while crustose coralline algae (CCA) and coral were more abundant when herbivores were present. The effects of fertilization varied depending on herbivore treatment; without herbivores fleshy algae increased in abundance and with herbivores, CCA increased. Coral recruits only persisted in treatments exposed to grazers. Herbivore removal resulted in rapid changes in community structure while there was a lag in response to fertilization. Lastly, re-exposure of communities to natural herbivore populations caused reversals in benthic community trajectories but the effects of fertilization remained for at least 2 months. These results suggest that increasing herbivore populations on degraded reefs may be an effective strategy for restoring ecosystem structure and function and in reversing coral-algal phase-shifts but that this strategy may be most effective in the absence of other confounding disturbances such as nutrient pollution.

  17. Top-down and bottom-up regulation of macroalgal community structure on a Kenyan reef

    NASA Astrophysics Data System (ADS)

    Mörk, Erik; Sjöö, Gustaf Lilliesköld; Kautsky, Nils; McClanahan, Tim R.

    2009-09-01

    Top-down and bottom-up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity ( H') and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.

  18. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  19. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    ERIC Educational Resources Information Center

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  20. The structure and evolution of plankton communities

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  1. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  2. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  3. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests.

    PubMed

    Kembel, Steven W

    2009-09-01

    Patterns of phylogenetic relatedness within communities have been widely used to infer the importance of different ecological and evolutionary processes during community assembly, but little is known about the relative ability of community phylogenetics methods and null models to detect the signature of processes such as dispersal, competition and filtering under different models of trait evolution. Using a metacommunity simulation incorporating quantitative models of trait evolution and community assembly, I assessed the performance of different tests that have been used to measure community phylogenetic structure. All tests were sensitive to the relative phylogenetic signal in species metacommunity abundances and traits; methods that were most sensitive to the effects of niche-based processes on community structure were also more likely to find non-random patterns of community phylogenetic structure under dispersal assembly. When used with a null model that maintained species occurrence frequency in random communities, several metrics could detect niche-based assembly when there was strong phylogenetic signal in species traits, when multiple traits were involved in community assembly, and in the presence of environmental heterogeneity. Interpretations of the causes of community phylogenetic structure should be modified to account for the influence of dispersal.

  4. Community structure of foraminiferal communities within temporal biozones from the western Arctic Ocean

    USGS Publications Warehouse

    Hayek, Lee-Ann C.; Buzas, Martin A.; Osterman, Lisa A.

    2007-01-01

    Community structure is often an overlooked dimension of biodiversity. Knowledge of community structure, the statistical distribution of the relative species abundance vector, makes possible comparisons and contrasts across time, space, and/or environmental conditions. Our results indicate that species of Arctic foraminifera in age-correlated cores from abyssal depths are each best described by log-series distributions. Using this structural information, we were able to determine that structural stability exists for at least 50 ka. The foraminiferal communities in this study show remarkable concordance, distributional similarity and support the neutral theory of biodiversity.

  5. Discordant coral-symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina

    NASA Astrophysics Data System (ADS)

    Leydet, Karine Posbic; Hellberg, Michael E.

    2016-06-01

    Understanding the factors that help shape the association between corals and their algal symbionts, zooxanthellae ( Symbiodinium), is necessary to better understand the functional diversity and acclimatization potential of the coral host. However, most studies focus on tropical zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of coral-algal symbiont associations. Here, we examine algal associations in a facultative zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker ( psbA coding region) and three fine-scale markers ( cp23S- rDNA, b7sym15 flanking region, and b2sym17). We ask whether Oculina spp. harbor geographically different Symbiodinium communities across their geographic range and, if so, whether the host's genetics or habitat differences are correlated with this geographical variation. We found that Oculina corals harbor different Symbiodinium communities across their geographical range. Of the habitat differences (including chlorophyll a concentration and depth), sea surface temperature is better correlated with this geographical variation than the host's genetics, a pattern most evident in the Mediterranean. Our results suggest that although facultative zooxanthellate corals may be less dependent on their algal partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they harbor may nevertheless reflect acclimatization to environmental variation among habitats.

  6. Detecting Community Structure by Using a Constrained Label Propagation Algorithm

    PubMed Central

    Ratnavelu, Kuru

    2016-01-01

    Community structure is considered one of the most interesting features in complex networks. Many real-world complex systems exhibit community structure, where individuals with similar properties form a community. The identification of communities in a network is important for understanding the structure of said network, in a specific perspective. Thus, community detection in complex networks gained immense interest over the last decade. A lot of community detection methods were proposed, and one of them is the label propagation algorithm (LPA). The simplicity and time efficiency of the LPA make it a popular community detection method. However, the LPA suffers from instability detection due to randomness that is induced in the algorithm. The focus of this paper is to improve the stability and accuracy of the LPA, while retaining its simplicity. Our proposed algorithm will first detect the main communities in a network by using the number of mutual neighbouring nodes. Subsequently, nodes are added into communities by using a constrained LPA. Those constraints are then gradually relaxed until all nodes are assigned into groups. In order to refine the quality of the detected communities, nodes in communities can be switched to another community or removed from their current communities at various stages of the algorithm. We evaluated our algorithm on three types of benchmark networks, namely the Lancichinetti-Fortunato-Radicchi (LFR), Relaxed Caveman (RC) and Girvan-Newman (GN) benchmarks. We also apply the present algorithm to some real-world networks of various sizes. The current results show some promising potential, of the proposed algorithm, in terms of detecting communities accurately. Furthermore, our constrained LPA has a robustness and stability that are significantly better than the simple LPA as it is able to yield deterministic results. PMID:27176470

  7. Generic criticality of community structure in random graphs

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Lipowska, Dorota

    2014-09-01

    We examine a community structure in random graphs of size n and link probability p /n determined with the Newman greedy optimization of modularity. Calculations show that for p <1 communities are nearly identical with clusters. For p =1 the average sizes of a community sav and of the giant community sg show a power-law increase sav˜nα' and sg˜nα. From numerical results we estimate α'≈0.26(1) and α ≈0.50(1) and using the probability distribution of sizes of communities we suggest that α'=α/2 should hold. For p >1 the community structure remains critical: (i) sav and sg have a power-law increase with α'≈α<1 and (ii) the probability distribution of sizes of communities is very broad and nearly flat for all sizes up to sg. For large p the modularity Q decays as Q˜p-0.55, which is intermediate between some previous estimations. To check the validity of the results, we also determine the community structure using another method, namely, a nongreedy optimization of modularity. Tests with some benchmark networks show that the method outperforms the greedy version. For random graphs, however, the characteristics of the community structure determined using both greedy and nongreedy optimizations are, within small statistical fluctuations, the same.

  8. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure

    PubMed Central

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  9. Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation.

    PubMed

    Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D

    2014-05-01

    In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling.

  10. What Community College Students Value: Delineating a Normative Structure for Community College Students

    ERIC Educational Resources Information Center

    Akin, Renea; Park, Toby J.

    2016-01-01

    This manuscript delineates a normative structure for community college students, outlines how this structure varies by student characteristics, and compares this structure to that of a previously established normative structure identified at a 4-year institution. A total of 512 student survey responses on the College Student Behaviors Inventory…

  11. Warming alters community size structure and ecosystem functioning.

    PubMed

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M; Perkins, Daniel M; Trimmer, Mark; Woodward, Guy

    2012-08-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization.

  12. Warming alters community size structure and ecosystem functioning.

    PubMed

    Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M; Perkins, Daniel M; Trimmer, Mark; Woodward, Guy

    2012-08-01

    Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185

  13. Virality Prediction and Community Structure in Social Networks

    PubMed Central

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  14. Virality Prediction and Community Structure in Social Networks

    NASA Astrophysics Data System (ADS)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  15. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  16. Community structure in traffic zones based on travel demand

    NASA Astrophysics Data System (ADS)

    Sun, Li; Ling, Ximan; He, Kun; Tan, Qian

    2016-09-01

    Large structure in complex networks can be studied by dividing it into communities or modules. Urban traffic system is one of the most critical infrastructures. It can be abstracted into a complex network composed of tightly connected groups. Here, we analyze community structure in urban traffic zones based on the community detection method in network science. Spectral algorithm using the eigenvectors of matrices is employed. Our empirical results indicate that the traffic communities are variant with the travel demand distribution, since in the morning the majority of the passengers are traveling from home to work and in the evening they are traveling a contrary direction. Meanwhile, the origin-destination pairs with large number of trips play a significant role in urban traffic network's community division. The layout of traffic community in a city also depends on the residents' trajectories.

  17. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  18. Convergent structure of multitrophic communities over three continents.

    PubMed

    Segar, Simon T; Pereira, Rodrigo A S; Compton, Steve G; Cook, James M

    2013-12-01

    Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonisation and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75MYA, do not show long-term 'inheritance' of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonisations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.

  19. Identifying nutrient reference sites in nutrient-enriched regions-Using algal, invertebrate, and fish-community measures to identify stressor-breakpoint thresholds in Indiana rivers and streams, 2005-9

    USGS Publications Warehouse

    Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.

    2013-01-01

    Excess nutrients in aquatic ecosystems can lead to shifts in species composition, reduced dissolved oxygen concentrations, fish kills, and toxic algal blooms. In this study, nutrients, periphyton chlorophyll a (CHLa), and invertebrate- and fishcommunity data collected during 2005-9 were analyzed from 318 sites on Indiana rivers and streams. The objective of this study was to determine which invertebrate and fish-taxa attributes best reflect the conditions of streams in Indiana along a gradient of nutrient concentrations by (1) determining statistically and ecologically significant relations among the stressor (total nitrogen, total phosphorus, and periphyton CHLa) and response (invertebrate and fish community) variables; and (2) determining the levels at which invertebrate- and fish-community measures change in response to nutrients or periphyton CHLa. For water samples at the headwater sites, total nitrogen (TN) concentrations ranged from 0.343 to 21.6 milligrams per liter (mg/L) (median 2.12 mg/L), total phosphorus (TP) concentrations ranged from 0.050 to 1.44 mg/L (median 0.093 mg/L), and periphyton CHLa ranged from 0.947 to 629 mg/L (median 69.7 mg/L). At the wadable sites, TN concentrations ranged from 0.340 to 10.0 mg/L (median 2.31 mg/L), TP concentrations ranged from 0.050 to 1.24 mg/L (median 0.110 mg/L), and periphyton CHLa ranged from 0.383 to 719 mg/L (median 44.7 mg/L). Recursive partitioning identified statistically significant low and high breakpoint thresholds on invertebrate and fish measures, which demonstrated the ecological response in enriched conditions. The combined community (invertebrate and fish) mean low and high TN breakpoint thresholds were 1.03 and 2.61 mg/L, respectively. The mean low and high breakpoint thresholds for TP were 0.083 and 0.144 mg/L, respectively. The mean low and high breakpoint thresholds for periphyton CHLa were 20.9 and 98.6 milligrams per square meter (mg/m2), respectively. Additive quantile regression analysis

  20. Great Barrier Reef butterflyfish community structure: the role of shelf position and benthic community type

    NASA Astrophysics Data System (ADS)

    Emslie, M. J.; Pratchett, M. S.; Cheal, A. J.; Osborne, K.

    2010-09-01

    The extent to which fish communities are structured by spatial variability in coral reef habitats versus stochastic processes (such as larval supply) is very important in predicting responses to sustained and ongoing habitat degradation. In this study, butterflyfish and benthic communities were surveyed annually over 15 years on 47 reefs (spanning 12° of latitude) of the Great Barrier Reef (GBR). Spatial autocorrelation in the structure of butterflyfish communities versus key differences in reef habitats was investigated to assess the extent to which the structure of these fish communities is influenced by habitat conditions. Benthic communities on each of the 47 reefs were broadly categorised as either: 1. Poritidae/Alcyoniidae, 2. mixed taxa, 3. soft coral or 4. Acropora-dominated habitats. These habitat types most reflected increases in water clarity and wave exposure, moving across the GBR shelf from coastal to outer-shelf environments. In turn, each habitat type also supported very distinct butterflyfish communities. Hard coral feeders were always the dominant butterflyfish species in each community type. However, the numerically dominant species changed according to habitat type, representing spatial replacement of species across the shelf. This study reveals clear and consistent differences in the structure of fish communities among reefs associated with marked differences in habitat structure.

  1. Community structural instability, anomie, imitation and adolescent suicidal behavior.

    PubMed

    Thorlindsson, Thorolfur; Bernburg, Jón Gunnar

    2009-04-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and values (anomie), and contact with suicidal others (suggestion-imitation). The data comes from a national survey of 14-16 years old adolescents. Valid questionnaires were obtained from 7018 students (response rate about 87%). The findings show that the community level of residential mobility has a positive, contextual effect on adolescent suicidal behavior. The findings also indicate that the contextual effect of residential mobility is mediated by both anomie and suggestion-imitation. The findings offer the possibility to identify communities that carry a substantial risk for adolescent suicide as well as the mechanisms that mediate the influence of community structural characteristics on adolescent risk behavior.

  2. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  3. Change in fish community structure in the Barents Sea.

    PubMed

    Aschan, Michaela; Fossheim, Maria; Greenacre, Michael; Primicerio, Raul

    2013-01-01

    Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992-2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996-1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.

  4. Faculty Scholarship at Community Colleges: Culture, Institutional Structures, and Socialization

    ERIC Educational Resources Information Center

    Morest, Vanessa Smith

    2015-01-01

    This chapter looks at community college faculty engagement in scholarship. Community college faculty spend the majority of their time engaged in teaching, and therefore their scholarship typically focuses on strengthening curriculum and instruction. The paper identifies some of the structural and cultural challenges and supports to scholarship at…

  5. Exploratory Visualization of Graphs Based on Community Structure

    ERIC Educational Resources Information Center

    Liu, Yujie

    2013-01-01

    Communities, also called clusters or modules, are groups of nodes which probably share common properties and/or play similar roles within a graph. They widely exist in real networks such as biological, social, and information networks. Allowing users to interactively browse and explore the community structure, which is essential for understanding…

  6. Multiple simultaneous detection of Harmful Algal Blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis.

    PubMed

    Scorzetti, G; Brand, L E; Hitchcock, G L; Rein, K S; Sinigalliano, C D; Fell, J W

    2009-01-01

    As an alternative to traditional, morphology-based methods, molecular techniques can provide detection of multiple species within the HAB community and, more widely, the phytoplankton community in a rapid, accurate and simultaneous qualitative analysis. These methods require detailed knowledge of the molecular diversity within taxa in order to design efficient specific primers and specific probes able to avoid cross-reaction with non-target sequences. Isolates from Florida coastal communities were sequence-analyzed and compared with the GenBank database. Almost 44% of the genotypes obtained did not match any sequence in GenBank, showing the existence of a large and still unexplored biodiversity among taxa. Based on these results and on the GenBank database, we designed 14 species-specific probes and 4 sets of specific primers. Multiple simultaneous detection was achieved with a bead array method based on the use of a flow cytometer and color-coded microspheres, which are conjugated to the developed probes. Following a parallel double PCR amplification, which employed universal primers in a singleplex reaction and a set of species-specific primers in multiplex, detection was performed in a cost effective and highly specific analysis. This multi-format assay, which required less than 4 h to complete from sample collection, can be expanded according to need. Up to 100 different species can be identified simultaneously in a single sample, which allows for additional use of this method in community analyses extended to all phytoplankton species. Our initial field trials, which were based on the 14 species-specific probes, showed the co-existence and dominance of two or more species of Karenia during toxic blooms in Florida waters.

  7. Multiple simultaneous detection of Harmful Algal Blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis.

    PubMed

    Scorzetti, G; Brand, L E; Hitchcock, G L; Rein, K S; Sinigalliano, C D; Fell, J W

    2009-01-01

    As an alternative to traditional, morphology-based methods, molecular techniques can provide detection of multiple species within the HAB community and, more widely, the phytoplankton community in a rapid, accurate and simultaneous qualitative analysis. These methods require detailed knowledge of the molecular diversity within taxa in order to design efficient specific primers and specific probes able to avoid cross-reaction with non-target sequences. Isolates from Florida coastal communities were sequence-analyzed and compared with the GenBank database. Almost 44% of the genotypes obtained did not match any sequence in GenBank, showing the existence of a large and still unexplored biodiversity among taxa. Based on these results and on the GenBank database, we designed 14 species-specific probes and 4 sets of specific primers. Multiple simultaneous detection was achieved with a bead array method based on the use of a flow cytometer and color-coded microspheres, which are conjugated to the developed probes. Following a parallel double PCR amplification, which employed universal primers in a singleplex reaction and a set of species-specific primers in multiplex, detection was performed in a cost effective and highly specific analysis. This multi-format assay, which required less than 4 h to complete from sample collection, can be expanded according to need. Up to 100 different species can be identified simultaneously in a single sample, which allows for additional use of this method in community analyses extended to all phytoplankton species. Our initial field trials, which were based on the 14 species-specific probes, showed the co-existence and dominance of two or more species of Karenia during toxic blooms in Florida waters. PMID:20046212

  8. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  9. Edge ratio and community structure in networks

    NASA Astrophysics Data System (ADS)

    Cafieri, Sonia; Hansen, Pierre; Liberti, Leo

    2010-02-01

    A hierarchical divisive algorithm is proposed for identifying communities in complex networks. To that effect, the definition of community in the weak sense of Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] is extended into a criterion for a bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges. A mathematical program is used within a dichotomous search to do this in an optimal way for each bipartition. This includes an exact solution of the problem of detecting indivisible communities. The resulting hierarchical divisive algorithm is compared with exact modularity maximization on both artificial and real world data sets. For two problems of the former kind optimal solutions are found; for five problems of the latter kind the edge ratio algorithm always appears to be competitive. Moreover, it provides additional information in several cases, notably through the use of the dendrogram summarizing the resolution. Finally, both algorithms are compared on reduced versions of the data sets of Girvan and Newman [Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)] and of Lancichinetti [Phys. Rev. E 78, 046110 (2008)]. Results for these instances appear to be comparable.

  10. Artificial neural networks and ecological communities (Book Review: Modelling community structure in freshwater ecosystems)

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2005-01-01

    Review info: Modeling community structure in freshwater ecosystems. Edited by Sovan Lek, Michele Scardi, Piet F.M. Verdonschot, Jean-Pierre Descy, and Young-Seuk Park, 2005. ISBN: 3-540-23940-5, 518 pp.

  11. Community structure of a microbial mat: The phylogenetic dimension

    USGS Publications Warehouse

    Risatti, J.B.; Capman, W.C.; Stahl, D.A.

    1994-01-01

    Traditional studies of microbial communities are incomplete because of the inability to identify and quantify all contributing populations. In the present study, we directly determine the abundance and distribution of sulfate-reducing bacterial populations in a microbial mat community by using hybridization probes complementary to the 16S-like rRNAs of major phylogenetic groups. Most of the major groups were found in this single community, distributed for the most part in nonoverlapping depth intervals of the mat. The reflection of the phylogenetic structure in the community structure suggests that those species making up the major phylogenetic groups perform specific interrelated metabolic functions in the community. Comparison of population profiles to previously observed rates of sulfate reduction suggests there are additional populations of sulfate-reducing bacteria both within the photooxic zone and deeper in the mat.

  12. Growing network model for community with group structure

    NASA Astrophysics Data System (ADS)

    Noh, Jae Dong; Jeong, Hyeong-Chai; Ahn, Yong-Yeol; Jeong, Hawoong

    2005-03-01

    We propose a growing network model for a community with a group structure. The community consists of individual members and groups, gatherings of members. The community grows as a new member is introduced by an existing member at each time step. The new member then creates a new group or joins one of the groups of the introducer. We investigate the emerging community structure analytically and numerically. The group size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution follows an exponential or a power law depending on the details of the growth rule. We also present an analysis of empirical data from online communities the “Groups” in http://www.yahoo.com and the “Cafe” in http://www.daum.net, which show a power-law distribution for a wide range of group sizes.

  13. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  14. 15N isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent.

    PubMed

    Han, Shiqun; Yan, Shaohua; Chen, Kaining; Zhang, Zhenhua; Zed, Rengel; Zhang, Jianqiu; Song, Wei; Liu, Haiqin

    2010-01-01

    15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Kütz. demonstrated the greatest 15N accumulation capacity, with the natural variation in isotopic ratio (delta 15N) and the isotope fractionation factor (epsilon, % per hundred) being the highest among the species investigated. The transformation and utilization of 15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.

  15. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  16. Harmful Algal Blooms and Drinking Water Treatment Research

    EPA Science Inventory

    EPA has been conducting algal bloom research at multiple facilities around Lake Erie over the past few years to help communities confront the challenge of keeping cyanobacterial toxins from reaching consumers’ taps, while minimizing the financial burden. The first goal of this re...

  17. Spatial structuring of bacterial communities within individual Ginkgo biloba trees.

    PubMed

    Leff, Jonathan W; Del Tredici, Peter; Friedman, William E; Fierer, Noah

    2015-07-01

    Plant-associated microorganisms affect the health of their hosts in diverse ways, yet the distribution of these organisms within individual plants remains poorly understood. To address this knowledge gap, we assessed the spatial variability in bacterial community diversity and composition found on and in aboveground tissues of individual Ginkgo biloba trees. We sampled bacterial communities from > 100 locations per tree, including leaf, branch and trunk samples and used high-throughput sequencing of the 16S rRNA gene to determine the diversity and composition of these communities. Bacterial community structure differed strongly between bark and leaf samples, with bark samples harbouring much greater bacterial diversity and a community composition distinct from leaves. Within sample types, we observed clear spatial patterns in bacterial diversity and community composition that corresponded to the samples' proximity to the exterior of the tree. The composition of the bacterial communities found on trees is highly variable, but this variability is predictable and dependent on sampling location. Moreover, this work highlights the importance of carefully considering plant spatial structure when characterizing the microbial communities associated with plants and their impacts on plant hosts.

  18. Structure of Caribbean coral reef communities across a large gradient of fish biomass.

    PubMed

    Newman, Marah J H; Paredes, Gustavo A; Sala, Enric; Jackson, Jeremy B C

    2006-11-01

    The collapse of Caribbean coral reefs has been attributed in part to historic overfishing, but whether fish assemblages can recover and how such recovery might affect the benthic reef community has not been tested across appropriate scales. We surveyed the biomass of reef communities across a range in fish abundance from 14 to 593 g m(-2), a gradient exceeding that of any previously reported for coral reefs. Increased fish biomass was correlated with an increased proportion of apex predators, which were abundant only inside large marine reserves. Increased herbivorous fish biomass was correlated with a decrease in fleshy algal biomass but corals have not yet recovered.

  19. Linking community size structure and ecosystem functioning using metabolic theory

    PubMed Central

    Yvon-Durocher, Gabriel; Allen, Andrew P.

    2012-01-01

    Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change. PMID:23007088

  20. Measuring the significance of community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Nie, Yuchao; Yang, Hua; Cheng, Jie; Fan, Ying; di, Zengru

    2010-12-01

    Many complex systems can be represented as networks, and separating a network into communities could simplify functional analysis considerably. Many approaches have recently been proposed to detect communities, but a method to determine whether the detected communities are significant is still lacking. In this paper, an index to evaluate the significance of communities in networks is proposed based on perturbation of the network. In contrast to previous approaches, the network is disturbed gradually, and the index is defined by integrating all of the similarities between the community structures before and after perturbation. Moreover, by taking the null model into account, the index eliminates scale effects. Thus, it can evaluate and compare the significance of communities in different networks. The method has been tested in many artificial and real-world networks. The results show that the index is in fact independent of the size of the network and the number of communities. With this approach, clear communities are found to always exist in social networks, but significant communities cannot be found in protein interactions and metabolic networks.

  1. Measuring the robustness of network community structure using assortativity

    PubMed Central

    Shizuka, Daizaburo; Farine, Damien R.

    2016-01-01

    The existence of discrete social clusters, or ‘communities’, is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems. PMID:26949266

  2. Past, Present, and Future Variations in Community College Organizational Structure.

    ERIC Educational Resources Information Center

    Underwood, James C.; Hammons, James O.

    1999-01-01

    Presents the results of a 1991 survey of 118 community college presidents, which elicited details about how their colleges were organized five years prior to and in 1991, as well as their preferred organization structures for the future. Reports variations in structure by three college size categories (enrollment levels) and indicates significant…

  3. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  4. Changing Community Structure and Income Distribution: A Structural Equation Model.

    ERIC Educational Resources Information Center

    Wheelock, Gerald C.

    A preliminary model of community economic development processes, consisting of a system of simultaneous equations, is used to describe how these processes influence changes in median family income and income inequality. The analysis was performed on 61 racially mixed counties in Alabama, using 1960-70 census data. Social and demographic variables…

  5. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  6. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  7. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  8. Alternative community structures in a kelp-urchin community: A qualitative modeling approach

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2007-01-01

    Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to

  9. Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities

    PubMed Central

    Deng, Ye; He, Zhili; Xu, Meiying; Qin, Yujia; Van Nostrand, Joy D.; Wu, Liyou; Roe, Bruce A.; Wiley, Graham; Hobbie, Sarah E.; Reich, Peter B.

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to examine impacts of elevated CO2 (eCO2) on soil microbial communities from 12 replicates each from ambient CO2 (aCO2) and eCO2 settings. The results suggest that the soil microbial community composition and structure significantly altered under conditions of eCO2, which was closely associated with soil and plant properties. PMID:22307288

  10. Parasitism, community structure and biodiversity in intertidal ecosystems.

    PubMed

    Mouritsen, K N; Poulin, R

    2002-01-01

    There is mounting evidence that parasites can influence the composition and structure of natural animal communities. In spite of this, it is difficult to assess just how important parasitism is for community structure because very few studies have been designed specifically to address the role of parasites at the community level, no doubt because it is difficult to manipulate the abundance of parasites in field experiments. Here, we bring together a large amount of published information on parasitism in intertidal communities to highlight the potential influence of parasites on the structure and biodiversity of these communities. We first review the impact of metazoan parasites on the survival, reproduction, growth and behaviour of intertidal invertebrates, from both rocky shores and soft-sediment flats. Published evidence suggests that the impact of parasites on individuals is often severe, though their effects at the population level are dependent on prevalence and intensity of infection. We then put this information together in a discussion of the impact of parasitism at the community level. We emphasize two ways in which parasites can modify the structure of intertidal communities. First, the direct impact of parasites on the abundance of key host species can decrease the importance of these hosts in competition or predator-prey interactions with other species. Second, the indirect effects of parasites on the behaviour of their hosts, e.g. burrowing ability or spatial distribution within the intertidal zone, can cause changes to various features of the habitat for other intertidal species, leading to their greater settlement success or to their local disappearance. Our synthesis allows specific predictions to be made regarding the potential impact of parasites in certain intertidal systems, and suggests that parasites must be included in future community studies and food web models of intertidal ecosystems. PMID:12396219

  11. Temporary and permanent wetland macroinvertebrate communities: Phylogenetic structure through time

    NASA Astrophysics Data System (ADS)

    Silver, Carly A.; Vamosi, Steven M.; Bayley, Suzanne E.

    2012-02-01

    Water permanence has been previously identified as an important factor affecting macroinvertebrate diversity and abundance in wetlands. Here, we repeatedly sampled the macroinvertebrate communities in 16 permanent and 14 temporary wetlands in Alberta, Canada. Temporary wetlands were predicted to have more closely related taxa and reduced species richness due to the specialized adaptations required to survive in a temporary habitat. We analyzed the species richness (SR) and phylogenetic structure of communities, focusing on three measures of relatedness: Phylogenetic Distance (PD), Net Related Index (NRI) and Nearest Taxon Index (NTI). We also examined the influence of taxonomic scale on resulting phylogenetic structure. Overall, taxa were more diverse and abundant in permanent wetlands. As expected, PD and SR were greatest in permanent wetlands. NTI and NRI metrics suggest permanent wetland communities are primarily structured by biotic interactions, such as competition and predation. Conversely, temporary wetland communities appear to be affected more by environmental filtering, with fewer groups being able to survive and reproduce in the relatively limited time that these environments contain water. Insect and dipteran assemblages differed from the patterns found when examining all taxa together for communities for both permanent and temporary wetlands, tending to become more phylogenetically clustered as the season progressed. Conversely, lophotrochozoan and gastropod assemblages closely matched the patterns observed for full communities in permanent wetlands, suggesting a role for biotic interactions. Given the contrasting patterns observed for permanent and temporary wetlands, macroinvertebrate diversity at the landscape level may be best conserved by maintaining both habitat types.

  12. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. PMID:27267720

  13. Benchmark model to assess community structure in evolving networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Darst, Richard K.; Arenas, Alex; Fortunato, Santo; Gómez, Sergio

    2015-07-01

    Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterward the communities across layers. Alternatively, one can develop dedicated dynamic procedures so that multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on stochastic block models. In them, the time evolution consists of a periodic oscillation of the system's structure between configurations with built-in community structure. We also propose the extension of quality comparison indices to the dynamic scenario.

  14. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  15. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems.

  16. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient.

    PubMed

    DeNicola, Dean M; Lellock, Amber J

    2015-08-01

    Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L(-1) and significantly decreased with increasing SO4 . Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm(-2) . Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4 . Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels. PMID:26986794

  17. Random field Ising model and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Jeong, H.; Noh, J. D.

    2006-04-01

    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  18. Characterization of bacterial community structure on a weathered pegmatitic granite.

    PubMed

    Gleeson, Deirdre B; Kennedy, Nabla M; Clipson, Nicholas; Melville, Karrie; Gadd, Geoffrey M; McDermott, Frank P

    2006-05-01

    This study exploited the contrasting major element chemistry of a pegmatitic granite to investigate mineralogical influences on bacterial community structure. Intact crystals of variably weathered muscovite, plagioclase, K-feldspar, and quartz were extracted, together with whole-rock granite. Environmental scanning electron microscopy revealed a diversity of bacterial structures, with rods and cocci clearly visible on surfaces of all mineral types. Bacterial automated ribosomal intergenic spacer analysis was used to generate a ribotype profile for each mineral. A randomization test revealed that community fingerprints differed between different mineral types, whereas canonical correspondence analysis (CCA) showed that mineral chemistry affected individual bacterial ribotypes. CCA also revealed that Al, Si, and Ca had a significant impact on bacterial community structure within the system, which contrasts with the finding within fungal communities that although Al and Si also had a significant impact, K rather than Ca was important. The bacterial populations associated with different minerals were different. Members of each of these populations were found almost exclusively on a single mineral type, as was previously reported for fungal populations. These results show that bacterial community structure was driven by the chemical composition of minerals, indicating selective pressure by individual chemical elements on bacterial populations in situ.

  19. Characterization of fungal community structure on a weathered pegmatitic granite.

    PubMed

    Gleeson, Deirdre B; Clipson, Nicholas; Melville, Karrie; Gadd, Geoffrey M; McDermott, Frank P

    2005-10-01

    This study exploited the contrasting major element chemistry of adjacent, physically separable crystals of framework and sheet silicates in a pegmatitic granite to investigate the mineralogical influences of fungal community structure on mineral surfaces. Large intact crystals of variably weathered muscovite, plagioclase, K-feldspar, and quartz were individually extracted, together with whole-rock granite. Environmental scanning electron microscopy (ESEM) revealed a diversity of fungal structures, with microcolonial fungi and fungal hyphae clearly visible on surfaces of all mineral types. Fungal automated ribosomal intergenic spacer analysis (FARISA) was used to generate a ribotype profile for each mineral sample and a randomization test revealed that ribotype profiles, or community fingerprints, differed between different mineral types. Canonical correspondence analysis (CCA) revealed that mineral chemistry affected individual fungal ribotypes, and strong relationships were found between certain ribotypes and particular chemical elements. This finding was further supported by analysis of variance (ANOVA) of the 16 most abundant ribotypes within the community. Significantly, individual ribotypes were largely restricted to single mineral types and ribotypes clustered strongly on the basis of mineral type. CCA also revealed that Al, Si, and Ca had a significant impact on fungal community structure within this system. These results show that fungal community structure was driven by the chemical composition of mineral substrates, indicating selective pressure by individual chemical elements on fungal populations in situ.

  20. Functional structure of biological communities predicts ecosystem multifunctionality.

    PubMed

    Mouillot, David; Villéger, Sébastien; Scherer-Lorenzen, Michael; Mason, Norman W H

    2011-01-01

    The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages.

  1. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  2. Governance and Management Structures for Community Partnerships: Experiences from the Robert Wood Johnson Foundation's Community Partnerships for Older Adults Program

    ERIC Educational Resources Information Center

    Bolda, Elise J.; Saucier, Paul; Maddux, George L.; Wetle, Terrie; Lowe, Jane Isaacs

    2006-01-01

    Purpose: This article describes early efforts of four community partnerships in Boston, El Paso, Houston, and Milwaukee to address governance and management structures in ways that promote the sustainability of innovative community-based long-term care system improvements. The four communities are grantees of the Community Partnerships for Older…

  3. Phylogenetic plant community structure along elevation is lineage specific.

    PubMed

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-12-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.

  4. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  5. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  6. Community structural characteristics and the adoption of fluoridation.

    PubMed Central

    Smith, R A

    1981-01-01

    A study of community structural characteristics associated with fluoridation outcomes was conducted in 47 communities. A three-part outcome distinction was utilized: communities never having publicly considered the fluoridation issue, those rejecting it, and those accepting it. The independent variables reflect the complexity of the community social and economic structure, social integration, and the centralization of authority. Results of mean comparisons show statistically significant differences between the three outcome types on the independent variables. A series of discriminant analyses provides furtheor evidence of how the independent variables are associated with each outcome type. Non-considering communities are shown to be low in complexity, and high in social integration and the centralization of governmental authority. Rejecters are shown to be high in complexity, but low in social integration and centralized authority. Adopters are relatively high on all three sets of variables. Theretical reasoning is provided to support the hypothesis and why these results are expected. The utility of these results and structural explanations in general are discussed, especially for public/environmental health planning and political activities. PMID:7258427

  7. The effects of climate variability on the structure of the phytoplankton community in Tumaco Bay, Colombia

    NASA Astrophysics Data System (ADS)

    Honkala, Ingrid Garcia-Hansen

    2009-12-01

    Canonical Correspondence Analysis (CCA). Strong gradients in temperature, salinity, nutrients and Secchi depth (water clarity) correlated predominantly with diatom and dinoflagellate community structure. Seasonal variability in the communities provided some important findings: (1) increased species richness and abundance of both groups were correlated with increased nutrients during the cold phase/RS; (2) diatom blooms occurred during the cold phase; (3) dinoflagellate blooms occurred at the beginning of the warm phase; (4) decreased species richness and abundance and lack of blooms characterized the DS; (5) abundances were higher nearshore than at the offshore part of the bay; and (6) chl a concentrations increased during the cold phase. The influence of ENSO in the communities also provided some important observations: (1) species richness and abundance of diatoms increased during La Nina; (2) species richness and abundance of dinoflagellates increased during El Nino when precipitation and nutrients were high; (3) harmful species and harmful algal blooms (HAB) increased during ENSO events; (4) communities recovered quickly after El Nino events; and (5) chl a concentrations decreased during El Nino and increased during Normal and La Nina conditions.

  8. Biological interactions and their role in community structure in the rocky intertidal of Helgoland (German Bight, North Sea)

    NASA Astrophysics Data System (ADS)

    Janke, Klaus

    1990-06-01

    Over 3 successive seasonal cycles (April 1986 to October 1988), field experiments were established within 3 intertidal levels in the sheltered rocky intertidal of Helgoland (North Sea, German Bight). Competitors for space ( Mytilus edulis, macroalgae), herbivores ( Littorina spp.) and predators ( Carcinus maenas) were either excluded from areas (0.25 m2) covered by undisturbed communities or enclosed at natural densities on areas that were cleared before of animals and plants. All the experimental fields (each 0.25 m2) were covered by cages with 4 mm gauze at the sides and a plexiglas top. The results of the experiments in the upper intertidal (occupied by Littorina spp. and Enteromorpha) showed that a natural density of herbivores could not prevent algal settlement and had only little influence on algal growth. Instead abiotic factors (storms, algae washed ashore) decreased the stock of the green algae. Experiments in the mid intertidal, dominated by Mytilus (50% cover), Fucus spp. (20%) and grazing L. littorea (100 ind. m-2) showed that community structure was directly changed both by grazing periwinkles and by competition for space between mussels and macroalgae. Whenever Littorina was excluded, the canopy of Fucus spp. increased continuously and reached total cover within two years. In addition to the increase of Fucus spp., the rock surface and the mussel shells were overgrown by Ulva pseudocurvata, which covered the experimental fields during parts of the summer in the absence of herbivores. As soon as perennial species (fucoids) covered most of the experimental areas, the seasonal growth of Ulva decreased drastically. Presence and growth of macroalgae were also controlled by serious competition for space with mussels. Established Mytilus prevented the growth of all perennial and ephemeral algae on the rocks. However, the shells of the mussels provided free space for a new settlement of Fucus and Ulva. In the lower intertidal (dominated by total algal cover

  9. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  10. Mission and Structure: The Community College in a Global Context.

    ERIC Educational Resources Information Center

    Levin, John S.

    This is an investigation of globalization and its effects upon seven community colleges in Canada and the U.S. As a study of organizational change, the investigation addresses the alteration of processes and structures over the 1990s, brought about in part by globalization and institutional responses to globalization. This report has 11 chapters,…

  11. Changes in Soil Microbial Community Structure with Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  12. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  13. Perception of Community Dissatisfaction and School Organizational Structures.

    ERIC Educational Resources Information Center

    Leiter, Jeffrey

    1983-01-01

    The effects of school personnel's perceptions of community dissatisfaction are examined on school structures of normative consensus, upward communication, and exchanges of help. The analysis uses questionnaire data from school personnel of 34 schools to compare the explanatory utility of four theoretical perspectives. (Author/PN)

  14. Assessment of ecological conditions and potential effects of water produced from coalbed natural gas development on biological communities in streams of the Powder River structural basin, Wyoming and Montana, 2005-08

    USGS Publications Warehouse

    Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.

    2010-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal

  15. An optical system for detecting and describing major algal blooms in coastal and oceanic waters around India

    NASA Astrophysics Data System (ADS)

    Gokul, Elamurugu Alias; Shanmugam, Palanisamy

    2016-06-01

    An optical system is developed with the aim to detect and monitor three major algal blooms (including harmful algal blooms "HABs") over ecologically relevant scales around India and to strengthen algal forecasting system. This system is designed to be capable of utilizing remote sensing, in situ, and radiative transfer techniques to provide species-specific data necessary for increasing capabilities of an algal forecasting system. With the ability to measure in-water optical properties by means of remote sensing and in situ observations, the optical system developed infers the desired phytoplankton signal from spectral distributions and utilize these data in a numerical classification technique to generate species-specific maps at given spatial and temporal scales. A simple radiative transfer model is adopted for this system to provide a means to optimally interpolate to regions with sparse in situ observation data and to provide a central component to generate in-water optical properties from remotely sensed data. For a given set of inherent optical properties along with surface and bottom boundary conditions, the optical system potentially provides researchers and managers coverage at different locations and depths for tracking algal blooms in the water column. Three major algal blooms focused here include Noctiluca scintillans/miliaris, Trichodesmium erythraeum, and Cochlodinium polykrikoides, which are recurring events in coastal and oceanic waters around India. Because satellite sensors provide a synoptic view of the ocean, both spatially and temporally, our initial efforts tested this optical system using several MODIS-Aqua images and ancillary data. Validation of the results with coincident in situ data obtained from either surface samples or depth samples demonstrated the robustness and potential utility of this approach, with an accuracy of 80-90% for delineating the presence of all three blooms in a heterogeneous phytoplankton community. Despite its

  16. Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Antoniadou, Chryssanthi; Chintiroglou, Chariton

    2005-03-01

    The spatial dispersion of zoobenthos from sublittoral hard substrate communities in the northern part of the Aegean Sea has been studied during summer 1997 and 1998. Material was collected by SCUBA diving, by totally scraping off five replicate quadrates (400 cm 2 each) at three depth levels (15, 30, 40 m) from six sites located in Chalkidiki peninsula, plus one in Kavala Gulf. The examination of the 19,343 living specimens collected revealed the presence of 314 species. Though the multivariate analyses showed high similarity between stations, the structure of this sciaphilic algal community seems to have an increased spatial heterogeneity. Four distinct facies were recorded in accordance with the occurrence of different algal forms, the degree of hard substrate inclination and the water clarity. A short review on the biodiversity of sublittoral communities in the Mediterranean revealed the affinity between the western and the eastern basin and also among the photophilic and the sciaphilic algal communities.

  17. Community structure influences species' abundance along environmental gradients.

    PubMed

    Eloranta, Antti P; Helland, Ingeborg P; Sandlund, Odd T; Hesthagen, Trygve; Ugedal, Ola; Finstad, Anders G

    2016-01-01

    Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations. We used a space-for-time approach to study how local community structure interact with lake morphometric and climatic characteristics (i.e. temperature and catchment productivity) to affect brown trout (Salmo trutta L.) yield in 283 Norwegian lakes located in different biogeographical regions. Brown trout yield (based on data from standardized survey gill net fishing; g 100 m(-2) gill net night(-1)) was generally lower in lakes where other fish species were present than in lakes with brown trout only. The yield showed an overall negative relationship with increasing temperature and a positive relationship with lake shoreline complexity. Brown trout yield was also negatively correlated with DOC load (measured using Normalized Difference Vegetation Index as a proxy) and lake size and depth (measured using terrain slope as a proxy), but only in lakes where other fish species were present. The observed negative response of brown trout yield to increasing DOC load and proportion of the pelagic open-water area is likely due to restricted (littoral) niche availability and competitive dominance of more pelagic fishes such as Arctic charr (Salvelinus alpinus (L.)). Our study highlights that, through competitive interactions, the local community structure can influence the response of a species' abundance to variation in abiotic conditions. Changes in biomass and niche use of top predators (such as the brown

  18. Structure of Benthic Communities along the Taiwan Latitudinal Gradient.

    PubMed

    Ribas-Deulofeu, Lauriane; Denis, Vianney; De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  19. Structure of Benthic Communities along the Taiwan Latitudinal Gradient

    PubMed Central

    De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  20. Structure of Benthic Communities along the Taiwan Latitudinal Gradient.

    PubMed

    Ribas-Deulofeu, Lauriane; Denis, Vianney; De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed.

  1. Mutualistic Interactions and Community Structure in Biological Metacommunities

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Filotas, Elise; Grant, Martin; Parrott, Lael

    2011-03-01

    The role of space in determining species coexistence and community structure is well established. However, previous studies mainly focus on simple competition and predation systems, and the role of mutualistic interspecies interactions is not well understood. Here we use a spatially explicit metacommunity model, in which new species enter by a mutation process, to study the effect of fitness-dependent dispersal on the structure of communities with interactions comprising mutualism, competition, and exploitation. We find that the diversity and interaction network undergo a nonequilibrium phase transition with increasing dispersal rate. Low dispersion rate favors spontaneous emergence of many dissimilar, strongly mutualistic and species-poor local communities. Due to the local dissimilarities, the global diversity is high. High dispersion rate promotes local biodiversity and supports similar, species-rich local communities with a wide range of interactions. The strong similarity between neighboring local communities leads to reduced global diversity. Supported by NSERC (Canada), FQRNT (Québec), NSF (U.S.A.)

  2. Floral colour versus phylogeny in structuring subalpine flowering communities

    PubMed Central

    McEwen, Jamie R.; Vamosi, Jana C.

    2010-01-01

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chance. However, coflowering species were not phylogenetically dispersed, in part due to our finding that floral colour is a labile trait with a weak phylogenetic signal. Furthermore, while we found that locally rare and common species exhibited equivalent floral colour distances from their coflowering neighbours, frequent species (those found in more communities) exhibited higher colour distances from their coflowering neighbours. Our findings support recent studies, which have found that (i) plant lineages exhibit frequent floral colour transitions; and (ii) traits that influence local population dynamics contribute to community structure. PMID:20484236

  3. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format.

  4. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  5. Quantifying the response of structural complexity and community composition to environmental change in marine communities.

    PubMed

    Ferrari, Renata; Bryson, Mitch; Bridge, Tom; Hustache, Julie; Williams, Stefan B; Byrne, Maria; Figueira, Will

    2016-05-01

    Habitat structural complexity is a key factor shaping marine communities. However, accurate methods for quantifying structural complexity underwater are currently lacking. Loss of structural complexity is linked to ecosystem declines in biodiversity and resilience. We developed new methods using underwater stereo-imagery spanning 4 years (2010-2013) to reconstruct 3D models of coral reef areas and quantified both structural complexity at two spatial resolutions (2.5 and 25 cm) and benthic community composition to characterize changes after an unprecedented thermal anomaly on the west coast of Australia in 2011. Structural complexity increased at both resolutions in quadrats (4 m(2)) that bleached, but not those that did not bleach. Changes in complexity were driven by species-specific responses to warming, highlighting the importance of identifying small-scale dynamics to disentangle ecological responses to disturbance. We demonstrate an effective, repeatable method for quantifying the relationship among community composition, structural complexity and ocean warming, improving predictions of the response of marine ecosystems to environmental change. PMID:26679689

  6. Genetic and acute toxicological evaluation of an algal oil containing eicosapentaenoic acid (EPA) and palmitoleic acid.

    PubMed

    Collins, M L; Lynch, B; Barfield, W; Bull, A; Ryan, A S; Astwood, J D

    2014-10-01

    Algal strains of Nannochloropsis sp. were developed, optimized, cultivated and harvested to produce a unique composition of algal oil ethyl esters (Algal-EE) that are naturally high in eicosapentaenoic acid (EPA, 23-30%) and palmitoleic acid (20-25%), and contain no docosahexaenoic acid (DHA). Algal-EE was evaluated for mutagenic activity (Ames bacterial reverse mutation, in vitro mammalian chromosome aberration, in vivo micronucleus test) and for acute oral toxicity in Sprague-Dawley rats. In the acute toxicity study, rats received a single oral gavaged dose of Algal-EE (2000 mg/kg body weight). Clinical observations were made for 14 days before sacrifice on Day 15. Macroscopic evaluation involved the examination of all organs in the cranial, thoracic, and abdominal cavities. Algal-EE showed no evidence of mutagenicity, did not produce an increase in the frequency of structural chromosome aberrations, and did not cause an increase in the induction of micronucleated polychromatic erythrocytes. There were no macroscopic abnormalities. Algal-EE up to 2000 mg/kg body weight did not affect body weight, organ appearance or produce any toxic-related signs of morbidity. The acute median lethal dose (LD50) of Algal-EE was >2000 mg/kg body weight. Based on these assays, Algal-EE does not appear to have any genetic or acute oral toxicity. PMID:25057807

  7. Drivers of macroinvertebrate community structure in unmodified streams

    PubMed Central

    2014-01-01

    Often simple metrics are used to summarise complex patterns in stream benthic ecology, thus it is important to understand how well these metrics can explain the finer-scale underlying environmental variation often hidden by coarser-scale influences. I sampled 47 relatively pristine streams in the central North Island of New Zealand in 2007 and (1) evaluated the local-scale drivers of macroinvertebrate community structure as well as both diversity and biomonitoring metrics in this unmodified landscape, and (2) assessed whether these drivers were similar for commonly used univariate metrics and multivariate structure. The drivers of community metrics and multivariate structure were largely similar, with % canopy cover and resource supply metrics the most commonly identified environmental drivers in these pristine streams. For an area with little to no anthropogenic influence, substantial variation was explained in the macroinvertebrate community (up to 70% on the first two components of a partial least squares regression), with both uni- and multivariate approaches. This research highlights two important points: (1) the importance of considering natural underlying environmental variation when assessing the response to coarse environmental gradients, and (2) the importance of considering canopy cover presence when assessing the impact of stressors on stream macroinvertebrate communities. PMID:25024926

  8. Climate and species richness predict the phylogenetic structure of African mammal communities.

    PubMed

    Kamilar, Jason M; Beaudrot, Lydia; Reed, Kaye E

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.

  9. Climate and Species Richness Predict the Phylogenetic Structure of African Mammal Communities

    PubMed Central

    Kamilar, Jason M.; Beaudrot, Lydia; Reed, Kaye E.

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change. PMID:25875361

  10. Structure of phytoplankton communities in the Yenisei estuary and over the adjacent Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Sukhanova, I. N.; Flint, M. V.; Sergeeva, V. M.; Druzhkova, E. I.; Nedospasov, A. A.

    2015-11-01

    Material was collected in the Yenisei estuary and over the adjacent Kara Sea shelf at a quasimeridional transect from 71°49'70″ to 75°59'93″ N in September 2011. The structural characteristics of the phytoplankton community were determined by latitudinal zonality of environmental conditions. Two well-distinguished phytocenoses—freshwater and marine—were found in this region. Phytoplankton in the freshwater part of the estuary was composed solely of the freshwater algae species and was distinguished by the highest numbers (up to 2 × 106 cell/L) and biomass (up to 1.4 mg/L). The marine phytocenoses over the Yenisei shoal was composed of marine neritic species; the abundance and biomass of phytoplankton in this area were significantly lower (0.2 × 106 cell/L and 0.4 mg/L, respectively). The area of intensive interaction of riverine and marine waters—the estuarine frontal zone, with ~130 km latitudinal extension (from 72° to 74° N)—was characterized by a sharp halocline, which separated the desalinated upper layer from the underlying marine water. Freshwater algal species predominated above the halocline, whereas marine species predominated below. The lower border of the euphotic layer was located 8 to 15 m below the halocline. The niche between the halocline and the lower border of the euphotic layer was characterized by high nutrient concentrations, which together with sufficient illumination determined the intensive development of phytoplankton and high values of primary production.

  11. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome

    SciTech Connect

    Hodkinson, Brendan P; Gottel, Neil R; Schadt, Christopher Warren; Lutzoni, Francois

    2011-01-01

    Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e. green algal vs. cyanobacterial), mycobiont-types and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles.

  12. Carbon Accumulation and Microbial Community Structure in Reclaimed Mine Soils

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Palumbo, A. V.; Tarver, J. D.; Fisher, S.; Cantu, J.; Brandt, C. C.

    2002-12-01

    The objective of this study was to investigate the potential for soil amendments to increase accumulation of carbon in reclaimed soils and the relationship between carbon and microbial community structure. Changes in community structure were determined by signature lipid biomarkers (SLBs) or phospholipid fatty acid methyl esters. PLFA provide estimates of the viable biomass, diversity of prokaryotic and eukaryotic diversity, and indications of physiological stress to the microbial community. Artificial neural network (ANN) analysis has been used to examine the relationship between microbial community structure and soil geochemistry. It was hypothesized that (1) soil amendments would cause changes in the structure of the microbial community and carbon content (2) changes in the structure of the microbial community would be vary between the types of amendments, and (3) analysis of the SLB with an artificial neural network (ANN) would distinguish treatment and provide a insight in to the relationship between changes in soil geochemistry and microbial community. Twenty soils samples from different field plots and at different soil horizon depths were analyzed. Biomass as estimated by PLFA analysis, ranged from 1.9 to 265 nmol/g, which corresponded to cell densities of 4.8 x107 to 6.6 x109 cells/g. In the Wall's Farm and Jenkin's Farm samples the microbial biomass decreased with depth. A horizon soils had biomass values of greater or equal to 120 nmol/g, followed by the A2 horizon,(70 to 100 nmol/g) and the weak B horizon at and (40 to 80 nmo/g). The A2 and B horizon samples showed higher relative abundance of mid-chain branched saturates that are indicative of gram positive prokaryotes and actinomycetes. At Well's Farm, the polyunsaturates indicative of eukaryotes were observed at higher abundances. These changes were related to both the prokaryotic and eukaryotic influences in the microbial community in response to the soil amendments. The correlation between

  13. Impacts of Size Structure on Intraguild Predation in Pond Communities

    NASA Astrophysics Data System (ADS)

    Crumrine, P. W.

    2005-05-01

    Size structure, the degree to which individuals in a population vary in size, can greatly influence the dynamics of intraguild predation (IGP) within ecological communities. I manipulated the degree of size structure within assemblages of IG predators and IG prey to examine impacts on the direction and intensity of IGP in communities of larval dragonflies and larval water beetles. In pond enclosure studies, Pachydiplax longipennis (IG prey) mortality was lower when exposed to size structured assemblages of Anax junius (IG predator) than when exposed to only large A. junius at the same density. Effects of size-structured assemblages of A. junius on shared prey, Ischnura verticalis, were similar to the effects each size class alone at the same density. Separate experiments with Dytiscid water beetle larvae as IG predators and size-structured assemblages of A. junius as IG prey suggest that IG prey size structure plays only a limited role in mediating shared prey survival. These experiments highlight the importance of size structure as a characteristic that may promote the coexistence of predators in IGP systems.

  14. Redox Fluctuation Structures Microbial Communities in a Wet Tropical Soil

    PubMed Central

    Pett-Ridge, J.; Firestone, M. K.

    2005-01-01

    Frequent high-amplitude redox fluctuation may be a strong selective force on the phylogenetic and physiological composition of soil bacterial communities and may promote metabolic plasticity or redox tolerance mechanisms. To determine effects of fluctuating oxygen regimens, we incubated tropical soils under four treatments: aerobic, anaerobic, 12-h oxic/anoxic fluctuation, and 4-day oxic/anoxic fluctuation. Changes in soil bacterial community structure and diversity were monitored with terminal restriction fragment length polymorphism (T-RFLP) fingerprints. These profiles were correlated with gross N cycling rates, and a Web-based phylogenetic assignment tool was used to infer putative community composition from multiple fragment patterns. T-RFLP ordinations indicated that bacterial communities from 4-day oxic/anoxic incubations were most similar to field communities, whereas those incubated under consistently aerobic or anaerobic regimens developed distinctly different molecular profiles. Terminal fragments found in field soils persisted either in 4-day fluctuation/aerobic conditions or in anaerobic/12-h treatments but rarely in both. Only 3 of 179 total fragments were ubiquitous in all soils. Soil bacterial communities inferred from in silico phylogenetic assignment appeared to be dominated by Actinobacteria (especially Micrococcus and Streptomycetes), “Bacilli,” “Clostridia,” and Burkholderia and lost significant diversity under consistently or frequently anoxic incubations. Community patterns correlated well with redox-sensitive processes such as nitrification, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification but did not predict patterns of more general functions such as N mineralization and consumption. The results suggest that this soil's indigenous bacteria are highly adapted to fluctuating redox regimens and generally possess physiological tolerance mechanisms which allow them to withstand unfavorable redox periods. PMID

  15. Phylogenetic structure and host abundance drive disease pressure in communities.

    PubMed

    Parker, Ingrid M; Saunders, Megan; Bontrager, Megan; Weitz, Andrew P; Hendricks, Rebecca; Magarey, Roger; Suiter, Karl; Gilbert, Gregory S

    2015-04-23

    Pathogens play an important part in shaping the structure and dynamics of natural communities, because species are not affected by them equally. A shared goal of ecology and epidemiology is to predict when a species is most vulnerable to disease. A leading hypothesis asserts that the impact of disease should increase with host abundance, producing a 'rare-species advantage'. However, the impact of a pathogen may be decoupled from host abundance, because most pathogens infect more than one species, leading to pathogen spillover onto closely related species. Here we show that the phylogenetic and ecological structure of the surrounding community can be important predictors of disease pressure. We found that the amount of tissue lost to disease increased with the relative abundance of a species across a grassland plant community, and that this rare-species advantage had an additional phylogenetic component: disease pressure was stronger on species with many close relatives. We used a global model of pathogen sharing as a function of relatedness between hosts, which provided a robust predictor of relative disease pressure at the local scale. In our grassland, the total amount of disease was most accurately explained not by the abundance of the focal host alone, but by the abundance of all species in the community weighted by their phylogenetic distance to the host. Furthermore, the model strongly predicted observed disease pressure for 44 novel host species we introduced experimentally to our study site, providing evidence for a mechanism to explain why phylogenetically rare species are more likely to become invasive when introduced. Our results demonstrate how the phylogenetic and ecological structure of communities can have a key role in disease dynamics, with implications for the maintenance of biodiversity, biotic resistance against introduced weeds, and the success of managed plants in agriculture and forestry.

  16. Harmful Algal Blooms and Public Health

    PubMed Central

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  17. Harmful Algal Blooms and Public Health

    PubMed Central

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels.

  18. Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure

    PubMed Central

    Hanemaaijer, Mark; Röling, Wilfred F. M.; Olivier, Brett G.; Khandelwal, Ruchir A.; Teusink, Bas; Bruggeman, Frank J.

    2015-01-01

    Microbial communities play important roles in health, industrial applications and earth's ecosystems. With current molecular techniques we can characterize these systems in unprecedented detail. However, such methods provide little mechanistic insight into how the genetic properties and the dynamic couplings between individual microorganisms give rise to their dynamic activities. Neither do they give insight into what we call “the community state”, that is the fluxes and concentrations of nutrients within the community. This knowledge is a prerequisite for rational control and intervention in microbial communities. Therefore, the inference of the community structure from experimental data is a major current challenge. We will argue that this inference problem requires mathematical models that can integrate heterogeneous experimental data with existing knowledge. We propose that two types of models are needed. Firstly, mathematical models that integrate existing genomic, physiological, and physicochemical information with metagenomics data so as to maximize information content and predictive power. This can be achieved with the use of constraint-based genome-scale stoichiometric modeling of community metabolism which is ideally suited for this purpose. Next, we propose a simpler coarse-grained model, which is tailored to solve the inference problem from the experimental data. This model unambiguously relate to the more detailed genome-scale stoichiometric models which act as heterogeneous data integrators. The simpler inference models are, in our opinion, key to understanding microbial ecosystems, yet until now, have received remarkably little attention. This has led to the situation where the modeling of microbial communities, using only genome-scale models is currently more a computational, theoretical exercise than a method useful to the experimentalist. PMID:25852671

  19. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales

    PubMed Central

    Salani, Faezeh Shah; Arndt, Hartmut; Hausmann, Klaus; Nitsche, Frank; Scheckenbach, Frank

    2012-01-01

    Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales. PMID:22071346

  20. Comparison and validation of community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Gustafsson, Mika; Hörnquist, Michael; Lombardi, Anna

    2006-07-01

    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is believed to be NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.

  1. Bacterial community structure in the Sulu Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihiro; Nishimura, Masahiko; Kogure, Kazuhiro

    2007-01-01

    The deep waters of the Sulu Sea are characterized by relatively high and constant water temperatures and low oxygen concentrations. To examine the effect of these characteristics on the bacterial community structure, the culture-independent molecular method was applied to samples from the Sulu Sea and the adjacent areas. DNA was extracted from environmental samples, and the analysis was carried out on PCR-amplified 16S rDNA; fragments were analyzed by denaturing gradient gel electrophoresis (DGGE) and nonmetric multidimensional scaling analysis. Stations in the Sulu Sea and the adjacent areas showed much more prominent vertical stratification of bacterial community structures than horizontal variation. As predominant sequences, cyanobacteria and α-proteobacteria at 10 m depth, δ-proteobacteria at 100 m depth, and green nonsulfur bacteria below 1000 m depth were detected in all sampling areas. High temperatures and low oxygen concentrations are thought to be minor factors in controlling community structure; the quantity and quality of organic materials supplied by the sinking particles, and hydrostatic pressure are believed to be important.

  2. Biogenesis and biological function of marine algal oxylipins.

    PubMed

    Gerwick, W H; Roberts, M A; Vulpanovici, A; Ballantine, D L

    1999-01-01

    The biogenetic source of most marine algal oxylipins, which are many and of diverse structure, can logically be unified through a common lipoxygenase-derived hydroperoxide to epoxy allylic carbocation transformation. The biological role of oxylipins in algae remains an enigma, although numerous ideas have been put forth. Herein, we hypothesize and provide some evidence for an osmoregulatory role for these metabolites.

  3. Relationships between fish, sea urchins and macroalgae: The structure of shallow rocky sublittoral communities in the Cyclades, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Giakoumi, Sylvaine; Cebrian, Emma; Kokkoris, Giorgos D.; Ballesteros, Enric; Sala, Enric

    2012-08-01

    Historical overfishing is the most likely explanation for the depletion of the shallow sublittoral communities in many areas not least in the Cyclades Archipelago, Greece. The present study is the first quantitative study of the shallow rocky sublittoral of the Cyclades based on in situ underwater surveys of algal cover, and fish and sea urchin abundance at 181 sampling sites in 25 islands to provide a baseline and investigate the relationship between these communities. Algal turf was the most abundant algal functional group, and canopy algae of the genus Cystoseira were more abundant at the northern islands. A range in fish biomass of almost two orders of magnitude was found across islands, but overall the Cyclades displayed much lower values than fished areas of the Western Mediterranean. We observed apex predators only in 25% of our sampling sites, and their biomass was uncorrelated to total fish biomass, indicating a depleted ecosystem. Sea urchin biomass was also low but similar to values found in other Mediterranean islands and was positively correlated with barrens. We observed a gradient of benthic community complexity from sea urchin barrens to communities dominated by Cystoseira spp. There was no correlation between sea urchins and their predators Diplodus spp., which presented extremely low densities.

  4. Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Wang, Jingwei; Zhang, Zhaojing; Zhang, Xuwang; Zhou, Hao; Zhou, Jiti

    2015-01-01

    The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures. PMID:25909735

  5. Consistency and sensitivity of stream periphyton community structural and functional responses to nutrient enrichment.

    PubMed

    Nelson, Craig E; Bennett, Danuta M; Cardinale, Bradley J

    2013-01-01

    Eutrophication remains one of the foremost impacts of industrialization and population expansion on aquatic ecosystems worldwide. Selecting metrics for assessing the manner in which communities and biogeochemical processes respond to nutrient fertilization is an ongoing management challenge critical both for detecting changes and for monitoring recovery of impaired environments. A key limitation to the selection of response variables is the lack of consistent evaluation of metrics under the same conditions in multiple systems across ecoregions. Here we report the results of nutrient-diffusing agar fertilization experiments conducted simultaneously in 30 streams in two distinct ecoregions of California, USA: the mountainous Sierra Nevada and the coastal chaparral of Santa Barbara county. In each experiment we evaluated algal community shifts across five nutrient delivery rates using multiple response variables at the ecosystem process (respiration and primary production), community (biomass and diversity metrics), functional group (nitrogen fixing, growth form, nutrient adaptation), and taxonomic group (indicator species, genera, families) levels of ecological organization. We used mixed-effect general linear models to quantify the magnitude, sensitivity, and consistency of responses among streams within and across ecoregions to provide an objective assessment of the potential for each variable to describe and detect significant changes in algal community characteristics. Our results indicate that ecosystem- and community-level variables showed significant and consistent nutrient responses among diverse streams and across the two ecoregions, while indicator taxa and functional groups were less likely to respond consistently to nutrient enrichment. We discuss the relevance of our findings to the ongoing development of monitoring and bioassessment strategies for aquatic eutrophication.

  6. Consistency and sensitivity of stream periphyton community structural and functional responses to nutrient enrichment.

    PubMed

    Nelson, Craig E; Bennett, Danuta M; Cardinale, Bradley J

    2013-01-01

    Eutrophication remains one of the foremost impacts of industrialization and population expansion on aquatic ecosystems worldwide. Selecting metrics for assessing the manner in which communities and biogeochemical processes respond to nutrient fertilization is an ongoing management challenge critical both for detecting changes and for monitoring recovery of impaired environments. A key limitation to the selection of response variables is the lack of consistent evaluation of metrics under the same conditions in multiple systems across ecoregions. Here we report the results of nutrient-diffusing agar fertilization experiments conducted simultaneously in 30 streams in two distinct ecoregions of California, USA: the mountainous Sierra Nevada and the coastal chaparral of Santa Barbara county. In each experiment we evaluated algal community shifts across five nutrient delivery rates using multiple response variables at the ecosystem process (respiration and primary production), community (biomass and diversity metrics), functional group (nitrogen fixing, growth form, nutrient adaptation), and taxonomic group (indicator species, genera, families) levels of ecological organization. We used mixed-effect general linear models to quantify the magnitude, sensitivity, and consistency of responses among streams within and across ecoregions to provide an objective assessment of the potential for each variable to describe and detect significant changes in algal community characteristics. Our results indicate that ecosystem- and community-level variables showed significant and consistent nutrient responses among diverse streams and across the two ecoregions, while indicator taxa and functional groups were less likely to respond consistently to nutrient enrichment. We discuss the relevance of our findings to the ongoing development of monitoring and bioassessment strategies for aquatic eutrophication. PMID:23495644

  7. Diatom community structure on in-service cruise ship hulls.

    PubMed

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  8. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. PMID:27008510

  9. Making the links between community structure and individual well-being: community quality of life in Riverdale, Toronto, Canada.

    PubMed

    Raphael, D; Renwick, R; Brown, I; Steinmetz, B; Sehdev, H; Phillips, S

    2001-09-01

    An inquiry into community quality of life was carried out within a framework that recognizes the complex relationship between community structures and individual well-being. Through use of focus groups and key informant interviews, community members, service providers, and elected representatives in a Toronto community considered aspects of their community that affected quality of life. Community members identified strengths of access to amenities, caring and concerned people, community agencies, low-cost housing, and public transportation. Service providers and elected representatives recognized diversity, community agencies and resources, and presence of culturally relevant food stores and services as strengths. At one level, findings were consistent with emerging concepts of social capital. At another level, threats to the community were considered in relation to the hypothesized role neo-liberalism plays in weakening the welfare state. PMID:11439254

  10. Structure of bacterial communities in diverse freshwater habitats.

    PubMed

    Aizenberg-Gershtein, Yana; Vaizel-Ohayon, Dalit; Halpern, Malka

    2012-03-01

    The structures and dynamics of bacterial communities from raw source water, groundwater, and drinking water before and after filtration were studied in four seasons of a year, with culture-independent methods. Genomic DNA from water samples was analyzed by the polymerase chain reaction - denaturing gradient gel electrophoresis system and by cloning of the 16S rRNA gene. Water samples exhibited complex denaturing gradient gel electrophoresis genetic profiles composed of many bands, corresponding to a great variety of bacterial taxa. The bacterial communities of different seasons from the four sampling sites clustered into two major groups: (i) water before and after filtration, and (ii) source water and groundwater. Phylogenetic analyses of the clones from the autumn sampling revealed 13 phyla, 19 classes, and 155 operational taxonomic units. Of the clones, 66% showed less than 97% similarities to known bacterial species. Representatives of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were found at all four sampling sites. Species belonging to the phylum Firmicutes were an important component of the microbial community in filtered water. Representatives of Enterobacteriaceae were not detected, indicating the absence of fecal pollution in the drinking water. Differences were found in the bacterial populations that were sampled from the same sites in different seasons. Each water habitat had a unique bacterial profile. Drinking water harbors diverse and dynamic microbial communities, part of which may be active and resilient to chlorine disinfection. This study provides, for the first time, basic data for uncultivable drinking water bacteria in Israel.

  11. Microbial abundance and community structure in a melting alpine snowpack.

    PubMed

    Lazzaro, Anna; Wismer, Andrea; Schneebeli, Martin; Erny, Isolde; Zeyer, Josef

    2015-05-01

    Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930-2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L(-1), 5-30 μg NH4 (+)-N L(-1)) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.

  12. Microbial Community Structure in the Rhizosphere of Rice Plants.

    PubMed

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G

    2015-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  13. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  14. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  15. Spatial analysis of early successional, temperate forest community structure

    NASA Astrophysics Data System (ADS)

    Walker, R. H.; Williams, C. A.; MacLean, R. G.; Epstein, H. E.; Vanderhoof, M. K.

    2013-12-01

    The global importance of sequestration of carbon by temperate forests makes characterizing the regrowth of these forests post-disturbance both ecologically and economically important. High intensity disturbances, such as logging, result in substantial alteration of community composition post-disturbance, creating the potential for alterations to the cycling of carbon, water, and nutrients in the ecosystem. Because logging pressure in New England continues to increase, understanding how forest ecosystems in this region respond to disturbance is crucial. This study aims to characterize interspecies interactions within New England forests by identifying synchronous and asynchronous colocation of species following a disturbance. To accomplish this, line-intercept surveys of vegetation were conducted in a clearcut forest stand located within the Harvard Forest LTER site. Survey data collected two (2010) and five (2013) years post-clearcut were analyzed using a one-dimensional Ripley's K. From 2010 to 2013, an increase in the number of interspecies relationships was observed, indicating the development of community structure. Additionally, the analysis found an increase in total vegetative cover from 2010 to 2013, and also found the majority of observed interspecies relationships to be asynchronous relationships. Together, these results imply an increase in resource competition that had the potential to drive the increase in community structure. Specifically, an increase in community structure led to the development of three distinct sub-communities: homogenous fern, tree seedling canopy over ground cover, and shrub dominated. This creates a patchy landscape in the early successional forest that allows for high species diversity (Shannon's H = 2.455). Based on the results of the Ripley's K analyses, species demonstrated definite patterns of synchronicity and asynchronicity based on both specific species interactions as well as functional group interactions. These

  16. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens.

    PubMed

    Moniruzzaman, Mohammad; Gann, Eric R; LeCleir, Gary R; Kang, Yoonja; Gobler, Christopher J; Wilhelm, Steven W

    2016-05-01

    Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients.

  17. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens.

    PubMed

    Moniruzzaman, Mohammad; Gann, Eric R; LeCleir, Gary R; Kang, Yoonja; Gobler, Christopher J; Wilhelm, Steven W

    2016-05-01

    Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients. PMID:26985013

  18. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  19. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  20. Potential of carbon nanotubes in algal biotechnology.

    PubMed

    Lambreva, Maya Dimova; Lavecchia, Teresa; Tyystjärvi, Esa; Antal, Taras Kornelievich; Orlanducci, Silvia; Margonelli, Andrea; Rea, Giuseppina

    2015-09-01

    A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.

  1. Securing the Future: Retention Models in Community Colleges--Study of Community College Structures for Student Success (SCCSSS)

    ERIC Educational Resources Information Center

    College Board Advocacy & Policy Center, 2012

    2012-01-01

    The Study of Community College Structures for Student Success (SCCSSS) was launched in 2010 with three goals at its center: (1) To explore a set of promising institutional practices and organizational structures identified through theory and research as having the potential to support community college student success; (2) To present a synthesized…

  2. Characteristics of turbulent boundary layer flow over algal biofilm

    NASA Astrophysics Data System (ADS)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  3. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Borell, E. M.; Steinke, M.; Fine, M.

    2013-12-01

    Grazing on marine macroalgae is a key structuring process for coral reef communities. However, ocean acidification from rising atmospheric CO2 concentrations is predicted to adversely affect many marine animals, while seaweed communities may benefit and prosper. We tested how exposure to different pCO2 (400, 1,800 and 4,000 μatm) may affect grazing on the green alga Ulva lactuca by herbivorous fish and sea urchins from the coral reefs in the northern Gulf of Aqaba (Red Sea), either directly, by changing herbivore behaviour, or indirectly via changes in algal palatability. We also determined the effects of pCO2 on algal tissue concentrations of protein and the grazing-deterrent secondary metabolite dimethylsulfoniopropionate (DMSP). Grazing preferences and overall consumption were tested in a series of multiple-choice feeding experiments in the laboratory and in situ following exposure for 14 d (algae) and 28 d (herbivores). 4,000 μatm had a significant effect on the biochemical composition and palatability of U. lactuca. No effects were observed at 1,800 relative to 400 μatm (control). Exposure of U. lactuca to 4,000 μatm resulted in a significant decrease in protein and increase in DMSP concentration. This coincided with a reduced preference for these algae by the sea urchin Tripneustes gratilla and different herbivorous fish species in situ (Acanthuridae, Siganidae and Pomacanthidae). No feeding preferences were observed for the rabbitfish Siganus rivulatus under laboratory conditions. Exposure to elevated pCO2 had no direct effect on the overall algal consumption by T. gratilla and S. rivulatus. Our results show that CO2 has the potential to alter algal palatability to different herbivores which could have important implications for algal abundance and coral community structure. The fact that pCO2 effects were observed only at a pCO2 of 4,000 μatm, however, indicates that algal-grazer interactions may be resistant to predicted pCO2 concentrations in the

  4. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities.

    PubMed

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community

  5. Climate change effects on soil microarthropod abundance and community structure

    SciTech Connect

    Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J; Classen, Aimee T

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil

  6. Community structure description in amino acid interaction networks.

    PubMed

    Gaci, Omar

    2011-03-01

    In this paper, we represent proteins by amino acid interaction networks. This is a graph whose vertices are the protein's amino acids and whose edges are the interactions between them. We begin by identifying the main topological properties of these interaction networks using graph theory measures. We observe that the amino acids interact specifically, according to their structural role, and depending on whether they participate or not in the secondary structure. Thus, certain amino acids tend to group together to form local clouds. Then, we study the formation of node aggregations through community structure detections. We observe that the composition of organizations confirms a specific aggregation between loops around a core composed of secondary.

  7. Benthic infaunal community structuring in an acidified tropical estuarine system

    PubMed Central

    2014-01-01

    Background Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. While most theory and application for OA is based on relatively physically-stable oceanic ecological systems, less is known about the effects of acidification on nearshore and estuarine systems. Here, we investigated the structuring of a benthic infaunal community in a tropical estuarine system, along a steep salinity and pH gradient, arising largely from acid-sulphate groundwater inflows (Sungai Brunei Estuary, Borneo, July 2011- June 2012). Results Preliminary data indicate that sediment pore-water salinity (range: 8.07 - 29.6 psu) declined towards the mainland in correspondence with the above-sediment estuarine water salinity (range: 3.58 – 31.2 psu), whereas the pore-water pH (range: 6.47- 7.72) was generally lower and less variable than the estuarine water pH (range: 5.78- 8.3), along the estuary. Of the thirty six species (taxa) recorded, the polychaetes Neanthes sp., Onuphis conchylega, Nereididae sp. and the amphipod Corophiidae sp., were numerically dominant. Calcified microcrustaceans (e.g., Cyclopoida sp. and Corophiidae sp.) were abundant at all stations and there was no clear distinction in distribution pattern along the estuarine between calcified and non-calcified groups. Species richness increased seawards, though abundance (density) showed no distinct directional trend. Diversity indices were generally positively correlated (Spearman’s rank correlation) with salinity and pH (p <0.05) and negatively with clay and organic matter, except for evenness values (p >0.05). Three faunistic assemblages were distinguished: (1) nereid-cyclopoid-sabellid, (2) corophiid-capitellid and (3) onuphid- nereid-capitellid. These respectively associated with lower salinity/pH and a muddy bottom, low salinity/pH and a sandy bottom, and high salinity/pH and a sandy bottom. However, CCA suggested that species distribution

  8. The CECAM Electronic Structure Library: community-driven development of software libraries for electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Micael

    The CECAM Electronic Structure Library (ESL) is a community-driven effort to segregate shared pieces of software as libraries that could be contributed and used by the community. Besides allowing to share the burden of developing and maintaining complex pieces of software, these can also become a target for re-coding by software engineers as hardware evolves, ensuring that electronic structure codes remain at the forefront of HPC trends. In a series of workshops hosted at the CECAM HQ in Lausanne, the tools and infrastructure for the project were prepared, and the first contributions were included and made available online (http://esl.cecam.org). In this talk I will present the different aspects and aims of the ESL and how these can be useful for the electronic structure community.

  9. Kelp canopy facilitates understory algal assemblage via competitive release during early stages of secondary succession.

    PubMed

    Benes, Kylla M; Carpenter, Robert C

    2015-01-01

    Kelps are conspicuous foundation species in marine ecosystems that alter the composition of understory algal assemblages. While this may be due to changes in the competitive interactions between algal species, how kelp canopies mediate propagule supply and establishment success of understory algae is not well known. In Southern California, USA, Eisenia arborea forms dense kelp canopies in shallow subtidal environments and is associated with an understory dominated by red algal species. In canopy-free areas, however, the algal assemblage is comprised of mostly brown algal species. We used a combination of mensurative and manipulative experiments to test whether Eisenia facilitates the understory assemblage by reducing competition between these different types of algae by changes in biotic interactions and/or recruitment. Our results show Eisenia facilitates a red algal assemblage via inhibition of brown algal settlement into the canopy zone, allowing recruitment to occur by vegetative means rather than establishment of new individuals. In the canopy-free zone, however, high settlement and recruitment rates suggest competitive interactions shape the community there. These results demonstrate that foundation species alter the distribution and abundance of associated organisms by affecting not only interspecific interactions but also propagule supply and recruitment limitation.

  10. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  11. Bacterial Community Structure Response to Petroleum Concentration in Groundwater

    NASA Astrophysics Data System (ADS)

    Kitts, C. L.; Wrighton, K. C.; Phillips, W. A.; Cano, R. J.; Lundegard, P. D.

    2004-12-01

    This study characterized the bacterial community present in groundwater samples from the Guadalupe Dunes Restoration Project on the central California coast. The purpose of the study was to determine the changes in bacterial community structure and function in response to variations in the concentration of dissolved phase total petroleum hydrocarbons (TPH) in groundwater plumes at the site. For the purpose of this study groundwater samples were collected at varying distance from TPH source zones in 10 different plumes. All samples were analyzed for ammonia, phosphate, TPH, methane, oxygen, carbon dioxide, nitrate, sulfate, and dissolved iron levels. Chemical analysis revealed that the groundwater chemistry varied between plumes and on a well-to-well basis within a plume. Principle component analyses (PCA) demonstrated that TPH degradation related parameters explained 28% of the variation in the groundwater chemistry. In addition to the physical and chemical analyses, four liters of each groundwater sample were filtered and bacterial DNA was isolated to determine the relationship between groundwater chemistry and bacterial community structure and function. Specific Polymerase Chain Reaction (PCR) primers were used to characterize populations of Eubacteria, and Archaea, as well as function genes for sulfate reducing, methanotrophic, and methanogenic bacteria. Terminal Restriction Fragment (TRF) Length Polymorphisms (or T-RFLP) were used to analyze community structure. Eubacterial and Archaeal groundwater communities were separated into distinct clusters which did not clearly reflect changes in groundwater chemical parameters unless individual plumes were analyzed separately. However, specific Eubacterial and Archaeal TRF peaks did correspond to known petroleum degrading organisms and methanogenic bacteria, respectively. Only one sample produced a positive result for the sulfite reductase gene (dsrAB), indicating that sulfate reduction may not be a dominant process at

  12. Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico

    USGS Publications Warehouse

    Wawrik, B.; Paul, J.H.; Campbell, L.; Griffin, D.; Houchin, L.; Fuentes-Ortega, A.; Muller-Karger, F.

    2003-01-01

    Low salinity plumes of coastal origin are occasionally found far offshore, where they display a distinct color signature detectable by satellites. The impact of such plumes on carbon fixation and phytoplankton community structure in vertical profiles and on basin wide scales is poorly understood. On a research cruise in June 1999, ocean-color satellite-images (Sea-viewing Wide Field-of-view Sensor, SeaWiFS) were used in locating a Mississippi River plume in the eastern Gulf of Mexico. Profiles sampled within and outside of the plume were analyzed using flow cytometry, HPLC pigment analysis and primary production using 14C incorporation. Additionally, RubisCO large subunit (rbcL) gene expression was measured by hybridization of extracted RNA using 3 full-length RNA gene probes specific for individual phytoplankton clades. We also used a combination of RT-PCR/PCR and TA cloning in order to generate cDNA and DNA rbcL clone libraries from samples taken in the plume. Primary productivity was greatest in the low salinity surface layer of the plume. The plume was also associated with high Synechococcus counts and a strong peak in Form IA rbcL expression. Form IB rbcL (green algal) mRNA was abundant at the subsurface chlorophyll maximum (SCM), whereas Form ID rbcL (chromophytic) expression showed little vertical structure. Phylogenetic analysis of cDNA libraries demonstrated the presence of Form IA rbcL Synechococcus phylotypes in the plume. Below the plume, 2 spatially separated and genetically distinct rbcL clades of Prochlorococcus were observed. This indicated the presence of the high- and low-light adapted clades of Prochlorococcus. A large and very diverse clade of Prymnesiophytes was distributed throughout the water column, whereas a clade of closely related prasinophytes may have dominated at the SCM. These data indicate that the Mississippi river plume may dramatically alter the surface picoplankton composition of the Gulf of Mexico, with Synechococcus displacing

  13. Analysis of community structure in networks of correlated data

    SciTech Connect

    Gomez, S.; Jensen, P.; Arenas, A.

    2008-12-25

    We present a reformulation of modularity that allows the analysis of the community structure in networks of correlated data. The new modularity preserves the probabilistic semantics of the original definition even when the network is directed, weighted, signed, and has self-loops. This is the most general condition one can find in the study of any network, in particular those defined from correlated data. We apply our results to a real network of correlated data between stores in the city of Lyon (France).

  14. Water availability controls on community structure of an ephemeral meltwater stream ecosystem in the McMurdo Dry Valleys

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Simmons, B.; Stanish, L.

    2009-05-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow during the summer into lakes on the valley floors. Many streams have thriving cyanobacterial mats that are freeze-dried in winter and begin photosynthesis when flow arrives. We studied the community structure in a formerly abandoned channel, which was reactivated by a flow diversion in 1994. Cyanobacterial mats became abundant in the reactivated channel within a week and have remained evident even through cold, low flow summers. We recently compared the abundance and species distribution of invertebrates and diatoms in the cyanobacterial mats and in hyporheic zone during cold (low flow) and warm (high flow) summers. During the warm summer, there were sites where the invertebrate abundance was greater in the mats than in the underlying hyporheic sediments. In contrast, during the cold summer the invertebrate biomass was lower in the mats than in the hyporheic sediments. These findings suggest that the optimal micro-habitat for invertebrates in these mats and sediments is partially driven by ephemeral stream hydrology. This limitation on potential invertebrate grazers (which are important nutrient transformers) may account for the accumulation of algal biomass and subsequent nutrient immobilization in the mats over many summers.

  15. Factors Affecting Trophic Control of Community Structure and Ecosystem Functioning in Experimental Mesocosms of Seagrass (Zostera marina L.)

    NASA Astrophysics Data System (ADS)

    Lefcheck, J.; Duffy, J.

    2008-12-01

    Nutrient loading of coastal and estuarine waters threatens seagrass communities by promoting the growth of micro- and macroalgae, which then reduce the availability of light and nutrients. However, populations of invertebrate mesograzers are able to mitigate the negative impact of eutrophication through top-down control. We performed a factorial mesocosm experiment to examine the interactive relationships between light, nutrients, and mesograzer presence in structuring experimental ecosystems of eelgrass (Zostera marina). We found that mesograzer presence strongly reduced epiphytic algal biomass in every case, which remains consistent with previous mesocosm studies. We also observed a synergistic light-by-nutrient interaction that enhanced both epiphyte biomass and mesograzer abundance. The timing of this relationship is suggestive of weaker bottom-up control. Unlike previous studies, we found that light alone rarely affected either epiphyte biomass or mesograzer abundance. We believe that this result may be due to a combination of macroalgal shading and persistent grazing. Further processing of primary and secondary producer biomasses and elemental ratios, as well as the completion of feeding assays to gauge mesograzer feeding rates on different types of algae, will serve to reinforce these conclusions and to better define the relationship between these factors.

  16. Changes in the bacterial community structure in stored wormbed leachate.

    PubMed

    Romero-Tepal, Elda M; Contreras-Blancas, Eduardo; Navarro-Noya, Yendi E; Ruíz-Valdiviezo, Víctor M; Luna-Guido, Marco; Gutiérrez-Miceli, Federico A; Dendooven, Luc

    2014-01-01

    Organic wastes, such as cow manure, are often composted with earthworms (vermicomposting) while excess water is drained and collected. This wormbed leachate is nutrient-rich and it has been extensively used to fertilize plants. However, it is derived partially from a not yet finished compost process and could exhibit phytotoxicity or contain potentially hazardous microorganisms. The bacterial community in wormbed leachate derived from vermicomposting of cow manure was studied by pyrosequencing the 16S rRNA gene. The fresh wormbed leachate was rich in Mollicutes, particularly the genus Acholeplasma which contain phytopathogen species. The abundance of the Mollicutes decreased when the leachate was stored, while that of the Rhizobiales and the genus Pseudomonas increased. The bacterial communities changed rapidly in the leachate during storage. The changes in ammonium, nitrate and inorganic carbon content of the wormbed leachate when stored were correlated to changes in the bacterial community structure. It was found that storage of the wormbed leachate might be required before it can be applied to crops as large proportions of potentially plant pathogens were found in the fresh leachate. PMID:24577291

  17. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  18. Prey bacteria shape the community structure of their predators.

    PubMed

    Chen, Huan; Athar, Rana; Zheng, Guili; Williams, Henry N

    2011-08-01

    Although predator-prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other's community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.

  19. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  20. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    PubMed Central

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  1. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes. PMID:25409583

  2. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.

  3. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  4. Mass media influence spreading in social networks with community structure

    NASA Astrophysics Data System (ADS)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  5. Community structure and elevational diversity patterns of soil Acidobacteria.

    PubMed

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Qu, Yuanyuan; Su, Xiujiang; Zhou, Jizhong; Li, Diqiang

    2014-08-01

    Acidobacteria is one of the most dominant and abundant phyla in soil, and was believed to have a wide range of metabolic and genetic functions. Relatively little is known about its community structure and elevational diversity patterns. We selected four elevation gradients from 1000 to 2800 m with typical vegetation types of the northern slope of Shennongjia Mountain in central China. The vegetation types were evergreen broadleaved forest, deciduous broadleaved forest, coniferous forest and sub-alpine shrubs. We analyzed the soil acidobacterial community composition, elevational patterns and the relationship between Acidobacteria subdivisions and soil enzyme activities by using the 16S rRNA meta-sequencing technique and multivariate statistical analysis. The result found that 19 known subdivisions as well as an unclassified phylotype were presented in these forest sites, and Subdivision 6 has the highest number of detectable operational taxonomic units (OTUs). A significant single peak distribution pattern (P<0.05) between the OTU number and the elevation was observed. The Jaccard and Bray-Curtis index analysis showed that the soil Acidobacteria compositional similarity significantly decreased (P<0.01) with the increase in elevation distance. Mantel test analysis showed the most of the soil Acidobacteria subdivisions had the significant relationship (P<0.01) with different soil enzymes. Therefore, soil Acidobacteria may be involved in different ecosystem functions in global elemental cycles. Partial Mantel tests and CCA analysis showed that soil pH, soil temperature and plant diversity may be the key factors in shaping the soil Acidobacterial community structure.

  6. [Community structure of planktonic rotifers in the Pearl River Delta].

    PubMed

    Gao, Yuan; Li, Xin-Hui; Lai, Zi-Ni; Yu, Jing; Wang, Chao; Zeng, Yan-Yi; Liu, Qian-Fu; Yang, Wan-Ling

    2014-07-01

    Four ecological investigations were carried out on planktonic rotifers in Pearl River Delta in 2012. The community structure, including spatial and temporal patterns of species composition, dominant species, biomass and biodiversity, was investigated. The correlation between the community structure of rotifers and the environmental factors was discussed. Moreover, the aggregation structures of rotifers were analyzed. A total of 53 rotifer species were found. Dominant species changed markedly with season and space. Polyarthra trigla had higher dominance. In terms of seasonal changes, the density and biomass were higher in dry season than in wet season, while the biodiversity and evenness indices were vice versa. The biomass and biodiversity of rotifers showed highly significant differences among seasons. In terms of spatial distribution, the average density and the average biomass showed an increase from the southwest to the northeast. The highest density and biomass were recorded in Shiqiao. The biodiversity and evenness indices had an opposite spatial distribution, with the highest values being recorded in Qingqi. The rotifer density was significantly different among the investigated sites, while the biomass and biodiversity were not significantly different. Correlation analysis demonstrated a highly significant positive correlation between rotifer density and biomass, as well as between biodiversity and evenness indices, and a highly negative correlation between biodiversity and biomass. The biodiversity and evenness indices both decreased markedly with the increase of biomass. Principal component analysis indicated that the rotifer density was closely correlated with environment factors, such as water temperature, pH, dissolved oxy- gen, chlorophyll a content, total phosphorus, and total nitrogen, in different seasons. Aggregation analysis based on rotifer density revealed five aggregation structures in the investigated sites, indicating significant differences

  7. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  8. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source.

  9. [Phytoplankton community structure and eutrophication risk assessment of Beijiang River].

    PubMed

    Gou, Ting; Ma, Qian-Li; Xu, Zhen-Cheng; Wang, Li; Li, Jie; Zhao, Xue-Min

    2015-03-01

    To study the distribution of phytoplankton and water quality of Beijiang River, the community structure of phytoplankton was investigated and analyzed in wet and dry seasons. The results showed that a total of 74 species belonging to six phyla, 29 family and 48 genera of phytoplankton were identified, including 58 species of five phyla, 23 family and 41 genera in wet season and 59 species of six phyla, 26 family and 40 genera in dry season. Phytoplankton community structure in Beijiang River was represented by Bacillariophyta, Chlorophyta and Cyanophyta. Bacillariophyta dominanted the phytoplankton, and the dominant species were Aulacoseira granulate, Fragilaria virescens, Surirella biseriata, Nitzschia amphibia, Navicula simplex, Cyclotella meneghiniana, Synedra ulna, Gomphonema angustatum and Cymbella tumida. There was little difference in phytoplankton density between both seasons with the mean values being 3.54 x 10(5) and 4.87 x 10(5) cells L(-1) in dry and wet seasons, respectively. Based on the RDA results, DO, permanganate index, nitrogen and phosphorus were the important environmental factors affecting the distribution of phytoplankton in Beijiang River. The water quality of Beijiang River was classified as oligo-mesotrophic level even if this river was subjected to nitrogen and phosphorus pollution mainly from agricultural non-point source. PMID:25929062

  10. Zooplankton-mediated changes of bacterial community structure.

    PubMed

    Jürgens, K; Arndt, H; Rothhaupt, K O

    1994-01-01

    Enclosure experiments in the mesotrophic Schöhsee in northern Germany were designed to study the impact of metazooplankton on components of the microbial food web (bacteria, flagellates, ciliates). Zooplankton was manipulated in 500-liter epilimnetic mesocosms so that either Daphnia or copepods were dominating, or metazooplankton was virtually absent. The bacterial community responded immediately to changes in zooplankton composition. Biomass, productivity, and especially the morphology of the bacteria changed drastically in the different treatments. Cascading predation effects on the bacterioplankton were transmitted mainly by phagotrophic protozoans which had changed in species composition and biomass. When Daphnia dominated, protozoans were largely suppressed and the original morphological structure of the bacteria (mainly small rods and cocci) remained throughout the experiment. Dominance of copepods or the absence of metazoan predators resulted in a mass appearance of bacterivorous protists (flagellates and ciliates). They promoted a fast decline of bacterial abundance and a shift to the predominance of morphologically inedible forms, mainly long filaments. After 3 days they formed 80-90% of the bacterial biomass. The results indicate that metazooplankton predation on phagotrophic protozoans is a key mechanism for the regulation of bacterioplankton density and community structure.

  11. Perspectives on the Gender-Integrated Gay Community: Its Formal Structure and Social Functions

    ERIC Educational Resources Information Center

    Fein, Sara Beck; Nuehring, Elane M.

    1975-01-01

    A gender-integrated homosexual community is described. Male and female members are compared as to participation in the community's formal organizational structure as well as in relation to several functions of that community. The integrated community differed in a number of dimensions from exclusively male and exclusively female homosexual…

  12. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs

    USGS Publications Warehouse

    Jester, R.; Lefebvre, K.; Langlois, G.; Vigilant, V.; Baugh, K.; Silver, M.W.

    2009-01-01

    In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community-the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000-2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also

  13. Stability of alginate-immobilized algal cells

    SciTech Connect

    Dainty, A.L.; Goulding, K.H.; Robinson, P.K.; Simpkins, I; Trevan, M.D.

    1986-01-01

    Investigations were carried out using immobilized Chlorella cells to determine the diameter, compressibility, tolerance to phosphate chelation, and ability to retain algal cells during incubation of various alginate beads. These physical bead-characteristics were affected by a variety of interactive factors, including multivalent cation type (hardening agent) and cell, cation, and alginate concentration, the latter exhibiting a predominant influence. The susceptibility of alginate beads to phosphate chelation involved a complex interaction of cation type, concentration, and pH of phosphate solution. A scale of response ranging from gel swelling to gel shrinking was observed for a range of conditions. However, stable Ca alginate beads were maintained in incubation media with a pH of 5.5 and a phosphate concentration of 5 micro M. A preliminary investigation into cell leakage from the beads illustrated the importance of maintaining a stable gel structure and limiting cell growth to reduce leakage.

  14. Differences in the structure and functioning of two communities: Frondose and turf-forming macroalgal dominated habitats.

    PubMed

    M Martins, Gustavo; Hipólito, Cláudia; Parreira, Filipe; C L Prestes, Afonso; Dionísio, Maria A; N Azevedo, José M; Neto, Ana I

    2016-05-01

    In many coastal regions, vegetated habitats (e.g. kelps forests, seagrass beds) play a key role in the structure and functioning of shallow subtidal reef ecosystems, by modifying local environmental conditions and by providing food and habitat for a wide range of organisms. In some regions of the world, however, such idiosyncratic ecosystems are largely absent and are often replaced by less notable ecosystem formers. In the present study, we empirically compared the structure and functioning of two distinct shallow-water habitats present in the Azores: one dominated by smaller frondose brown macroalgae (Dictyotaceae and Halopteris) and one dominated by low-lying turfs. Two replicated areas of each habitat were sampled at two different times of the year, to assess spatial and temporal consistency of results. Habitats dominated by small fronds were significantly (ca. 3 times) more productive (when standardized per algal mass) compared to the turf-dominated habitats, and supported a distinct assemblage (both in terms of composition and abundance) of associated macrofauna. Unlike other well-known and studied vegetated habitats (i.e. kelp forests), however, no effects of habitat were found on the structure of benthonic fish assemblages. Results were spatially and temporally consistent suggesting that, in warmer temperate oceans, habitats dominated by species of smaller frondose brown algae can also play an important role in the structure and functioning of subtidal communities and may, to a certain extent, be considered analogous to other well-known vegetated habitats around the world (i.e. kelp forests, seagrass beds). PMID:27035366

  15. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters.

    PubMed

    Kahlert, Maria; McKie, Brendan G

    2014-11-01

    We compared conventional microscope-based methods for quantifying biomass and community composition of stream benthic algae with output obtained for these parameters from a new instrument (the BenthoTorch), which measures fluorescence of algal pigments in situ. Benthic algae were studied in 24 subarctic oligotrophic (1.7-26.9, median 7.2 μg total phosphorus L(-1)) streams in Northern Sweden. Readings for biomass of the total algal mat, quantified as chlorophyll a, did not differ significantly between the BenthoTorch (median 0.52 μg chlorophyll a cm(-2)) and the conventional method (median 0.53 μg chlorophyll a cm(-2)). However, quantification of community composition of the benthic algal mat obtained using the BenthoTorch did not match those obtained from conventional methods. The BenthoTorch indicated a dominance of diatoms, whereas microscope observations showed a fairly even distribution between diatoms, blue-green algae (mostly nitrogen-fixing) and green algae (mostly large filamentous), and also detected substantial biovolumes of red algae in some streams. These results most likely reflect differences in the exact parameters quantified by the two methods, as the BenthoTorch does not account for variability in cell size and the presence of non-chlorophyll bearing biomass in estimating the proportion of different algal groups, and does not distinguish red algal chlorophyll from that of other algal groups. Our findings suggest that the BenthoTorch has utility in quantifying biomass expressed as μg chlorophyll a cm(-2), but its output for the relative contribution of different algal groups to benthic algal biomass should be used with caution. PMID:25277172

  16. Network community structure alterations in adult schizophrenia: identification and localization of alterations.

    PubMed

    Lerman-Sinkoff, Dov B; Barch, Deanna M

    2016-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks. PMID:26793435

  17. Network community structure alterations in adult schizophrenia: identification and localization of alterations

    PubMed Central

    Lerman-Sinkoff, Dov B.; Barch, Deanna M.

    2015-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks. PMID:26793435

  18. Network community structure alterations in adult schizophrenia: identification and localization of alterations.

    PubMed

    Lerman-Sinkoff, Dov B; Barch, Deanna M

    2016-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks.

  19. Are Gay Communities Dying or Just in Transition? Results from an International Consultation Examining Structural Change in Gay Communities

    PubMed Central

    Simon Rosser, B. R.; West, William; Weinmeyer, Richard

    2008-01-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about how gay communities are changing. In all cities, the virtual gay community was identified as now larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars and clubs, less attendance at gay events, less volunteerism in gay or AIDS organizations and overall identification and visibility as a gay community. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community and changes in drug use. Consistent with social assimilation, across cities, gay infrastructure, visibility and community identification appears to be decreasing. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in post-gay communities. Four recommendations for future HIV prevention and research are detailed. PMID:18484330

  20. Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    PubMed Central

    Buchheim, Mark A.; Keller, Alexander; Koetschan, Christian; Förster, Frank; Merget, Benjamin; Wolf, Matthias

    2011-01-01

    Background Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated

  1. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers. PMID:23754721

  2. Effects of Community Structure on Search and Ranking in Information Networks

    NASA Astrophysics Data System (ADS)

    Xie, Huafeng; Yan, Koon-Kiu; Maslov, Sergei

    2005-03-01

    The World-Wide Web (WWW) is characterized by a strong community structure in which communities of webpages (e.g. those sharing a common keyword) are densely interconnected by hyperlinks. We study how such network architecture affects the average Google ranking of individual webpages in the community. It is shown that the Google rank of community webpages could either increase or decrease with the density of inter-community links depending on the exact balance between average in- and out-degrees in the community. The magnitude of this effect is described by a simple analytical formula and subsequently verified by numerical simulations of random scale-free networks with a desired level of the community structure. A new algorithm allowing for generation of such networks is proposed and studied. The number of inter-community links in such networks is controlled by a temperature-like parameter with the strongest community structure realized in ``low-temperature'' networks.

  3. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  4. Phytoplankton community structure in the VAHINE mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Leblanc, Karine; Cornet, Véronique; Caffin, Mathieu; Rodier, Martine; Desnues, Anne; Berthelot, Hugo; Turk-Kubo, Kendra; Heliou, Jules

    2016-09-01

    The VAHINE mesocosm experiment was designed to trigger a diazotroph bloom and to follow the subsequent transfer of diazotroph-derived nitrogen (DDN) in the rest of the food web. Three mesocosms (50 m3) located inside the Nouméa lagoon (New Caledonia, southwestern Pacific) were enriched with dissolved inorganic phosphorus (DIP) in order to promote N2 fixation in these low-nutrient, low-chlorophyll (LNLC) waters. Initially, the diazotrophic community was dominated by diatom diazotroph associations (DDAs), mainly by Rhizosolenia/Richelia intracellularis, and by Trichodesmium, which fueled enough DDN to sustain the growth of other diverse diatom species and Synechococcus populations that were well adapted to limiting DIP levels. After DIP fertilization (1 µM) on day 4, an initial lag time of 10 days was necessary for the mesocosm ecosystems to start building up biomass. However, changes in community structure were already observed during this first period, with a significant drop of both Synechococcus and diatom populations, while Prochlorococcus benefited from DIP addition. At the end of this first period, corresponding to when most added DIP was consumed, the diazotroph community changed drastically and became dominated by Cyanothece-like (UCYN-C) populations, which were accompanied by a monospecific bloom of the diatom Cylindrotheca closterium. During the second period, biomass increased sharply together with primary production and N2-fixation fluxes near tripled. Diatom populations, as well as Synechococcus and nanophytoeukaryotes, showed a re-increase towards the end of the experiment, showing efficient transfer of DDN to non-diazotrophic phytoplankton.

  5. Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region

    NASA Astrophysics Data System (ADS)

    Fujiwara, A.; Hirawake, T.; Suzuki, K.; Saitoh, S.-I.

    2011-12-01

    Recent ocean warming and subsequent sea ice decline resulting from climate change could affect the northward shift of the ecosystem structure in the Chukchi Sea and Bering Sea shelf region (Grebmeier et al., 2006b). The size structure of phytoplankton communities provides an index of trophic levels that is crucial to understanding the mechanisms underlying such ecosystem changes and their implications for the future. This study proposes a new ocean color algorithm for deriving this characteristic by using the region's optical properties. The size derivation model (SDM) estimates the phytoplankton size index FL on the basis of size-fractionated chlorophyll-a (chl-a) using the light absorption coefficient of phytoplankton, aph(λ), and the backscattering coefficient of suspended particles including algae, bbp(λ). FL was defined as the ratio of algal biomass attributed to cells larger than 5 μm to the total. It was expressed by a multiple regression model using the aph(λ) ratio, aph(488)/aph(555), which varies with phytoplankton pigment composition, and the spectral slope of bbp(λ), γ, which is an index of the mean suspended particle size. A validation study demonstrated that 69% of unknown data are correctly derived within FL range of ±20%. The spatial distributions of FL for the cold August of 2006 and the warm August of 2007 were compared to examine application of the SDM to satellite remote sensing. The results suggested that phytoplankton size was responsive to changes in sea surface temperature. Further analysis of satellite-derived FL values and other environmental factors can advance our understanding of ecosystem structure changes in the shelf region of the Chukchi and Bering Seas.

  6. Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region

    NASA Astrophysics Data System (ADS)

    Fujiwara, A.; Hirawake, T.; Suzuki, K.; Saitoh, S.-I.

    2011-05-01

    Recent ocean warming and subsequent sea ice decline resulting from climate change could affect the northward shift of the ecosystem structure in the Chukchi Sea and Bering Sea shelf region. The size structure of phytoplankton communities provides an index of trophic levels that is crucial to understanding the mechanisms underlying such ecosystem changes and their implications for the future. This study proposes a new ocean color algorithm for deriving this characteristic by using the region's optical properties. The size derivation model (SDM) estimates the phytoplankton size index FL on the basis of size-fractionated chlorophyll-a (chl-a) using the light absorption coefficient of phytoplankton, aph(λ), and the backscattering coefficient of suspended particles including algae, bbp(λ). FL was defined as the ratio of algal biomass attributed to cells larger than 5 μm to the total. It was expressed by a multiple regression model using the aph(λ) ratio, aph(488)/aph(555), which varies with phytoplankton pigment composition, and the spectral slope of bbp(λ), γ, which is an index of the mean suspended particle size. A validation study demonstrated that the SDM successfully derived an FL value of 69 % within an error range of ± 20 % for unknown data. The spatial distributions of FL for the cold August of 2006 and the warm August of 2007 were compared to examine application of the SDM to satellite remote sensing. The results suggested that phytoplankton size was responsive to changes in sea surface temperature. Further analysis of satellite-derived FL values and other environmental factors can advance our understanding of ecosystem structure changes in the shelf region of the Chukchi and Bering Seas.

  7. Predator foraging altitudes reveal the structure of aerial insect communities

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron P.; Ames, Tayna; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  8. Predator foraging altitudes reveal the structure of aerial insect communities.

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  9. Aquifer community structure in dependence of lithostratigraphy in groundwater reservoirs.

    PubMed

    Beyer, Andrea; Rzanny, Michael; Weist, Aileen; Möller, Silke; Burow, Katja; Gutmann, Falko; Neumann, Stefan; Lindner, Julia; Müsse, Steffen; Brangsch, Hanka; Stoiber-Lipp, Jennifer; Lonschinski, Martin; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2015-12-01

    Groundwater microbiology with respect to different host rocks offers new possibilities to describe and map the habitat harboring approximately half of Earths' biomass. The Thuringian Basin (Germany) contains formations of the Permian (Zechstein) and Triassic (Muschelkalk and Buntsandstein) with outcrops and deeper regions at the border and central part. Hydro(geo)chemistry and bacterial community structure of 11 natural springs and 20 groundwater wells were analyzed to define typical patterns for each formation. Widespread were Gammaproteobacteria, while Bacilli were present in all wells. Halotolerant and halophilic taxa were present in Zechstein. The occurrence of specific taxa allowed a clear separation of communities from all three lithostratigraphic groups. These specific taxa could be used to follow fluid movement, e.g., from the underlying Zechstein or from nearby saline reservoirs into Buntsandstein aquifers. Thus, we developed a new tool to identify the lithostratigraphic origin of sources in mixed waters. This was verified with entry of surface water, as species not present in the underground Zechstein environments were isolated from the water samples. Thus, our tool shows a higher resolution as compared to hydrochemistry, which is prone to undergo fast dilution if water mixes with other aquifers. Furthermore, the bacteria well adapted to their respective environment showed geographic clustering allowing to differentiate regional aquifers.

  10. [Oviposition timing and community structure of Ficus curtipes fig wasps].

    PubMed

    Zhang, Feng-Ping; Yang, Da-Rong

    2009-08-01

    Through the behavioral observation of Ficus curtipes fig wasps and the counting of various kinds of flowerets in F. curtipes figs, the oviposition timing and community structure of 12 F. curtipes fig wasp species were studied. Besides the agaonid wasp Eupristina sp., the two non-agaonid wasps Diaziella yangi and Lipothymus sp. could enter into F. curtipes figs and oviposit. The other nine non-agaonid fig wasps ( Walkerella sp., Micranisa sp., Sycophilomorpha sp., Philotrypesis sp., Sycosapter sp., Sycobia sp., Ficomila sp., Ormyrus sp. and Sycophila sp.) oviposited outside the figs. In the fig wasp community, Eupristina sp. was the dominant species, accounting for 62.11% of the total, D. yangi and Lipothymus sp. accounted for 27.19% and 4.71%, respectively, while the other nine non-agaonid fig wasp species only occupied 5.99%. The non-agaonid fig wasps produced their progeny through the reproduction strategies of oviposition timing and diet allocation of female flowerets, so as to sustain the fig-wasp mutualism. The individuals of non-agaonid fig wasp progeny had significant negative correlation with those of agaonid fig wasp progeny, but no correlation with F. curtipes seed production.

  11. Aphid–parasitoid community structure on genetically modified wheat

    PubMed Central

    von Burg, Simone; van Veen, Frank J. F.; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-01-01

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore–natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid–parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited. PMID:21247941

  12. A novel dynamics combination model reveals the hidden information of community structure

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Li, Huiying; Jia, Chuanliang

    2015-09-01

    The analysis of the dynamic details of community structure is an important question for scientists from many fields. In this paper, we propose a novel Markov-Potts framework to uncover the optimal community structures and their stabilities across multiple timescales. Specifically, we model the Potts dynamics to detect community structure by a Markov process, which has a clear mathematical explanation. Then the local uniform behavior of spin values revealed by our model is shown that can naturally reveal the stability of hierarchical community structure across multiple timescales. To prove the validity, phase transition of stochastic dynamic system is used to indicate that the stability of community structure we proposed is able to describe the significance of community structure based on eigengap theory. Finally, we test our framework on some example networks and find it does not have resolute limitation problem at all. Results have shown the model we proposed is able to uncover hierarchical structure in different scales effectively and efficiently.

  13. Effect of power plant emissions on plant community structure.

    PubMed

    Singh, J; Agrawal, M; Narayan, D

    1994-06-01

    A field study was conducted around two coal-fired thermal power plants (TPP) to analyse the impact of their emission on the structure of herbaceous communities in a dry tropical area. Phytosociological studies reflected that Cassia tora, Cynodon dactylon and Dichanthium annulatum dominate at heavily polluted sites. Alsycarpus monilifer, Convolvulus pluricaulis, and Desmodium triflorum are uniformly distributed, whereas Paspalidium flavidum, Phyllanthus simplex, and Rungia repens are dominant at less polluted sites. On the basis of Importance Value Index, the species were classified as sensitive, intermediate and resistant to TPP emissions. Shannon-Wiener Index of species diversity, species richness and evenness were inversely related, whereas concentration of dominance was directly related to the pollution load in the area. Significant negative correlation between ambient SO2 concentration and species diversity suggested selective elimination of sensitive species from the heavily polluted sites.

  14. Phylogenetic tree and community structure from a Tangled Nature model.

    PubMed

    Canko, Osman; Taşkın, Ferhat; Argın, Kamil

    2015-10-01

    In evolutionary biology, the taxonomy and origination of species are widely studied subjects. An estimation of the evolutionary tree can be done via available DNA sequence data. The calculation of the tree is made by well-known and frequently used methods such as maximum likelihood and neighbor-joining. In order to examine the results of these methods, an evolutionary tree is pursued computationally by a mathematical model, called Tangled Nature. A relatively small genome space is investigated due to computational burden and it is found that the actual and predicted trees are in reasonably good agreement in terms of shape. Moreover, the speciation and the resulting community structure of the food-web are investigated by modularity.

  15. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-12-29

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV.

  16. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  17. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2016-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  18. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  19. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-01-01

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  20. Are gay communities dying or just in transition? Results from an international consultation examining possible structural change in gay communities.

    PubMed

    Simon Rosser, B R; West, William; Weinmeyer, Richard

    2008-05-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about if gay communities are changing, and if so, how they are changing. In all cities, the virtual gay community was identified as currently larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars/clubs, less attendance at gay events, less volunteerism in gay or HIV/AIDS organizations, and the overall declining visibility of gay communities. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community, and changes in drug use. Consistent with social assimilation, gay infrastructure, visibility, and community identification appears to be decreasing across cities. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in the future. Four recommendations for future HIV prevention and research are detailed.

  1. Are gay communities dying or just in transition? Results from an international consultation examining possible structural change in gay communities.

    PubMed

    Simon Rosser, B R; West, William; Weinmeyer, Richard

    2008-05-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about if gay communities are changing, and if so, how they are changing. In all cities, the virtual gay community was identified as currently larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars/clubs, less attendance at gay events, less volunteerism in gay or HIV/AIDS organizations, and the overall declining visibility of gay communities. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community, and changes in drug use. Consistent with social assimilation, gay infrastructure, visibility, and community identification appears to be decreasing across cities. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in the future. Four recommendations for future HIV prevention and research are detailed. PMID:18484330

  2. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  3. Pregnancy and birth in an indigenous Huichol community: from structural violence to structural policy responses.

    PubMed

    Gamlin, Jennie B; Hawkes, Sarah J

    2015-01-01

    Mexico's indigenous regions are characterised by socio-economic marginalisation and poor health outcomes and the Maternal Mortality Rate in indigenous communities continues to be around six times higher than the national rate. Using as a case study the Huichol community of North-Western Mexico we will discuss how institutional health and welfare programmes which aim to address accepted risk factors for maternal health are undermined by a series of structural barriers which put indigenous women especially in harm's way. Semi-structured interviews and observational data were gathered between 2009 and 2011 in highland communities and on coastal tobacco plantations to where a large number of this ethnic group migrate. Many Huichol women birth alone, and to facilitate this process they maintain a low nutritional intake to reduce their infant's growth and seek spiritual guidance during pregnancy from a shaman. These practices are reinforced by feelings of shame and humiliation encountered when using institutional health provision. These are some of the structural barriers to care that need to be addressed. Effective interventions could include addressing the training of health professionals, focusing on educational inequalities and the structural determinants of poverty whilst designing locally specific programmes that encourage acceptance of available health care. PMID:25175749

  4. ORGANIC VS CONVENTIONAL: SOIL NEMATODE COMMUNITY STRUCTURE AND FUNCTION.

    PubMed

    Kapp, C; Storey, S G; Malan, A P

    2014-01-01

    Global increases in human population are creating an ever-greater need for food production. Poor soil management practices have degraded soil to such an extent that rapidly improved management practices is the only way to ensure future food demands. In South Africa, deciduous fruit producers are realising the need for soil health, and for an increased understanding of the benefits of soil ecology, to ensure sustainable fruit production. This depends heavily on improved orchard management. Conventional farming relies on the addition of artificial fertilizers, and the application of chemicals, to prevent or minimise, the effects of the soil stages of pest insects, and of plant-parasitic nematodes. Currently, there is resistance toward conventional farming practices, which, it is believed, diminishes biodiversity within the soil. The study aimed to establish the soil nematode community structure and function in organically, and conventionally, managed deciduous fruit orchards. This was done by determining the abundance, the diversity, and the functionality of the naturally occurring free-living, and plant-parasitic, nematodes in deciduous fruit orchards in the Western Cape province of South Africa. The objective of the study was to form the basis for the use of nematodes as future indicators of soil health in deciduous fruit orchards. Orchards from neighbouring organic, and conventional, apricot farms, and from an organic apple orchard, were studied. All the nematodes were quantified, and identified, to family level. The five nematode-classified trophic groups were found at each site, while 14 families were identified in each orchard, respectively. Herbivores were dominant in all the orchards surveyed. Organic apples had the fewest herbivores and fungivores, with the highest number of carnivores. When comparing organic with conventional apricot orchards, higher numbers of plant-parasitic nematodes were found in the organic apricot orchards. The Maturity Index (MI

  5. Outer-membrane cytochrome-c, OmcF from Geobacter sulfurreducens: high structural similarity to an algal cytochrome c6.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Morgado, L.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ. Nova de Lisboa

    2009-01-01

    Putative outer membrane c-type cytochromes have been implicated in metal ion reducing properties of Geobacter sulfurreducens. OmcF (GSU2432), OmcB (GSU2731), and OmcC (GSU2737) are three such proteins that have predicted lipid anchors. OmcF is a monoheme cytochrome, whereas OmcB and OmcC are multiheme cytochromes. Deletion of OmcF was reported to affect the expression of OmcB and OmcC in G. sulfurreducens. The OmcF deficient strain was impaired in its ability to both reduce and grow on Fe(III) citrate probably because the expression of OmcB, which is crucial for iron reduction, is low in this strain. U(VI) reduction activity of this bacterium is also lower on deletion of OmcB or OmcF. The U(VI) reduction activity is affected more by the deletion of OmcF than by the deletion of OmcB. The soluble part of OmcF (residues 20-104, referred to as OmcF{sub S} hereafter) has sequence similarity to soluble cytochromes c{sub 6} of photosynthetic algae and cyanobacteria. The cytochrome c{sub 6} proteins in algae and cyanobacteria are electron transport proteins that mediate the transfer of electrons from cytochrome b{sub 6}f to photosystem I and have high reduction potentials of about +350 mV and low pI. The structures of seven cytochromes c{sub 6} have been previously determined. Further, a c{sub 6}-like cytochrome (PetJ2) of unknown function was recently identified in Synechoccus sp. PCC 7002 with a reduction potential of +148 mV and high pI. Here, we report the structure of OmcF{sub S} and its remarkable structural similarity to that of cytochrome c{sub 6} from the green alga, Monoraphidium braunii. To our knowledge, OmcF{sub S} is the first example of a cytochrome c{sub 6}-like structure from a nonphotosynthetic organism.

  6. Network community structure detection for directional neural networks inferred from multichannel multisubject EEG data.

    PubMed

    Liu, Ying; Moser, Jason; Aviyente, Selin

    2014-07-01

    In many neuroscience applications, one is interested in identifying the functional brain modules from multichannel, multiple subject neuroimaging data. However, most of the existing network community structure detection algorithms are limited to single undirected networks and cannot reveal the common community structure for a collection of directed networks. In this paper, we propose a community detection algorithm for weighted asymmetric (directed) networks representing the effective connectivity in the brain. Moreover, the issue of finding a common community structure across subjects is addressed by maximizing the total modularity of the group. Finally, the proposed community detection algorithm is applied to multichannel multisubject electroencephalogram data.

  7. Secondary Metabolites from the Marine Algal-Derived Endophytic Fungi: Chemical Diversity and Biological Activity.

    PubMed

    Zhang, Peng; Li, Xin; Wang, Bin-Gui

    2016-06-01

    Marine algal-derived endophytic fungi have attracted considerable attention in the most recent two decades due to their prolific production of structurally diverse secondary metabolites with various biological activities. This review summarizes a total of 182 natural products isolated from marine algal-derived endophytic fungi in the past two decades. The emphasis is on the unique chemical diversity of these metabolic products, together with relevant biological activities.

  8. Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041.

    PubMed

    Kim, Jeong-Dong; Kim, Ji-Young; Park, Jae-Kweon; Lee, Choul-Gyun

    2009-01-01

    In this study, we examined the algal-lytic activities and biological control mechanisms of Pseudoalteromonas haloplanktis AFMB-08041, which was isolated from surface seawater obtained at Masan Bay in Korea. In addition, we assessed whether AFMB-08041 could be used as a biocontrol agent to regulate harmful dinoflagellate Prorocentrum minimum. From these experiments, we found that the inoculation of AFMB-08041 at a final density of 2.5 x 10(4) cfu ml(-1) caused P. minimum cells to degrade (>90%) within 5 days. The algal cells were lysed through an indirect attack by the AFMB-08041 bacterial strain. Our results also suggest that the algal-lytic compounds produced by AFMB-08041 may have beta-glucosidase activity. However, P. haloplanktis AFMB-08041 was not able to suppress the growth of other alga such as Alexandrium tamarense, Akashiwo sanguinea, Cochlodinium polykrikoides, Gymnodinium catenatum, and Heterosigma akashiwo. Moreover, we observed that the growth of Prorocentrum dentatum, which has a very similar morphological structure to P. minimum, was also effectively suppressed by P. haloplanktis AFMB-08041. Therefore, the effect of AFMB-08041 on P. minimum degradation appears to be species specific. When testing in an indoor mesocosms, P. haloplanktis AFMB-08041 reduced the amount of viable P. minimum cells by 94.5% within 5 days after inoculation. The combined results of this study clearly demonstrate that this bacterium is capable of regulating the harmful algal blooms of P. minimum. In addition, these results will enable us to develop a new strategy for the anthropogenic control of harmful algal bloom-forming species in nature.

  9. Significance of cyclic Pennsylvanian-Permian coral/algal buildups Snaky Canyon

    SciTech Connect

    Canter, K.L. ); Isaacson, P.E. )

    1991-02-01

    Five cyclic algal, hydrozoan, and coral buildups occur within a thick sequence of Pennsylvanian-Permian (Virgilian through Wolfcampain) carbonates in south-central Idaho. The Juniper Gulch Member of the Snaky Canyon Formation, as described by Skipp and coworkers, is approximately 600 m thick and contains four depositional facies, including: (1) open circulation outer( ) platform, (2) hydrozoan and phylloid algal mound-dominated carbonate buildup, (3) backmound, restricted platform/lagoon, and (4) restricted inner platform facies. Several microlithofacies, including lime mud-rich bafflestone, diversely fossiliferous packstone and grainstone, bryozoan lime floatstone, and phylloid algal and hydrozoan (Palaeoaplysina) lime bindstone are described within the phylloid algal mounds. Successional faunal assemblage stages are recognized within the buildups. Colonial rugose corals comprise a stabilization stage. When the algal communities of the diversification stage reached wave base, because of their rapid upward growth, cross-bedded oolitic grainstone and occasional cross-bedded dolomite shoals developed. Supratidal to high intertidal platform sedimentation is represented by dolomitic Palaeoaplysina bindstone, algal mat bindstone, and vuggy dolomite. Five vertical sequences of buildup development, each terminate by intertidal, supratidal, or erosional events, are seen in the Juniper Gulch Member in the North Howe stratigraphic section of the southern Lost River Range. The carbonate platform was constructed within a depositional basin that includes an eroded highland to the west, and a mixed siliciclastic-carbonate inner platform with craton uplifts to the east.

  10. Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nie, Yixiang

    Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.

  11. Measuring Cellular-scale Nutrient Distribution in Algal Biofilms with Synchrotron Confocal Infrared Microspectroscopy

    SciTech Connect

    J Murdock; W Dodds; J Reffner; D Wetzel

    2011-12-31

    -dwelling) algae, for example, grow in a three-dimensional matrix (biofilm) composed of different cell sizes, shapes, and configurations. The optical and ecological challenge of studying algae is apparent from Figure 1, which shows a photomicrograph of algal chlorophyll fluorescence on a rock. Several issues make it difficult to obtain single species measurements with standard techniques: cell sizes can vary over an order of magnitude; species can occur as single cells, long filaments, or globular colonies; a number of different species can be found within a few square millimeters; and fluorescence can vary across cells (that is, the physiological state varies across cells). Synchrotron IMS is a tool that can be used to begin to overcome these spatially related challenges by giving a species- and location-specific measurement of an individual alga's relative chemical composition and distribution. This technique enables algal ecologists to focus on new, ecologically relevant questions such as what level (that is, cell, colony, and population) best defines a species' response to environmental change. For instance, many species occur as single cells and thus can be measured as individual organisms. However, the variety of growth forms and sizes can make it difficult to define the best unit to measure multicellular groups in terms of its functional role such as primary productivity (that is, carbon incorporation) and nutrient cycling. Understanding how individual algal species within a diverse community respond to environmental changes can help predict how changes in assemblage structure will impact overall assemblage function.

  12. Algal pigments in Southern Ocean abyssal foraminiferans indicate pelagobenthic coupling

    NASA Astrophysics Data System (ADS)

    Cedhagen, Tomas; Cheah, Wee; Bracher, Astrid; Lejzerowicz, Franck

    2014-10-01

    The cytoplasm of four species of abyssal benthic foraminiferans from the Southern Ocean (around 51°S; 12°W and 50°S; 39°W) was analysed by High Performance Liquid Chromatography (HPLC) and found to contain large concentrations of algal pigments and their degradation products. The composition of the algal pigments in the foraminiferan cytoplasm reflected the plankton community at the surface. Some foraminiferans contained high ratios of chlorophyll a/degraded pigments because they were feeding on fresher phytodetritus. Other foraminiferans contained only degraded pigments which shows that they utilized degraded phytodetritus. The concentration of algal pigment and corresponding degradation products in the foraminiferan cytoplasm is much higher than in the surrounding sediment. It shows that the foraminiferans collect a diluted and sparse food resource and concentrate it as they build up their cytoplasm. This ability contributes to the understanding of the great quantitative success of foraminiferans in the deep sea. Benthic foraminiferans are a food source for many abyssal metazoans. They form a link between the degraded food resources, phytodetritus, back to the active metazoan food chains.

  13. Nutrient ratios and the complex structure of phytoplankton communities in a highly turbid estuary of Southeast Asia.

    PubMed

    Chu, Thuoc Van; Torréton, Jean-Pascal; Mari, Xavier; Nguyen, Huyen Minh Thi; Pham, Kha Thi; Pham, Thu The; Bouvier, Thierry; Bettarel, Yvan; Pringault, Olivier; Bouvier, Corinne; Rochelle-Newall, Emma

    2014-12-01

    Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system. PMID:25200992

  14. Community structure discovery method based on the Gaussian kernel similarity matrix

    NASA Astrophysics Data System (ADS)

    Guo, Chonghui; Zhao, Haipeng

    2012-03-01

    Community structure discovery in complex networks is a popular issue, and overlapping community structure discovery in academic research has become one of the hot spots. Based on the Gaussian kernel similarity matrix and spectral bisection, this paper proposes a new community structure discovery method. First, by adjusting the Gaussian kernel parameter to change the scale of similarity, we can find the corresponding non-overlapping community structure when the value of the modularity is the largest relatively. Second, the changes of the Gaussian kernel parameter would lead to the unstable nodes jumping off, so with a slight change in method of non-overlapping community discovery, we can find the overlapping community nodes. Finally, synthetic data, karate club and political books datasets are used to test the proposed method, comparing with some other community discovery methods, to demonstrate the feasibility and effectiveness of this method.

  15. Four Structures for Marketing in the American Public Community College.

    ERIC Educational Resources Information Center

    Bogart, Quentin J.

    Prepared for college officials considering the development of marketing programs, this paper examines the distinctive marketing practices for four geographically separated, public community college districts: Coastline Community College (CCC), California; Metropolitan Community College District (MCCD), Missouri; Triton College (TC), Illinois; and…

  16. Ethnic structure of Calcutta: a study of minority communities.

    PubMed

    Sengupta, S

    1991-01-01

    "The main objective of this study is to understand the distribution, socio-economic status, behaviour and life-style of some minority communities of Calcutta.... This study will concentrate only on three overseas minority communities, i.e. Chinese Jews and Parsees and one community with mixed origin e.g., Anglo-Indian."

  17. Microzooplankton herbivory and community structure in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Eun Jin; Jiang, Yong; Lee, SangHoon

    2016-01-01

    We examined microzooplankton abundance, community structure, and grazing impact on phytoplankton in the Amundsen Sea, Western Antarctica, during the early austral summer from December 2010 to January 2011. Our study area was divided into three regions based on topography, hydrographic properties, and trophic conditions: (1) the Oceanic Zone (OZ), with free sea ice and low phytoplankton biomass dominated by diatoms; (2) the Sea Ice Zone (SIZ), covered by heavy sea ice with colder water, lower salinity, and dominated by diatoms; and (3) the Amundsen Sea Polynya (ASP), with high phytoplankton biomass dominated by Phaeocystis antarctica. Microzooplankton biomass and communities associated with phytoplankton biomass and composition varied among regions. Heterotrophic dinoflagellates (HDF) were the most significant grazers in the ASP and OZ, whereas ciliates co-dominated with HDF in the SIZ. Microzooplankton grazing impact is significant in our study area, particularly in the ASP, and consumed 55.4-107.6% of phytoplankton production (average 77.3%), with grazing impact increasing with prey and grazer biomass. This result implies that a significant proportion of the phytoplankton production is not removed by sinking or other grazers but grazed by microzooplankton. Compared with diatom-based systems, Phaeocystis-based production would be largely remineralized and/or channeled through the microbial food web through microzooplankton grazing. In these waters the major herbivorous fate of phytoplankton is likely mediated by the microzooplankton population. Our study confirms the importance of herbivorous protists in the planktonic ecosystems of high latitudes. In conclusion, microzooplankton herbivory may be a driving force controlling phytoplankton growth in early summer in the Amundsen Sea, particularly in the ASP.

  18. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  19. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  20. [Effect of environmental factors on fish community structure in the Huntai River Basin at multiple scales].

    PubMed

    Li, Yan-li; Li, Yan-fen; Xu, Zong-xue

    2014-09-01

    In June 2012, fishes was investigated at 65 sampling sites in the Huntai River basin in Northeast of China. Forty species were collected, belonging to 9 orders, 14 families,33 genera. Cobitidae and Cyprinidae were the dominant fishes in the community structure in the Huntai River basin, accounting for 13. 21% and 65. 83% of the fish community, respectively. There were two types of spatial distribution of fish community, one was distributed in the head water and tributaries in the upstream, and the other was in the plain rivers. Nemachilus nudus, Cobitis granoei and Phoxinus lagowskii dominated the local community in the upper reaches of the Dahuofang Reservoir and shenwo River, while Carassius ayratus and Hemiculter leucisculdus dominated the local community in the plain rivers. CCA (canonical correspondence analysis) was used to distinguish the primary environmental variables that affected the fish community structure. The results indicated fish community was mainly affected by environment factors at watershed and reach scales. Proportions of woodland and urban land, and altitude were three important environmental factors affecting the fish community at the watershed scale. Dissolved oxygen, total nitrogen, pH and habitat inhomogeneity significantly affected the fish community at the reach scale, whereas substrate didn't show significant influence at the microhabitat scale. Environmental factors at watershed scale explained 7. 66% of the variation of fish community structure, environmental factors at reach scale explained 10. 57% of the variation of fish community structure. Environmental factors at reach scale influenced the fish community more significantly.

  1. Hierarchical neighbor effects on mycorrhizal community structure and function.

    PubMed

    Moeller, Holly V; Dickie, Ian A; Peltzer, Duane A; Fukami, Tadashi

    2016-08-01

    Theory predicts that neighboring communities can shape one another's composition and function, for example, through the exchange of member species. However, empirical tests of the directionality and strength of these effects are rare. We determined the effects of neighboring communities on one another through experimental manipulation of a plant-fungal model system. We first established distinct ectomycorrhizal fungal communities on Douglas-fir seedlings that were initially grown in three soil environments. We then transplanted seedlings and mycorrhizal communities in a fully factorial experiment designed to quantify the direction and strength of neighbor effects by focusing on changes in fungal community species composition and implications for seedling growth (a proxy for community function). We found that neighbor effects on the composition and function of adjacent communities follow a dominance hierarchy. Specifically, mycorrhizal communities established from soils collected in Douglas-fir plantations were both the least sensitive to neighbor effects, and exerted the strongest influence on their neighbors by driving convergence in neighbor community composition and increasing neighbor seedling vigor. These results demonstrate that asymmetric neighbor effects mediated by ecological history can determine both community composition and function. PMID:27551393

  2. Advances in algal drug research with emphasis on enzyme inhibitors.

    PubMed

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2014-12-01

    Enzyme inhibitors are now included in all kinds of drugs essential to treat most of the human diseases including communicable, metabolic, cardiovascular, neurological diseases and cancer. Numerous marine algae have been reported to be a potential source of novel enzyme inhibitors with various pharmaceutical values. Thus, the purpose of this review is to brief the enzyme inhibitors from marine algae of therapeutic potential to treat common diseases. As per our knowledge this is the first review for the potential enzyme inhibitors from marine origin. This review contains 86 algal enzyme inhibitors reported during 1989-2013 and commercial enzyme inhibitors available in the market. Compounds in the review are grouped according to the disease conditions in which they are involved; diabetes, obesity, dementia, inflammation, melanogenesis, AIDS, hypertension and other viral diseases. The structure-activity relationship of most of the compounds are also discussed. In addition, the drug likeness properties of algal inhibitors were evaluated using Lipinski's 'Rule of Five'. PMID:25195189

  3. Partitioning temperate plant community structure at different scales

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus

    2010-05-01

    Three stem-mapped field plots, each representing a specific forest developmental stage, were established in a temperate forest in Northeastern China: a young secondary conifer and broadleaved mixed forest (YSF), an old secondary conifer and broadleaved mixed forest (OSF), and an old-growth Korean pine and broad-leaf forest (OGF). The focus of this study is to test an environmental control hypothesis. The spatial variations of community structure (species diversity, forest density and size differentiation) were partitioned into pure environment, pure space, and spatially-structured environmental processes in the three research plots. The principal coordinates of neighbor matrices (PCNMs) method was included in the procedure of variation decomposition with respect to spatial and environmental components. The significant PCNM variables could be directly interpreted in terms of spatial scales. The results indicate that the explanatory power of the soil data was much greater in the secondary forests (YSF and/or OSF) than in the old-growth forest regarding species diversity, forest density and size differentiation. Nearly half (48.35% and 44.86%) of the variation of species richness was explained by soil properties in the young secondary forest and the old secondary forest, respectively. However, only 4.87% of that variation was explained by soil properties in the old-growth forest. Over 14% of the variation of the tree size differentiation was explained by soil properties in two secondary forests, and only 4.23% in the old-growth forest. In this study, the spatial variation of species richness and size differentiation was related to environmental variables at multiple scales. Soil variables had a significant effect on species richness and size differentiation at broader scales in the secondary forests, but mainly at medium and fine scales in the old-growth forest. The results challenge the commonly held assumption that tree distributions simply reflect patterns of seed

  4. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  5. Spatial structure of the abiotic environment and its association with sapling community structure and dynamics in a cloud forest

    NASA Astrophysics Data System (ADS)

    Mejía-Domínguez, Nancy R.; Meave, Jorge A.; Díaz-Ávalos, Carlos

    2012-03-01

    Analyzing the relationship between the spatial structures of environmental variables and of the associated seedling and sapling communities is crucial to understanding the regeneration processes in forest communities. The degree of spatial structuring (i.e., spatial autocorrelation) of environmental and sapling community variables in the cloud forest of Teipan, S Mexico, were analyzed at a 1-ha scale using geostatistical analysis; after fitting semivariogram models for each set of variables, the association between the two sets was examined through cross-variograms. Kriging maps of the sapling community variables (density, cover, species richness, and mortality and recruitment rates) were obtained through conditional simulation method. Canopy openness, total solar radiation, litter depth, soil temperature and soil moisture were spatially structured, as were sapling density, species richness and sapling mortality rate. Mean range in semivariograms for environmental and sapling community variables were 13.14 ± 3.67 and 12.68 ± 5.71 m (±SE), respectively. The spatial structure of litter depth was negatively associated with the spatial structures of sapling density, species richness, and sapling community cover; in turn, the spatial structure of soil moisture was positively associated with the spatial structure of recruitment rate. These associations of the spatial structures of abiotic and sapling community variables suggest that the regeneration processes in this cloud forest is driven by the existence of different microsites, largely characterized by litter depth variations, across which saplings of tree species encounter a range of opportunities for successful establishment and survival.

  6. The ecology of rubble structures of the South Atlantic Bight: A community profile. [Jetties

    SciTech Connect

    Hay, M.E.; Sutherland, J.P.

    1988-09-01

    This community profile provides an introduction to the ecology of the communities living on and around rubble structures in the South Atlantic Bight (Cape Hatteras to Cape Canaveral). The most prominent rubble structures in the bight are jetties built at the entrances to major harbors. After an initial discussion of the various kinds of rubble structures and physical factors that affect the organisms associated with them, the major portion of the text is devoted to the ecology of rubble structure habitats. Community composition, distribution, seasonality, and the recruitment patterns of the major groups of organisms are described. The major physical and biological factors affecting the organization of intertidal, sunlit subtidal, and shaded subtidal communities are presented and the potential effects of complex interactions in structuring these communities are evaluated. The profile concludes with a general review of the effects of rubble structures on nearshore sediment dynamics and shoreline evolution. 295 refs., 33 figs., 4 tabs.

  7. Prey community structure affects how predators select for Mullerian mimicry.

    PubMed

    Ihalainen, Eira; Rowland, Hannah M; Speed, Michael P; Ruxton, Graeme D; Mappes, Johanna

    2012-06-01

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.

  8. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels. PMID:22324757

  9. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  10. Freshwater seepages and ephemeral macroalgae proliferation in an intertidal bay: I Effect on benthic community structure and food web

    NASA Astrophysics Data System (ADS)

    Ouisse, Vincent; Riera, Pascal; Migné, Aline; Leroux, Cédric; Davoult, Dominique

    2011-01-01

    Freshwater seepages and ephemeral Enteromorpha spp. proliferation create heterogeneity at small spatial scale in intertidal sediment. Macrobenthic community diversity was compared between these two disturbances and their respective control points throughout the year 2007 at the Roscoff Aber Bay (Western English Channel, France). In March and September 2007, trophic community pathways of characteristic species were additionally studied using stable isotope ratios of carbon and nitrogen. The low salinity recorded at the freshwater seepage induced the exclusion of the main bioturbator and the presence of omnivores which modified the community composition by biotic pressure. Moreover, food web analyses clearly highlighted a separation at small spatial scale between the two trophic pathways of the impacted area and its control. On the contrary, little differences were observed owning to the ephemeral Enteromorpha spp. proliferation. This suggested a progressive and diffusive disturbance which was applied from the algal mat to the nearby area. However, seasonal changes were observed. First, the algal expansion phase increased the macrofauna diversity and foraminifers' abundance (meiofauna) and then acted as a physical barrier decreasing sediment and water column exchanges and decreasing the fauna diversity. This study highlights the need to take into account small spatial heterogeneity to avoid misinterpretations in intertidal ecology studies.

  11. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  12. Power and the Polls: A Community Power Structure and Its Implications for a School Bond Referendum.

    ERIC Educational Resources Information Center

    Conners, Dennis A.

    A study was undertaken to explore the power structure in a Southwestern community of 93,000 and to determine which elements in that power structure had the most influence in a local school bond referendum. The data for the study were collected using two techniques. First, a panel of knowledgeable community members identified 85 politically…

  13. Structure in Community College Career-Technical Programs: A Qualitative Analysis. CCRC Working Paper No. 50

    ERIC Educational Resources Information Center

    Van Noy, Michelle; Weiss, Madeline Joy; Jenkins, Davis; Barnett, Elisabeth A.; Wachen, John

    2012-01-01

    Using data obtained from interviews and program websites at Washington community and technical colleges, the authors of this study examine the structure of community college career-technical programs in allied health, business and marketing, computer and information studies, and mechanics and repair. A framework for structure with four…

  14. Oxygen and the spatial structure of microbial communities.

    PubMed

    Fenchel, Tom; Finlay, Bland

    2008-11-01

    Oxygen has two faces. On one side it is the terminal electron acceptor of aerobic respiration - the most efficient engine of energy metabolism. On the other hand, oxygen is toxic because the reduction of molecular O2 creates reactive oxygen species such as the superoxide anion, peroxide, and the hydroxyl radical. Probably most prokaryotes, and virtually all eukaryotes, depend on oxygen respiration, and we show that the ambiguous relation to oxygen is both an evolutionary force and a dominating factor driving functional interactions and the spatial structure of microbial communities.We focus on microbial communities that are specialised for life in concentration gradients of oxygen, where they acquire the full panoply of specific requirements from limited ranges of PO2, which also support the spatial organisation of microbial communities. Marine and lake sediments provide examples of steep O2 gradients, which arise because consumption or production of oxygen exceeds transport rates of molecular diffusion. Deep lakes undergo thermal stratification in warm waters, resulting in seasonal anaerobiosis below the thermocline, and lakes with a permanent pycnocline often have permanent anoxic deep water. The oxycline is here biologically similar to sediments, and it harbours similar microbial biota, the main difference being the spatial scale. In sediments, transport is dominated by molecular diffusion, and in the water column, turbulent mixing dominates vertical transport. Cell size determines the minimum requirement of aerobic organisms. For bacteria (and mitochondria), the half-saturation constant for oxygen uptake ranges within 0.05-0.1% atmospheric saturation; for the amoeba Acanthamoeba castellanii it is 0.2%, and for two ciliate species measuring around 150 microm, it is 1-2 % atmospheric saturation. Protection against O2 toxicity has an energetic cost that increases with increasing ambient O2 tension. Oxygen sensing seems universal in aquatic organisms. Many aspects

  15. The Effects of Structured Transfer Programs in Community Colleges

    ERIC Educational Resources Information Center

    Baker, Rachel

    2014-01-01

    Many community college students begin with the intention of transferring to a four-year school but relatively few actually do. One hypothesis for the low rates of successful two-to-four year transfers is that academic program choices in community colleges are too numerous and too complex. In this paper, the author will address a longer term…

  16. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    PubMed Central

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  17. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

    PubMed

    Vega Thurber, Rebecca; Burkepile, Deron E; Correa, Adrienne M S; Thurber, Andrew R; Shantz, Andrew A; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  18. Structure of the phytoplankton community in the Cachoeira Dourada reservoir (GO/MG), Brazil.

    PubMed

    Teixeira de Oliveira, M; Rocha, O; Peret, A C

    2011-08-01

    The limnological features and the phytoplankton community of the Cachoeira Dourada reservoir were analyzed in December 2006, May 2007 and November 2007. Temporal changes in the taxonomic composition, density, diversity and dominance of species were analyzed in relation to climatic factors and the physical and chemical characteristics of the water. A positive correlation was found between some of the physical and chemical variables and the phytoplankton community. According to the CCA, variables such as the extent of the euphotic zone, temperature, pH, nitrogen and phosphorus concentrations directly affected the phytoplankton dynamics. Organisms belonging to the class Cyanophyceae were the most representative in all the sampling periods, comprising the functional groups K, S1, M and H. Hydrodynamics and seasonal fluctuations of environmental factors were the driving forces determining the composition and abundance of the algal assemblages. Despite the prevalence of Cyanobacteria, the reservoir is still oligotrophic. The absence of blooms and the relatively low population abundances indicated that the quality of the reservoir's water still lies within the limits required for its multiples uses.

  19. [Community Structure of Aquatic Community and Evaluation of Water Quality in Laovingyan Section of Dadu River].

    PubMed

    Huang, You-you; Zeng, Yu; Liu, Shou-jiang; Ma, Yong-hong; Xu, Xiao

    2016-01-15

    In order to understand the aquatic community structure in the Laoyingyan section of the Dadu River, we collected samples from 9 aquatic sampling points along that section, and studied the phycophyta, zooplankton, benthic invertebrate and fish in them; we also used expert scoring method based on the actual situation of the river to weigh different biome. The water quality was evaluated using comprehensive evaluation of water quality index ( CEWI). The results showed that: (1) there were a total of 105 phycophyta species, belonging to 6 phyla,31 families, and 56 genera in the Laoyingyan section of the Dadu River, among which, diatom species had a higher richness than the others. The mean cell density of the phycophyta was 17.997 8 x 10(4) ind x L(-1), the mean biomass was 0.4463 mg x L(-1), and the highest population density sites were LTS, LYH and XSH. (2) there were a total of 26 zooplankton species, belonging to 3 phyla, 11 families, and 12 genera, among which, Protozoa had a higher richness than the others, accounting for 80.77% of all the zooplankton species; The mean density of the phycophyta was 40.89 ind x L(-1), and the mean biomass was 13.26 x 10(-3) mg x L(-1). The whole community composition was simple, characterized by few species and small population size. (3) there were a total of 14 benthic invertebrate species, belonging to 6 phyla,14 families, and 14 genera, among which, insecta had a higher richness than the others, accounting for 57.16% of the benthic invertebrate species. Benthic invertebrate had higher population densities in LYH and XSH. (4) The mean CEWI of the whole river water was 2. 698 28, characterized by slightly polluted water quality. The CEWI value between every collection point and the individual water quality evaluation index showed a significant positive correlation, manifesting a high consistency. In addition, the water quality of SLH and NYH was mesosaprobic (1 < CEWI < or = 2), and the water quality of LYH and LYY1 was clean

  20. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  1. Microflotation performance for algal separation.

    PubMed

    Hanotu, James; Bandulasena, H C Hemaka; Zimmerman, William B

    2012-07-01

    The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm. In contrast, continuous air flow at the same rate through the same diffusers yielded an average bubble size of 1,059 µm, 28 times larger than the pore size. Following microbubble generation, the separation of algal cells under fluidic oscillator generated microbubbles was investigated by varying metallic coagulant types, concentration and pH. Best performances were recorded at the highest coagulant dose (150 mg/L) applied under acidic conditions (pH 5). Amongst the three metallic coagulants studied, ferric chloride yielded the overall best result of 99.2% under the optimum conditions followed closely by ferric sulfate (98.1%) and aluminum sulfate with 95.2%. This compares well with conventional dissolved air flotation (DAF) benchmarks, but has a highly turbulent flow, whereas microflotation is laminar with several orders of magnitude lower energy density.

  2. A Geospatial Analysis of Harmful Algal Blooms along the California Coast

    NASA Astrophysics Data System (ADS)

    Jensen, C.; Rothwell, R.; Johnson, E.; Condamoor, M.; Patil, M.; Largier, J. L.; Schmidt, C.

    2012-12-01

    Algal blooms are natural phenomena consisting of the rapid growth of phytoplankton populations. Some blooms have negative ecological or public health effects due to toxin production and removal of oxygen from the water column. In recent years, such "harmful algal blooms" (HABs) have been linked to human illness, economic loss from decreased fishing, and ecological damage related to marine life mortality as well as eutrophication. A notable HAB event occurred along the coast of northern California in August 2011, resulting in economic and ecological impacts of approximately $82 million. This was one of several algal blooms that occurred in fall 2011, with similar northward propagating algal blooms occurring in autumn of other years. Although the scale of the bloom impact is well-known, the spatial and temporal extent of the bloom boundary is still unclear. This study tracked the space-time pattern of numerous blooms during August-October 2011 using multiple NASA Earth observing systems in an effort to quantify and understand the structure of these recurrent bloom events. Aqua MODIS images were used to quantify surface chlorophyll-α levels, and thus to map the extent and development of all autumn algal blooms. The relation between sea surface temperature, ocean surface topography, and algal blooms was further explored with AVHRR and Jason-2 satellite data. A Generalized Additive Model (GAM) was used to identify the environmental factors most statistically influential in algal blooms and specifically in HAB events. Results from this study will assist California's Departments of Public Health and Fish & Game in mitigating and managing the impact of future harmful algal blooms.

  3. Textural variation within Great Salt Lake algal mounds: Chapter 8.5 in Stromatolites

    USGS Publications Warehouse

    1976-01-01

    This chapter discusses textural variation within the Great Salt Lake algal mounds. Great Salt Lake algal mounds contain: (1) a framework of non-skeletal, algally induced aragonite precipitates; (2) internal sediment; and (3) inorganic cement. These three elements create a variety of laminated, poorly laminated, and unlaminated internal textures. Interior framework precipitates bear little resemblance to the present living film of the mound surface. Internal texture of the mounds is believed to be largely relict and to have resulted from precipitation by algae different than those presently living at the surface. The most probable cause of local extinction of the algal flora is change in brine salinity. Precipitated blue-green algal structures in ancient rocks may indicate other than normal marine salinity and near shore sedimentation. Extreme variation of internal texture reflects extreme environmental variability typical of closed basin lakes. Recognition of mounds similar to those in the Great Salt Lake can be a first step toward recognition of ancient hyper-saline lake deposits, if such an interpretation is substantiated by consideration of the entire depositional milieu of precipitated algal mounds.

  4. The Organization and Structure of Community Education Offerings in Community Colleges

    ERIC Educational Resources Information Center

    Miller, Michael; Grover, Kenda S.; Kacirek, Kit

    2014-01-01

    One of the key services community colleges provide is community education, meaning those programs and activities that are often offered for leisure or self-improvement and not for credit. Programs of this nature are increasingly challenged to be self-financing, whether through user fees or externally funded grants. The current study explored 75…

  5. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    PubMed

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  6. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  7. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  8. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  9. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions. PMID:26691594

  10. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions.

  11. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure.

    PubMed

    Wimp, G M; Wooley, S; Bangert, R K; Young, W P; Martinsen, G D; Keim, P; Rehill, B; Lindroth, R L; Whitham, T G

    2007-12-01

    With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

  12. EFFECTS OF SEDIMENT CONTAMINANTS AND ENVIRONMENTAL GRADIENTS ON MACROBENTHIC COMMUNITY TROPHIC STRUCTURE IN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether re...

  13. Assembly of forest communities across East Asia – insights from phylogenetic community structure and species pool scaling

    PubMed Central

    Feng, Gang; Mi, Xiangcheng; Eiserhardt, Wolf L.; Jin, Guangze; Sang, Weiguo; Lu, Zhijun; Wang, Xihua; Li, Xiankun; Li, Buhang; Sun, Ifang; Ma, Keping; Svenning, Jens-Christian

    2015-01-01

    Local communities are assembled from larger-scale species pools via dispersal, environmental filtering, biotic interactions, and local stochastic demographic processes. The relative importance, scaling and interplay of these assembly processes can be elucidated by comparing local communities to variously circumscribed species pools. Here we present the first study applying this approach to forest tree communities across East Asia, focusing on community phylogenetic structure and using data from a global network of tropical, subtropical and temperate forest plots. We found that Net Relatedness Index (NRI) and Nearest Taxon Index (NTI) values were generally lower with geographically broad species pools (global and Asian species pools) than with an East Asian species pool, except that global species pool produced higher NTI than the East Asian species pool. The lower NRI for the global relative to the East Asian species pool may indicate an important role of intercontinental migration during the Neogene and Quaternary and climatic conservatism in shaping the deeper phylogenetic structure of tree communities in East Asia. In contrast, higher NTI for the global relative to the East Asian species pool is consistent with recent localized diversification determining the shallow phylogenetic structure. PMID:25797420

  14. Assembly of forest communities across East Asia--insights from phylogenetic community structure and species pool scaling.

    PubMed

    Feng, Gang; Mi, Xiangcheng; Eiserhardt, Wolf L; Jin, Guangze; Sang, Weiguo; Lu, Zhijun; Wang, Xihua; Li, Xiankun; Li, Buhang; Sun, Ifang; Ma, Keping; Svenning, Jens-Christian

    2015-03-23

    Local communities are assembled from larger-scale species pools via dispersal, environmental filtering, biotic interactions, and local stochastic demographic processes. The relative importance, scaling and interplay of these assembly processes can be elucidated by comparing local communities to variously circumscribed species pools. Here we present the first study applying this approach to forest tree communities across East Asia, focusing on community phylogenetic structure and using data from a global network of tropical, subtropical and temperate forest plots. We found that Net Relatedness Index (NRI) and Nearest Taxon Index (NTI) values were generally lower with geographically broad species pools (global and Asian species pools) than with an East Asian species pool, except that global species pool produced higher NTI than the East Asian species pool. The lower NRI for the global relative to the East Asian species pool may indicate an important role of intercontinental migration during the Neogene and Quaternary and climatic conservatism in shaping the deeper phylogenetic structure of tree communities in East Asia. In contrast, higher NTI for the global relative to the East Asian species pool is consistent with recent localized diversification determining the shallow phylogenetic structure.

  15. Assembly of forest communities across East Asia--insights from phylogenetic community structure and species pool scaling.

    PubMed

    Feng, Gang; Mi, Xiangcheng; Eiserhardt, Wolf L; Jin, Guangze; Sang, Weiguo; Lu, Zhijun; Wang, Xihua; Li, Xiankun; Li, Buhang; Sun, Ifang; Ma, Keping; Svenning, Jens-Christian

    2015-01-01

    Local communities are assembled from larger-scale species pools via dispersal, environmental filtering, biotic interactions, and local stochastic demographic processes. The relative importance, scaling and interplay of these assembly processes can be elucidated by comparing local communities to variously circumscribed species pools. Here we present the first study applying this approach to forest tree communities across East Asia, focusing on community phylogenetic structure and using data from a global network of tropical, subtropical and temperate forest plots. We found that Net Relatedness Index (NRI) and Nearest Taxon Index (NTI) values were generally lower with geographically broad species pools (global and Asian species pools) than with an East Asian species pool, except that global species pool produced higher NTI than the East Asian species pool. The lower NRI for the global relative to the East Asian species pool may indicate an important role of intercontinental migration during the Neogene and Quaternary and climatic conservatism in shaping the deeper phylogenetic structure of tree communities in East Asia. In contrast, higher NTI for the global relative to the East Asian species pool is consistent with recent localized diversification determining the shallow phylogenetic structure. PMID:25797420

  16. Bacterial community structure and function along a heavy metal gradient

    SciTech Connect

    Dean-Ross, D. ); Mills, A.L. )

    1989-08-01

    The response to the planktonic, sediment, and epilithic bacterial communities to increasing concentrations of heavy metals was determined in a polluted river. None of the communities demonstrated a pollution-related effect on bacterial numbers (viable and total), heterotrophic activity, resistance to Pb or Cu, or species diversity as determined by either the Shannon-Wiener diversity index or rarefaction. The lack of correlation between concentrations of heavy metals and resistance in the sediment bacterial community was investigated and found to be due at least in part to the high pH of the river water and the resultant reduction in heavy metal toxicity. The three different communities demonstrated characteristic profiles based on the relative abundances of bacterial strains grouped according to functional similarities.

  17. Filtering across Spatial Scales: Phylogeny, Biogeography and Community Structure in Bumble Bees

    PubMed Central

    Harmon-Threatt, Alexandra N.; Ackerly, David D.

    2013-01-01

    Despite the expansion of phylogenetic community analysis to understand community assembly, few studies have used these methods on mobile organisms and it has been suggested the local scales that are typically considered may be too small to represent the community as perceived by organisms with high mobility. Mobility is believed to allow species to mediate competitive interactions quickly and thus highly mobile species may appear randomly assembled in local communities. At larger scales, however, biogeographical processes could cause communities to be either phylogenetically clustered or even. Using phylogenetic community analysis we examined patterns of relatedness and trait similarity in communities of bumble bees (Bombus) across spatial scales comparing: local communities to regional pools, regional communities to continental pools and the continental community to a global species pool. Species composition and data on tongue lengths, a key foraging trait, were used to test patterns of relatedness and trait similarity across scales. Although expected to exhibit limiting similarity, local communities were clustered both phenotypically and phylogenetically. Larger spatial scales were also found to have more phylogenetic clustering but less trait clustering. While patterns of relatedness in mobile species have previously been suggested to exhibit less structure in local communities and to be less clustered than immobile species, we suggest that mobility may actually allow communities to have more similar species that can simply limit direct competition through mobility. PMID:23544141

  18. Cooperation and punishment in community-structured populations with migration.

    PubMed

    Kaiping, G A; Cox, S J; Sluckin, T J

    2016-09-21

    The stable presence of punishing strategies in various cooperative species is a persistent puzzle in the study of the evolution of cooperation. To investigate the effect of group competition, we study the evolutionary dynamics of the Public Goods Game with punishment in a metapopulation that consists of separate communities. In addition to (a) well-mixed non-interacting communities, we model three distinct types of interaction between communities, (b) Migration independent of fitness; (c) Competition between whole communities, where entire communities replace each other depending on average fitness; (d) Migration where the probability of an offspring replacing an individual in another community depends on fitness. We use stochastic simulations to study the long-run frequencies of strategies with these interactions, subject to high mutation and migration rates. In cases (a) and (b), the transition between cooperation/punishment and defection regimes occurs for similar parameter values; with migration (b), the transitions are steeper due to higher total mixing. Fitness-based migration (d) by contrast can help support cooperation, changing the locations of transitions, but while group selection (c) does stabilise cooperation over much of the parameter space, fitness-based migration (d) acts as a proxy for group selection only in a smaller region. PMID:26796223

  19. Cooperation and punishment in community-structured populations with migration.

    PubMed

    Kaiping, G A; Cox, S J; Sluckin, T J

    2016-09-21

    The stable presence of punishing strategies in various cooperative species is a persistent puzzle in the study of the evolution of cooperation. To investigate the effect of group competition, we study the evolutionary dynamics of the Public Goods Game with punishment in a metapopulation that consists of separate communities. In addition to (a) well-mixed non-interacting communities, we model three distinct types of interaction between communities, (b) Migration independent of fitness; (c) Competition between whole communities, where entire communities replace each other depending on average fitness; (d) Migration where the probability of an offspring replacing an individual in another community depends on fitness. We use stochastic simulations to study the long-run frequencies of strategies with these interactions, subject to high mutation and migration rates. In cases (a) and (b), the transition between cooperation/punishment and defection regimes occurs for similar parameter values; with migration (b), the transitions are steeper due to higher total mixing. Fitness-based migration (d) by contrast can help support cooperation, changing the locations of transitions, but while group selection (c) does stabilise cooperation over much of the parameter space, fitness-based migration (d) acts as a proxy for group selection only in a smaller region.

  20. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  1. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  2. Sterol phylogenesis and algal evolution.

    PubMed Central

    Nes, W D; Norton, R A; Crumley, F G; Madigan, S J; Katz, E R

    1990-01-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like micro-organisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and 1H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecycloartanol, ergosterol, protothecasterol, 4alpha-methylergostanol, 4alpha-methylclionastanol, clionastanol, 24beta-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I [2-3H]lanosterol, [2-3H]cycloartenol, [24-3H]lanosterol, and [methyl-2H3]methionine and by feeding to II [methyl-2H3]methionine. The results demonstrate that the 24beta configuration is formed by different alkylation routes in I and II. The Delta25(27) route operates in I while the Delta24(28) route operates in II. Based on what is known in the literature regarding sterol distribution and phylogenesis together with our findings that the stereochemical outcome of squalene oxide cyclization leads to the production of cycloartenol rather than lanosterol (characteristic of the fungal genealogy) and the chirality of the C-24 alkyl group is similar in the two nonphotosynthetic microbes (beta oriented), we conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors. PMID:11607106

  3. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways.

  4. Structure and function of fish communities in the southern Lake Michigan basin with emphasis on restoration of native fish communities

    USGS Publications Warehouse

    Simon, Thomas P.; Stewart, Paul M.

    1999-01-01

    The southern Lake Michigan basin in northwest Indiana possesses a variety of aquatic habitats including riverine, palustrine, and lacustrine systems. The watershed draining this area is a remnant of glacial Lake Chicago and supports fish communities that are typically low in species richness. Composition of the presettlement Lake Michigan fish community near the Indiana Dunes has been difficult to reconstruct. Existing data indicate that the number of native species in the Lake Michigan watershed, including nearshore Lake Michigan, has declined by 22% since the onset of European settlement. Few remnants of natural fish communities exist, and those occur principally in the ponds of Miller Woods, the Grand Calumet Lagoons, and the Little Calumet River. These communities have maintained a relatively diverse assemblage of fishes despite large-scale anthropogenic disturbances in the area, including channelization, massive river redirection, fragmentation, habitat alteration, exotic species invasions, and the introduction of toxic chemicals. Data that we collected from 1985 to 1996 suggested that the Grand Calumet River has the highest proportion of exotic fish species of any inland wetland in northwest Indiana. Along the Lake Michigan shoreline, another group of exotics (e.g., round goby, alewife, and sea lamprey) have affected the structure of native fish communities, thereby altering lake ecosystem function. Stocking programs contribute to the impairment of native communities. Nonindigenous species have restructured the function of Lake Michigan tributaries, causing disruptions in trophic dynamics, guild structure, and species diversity. Several fish communities have been reduced or eliminated by the alteration and destruction of spawning and nursery areas. Degradation of habitats has caused an increase in numbers and populations of species able to tolerate and flourish when confronted with hydrologic alteration. Fish communities found on public lands in northwest

  5. Among-habitat algal selectivity by browsing herbivores on an inshore coral reef

    NASA Astrophysics Data System (ADS)

    Loffler, Zoe; Bellwood, David R.; Hoey, Andrew S.

    2015-06-01

    Understanding how the impact of different herbivores varies spatially on coral reefs is important in qualifying the resistance of coral reefs to disturbance events and identifying the processes that structure algal communities. We used assays of six common macroalgae ( Acanthophora spicifera, Caulerpa taxifolia, Galaxaura rugosa, Laurencia sp. Sargassum sp., and Turbinaria ornata) and remote underwater video cameras to quantify herbivory in two habitats (reef crest and slope) across multiple sites on Orpheus Island, Great Barrier Reef. Rates of herbivory varied among macroalgal taxa, habitats, and sites. Reductions in algal biomass were greatest for Sargassum sp. (36 % 4 h-1), intermediate for A. spicifera, Laurencia sp., C. taxifolia, and T. ornata (17-33 % 4 h-1) and lowest for G. rugosa (6 % 4 h-1). Overall, rates of herbivory were generally greater on the reef crest (30 % 4 h-1) than the reef slope (21 % 4 h-1). This difference in rates of herbivory coincided with a marked shift in the dominant herbivores between habitats. Kyphosus vaigiensis, despite only feeding on three species of macroalgae ( Sargassum sp., T. ornata, and A. spicifera), was responsible for 34 % of all bites recorded on the reef crest yet did not take a single bite from algae on the reef slope. In contrast, Siganus doliatus took bites on every species of algae in both habitats, accounting for 40 % of bites on the reef crest and 74 % of all bites recorded on the reef slope. This difference in the number of macroalgal species targeted by herbivores and the habitat/s in which they feed adds another dimension of complexity to our understanding of coral reef herbivore dynamics.

  6. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed

    Graham, Emily B; Knelman, Joseph E; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J M; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C; Glanville, Helen C; Jones, Davey L; Angel, Roey; Salminen, Janne; Newton, Ryan J; Bürgmann, Helmut; Ingram, Lachlan J; Hamer, Ute; Siljanen, Henri M P; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C; Lopes, Ana R; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S; Basiliko, Nathan; Nemergut, Diana R

    2016-01-01

    Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. PMID:26941732

  7. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed

    Graham, Emily B; Knelman, Joseph E; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J M; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C; Glanville, Helen C; Jones, Davey L; Angel, Roey; Salminen, Janne; Newton, Ryan J; Bürgmann, Helmut; Ingram, Lachlan J; Hamer, Ute; Siljanen, Henri M P; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C; Lopes, Ana R; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S; Basiliko, Nathan; Nemergut, Diana R

    2016-01-01

    Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  8. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  9. The reconstruction of complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Wang, Futian; Wang, Xiang; Zeng, An; Xiao, Jinghua

    2015-12-01

    Link prediction is a fundamental problem with applications in many fields ranging from biology to computer science. In the literature, most effort has been devoted to estimate the likelihood of the existence of a link between two nodes, based on observed links and nodes’ attributes in a network. In this paper, we apply several representative link prediction methods to reconstruct the network, namely to add the missing links with high likelihood of existence back to the network. We find that all these existing methods fail to identify the links connecting different communities, resulting in a poor reproduction of the topological and dynamical properties of the true network. To solve this problem, we propose a community-based link prediction method. We find that our method has high prediction accuracy and is very effective in reconstructing the inter-community links.

  10. THE EFFECTS OF DIFFERENT SAMPLE CONCENTRATIONS ON THE STRUCTURE OF MICROBIAL COMMUNITIES USING PHOSPHOLIPID FATTY ACID ANALYSIS

    EPA Science Inventory

    Phospholipid fatty acid (PLFA) analysis is a powerful tool for determination of microbial community structures in soils and sediments. However, accurate determination of total microbial biomass and structure of the microbial community may be dependent on the concentration of the...

  11. Geochip: A high throughput genomic tool for linking community structure to functions

    SciTech Connect

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  12. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  13. Can artificial reefs mimic natural reef communities? The roles of structural features and age.

    PubMed

    Perkol-Finkel, S; Shashar, N; Benayahu, Y

    2006-03-01

    In light of the deteriorating state of coral reefs worldwide, the need to rehabilitate marine environments has greatly increased. Artificial reefs (ARs) have been suggested as a tool for reef conservation and rehabilitation. Although successions of AR communities have been thoroughly studied, current understanding of the interactions between artificial and natural reefs (NRs) is poor and a fundamental question still to be answered is that of whether AR communities can mimic adjacent NR communities. We suggest three alternative hypotheses: Neighboring ARs and NRs will (1) achieve a similar community structure given sufficient time; (2) be similar only if they possess similar structural features; (3) always differ, regardless of age or structural features. We examined these hypotheses by comparing the community structure on a 119-year old shipwreck to a neighboring NR. Fouling organisms, including stony and soft corals, sponges, tunicates, sea anemones and hydrozoans were recorded and measured along belt transects. The ahermatypic stony coral Tubastrea micrantha dominated vertical AR regions while the soft corals Nephthea sp. and Xenia sp. dominated both artificial and natural horizontal surfaces. Our results support the second hypothesis, indicating that even after a century an AR will mimic its adjacent NR communities only if it possesses structural features similar to those of the natural surroundings. However, if the two differ structurally, their communities will remain distinct.

  14. Can artificial reefs mimic natural reef communities? The roles of structural features and age.

    PubMed

    Perkol-Finkel, S; Shashar, N; Benayahu, Y

    2006-03-01

    In light of the deteriorating state of coral reefs worldwide, the need to rehabilitate marine environments has greatly increased. Artificial reefs (ARs) have been suggested as a tool for reef conservation and rehabilitation. Although successions of AR communities have been thoroughly studied, current understanding of the interactions between artificial and natural reefs (NRs) is poor and a fundamental question still to be answered is that of whether AR communities can mimic adjacent NR communities. We suggest three alternative hypotheses: Neighboring ARs and NRs will (1) achieve a similar community structure given sufficient time; (2) be similar only if they possess similar structural features; (3) always differ, regardless of age or structural features. We examined these hypotheses by comparing the community structure on a 119-year old shipwreck to a neighboring NR. Fouling organisms, including stony and soft corals, sponges, tunicates, sea anemones and hydrozoans were recorded and measured along belt transects. The ahermatypic stony coral Tubastrea micrantha dominated vertical AR regions while the soft corals Nephthea sp. and Xenia sp. dominated both artificial and natural horizontal surfaces. Our results support the second hypothesis, indicating that even after a century an AR will mimic its adjacent NR communities only if it possesses structural features similar to those of the natural surroundings. However, if the two differ structurally, their communities will remain distinct. PMID:16198411

  15. Relative roles of niche and neutral processes in structuring a soil microbial community.

    PubMed

    Dumbrell, Alex J; Nelson, Michaela; Helgason, Thorunn; Dytham, Calvin; Fitter, Alastair H

    2010-03-01

    Most attempts to identify the processes that structure natural communities have focused on conspicuous macroorganisms whereas the processes responsible for structuring microbial communities remain relatively unknown. Two main theories explaining these processes have emerged; niche theory, which highlights the importance of deterministic processes, and neutral theory, which focuses on stochastic processes. We examined whether neutral or niche-based mechanisms best explain the composition and structure of communities of a functionally important soil microbe, the arbuscular mycorrhizal (AM) fungi. Using molecular techniques, we surveyed AM fungi from 425 individual plants of 28 plant species along a soil pH gradient. There was evidence that both niche and neutral processes structured this community. Species abundances fitted the zero-sum multinomial distribution and there was evidence of dispersal limitation, both indicators of neutral processes. However, we found stronger support that niche differentiation based on abiotic soil factors, primarily pH, was structuring the AM fungal community. Host plant species affected AM fungal community composition negligibly compared to soil pH. We conclude that although niche partitioning was the primary mechanism regulating the composition and diversity of natural AM fungal communities, these communities are also influenced by stochastic-neutral processes. This study represents one of the most comprehensive investigations of community-level processes acting on soil microbes; revealing a community that although influenced by stochastic processes, still responded in a predictable manner to a major abiotic niche axis, soil pH. The strong response to environmental factors of this community highlights the susceptibility of soil microbes to environmental change.

  16. Community structure of mesozooplankton in the western part of the Sea of Okhotsk in summer

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroshi; Nishioka, Jun; Tsuda, Atsushi

    2014-08-01

    We investigated the community structure of mesozooplankton in the western part of the Sea of Okhotsk in late summer, 2006. We recognized four communities belonging to two assemblages. A coastal assemblage dominated by the arctic planktonic snail Limacina helicina consisted of a gulf community characterized by brackish copepods and a continental shelf community characterized by the hydrozoan medusa Aglantha digitale and the arctic copepod Calanus glacialis. The other assemblage, characterized by the oceanic copepod Neocalanus plumchrus, consisted of a continental slope community characterized by a diverse species composition and a basin community characterized by the oceanic copepod N. cristatus. The continental slope community contained species from the coastal waters and was distributed along the course of the East Sakhalin current. This community may have been assembled by the incorporation of coastal water into the oceanic waters by the strong current. Small coastal copepods such as Oithona similis and Pseudocalanus spp. were the main components in all communities in terms of numbers, but larger copepods such as Neocalanus spp. and Metridia okhotensis were important in terms of weight, especially in the continental slope and basin communities. The population structures of the dominant species suggest that overall biological production is maintained by continuous reproduction or growth (or both) of L. helicina and small coastal copepods after the onset of seasonal dormancy of the large oceanic copepods in late summer.

  17. Post fumigation recovery of soil microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigants have been extensively used to control target soil-borne pathogens and weeds for the past few decades. It is known that the fumigants with broad biocidal activity can affect both target and non-target soil organisms, but the recovery of soil microbial communities are unknown until rece...

  18. Creating Communities of Professionalism: Addressing Cultural and Structural Barriers

    ERIC Educational Resources Information Center

    Murphy, Joseph

    2015-01-01

    Purpose: The goal of this narrative synthesis is twofold. The purpose of this paper is to understand the barriers and constraints that hinder or prevent the growth of professional community. The author also want to form an empirical understanding of how educators can be successful in meeting these challenges. In both cases, the author wish to grow…

  19. The Scope and Design of Structured Group Learning Experiences at Community Colleges

    ERIC Educational Resources Information Center

    Hatch, Deryl K.; Bohlig, E. Michael

    2015-01-01

    This study explores through descriptive analysis the similarities of structured group learning experiences such as first-year seminars, learning communities, orientation, success courses, and accelerated developmental educatio