Science.gov

Sample records for algal culture system

  1. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1982-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  2. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1981-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  3. Method and system of culturing an algal mat

    SciTech Connect

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  4. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  5. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  6. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    PubMed

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. PMID:25899246

  7. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  8. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  9. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  10. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.; Venables, A.; Huggins, D.; Gladue, R.

    1984-01-01

    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included.

  11. Research and development of shallow algal mass culture systems for the production of oils

    SciTech Connect

    Laws, E.A.

    1984-10-01

    The major accomplishment of the past nine months' work was the identification of a microalgal species which can be grown in the system on a 12-month basis without temperature control. The most promising species identified to date is a strain of platymonas sp. This strain grows rapidly at temperatures from 20/sup 0/ to 34/sup 0/C, and at salinities from 1.5 to 3.5%. Neither the lower temperature limit nor the lower salinity limit of the strain are known at this time. A factorial experiment designed to determine optimum growth conditions indicated that the optimum culture depth was 10 cm, the optimum pH about 7.5, and the optimum flow rate about 30 cm/s. A major discovery was that diluting the culture every third day greatly enhanced production. In this dilution mode daily yields averaged 46 g/m/sup 2/ ash-free dry weight (AFDW) over a one-month period, and photosynthetic efficiencies averaged 11% (based on visible light energy). The former figure is over twice the best long-term yields achieved in microalgal mass culture systems grown exclusively on inorganic nutrients.

  12. Algal culture studies related to a closed ecological life support system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.

    1984-01-01

    Studies on the steady-state long-term (4 month) culture of Scenedesmus obliquus algae, maintained in an annular air-lift column operated as a turbidostat, were carried out to evaluate the life-supporting possibilities of this system. Chlorophyll production and cell number as functions of the dry weight were linear at constant illumination. Productivity (measured as the product of dry weight, mg/ml, and the growth rate, ml/hr) vs. dry weight rose linearly until the cell density reached a level at which light became limiting (89 percent absorption of the photosynthetically active radiation). In the initial, linear portion of the curve, the productivity was limited by cell growth at the given light intensity. The maximum dilution rate of the system corresponded to the doubling time of 13.4 hr, about half the maximum rate, with a productivity of 80 percent of the maximum theoretical productivity. The high light utilization efficiencies were contributed by the low (10 percent of full sunlight) incident intensities.

  13. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.

    PubMed

    Chen, Wan-Ting; Zhang, Yuanhui; Zhang, Jixiang; Yu, Guo; Schideman, Lance C; Zhang, Peng; Minarick, Mitchell

    2014-01-01

    In this study, a mixed-culture algal biomass harvested from a functioning wastewater treatment system (AW) was hydrothermally converted into bio-crude oils. The highest bio-crude oil yield (49% of volatile matter) and the highest energy recovery were obtained at 300 °C with 1 h retention time. The highest heating value of the bio-crude oil was 33.3 MJ/kg, produced at 320 °C and 1h retention time. Thermogravimetric analysis showed approximately 60% of the bio-crude oils were distilled in the range of 200-550 °C; and the solid residue might be suitable for use in asphalt. GC-MS results indicated that the bio-crude oil contained hydrocarbons and fatty acids, while the aqueous product was rich in organic acids and cyclic amines. The nitrogen recovery (NR) in the bio-crude oil ranged from 8.41% to 16.8%, which was lower than the typical range of 25%-53% from previous studies. PMID:24287452

  14. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  15. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    SciTech Connect

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  16. Sludge-grown algae for culturing aquatic organisms: Part I. Algal growth in sludge extracts

    NASA Astrophysics Data System (ADS)

    Hung, K. M.; Chiu, S. T.; Wong, M. H.

    1996-05-01

    This project is aimed at studying the feasibility of using sewage sludge to prepare culture media for microalgae ( Chlorella-HKBU) and the use of the sludge-grown algae as a feed for some aquatic organisms. Part I of the project included results on preparing sludge extracts and their use on algal culture. By comparing two culturing techniques, “aeration” and “shaking,” it was noted that both lag and log phases were shortened in the aeration system. A subsequent experiment noted that algal growth subject to aeration rates of 1.0 and 1.5 liters/min had similar lag and log phases. In addition, both aeration rates had a significantly higher ( P < 0.05) final cell density than that of 0.5 liters/min. A detailed study on the variation of growth conditions on the algal growth was done. The results indicated that pH values of all the cultures declined below 5 at day 12. The removal rates of ammonia N ranged from 62% to 70%. The sludge-grown algae contained a rather substantial amount of heavy metals (µg/g): Zn 289 581, Cu 443 682, Ni 310 963, Mn 96 126, Cr 25 118, and Fe 438 653. This implied that the rather high levels of heavy metals may impose adverse effects on higher trophic organisms.

  17. Rapid algal culture diagnostics for open ponds using multispectral image analysis.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2014-01-01

    This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. PMID:24265121

  18. [Parametric control of the yield characteristics and species composition dynamics of algal poly-culture].

    PubMed

    Nefedova, E L; Levinskikh, M A; Sychev, V N

    2006-01-01

    There are several experimental models of biological life support systems (BLSS) designed to incorporate a chlorella pool. These BLSS can be optimized if populated by algal associations that could take up more functions within the closed cycling system than a single alga species. Introduction of a Spirulina and Chlamydomonas poly-culture with differing in gas exchange and biochemical composition resulted in a tighter closure of linkages within the system. The factors determining the size of a species population in intensive continuous poly-cultures are, first and foremost, pH and suspension flow rate. Experimental testing of this supposition brought us to the conclusion that parametric control of alga productivity and species composition dynamics makes it possible to create a steady intensive poly-culture as part of the LSS for humans. Flow rate and pH can be the parameters for control of the Spirulina and Chlamydomonas populations during continuous cultivation of this poly-culture. PMID:17357628

  19. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity. PMID:24161650

  20. Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system.

    PubMed

    Gross, Martin; Wen, Zhiyou

    2014-11-01

    Current algal cultivation has been mainly performed in open ponds or photobioreactors in which algal cells are suspended and harvested through flocculation and centrifugation. A unique attachment based Revolving Algal Biofilm (RAB) cultivation system was recently developed for easy biomass harvest with enhanced biomass productivity. The objective of this research was to evaluate the performance (durability, algal growth, and the geometry) of the RAB system at pilot-scale. A yearlong test of the RAB system was successfully conducted at a greenhouse facility at Boone, Iowa, USA. The RAB resulted in an average of 302% increase in biomass productivity compared to a standard raceway pond, with a maximum biomass productivity (ash free) of 18.9 g/m(2)-day being achieved. The RAB with a vertical configuration generated higher productivity than the triangular RAB. Collectively, the research shows that the RAB as an efficient algal culture system has great potential for being deployed at commercial scale. PMID:25189508

  1. Biodegradation of bisphenol A by an algal-bacterial system.

    PubMed

    Eio, Er Jin; Kawai, Minako; Niwa, Chiaki; Ito, Masato; Yamamoto, Shuichi; Toda, Tatsuki

    2015-10-01

    The degradation of bisphenol A (BPA) by Chlorella sorokiniana and BPA-degrading bacteria was investigated. The results show that BPA was partially removed by a monoculture of C. sorokiniana, but the remaining BPA accounted for 50.2, 56.1, and 60.5 % of the initial BPA concentrations of 10, 20, and 50 mg L(-1), respectively. The total algal BPA adsorption and accumulation were less than 1 %. C. sorokiniana-bacterial system effectively removed BPA with photosynthetic oxygen provided by the algae irrespective of the initial BPA concentration. The growth of C. sorokiniana in the algal system was inhibited by BPA concentrations of 20 and 50 mg L(-1), but not in the algal-bacterial system. This observation indicates that bacterial growth in the algal-bacterial system reduced the BPA-inhibiting effect on algae. A total of ten BPA biodegradation intermediates were identified by GC-MS. The concentrations of the biodegradation intermediates decreased to a low level at the end of the experiment. The hypothetical carbon mass balance analysis showed that the amounts of oxygen demanded by the bacteria are insufficient for effective BPA degradation. However, adding an external carbon source could compensate for the oxygen shortage. This study demonstrates that the algal-bacterial system has the potential to remove BPA and its biodegradation intermediates. PMID:26013738

  2. Shallow Algal Mass Culture Systems for the Production of Oils: Final Report on Work Carried Out 8/16/84 - 6/15/85

    SciTech Connect

    Laws, E. A.

    1985-01-01

    The objective of this project was to improve the technology of outdoor mass culture of microa1gae for oil production by investigation of species/strains, optimization of culture conditions and development of strategies that increase efficiency and improve yield.

  3. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus.

    PubMed

    Kawaguchi, H; Hashimoto, K; Hirata, K; Miyamoto, K

    2001-01-01

    To produce hydrogen from starch accumulated in an algal biomass, we used a mixed culture of the lactic acid bacterium, Lactobacillus amylovorus, and the photosynthetic bacterium, Rhodobium marinum A-501. In this system L. amylovorus, which possesses amylase activity, utilized algal starch for lactic acid production, and R. marinum A-501 produced hydrogen in the presence of light using lactic acid as an electron donor. Algal starch accumulated in the marine green alga Dunaliella tertiolecta, and the freshwater green alga Chlamydomonas reinhardtii, was more suitable for lactic acid fermentation by L. amylovorus than an authentic starch sample. Consequently, the yields of hydrogen obtained from starch contained in D. tertiolecta and C. reinhardtii were 61% and 52%, respectively, in the mixed culture of L. amylovorus and R. marinum A-501. These values were markedly superior to those obtained using a mixed culture of Vibrio fluvialis T-522 and R. marinum A-501 described previously. The yield and production rate of hydrogen by R. marinum A-501 from the lactic acid fermentates were higher than from authentic lactic acid, suggesting that the fermentates contain a factor(s) which promotes H2 production by this bacterium. PMID:16232989

  4. Use of a mixed algal culture to characterize industrial waste waters

    SciTech Connect

    Claesson, A.

    1984-02-01

    A mixture of five freshwater algae was cultivated with additions of waste water samples from chemical, mining, polyvinylchloride, textile, paper mill, and oil refinery industries. Two water samples from chemical industries and one from an oil refinery stimulated the algal growth in a nutrient-poor medium, while growth in other samples, including a nutrient-rich medium, was inhibited in several different ways. For eight of the water samples a delayed growth of 2-4 days was noted. Decreased growth rate and lowered maximal biomass occurred in seven of the samples. The photosynthetic capacity of the algal cells was measured by using in vivo fluorescence of chlorophyll a. These quick measurements mostly agreed with those of the growth rates. When the species composition of the mixed algal culture was investigated, large differences in sensitivities between the different species were found. Stimulation or inhibition were observed in the same sample for different species but also for the same species at different concentrations.

  5. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth. PMID:26344339

  6. Research, development, and demonstration of algal production raceway (APR) systems for the production of hydrocarbon resources

    SciTech Connect

    Laws, E.A.

    1984-02-01

    A fractional factorial experimental design was used to determine the maximum production and photosynthetic efficiency that could be achieved in shallow algal mass culture systems (SAMCS) of the marine diatom Phaeodactylum tricornutum. Dilution rate and CO/sub 2/ supply were found to be the most important system parameters. Maximum production was found to be about 25 g dry wt m/sup -2/d/sup -1/. This production corresponded to a photosynthetic efficiency of 5.6%. These figures are 50 to 100% better than the production rates achieved in earlier P. tricornutum cultures using conventional culture techniques. The results are consistent with a theoretical model of the impact of the flashing light effect on algal mass culture production. This model predicts that at the typical irradiances in Hawaii, full utilization of the flashing light effect should enhance production by 70% to over 200%. It was concluded that the use of foil arrays in the experimental flume creates systematic vertical mixing on a time scale suitable for utilizing the flashing light effect. Production of P. tricornutum culture is probably limited by temperature. P. tricornutum cannot survive at temperatures in excess of 25/sup 0/C in outdoor mass cultures. Growth of mesophilic species in the temperature range 30 to 35/sup 0/C may well result in even higher production than that achieved with P. tricornutum.

  7. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. PMID:25539998

  8. HARMFUL ALGAL BLOOMS OBSERVING SYSTEM PILOT PROJECT

    EPA Science Inventory

    The HABSOS Pilot Project is being developed through a partnership of federal, state and academic organizations as proof-of-concept for a coastal observing system in the Gulf of Mexico. The goal is to design a HAB data management system and develop the regional communication infra...

  9. Culturing Selenastrum capricornutum (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1985-01-01

    Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.

  10. Impact of harmful algal blooms on wild and cultured animals in the Gulf of California.

    PubMed

    Núñez Vázquez, Erick J; Lizarraga, Ismael Gárate; Schmidt, Christine J Band; Tapia, Amaury Cordero; Cortes, David J Lopez; Sandoval, Francisco E Hernandez; Tapia, Alejandra Heredia; Guzman, Jose J Bustillos

    2011-07-01

    Historical documents and classic works together with recent specialized literature have described Harmful Algal Blooms (HABs) in the Gulf of California. This is a review of HABs impact (qualitative and quantitative) during the last decades in the Gulf of California on wild (mammals, birds, fishes, and invertebrates) and cultured animals (shrimps and fishes). Microalgal species responsible of noxious effects are Noctiluca scintillans, Cochlodinium polykrikoides, Gymnodinium catenatum, Prorocentrum minimum, Akashiwo sanguinea, Chattonella subsalsa Ch. marina, Chattonella sp., Heterocapsa sp., Dinophysis sp., Fibrocapsa japonica, Heterosigma akashiwo, Thalassiosira sp., Chaetoceros spp., Pseudo-nitzschia australis, P fraudulenta, Pseudo-nitzschia sp., Trichodesmium erythraeum and ScSchizotrix calcicola. Emphasis is given to the necessity to continue with interdisciplinary studies in oceanography, ecology, toxicology and toxinology interrelated with biomedical sciences such as physiology, pathology, epidemiology and animal health. PMID:22315821

  11. Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems.

    PubMed

    Michael, Clayton; del Ninno, Matteo; Gross, Martin; Wen, Zhiyou

    2015-03-01

    This work is to use thin film nano-materials as light filters to selectively transmit certain wavelengths from natural sunlight to algal culture. A red light filter (620-710 nm) and blue filter (450-495 nm) were evaluated. Algae were grown in flasks, flat panel reactors, and rotating algal biofilm (RAB) system. It was found that the light filters did not improve algal growth in flask cultures, probably due to the additional reflection of light by the glass wall of the flasks. However, the light filters significantly (P<0.05) improved biomass yield (13-34%) in flat panel reactors and biomass productivity (70-100%) in RAB system, depending on the growth mode and lighter filters. Such improvements may be due to the eliminating the ultra-violet (UV) damaging the cellular structure. The biomass compositions did not change significantly among different light-filter cultures (P>0.05). The research shows a great potential of using light filters to improve microalgal growth. PMID:25575207

  12. Enantioselectivity in toxicity and degradation of dichlorprop-methyl in algal cultures.

    PubMed

    Li, Hong; Yuan, Yuli; Shen, Chensi; Wen, Yuezhong; Liu, Huijun

    2008-05-01

    Enantioselectivity in the toxicity and degradation of the herbicide dichlorprop-methyl (2,4-DCPPM) in algal cultures was studied. Enantioselectivity was clearly observed in the toxicity of racemic 2,4-DCPPM and its two enantiomers. R-2,4-DCPPM showed low toxicity to Chlorella pyrenoidosa and Chlorella vulgaris, but higher toxicity to Scenedesmus obliquus. The observed toxicity was ranked: R-2,4-DCPPM>S-2,4-DCPPM>Rac-2,4-DCPPM; the toxicity of R-2,4-DCPPM was about 8-fold higher than that of Rac-2,4-DCPPM. Additionally, 2,4-DCPPM was quickly degraded, in the initial 12 h, and different algae cultures had different enantioselectivity for the 2,4-DCPPM enantiomers. There was no significant enantioselectivity for 2,4-DCPPM in Chlorella vulgaris in the initial 7 h. However, racemic 2,4-DCPPM was degraded by Scenedesmus obliquus quickly, in the initial 4 h, much quicker, in fact, than the S- or R-enantiomers (racemate>R->S-), indicating that the herbicide 2,4-DCPPM was absorbed enantioselectively by Scenedesmus obliquus. The rapid formation of 2,4-DCPP suggested that 2,4-DCPPM adsorbed by algal cells was catalytically hydrolyzed to the free acid, a toxic metabolite. The production rates of 2,4-DCPP were as follows: Scenedesmus obliquus>Chlorella pyrenoidosa>Chlorella vulgaris, consistent with the degradability of 2,4-DCPPM. Scenedesmus obliquus had quick, but different, degradative and uptake abilities for R-, S-, and Rac-2,4-DCPPM. The R- and S- enantiomers were not hydrolyzed in the first 12 h, while both enantiomers were hydrolyzed slowly after that. These results indicate that some physical and chemical properties of compounds are of importance in determining their enantioselective toxicity and degradation. The ester and its metabolite likely played an important role in enantioselective toxicity to the three algae. PMID:18437615

  13. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus

    PubMed Central

    Patterson, David J.; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng

    2015-01-01

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. PMID:25819973

  14. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus.

    PubMed

    Gong, Yingchun; Patterson, David J; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2015-06-15

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. PMID:25819973

  15. Skill assessment for an operational algal bloom forecast system

    PubMed Central

    Stumpf, Richard P.; Tomlinson, Michelle C.; Calkins, Julie A.; Kirkpatrick, Barbara; Fisher, Kathleen; Nierenberg, Kate; Currier, Robert; Wynne, Timothy T.

    2010-01-01

    An operational forecast system for harmful algal blooms (HABs) in southwest Florida is analyzed for forecasting skill. The HABs, caused by the toxic dinoflagellate, Karenia brevis, lead to shellfish toxicity and to respiratory irritation. In addition to predicting new blooms and their extent, HAB forecasts are made twice weekly during a bloom event, using a combination of satellite derived image products, wind predictions, and a rule-based model derived from previous observations and research. These forecasts include: identification, intensification, transport, extent, and impact; the latter being the most significant to the public. Identification involves identifying new blooms as HABs and is validated against an operational monitoring program involving water sampling. Intensification forecasts, which are much less frequently made, can only be evaluated with satellite data on mono-specific blooms. Extent and transport forecasts of HABs are also evaluated against the water samples. Due to the resolution of the forecasts and available validation data, skill cannot be resolved at scales finer than 30 km. Initially, respiratory irritation forecasts were analyzed using anecdotal information, the only available data, which had a bias toward major respiratory events leading to a forecast accuracy exceeding 90%. When a systematic program of twice-daily observations from lifeguards was implemented, the forecast could be meaningfully assessed. The results show that the forecasts identify the occurrence of respiratory events at all lifeguard beaches 70% of the time. However, a high rate (80%) of false positive forecasts occurred at any given beach. As the forecasts were made at half to whole county level, the resolution of the validation data was reduced to county level, reducing false positives to 22% (accuracy of 78%). The study indicates the importance of systematic sampling, even when using qualitative descriptors, the use of validation resolution to evaluate forecast

  16. Skill assessment for an operational algal bloom forecast system

    NASA Astrophysics Data System (ADS)

    Stumpf, Richard P.; Tomlinson, Michelle C.; Calkins, Julie A.; Kirkpatrick, Barbara; Fisher, Kathleen; Nierenberg, Kate; Currier, Robert; Wynne, Timothy T.

    2009-02-01

    An operational forecast system for harmful algal blooms (HABs) in southwest Florida is analyzed for forecasting skill. The HABs, caused by the toxic dinoflagellate, Karenia brevis, lead to shellfish toxicity and to respiratory irritation. In addition to predicting new blooms and their extent, HAB forecasts are made twice weekly during a bloom event, using a combination of satellite derived image products, wind predictions, and a rule-based model derived from previous observations and research. These forecasts include: identification, intensification, transport, extent, and impact; the latter being the most significant to the public. Identification involves identifying new blooms as HABs and is validated against an operational monitoring program involving water sampling. Intensification forecasts, which are much less frequently made, can only be evaluated with satellite data on mono-specific blooms. Extent and transport forecasts of HABs are also evaluated against the water samples. Due to the resolution of the forecasts and available validation data, skill cannot be resolved at scales finer than 30 km. Initially, respiratory irritation forecasts were analyzed using anecdotal information, the only available data, which had a bias toward major respiratory events leading to a forecast accuracy exceeding 90%. When a systematic program of twice-daily observations from lifeguards was implemented, the forecast could be meaningfully assessed. The results show that the forecasts identify the occurrence of respiratory events at all lifeguard beaches 70% of the time. However, a high rate (80%) of false positive forecasts occurred at any given beach. As the forecasts were made at half to whole county level, the resolution of the validation data was reduced to county level, reducing false positives to 22% (accuracy of 78%). The study indicates the importance of systematic sampling, even when using qualitative descriptors, the use of validation resolution to evaluate forecast

  17. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.

    PubMed

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Leal, Lucia Hernandez; Fernandes, Tânia V; Langenhoff, Alette; Zeeman, Grietje

    2016-03-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied. Biodegradation and photolysis led to 60-100% removal of diclofenac, ibuprofen, paracetamol and metoprolol. Removal of carbamazepine and trimethoprim was incomplete and did not exceed 30% and 60%, respectively. Sorption to algal biomass accounted for less than 20% of the micropollutant removal. Furthermore, the presence of micropollutants did not inhibit C. sorokiniana growth at applied concentrations. Algal treatment systems allow simultaneous removal of micropollutants and recovery of nutrients from source separated wastewater. Nutrient rich algal biomass can be harvested and applied as fertilizer in agriculture, as lower input of micropollutants to soil is achieved when algal biomass is applied as fertilizer instead of urine. PMID:26546707

  18. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  19. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  20. Landfill leachate treatment using bacto-algal co-culture: An integrated approach using chemical analyses and toxicological assessment.

    PubMed

    Kumari, Moni; Ghosh, Pooja; Thakur, Indu Shekhar

    2016-06-01

    The present study aims to evaluate the feasibility of leachate treatment using a synergistic approach by microalgae and bacteria. Leachate from one of the landfill of Northern India showed the presence of various toxic organic contaminants like naphthalene, benzene, phenol and their derivatives, napthols, pesticides, epoxides, phthalates and halogenated organic compounds. ICP-AES analysis revealed high concentrations of Zn, Cr, Fe, Ni, and Pb beyond the maximum permissible limit of discharge. Bacto-algal co-culture was found to be the most efficient in removal of toxic organic contaminants and heavy metals. Further, detoxification efficiency of bacto-algal treatment was evaluated by Methyl tetrazolium (MTT) assay for cytotoxicity and alkaline comet assay for genotoxicity using hepatoma HepG2 cells. Reduction in toxicity was confirmed by an increase in LC50 by 1.9 fold and reduction in Olive Tail Moment by 40.6 fold after 10 days of treatment. Results of the study indicate bioremediation and detoxification potency of bacto-algal co-culture for leachate treatment. PMID:26890189

  1. Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages.

    PubMed

    Saxton, Matthew A; Arnold, Robert J; Bourbonniere, Richard A; McKay, Robert Michael L; Wilhelm, Steven W

    2012-01-01

    Blooms of the potentially toxic cyanobacterium Microcystis are common events globally, and as a result significant resources continue to be dedicated to monitoring and controlling these events. Recent studies have shown that a significant proportion of total cell-associated phosphorus (P) in marine phytoplankton can be surface adsorbed; as a result studies completed to date do not accurately report the P demands of these organisms. In this study we measure the total cell-associated and intracellular P as well as growth rates of two toxic strains of Microcystis aeruginosa Kütz grown under a range of P concentrations. The results show that the intracellular P pool in Microcystis represents a percentage of total cell-associated P (50-90%) similar to what has been reported for actively growing algae in marine systems. Intracellular P concentrations (39-147 fg cell(-1)) generally increased with increasing P concentrations in the growth medium, but growth rate and the ratio of total cell-associated to intracellular P remained generally stable. Intracellular P quotas and growth rates in cells grown under the different P treatments illustrate the ability of this organism to successfully respond to changes in ambient P loads, and thus have implications for ecosystem scale productivity models employing P concentrations to predict algal bloom events. PMID:22279445

  2. Observations on gas exchange and element recycle within a gas-closed algal-mouse system

    NASA Technical Reports Server (NTRS)

    Smernoff, D. T.; Wharton, R. A., Jr.; Averner, M. M.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Algae are potentially useful for a variety of Closed Ecological Life Support System (CELSS) functions including the revitalization of atmospheres, production of food and for nitrogen fixation. The results of experiments conducted with a gas-closed algal-mouse system designed to investigate gas exchange phenomena under varying algal environmental conditions, and the ability of algae to utilize oxidized mouse solid waste are reported. Inherent instabilities exist between the uptake and release of carbon dioxide (CO2) and oxygen (O2) by the mouse and algae in a gas-closed system. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable short-term steady-state concentrations of atmospheric CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations were examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system.

  3. The contribution of bacteria to algal growth by carbon cycling.

    PubMed

    Bai, Xue; Lant, Paul; Pratt, Steven

    2015-04-01

    Algal mass production in open systems is often limited by the availability of inorganic carbon substrate. In this paper, we evaluate how bacterial driven carbon cycling mitigates carbon limitation in open algal culture systems. The contribution of bacteria to carbon cycling was determined by quantifying algae growth with and without supplementation of bacteria. It was found that adding heterotrophic bacteria to an open algal culture dramatically enhanced algae productivity. Increases in algal productivity due to supplementation of bacteria of 4.8 and 3.4 times were observed in two batch tests operating at two different pH values over 7 days. A kinetic model is proposed which describes carbon limited algal growth, and how the limitation could be overcome by bacterial activity to re-mineralize photosynthetic end products. PMID:25312046

  4. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system.

    PubMed

    Ma, Xiaochen; Zhou, Wenguang; Fu, Zongqiang; Cheng, Yanling; Min, Min; Liu, Yuhuan; Zhang, Yunkai; Chen, Paul; Ruan, Roger

    2014-09-01

    Centrate, a type of nutrient-rich municipal wastewater was used to determine the effect of wastewater-borne bacteria on algal growth and nutrients removal efficiency in this study. The characteristics of algal and bacterial growth profiles, wastewater nutrient removal and effect of initial algal inoculums were systematically examined. The results showed that initial algal concentration had apparent effect on bacterial growth, and the presence of bacteria had a significant influence on algal growth pattern, suggesting symbiotic relationship between algae and bacteria at the initial stage of algae cultivation. The maximum algal biomass of 2.01 g/L with 0.1g/L initial algal inoculums concentration can be obtained during algae cultivation in raw centrate medium. The synergistic effect of centrate-borne bacteria and microalgae on algae growth and nutrient removal performance at initial fast growth stage has great potential to be applied to pilot-scale wastewater-based algae wastewater system cultivated in continuous or semi-continuous mode. PMID:24968106

  5. Bicarbonate trigger for inducing lipid accumulation in algal systems

    SciTech Connect

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  6. Monitoring Algal Blooms in a Southwestern U.S. Reservoir System

    NASA Astrophysics Data System (ADS)

    Tarrant, Philip; Neuer, Susanne

    2009-02-01

    In recent years, several studies have explored the potential of higher-resolution sensor data for monitoring phytoplankton primary production in coastal areas and lakes. Landsat data have been used to monitor algal blooms [Chang et al., 2004; Vincent et al., 2004], and Moderate Resolution Imaging Spectroradiometer (MODIS) 250-meter and Medium Resolution Imaging Spectrometer (MERIS) full-resolution (300-meter) bands have been utilized to detect cyanobacterial blooms [Reinart and Kutser, 2006] as well as to monitor water quality [Koponen et al., 2004]. Field sampling efforts and MODIS 250-meter data are now being combined to develop a cost-effective method for monitoring water quality in a southwestern U.S. reservoir system. In the Phoenix, Ariz., metropolitan area, the Salt River reservoirs supply more than 3.5 million people, a population expected to rise to more than 6 million by 2030. Given that reservoir capacities have physical limitations, maintaining water quality will become critical as the population expands. Potentially noxious algal blooms that can release toxins and may affect water quality by modifying taste and odor have become a major concern in recent years. While frequent field sampling regimes are expensive, satellite imagery can be applied cost-effectively to monitor algal biomass trends remotely, and this information could provide early warning of blooms in these reservoirs.

  7. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa).

    PubMed

    Matthijs, H C; Balke, H; van Hes, U M; Kroon, B M; Mur, L R; Binot, R A

    1996-04-01

    Light-emitting diodes (LEDs) were used as the sole light source in continuous culture of the green alga Chlorella pyrenoidosa. The LEDs applied show a peak emission at 659 nm with a half-power bandwidth of 30 nm. Selection of this wavelength range, which is optimal for excitation of chlorophylls a and b in their "red" absorption bands makes all photons emitted potentially suitable for photosynthesis. No need for additional supply of blue light was found. A standardized panel with 2 LEDs cm(-2) fully covered one side of the culture vessel. At standard voltage in continuous operation the light output of the diode panel appeared more than sufficient to reach maximal growth. Flash operation (5-mus pulse duration) enables potential use of higher operating voltages which may render up to three times more light output. Flat airlift fermentor-type continuous culture devices were used to estimate steady state growth rates of Chlorella pyrenoidosa as a function of the light flux (micromol photons x m(-2) x s(-1)) and the flashing frequency of the light-emitting diodes (which determines the duration of the dark "off" time between the 5-micros "on" pulses). At the fixed voltage and turbidostat setting applied a 20-kHz frequency, which equals dark periods of 45 mus, still permitted the maximum growth rate to become nearly reached. Lower frequencies fell short of sustaining the maximal growth rate. However, the light flux decrease resulting from lowering of the flash frequency appeared to reduce the observed growth rates less than in the case of a similar flux decrease with light originating from LEDs in continuous operation. Flash application also showed reduction of the quantum requirement for oxygen evolution at defined frequencies. The frequency domain of interest was between 2 and 14 kHz. LEDs may open interesting new perspectives for studies on optimization of mixing in mass algal culture via the possibility of separation of interests in the role of modulation on light

  8. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Trainer, V. L.; Pitcher, G. C.; Reguera, B.; Smayda, T. J.

    2010-04-01

    Comparison of harmful algal bloom (HAB) species in eastern boundary upwelling systems, specifically species composition, bloom densities, toxin concentrations and impacts are likely to contribute to understanding these phenomena. We identify and describe HABs in the California, Canary, Benguela and Humboldt Current systems, including those that can cause the poisoning syndromes in humans called paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), as well as yessotoxins, ichthyotoxins, and high-biomass blooms resulting in hypoxia and anoxia. Such comparisons will allow identification of parameters, some unique to upwelling systems and others not, that contribute to the development of these harmful blooms.

  9. Design and Implementation of Harmful Algal Bloom Diagnosis System Based on J2EE Platform

    NASA Astrophysics Data System (ADS)

    Guo, Chunfeng; Zheng, Haiyong; Ji, Guangrong; Lv, Liang

    According to the shortcomings which are time consuming and laborious of the traditional HAB (Harmful Algal Bloom) diagnosis by the experienced experts using microscope, all kinds of methods and technologies to identify HAB emerged such as microscopic images, molecular biology, characteristics of pigments analysis, fluorescence spectra, inherent optical properties, etc. This paper proposes the design and implementation of a web-based diagnosis system integrating the popular methods for HAB identification. This system is designed with J2EE platform based on MVC (Model-View-Controller) model as well as technologies such as JSP, Servlets, EJB and JDBC.

  10. Population dynamics of an algal bacterial cenosis in closed ecological system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  11. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  12. Development of an efficient algal H{sub 2}-production system

    SciTech Connect

    Ghirardi, M.L.; Flynn, T.; Forestier, M.; Seibert, M.

    1998-08-01

    Two major problems facing the development of a commercial photobiological algal H{sub 2}-producing system are the low rates of H{sub 2} evolution and the sensitivity of the H{sub 2}-evolving enzyme system to O{sub 2}, a by-product of the photosynthetic water-splitting process. The objective of this project is to generate O{sub 2}-tolerant mutants from the green alga Chlamydomonas reinhardtii that are high producers of H{sub 2} for use in a photobiological water-splitting, H{sub 2}-producing system that is cost effective, renewable, scalable, and non-polluting. The authors are currently employing a dual approach to address the O{sub 2}-sensitivity problem. The first approach, based on classical mutagenesis and selection procedures, depends on the ability of a mutagenized population of algal cells to survive under conditions that require them to either produce (H{sub 2}-production selection) or consume (photoreductive selection) H{sub 2} in the presence of controlled amounts of O{sub 2}. The second approach, based on molecular genetic strategies, involves the cloning of the hydrogenase gene from C. reinhardtii and identification of expression factors required for optimal H{sub 2}-evolution activity. The latter approach will complement the first in the future goal of generating a commercial organism suitable for use in the private sector.

  13. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  14. Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report

    SciTech Connect

    Goldman, J. C.

    1981-04-01

    Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

  15. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla. PMID:26634608

  16. Using the molecular toolbox to compare harmful algal blooms in upwelling systems

    NASA Astrophysics Data System (ADS)

    Kudela, R. M.; Howard, M. D. A.; Jenkins, B. D.; Miller, P. E.; Smith, G. J.

    2010-04-01

    Harmful algal blooms (HABs) are now generally recognized as occurring over a wide range of habitats from oligotrophic to hypernutrified, and appear to be expanding globally. Unlike many other ecosystems impacted by HABs, upwelling systems worldwide share a common set of physical parameters and are likely to respond similarly, regardless of locale. The Core Research Project on HABs in Upwelling Systems, a component of the scientific programme on the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB), promotes a comparative approach to identify the similarities and differences in the manifestation of HAB events in these systems. As applied to the goals of this programme, molecular techniques are a powerful suite of tools for HAB species identification, for determining genetic similarity within morphologically indistinguishable species, and ultimately, for assessing spatial and temporal patterns in ecophysiological responses in these upwelling systems. Knowledge of HAB organisms will be enhanced by comparing and contrasting the responses of these organisms in similar upwelling regions. Here, we provide an update on the availability of molecular and genetic tools for comparative HAB programmes in upwelling systems, focusing on four broad applications: cell enumeration and identification, molecular phylogenetics, functional/comparative genomics, and applications of high throughput sequencing methods. We highlight the rapid evolution, the promise, and the potential pitfalls, of the molecular toolbox, focusing on specific examples of how scientists and resource managers currently apply these methods. Specific examples are developed using relevant case studies from the California, Benguela and Iberian systems. We summarise by providing a synthesis of future research directions and goals that would be particularly relevant to advancing the comparative method for HAB genetics with an emphasis on upwelling systems.

  17. An optical system for detecting and describing major algal blooms in coastal and oceanic waters around India

    NASA Astrophysics Data System (ADS)

    Gokul, Elamurugu Alias; Shanmugam, Palanisamy

    2016-06-01

    An optical system is developed with the aim to detect and monitor three major algal blooms (including harmful algal blooms "HABs") over ecologically relevant scales around India and to strengthen algal forecasting system. This system is designed to be capable of utilizing remote sensing, in situ, and radiative transfer techniques to provide species-specific data necessary for increasing capabilities of an algal forecasting system. With the ability to measure in-water optical properties by means of remote sensing and in situ observations, the optical system developed infers the desired phytoplankton signal from spectral distributions and utilize these data in a numerical classification technique to generate species-specific maps at given spatial and temporal scales. A simple radiative transfer model is adopted for this system to provide a means to optimally interpolate to regions with sparse in situ observation data and to provide a central component to generate in-water optical properties from remotely sensed data. For a given set of inherent optical properties along with surface and bottom boundary conditions, the optical system potentially provides researchers and managers coverage at different locations and depths for tracking algal blooms in the water column. Three major algal blooms focused here include Noctiluca scintillans/miliaris, Trichodesmium erythraeum, and Cochlodinium polykrikoides, which are recurring events in coastal and oceanic waters around India. Because satellite sensors provide a synoptic view of the ocean, both spatially and temporally, our initial efforts tested this optical system using several MODIS-Aqua images and ancillary data. Validation of the results with coincident in situ data obtained from either surface samples or depth samples demonstrated the robustness and potential utility of this approach, with an accuracy of 80-90% for delineating the presence of all three blooms in a heterogeneous phytoplankton community. Despite its

  18. Solutions Network Formulation Report. Integrating Salinity Measurements from Aquarius into the Harmful Algal Blooms Observing System

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Lewis, David; Hilbert, Kent

    2007-01-01

    This Candidate Solution suggests the use of Aquarius sea surface salinity measurements to improve the NOAA/NCDDC (National Oceanic and Atmospheric Administration s National Coastal Data Development Center) HABSOS (Harmful Algal Blooms Observing System) DST (decision support tool) by enhancing development and movement forecasts of HAB events as well as potential species identification. In the proposed configuration, recurring salinity measurements from the Aquarius mission would augment HABSOS sea surface temperature and in situ ocean current measurements. Thermohaline circulation observations combined with in situ measurements increase the precision of HAB event movement forecasting. These forecasts allow coastal managers and public health officials to make more accurate and timely warnings to the public and to better direct science teams to event sites for collection and further measurements.

  19. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.

    PubMed

    Ribalet, François; Berges, John A; Ianora, Adrianna; Casotti, Raffaella

    2007-12-15

    Several marine diatoms produce polyunsaturated aldehydes (PUAs) that have been shown to be toxic to a wide variety of model organisms, from bacteria to invertebrates. However, very little information is available on their effect on phytoplankton. Here, we expand previous studies to six species of marine phytoplankton, belonging to different taxonomic groups that are well represented in marine plankton. The effect of three PUAs, 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, was assessed on growth, cell membrane permeability, flow cytometric properties and morphology. A concentration-dependent reduction in the growth rate was observed for all cultures exposed to PUAs with longer-chained aldehydes having stronger effects on growth than shorter-chained aldehydes. Clear differences were observed among the different species. The prymnesiophyte Isochrysis galbana was the most sensitive species to PUA exposure with a lower threshold for an observed effect triggered by mean concentrations of 0.10 micromol L(-1) for 2E,4E-decadienal, 1.86 micromol L(-1) for 2E,4E-octadienal and 3.06 micromol L(-1) for 2E,4E-heptadienal, and a 50% growth inhibition (EC(50)) with respect to the control at 0.99, 2.25 and 5.90 micromol L(-1) for the three PUAs, respectively. Alternatively, the chlorophyte Tetraselmis suecica and the diatom Skeletonema marinoi (formerly S. costatum) were the most resistant species with 50% growth inhibition occurring at concentrations at least two to three times higher than I. galbana. In all species, the three PUAs caused changes in flow cytometric measures of cell size and cell granulosity and increased membrane permeability, assessed using the viability stain SYTOX Green. For example, after 48 h 51.6+/-2.6% of I. galbana cells and 15.0+/-1.8% of S. marinoi cells were not viable. Chromatin fragmentation was observed in the dinoflagellate Amphidinium carterae while clear DNA degradation was observed in the chlorophyte Dunaliella tertiolecta

  20. The Influence of Salinity, Growth Rate and Temperature on D/H Fractionation in Algal Lipids from Culture and Field Studies

    NASA Astrophysics Data System (ADS)

    Sachs, J. P.; Schwab, V.; Sachse, D.; Cash, A.; Nelson, D.; Zhang, Z.; Kawka, O.

    2007-12-01

    The use of compound-specific D/H ratios to decipher biochemical, geochemical, oceanographic, and climatic processes is expanding rapidly. The relative success of these efforts depends on an understanding of the environmental conditions that influence the deuterium depletion relative to environmental water observed in all plant, algal and bacterial lipids, and the sensitivity of D/H fractionation responses to changes in those environmental conditions. Presently very little is known about this interplay between the environment and D/H fraction in algal lipids. Here we present results from field studies (in the Chesapeake Bay, Christmas Island, the Great Salt Lake, and saline basins in Alberta and Saskatchewan) and culture studies (both continuous and batch) that indicate that salinity, growth rate and temperature each influence D/H fractionation in algal lipids to varying degrees, depending on the algae and the lipid. Our initial results indicate that D/H fractionation (1) decreases with increasing salinity, (2) increases with increasing growth rate in isoprenoid lipids, (3) is insensitive to growth rate in acetogenic lipids, and (4) increases with increasing temperature.

  1. The physical oceanography of upwelling systems and the development of harmful algal blooms

    PubMed Central

    Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T.

    2011-01-01

    The upwelling systems of the eastern boundaries of the world’s oceans are susceptible to harmful algal blooms (HABs) because they are highly productive, nutrient-rich environments, prone to high-biomass blooms. This review identifies those aspects of the physical environment important in the development of HABs in upwelling systems through description and comparison of bloom events in the Benguela, California and Iberia systems. HAB development is dictated by the influence of wind stress on the surface boundary layer through a combination of its influence on surface mixed-layer characteristics and shelf circulation patterns. The timing of HABs is controlled by windstress fluctuations and buoyancy inputs at the seasonal, event and interannual scales. Within this temporal framework, various mesoscale features that interrupt typical upwelling circulation patterns, determine the spatial distribution of HABs. The inner shelf in particular provides a mosaic of shifting habitats, some of which favour HABs. Changes in coastline configuration and orientation, and bottom topography are important in determining the distribution of HABs through their influence on water stratification and retention. A spectrum of coastline configurations, including headlands, capes, peninsulas, Rías, bays and estuaries, representing systems of increasing isolation from the open coast and consequent increasing retention times, are assessed in terms of their vulnerability to HABs. PMID:22053120

  2. Manuals of Cultural Systems

    NASA Astrophysics Data System (ADS)

    Ballonoff, Paul

    2014-10-01

    Ethnography often studies social networks including empirical descriptions of marriages and families. We initially concentrate on a special subset of networks which we call configurations. We show that descriptions of the possible outcomes of viable histories form a manual, and an orthoalgebra. We then study cases where family sizes vary, and show that this also forms a manual. In fact, it demonstrates adiabatic invariance, a property often associated with physical system conservation laws, and which here expresses conservation of the viability of a cultural system.

  3. Algal Culture Material

    ERIC Educational Resources Information Center

    Baldock, R.

    1971-01-01

    Suggests suitable species of microscopic green algae for demonstrating diversity of form, increasing complexity in related species, the animal" and plant" characteristics of protists, and protist behavior. (AL)

  4. Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary

    2004-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.

  5. The color of mass culture: spectral characteristics of a shallow water column through shade-limited algal growth dynamics(1).

    PubMed

    Hewes, Christopher D

    2016-04-01

    It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade-limited photosynthetic growth within depths of 20-30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20-cm water column as a function of Chl-a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1-2 mg Chl-a · L-1, whereby a scalar ~5 μmol photons · m-2 · s-1 at 20-cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl-a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non-photochemical quenching capacities, which could negatively impact crop yield. PMID:27037590

  6. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  7. Verification and Validation of NASA-Supported Enhancements to the Near Real Time Harmful Algal Blooms Observing System (HABSOS)

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hall, Calllie; McPherson, Terry; Spiering, Bruce; Brown, Richard; Estep, Lee; Lunde, Bruce; Guest, DeNeice; Navard, Andy; Pagnutti, Mary; Ryan, Robert E.

    2006-01-01

    This report discusses verification and validation (V&V) assessment of Moderate Resolution Imaging Spectroradiometer (MODIS) ocean data products contributed by the Naval Research Laboratory (NRL) and Applied Coherent Technologies (ACT) Corporation to National Oceanic Atmospheric Administration s (NOAA) Near Real Time (NRT) Harmful Algal Blooms Observing System (HABSOS). HABSOS is a maturing decision support tool (DST) used by NOAA and its partners involved with coastal and public health management.

  8. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions

    PubMed Central

    Volland, Stefanie; Bayer, Elisabeth; Baumgartner, Verena; Andosch, Ancuela; Lütz, Cornelius; Sima, Evelyn; Lütz-Meindl, Ursula

    2014-01-01

    Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell

  9. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions.

    PubMed

    Volland, Stefanie; Bayer, Elisabeth; Baumgartner, Verena; Andosch, Ancuela; Lütz, Cornelius; Sima, Evelyn; Lütz-Meindl, Ursula

    2014-01-15

    Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell

  10. Recycle as an alternative to algal TSS and BOD removal from an industrial waste stabilization pond system

    SciTech Connect

    Davis, E.M.; Downs, T.D.; Shi, Y.; Ajgaonkar, A.A.

    1996-11-01

    Reuse of wastewater is acquiring a more important role in the overall concept of water conservation management. Information on industrial waste stabilization pond (WSP) effluent recycling or reuse for cooling water purposes is virtually nonexistent. This paper presents data from investigations that were conducted to determine the feasibility of recycling a WSP series effluent back within the system for BOD and total suspended solids (TSS) reduction, which were algal in origin, and separately, to evaluate whether recycling the final WSP effluent to the industry`s cooling water ponds would show corrosion compatibility. The second part of this paper contains data developed form analyses of the settling characteristics of the algal standing crop in the industrial WSPs in question to determine the extent to which autosedimentation could occur.

  11. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterizations of algal proteins and lipids

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1986-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  12. Development of an efficient algal H{sub 2}-producing system

    SciTech Connect

    Ghirardi, M.L.; Markov, S.; Seibert, M.

    1996-10-01

    Green algae have the potential to efficiently photoevolve H{sub 2} from water using the photosynthetic O{sub 2} evolving apparatus and the reversible hydrogenase enzyme when CO{sub 2} is not present. Unfortunately algal hydrogenases are very sensitive to inactivation by O{sub 2}, the by-product of the water-splitting process. This problem has been one of the major practical factors limiting the commercial utilization of green algae for H{sub 2} production. The other major limitation, saturation of H{sub 2} production by algae at light intensities much lower than normal solar levels, is being addressed by ORNL. The objectives of this project are to generate O{sub 2}-tolerant, H{sub 2}-producing mutants of the green alga Chlamydomonas reinhardtti, to test them in a laboratory-scale system for continuous production of H{sub 2} under aerobic conditions; and to collaborate with ORNL to improve the overall efficiency of H{sub 2} production in intact and cell-free systems. The ultimate goal of the work is to configure a photobiological water-splitting process that will lead to a H{sub 2}-producing system that is cost effective, scalable, non-polluting, and renewable. The approach to obtain O{sub 2}-tolerant mutants of Chlamydomonas involves two types of selection techniques. The first depends on the survival of cells under photoreductive conditions, where H{sub 2} utilization is required, and the second requires the survival of the organisms under H{sub 2}-producing conditions. As part of this collaboration, the authors have independently confirmed that two of the Chlamydomonas mutants lacking photosystem I used by ORNL do in fact produce O{sub 2} in the light and also evolve H{sub 2}. Not unexpectedly, they do the latter with the same O{sub 2}-sensitivity as the WT cells. This observation is crucial for the credibility of the important ORNL work, since it confirms the potential for doubling the quantum efficiency for H{sub 2} production in these mutants.

  13. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system.

    PubMed

    Ryu, WonHyoung; Bai, Seoung-Jai; Park, Joong Sun; Huang, Zubin; Moseley, Jeffrey; Fabian, Tibor; Fasching, Rainer J; Grossman, Arthur R; Prinz, Fritz B

    2010-04-14

    There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides. From a living algal cell, Chlamydomonas reinhardtii, photosynthetic electrons (1.2 pA at 6000 mA/m(2)) were directly extracted without a mediator electron carrier by inserting a nanoelectrode into the algal chloroplast and applying an overvoltage. This result may represent an initial step in generating "high efficiency" bioelectricity by directly harvesting high energy photosynthetic electrons. PMID:20201533

  14. Development of a planar waveguide microarray for the monitoring and early detection of five harmful algal toxins in water and cultures.

    PubMed

    McNamee, Sara E; Elliott, Christopher T; Greer, Brett; Lochhead, Michael; Campbell, Katrina

    2014-11-18

    A novel multiplex microarray has been developed for the detection of five groups of harmful algal and cyanobacterial toxins found in marine, brackish, and freshwater environments including domoic acid (DA), okadaic acid (OA, and analogues), saxitoxin (STX, and analogues), cylindrospermopsin (CYN) and microcystins (MC, and analogues). The sensitivity and specificity were determined and feasibility to be used as a screening tool investigated. Results for algal/cyanobacterial cultures (n = 12) and seawater samples (n = 33) were compared to conventional analytical methods, such as high performance liquid chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Detection limits for the 15 min assay were 0.37, 0.44, 0.05, 0.08, and 0.40 ng/mL for DA, OA, STX, CYN, and MC, respectively. The correlation of data obtained from the microarray compared to conventional analysis for the 12 cultures was r(2) = 0.83. Analysis of seawater samples showed that 82, 82, 70, 82, and 12% of samples were positive (>IC20) compared to 67, 55, 36, 0, and 0% for DA, OA, STX, CYN, and MC, respectively, for conventional analytical methods. The discrepancies in results can be attributed to the enhanced sensitivity and cross-reactivity profiles of the antibodies in the MBio microarray. The feasibility of the microarray as a rapid, easy to use, and highly sensitive screening tool has been illustrated for the five-plex detection of biotoxins. The research demonstrates an early warning screening assay to support national monitoring agencies by providing a faster and more accurate means of identifying and quantifying harmful toxins in water samples. PMID:25361072

  15. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  16. Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media.

    PubMed

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2016-02-01

    The study of the microalgal growth kinetics is an indispensable tool in all fields of phycology. Knowing the optimal nutrient concentration is an important issue that will help to develop efficient growth systems for these microorganisms. Although nitrogen and phosphorus are well studied for this purpose, sulfur seems to be less investigated. Sulfate is a primary sulfur source used by microalgae; moreover, the concentration of this compound is increasing in freshwater systems due to pollution. The aim of this study was to investigate the effects of different sodium sulfate concentrations in the culture medium on growth and growth kinetics of the freshwater microalga Chlamydomonas moewusii. Production of biomass, chl content, kinetic equations, and a mathematical model that describe the microalgal growth in relation with the concentration of sodium sulfate were obtained. The lowest concentration of sodium sulfate allowing optimal growth was 0.1 mM. Concentrations higher than 3 mM generated a toxic effect. This work demonstrates that this toxic effect was not directly due to the excess of sulfate ion but by the elevation of the ionic strength. An inhibition model was successfully used to simulate the relationship between specific growth rate and sodium sulfate in this microalga. PMID:26987090

  17. The use of physical and virtual infrastructures for the validation of algal cryopreservation methods in international culture collections.

    PubMed

    Day, John G; Iorenz, Maike; Wilding, Thomas A; Friedl, Thomas; Harding, Keith; Pröschold, Thomas; Brennan, Debra; Müller, Julia; Santos, Lília M A; Santos, M Fátima; Osório, Hugo C; Amaral, Raquel; Lukesova, Alena; Hrouzek, Pavel; Lukes, Martin; Elster, Josef; Lukavsky, Jaromír; Probert, Ian; Ryan, Matthew J; Benson, Erica E

    2007-01-01

    Two cryopreservation methods, colligative cryoprotection coupled with controlled cooling and vitrification-based, encapsulation-dehydration were validated by five members of the EU research infrastructure consortium, COBRA, and two independent external validators. The test strain Chlorella vulgaris SAG 211-11b was successfully cryopreserved using two-step cooling employing passive (Mr Frosty) and Controlled Rate Freezers (CRF) attaining the desired recovery target within 15% of the median viability level (94%). Significant differences (p < 0.05) between cooling regimes were observed where Mr Frosty was more variable (Inter-Quartile Range being 21.5%, versus 13.0% for CRF samples). Viability assessment using fluorescein diacetate gave significantly (P < 0.0001) higher survival than growth in agar with median values being 96% and 89%, respectively. On employing encapsulation-dehydration, greater variability between some validators was observed, with six labs observing recovery in 100% of the beads (84-95% of cells surviving) and one lab observing survival in 80% of the treated beads. Bead disruption followed by algal growth in agar was considered the most reliable and accurate method of assessing cell survival for encapsulation-dehydration. PMID:18075705

  18. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and sterilization. New test containers may contain substances which inhibit growth of algae. They.... (A) Formulation and sterilization of nutrient medium used for algal culture and preparation of...

  19. Algal wastewater treatment systems for seasonal climates: application of a simple modelling approach to generate local and regional design guidelines.

    PubMed

    Heaven, Sonia; Salter, Andrew M; Clarke, Derek; Pak, Lyubov N

    2012-05-01

    Algal waste stabilisation ponds (WSP) provide a means of treating wastewater, and also a potential source of water for re-use in irrigation, aquaculture or algal biomass cultivation. The quantities of treated water available and the periods in which it is suitable for use or discharge are closely linked to climatic factors. This paper describes the application, at a continent-wide scale, of a modelling approach based on the use of readily available climate datasets to provide WSP design and performance guidelines linked to geographical location. Output is presented in regionally-based contour maps covering a wide area of Russia and central Asia and indicating pond area, earliest discharge date, discharge duration, wastewater inflow:outflow ratio and salinity under user-specified conditions. The results confirm that broad-brush discharge guidelines of the type commonly used in North America can safely be applied; but suggest that a more detailed approach is worthwhile to optimise operating regimes for local conditions. The use of long-series climate data can also permit tailoring of designs to specific sites. The work considers a simple 2-pond system, but other configurations and operating regimes should be investigated, especially for the wide range of locations across the world that are intermediate between the 'one short discharge per year' mode and year-round steady-state operation. PMID:22365374

  20. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  1. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  2. Algal Flocculation with Synthetic Organic Polyelectrolytes

    PubMed Central

    Tenney, Mark W.; Echelberger, Wayne F.; Schuessler, Ronald G.; Pavoni, Joseph L.

    1969-01-01

    The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported. PMID:5370666

  3. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture.

    PubMed

    Formighieri, Cinzia; Franck, Fabrice; Bassi, Roberto

    2012-11-30

    An increasing number of investors is looking at algae as a viable source of biofuels, beside cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modelling-based predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity. PMID:22426090

  4. Competition of Invertebrates Mixed Culture in the Closed Aquatic System

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The study considers the experimental model of interactions between invertebrates (the cilates Paramecium caudatum, Paramecium bursaria and the rotifers Brachionis plicatilis) in the closed aquatic system. The infusoria P.caudatum can feed on yeast, bacteria and chlorella; in this experiment growth and reproduction were maintained by bacteria only. The P.bursaria - zoochlorella endosymbiosis is a natural model of a simple biotic cycle. P.bursaria consumes glucose and oxygen released by zoochlorella in the process of biosynthesis and releases nitrogenous compounds and carbon dioxide necessary for algal photosynthesis. The rotifers Br. plicatilis can consume algae, bacteria and detritus. Thus in experiment with the mixed culture of invertebrates they can use different food sources. However with any initial percentage of the invertebrates the end portion of P.bursaria reaches 90-99

  5. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    PubMed

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7. PMID:25855527

  6. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.

    PubMed

    Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

    2014-02-01

    Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH₃-N, TN, COD, and PO₄-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study. PMID:24203276

  7. The use of turbidostat culture in investigation of algal heavy-metal toxicity and rotifer population dynamics

    SciTech Connect

    Bennett, W.N.

    1989-01-01

    Using the green alga Chlorella pyrenoidosa Chick, the heavy metals selenium as selenate, cadmium, cadmium + manganese and cadmium + zinc were investigated to assess their toxicity in terms of changes in {mu}{sub max}. It was shown that increases of sublethal concentrations of Se produced a near linear decrease in {mu}{sub max}. A {mu}{sub max}IC{sub 50} was calculated to be 10.1 {mu}M Se. A concentration of 1.8 {mu}M Cd produced a 62% decrease in {mu}{sub max} after 2 generating lag. A recovery of {mu}{sub max} was observed when MnCl{sub 2} or ZnCl{sub 2} was added to the medium in which populations were experiencing sublethal Cd toxicity. The amelioration responses were incomplete with regard to full recovery of {mu}{sub max} and last 20 generations for the Cd-Mn exposure and 7 generations for the Cd-Zn exposure. Measurement of {mu}{sub max} is turbidostat culture was shown to provide a very sensitive measure of toxicity. For the first time, a metazoan, the rotifer Brachionus calyciflorus Pallas, was grown in turbidostat culture and maintained near its {mu}{sub max} for many generations. It was discovered that {mu}{sub max} was subject to selection in this species and increased 51% from 0.053 h{sup {minus}1} to 0.080 h{sup {minus}1} over 8 mo at 25{degree}C.

  8. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  9. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  10. Integration of an algal photobioreactor into an environmental control and life support system of a space station

    NASA Astrophysics Data System (ADS)

    Ganzer, Britta; Messerschmid, Ernst

    2009-07-01

    The ability to conduct human space exploration is closely coupled to the capabilities of new regenerative life support systems to be operated on autonomous space habitats. Thereby, the minimization of system and re-supply mass, food in particular, is crucial. For that reason the integration of an algal photobioreactor (PBR) into an environmental control and life support system (ECLSS) aboard a space station accommodating up to six astronauts was investigated. This research focused on the performance of PBR as a food production system in addition to its task of air revitalization. A terrestrial PBR design was modified for space application and a simulation model was created. For illumination, solar light as well as artificial lighting were implemented. The operation of the PBR incorporated into a physico-chemical ECLSS was simulated and tested within various mission scenarios employing the software tool ELISSA. The simulation results confirm PBR to be sufficient, as a promising extension of physico-chemical ECLSS, to consume carbon dioxide and thereby providing significant amounts of oxygen and food to crew of a space station. Considerable mass savings in re-supply are verified, since part of the food is provided by the PBR and also because of synergistic effects. Results show that the application of the technology is feasible at reasonable system volume, mass, and power.

  11. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes. PMID:25409583

  12. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  13. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  14. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    PubMed Central

    Van der Merwe, Deon; Price, Kevin P.

    2015-01-01

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055

  15. Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems.

    PubMed

    Van der Merwe, Deon; Price, Kevin P

    2015-04-01

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r(2)-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055

  16. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGESBeta

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  17. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  18. Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1985-01-01

    A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.

  19. Uniform algal growth in photobioreactors using surface scatterers

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed S.; Pereyra, Brandon; Erickson, David

    2014-03-01

    Cultures of algae, such as cyanobacteria, are a promising source of renewable energy. However, algal growth is highly dependent on light intensity and standard photobioreactors do a poor job of distributing light uniformly for algal utilization due to shading effects in dense algal cultures. Engineered scattering schemes are already employed in current slab-waveguide technologies, like edge-lit LEDs. Stacking such slab-waveguides that uniformly distribute light could potentially yield photobioreactors to overcome the shading effect and grow extremely high densities of algal cultures that would lower monetary and energetic costs. Here, we characterize and design a scattering scheme for specific application within photobioreactors which employs a gradient distribution of surface scatterers with uniform lateral scattering intensity. This uniform scattering scheme is shown to be superior for algal cultivation.

  20. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  1. An ISFET-algal (Chlamydomonas) hybrid provides a system for eco-toxicological tests.

    PubMed

    Schubnell, D; Lehmann, M; Baumann, W; Rott, F G; Wolf, B; Beck, C F

    1999-05-31

    A cellular sensoring system was designed in which metabolism-dedicated pH-ISFETs and the unicellular green alga Chlamydomonas reinhardtii as a biological component, were combined. The system permits on-line detection of pH changes caused by the metabolic and photosynthetic activities of the cells. Photosynthetic activity results in a basification of the medium caused by uptake of CO2. In darkness, an acidification of the medium, resulting from the production of CO2 by degradation of starch was observed. Both, acidification and basification, are sensitive indicators for the physiological activity of the alga. Experiments using inhibitors of energy metabolism or photosynthesis illustrate the utility of this system for an on-line monitoring of substances of eco-toxicological importance. PMID:10451914

  2. Electrochemical monitoring systems of demembranated flagellate algal motility for ATP sensing.

    PubMed

    Shitanda, Isao; Tanaka, Koji; Hoshi, Yoshinao; Itagaki, Masayuki

    2014-02-21

    The ATP-induced behavior of the unicellular flagellate alga Chlamydomonas reinhardtii was recorded as changes in the redox currents for a coexisting redox marker. The ATP concentration was estimated using the presented compact electrochemical system, which is based on monitoring of the motility of the flagellates. PMID:24336166

  3. Wastewater treatment, energy production, and energy conservation in an algal-bacterial system

    SciTech Connect

    Eisenberg, D.M.

    1981-01-01

    The system was designed to treat wastewater concurrent with the production of microalgae biomass from waste nutrients and the conversion of that biomass to fuel. The proposed system involves retention of nutrients within the system to increase the biomass production potential of a given rate of nutrient inflow. The components investigated in this study were the algae growth ponds, harvesting ponds, anaerobic digesters, and algae regrowth on effluents from the anaerobic digesters. Two 1080 m/sup 2/ high rate algae growth ponds were operated for 16 months at detention times of 2.0 to 8.0 days and depths of 20 to 50 cm. BOD loadings ranged from 25 to 350 kg/Ha-day. The growth medium was settled municipal wastewater. The biomass production in the most productive pond averaged 38.33 g/m/sup 2/-day during the most productive 30-day period. The measured volatile solids production in that pond was 79.3 metric tons during one calendar year. Peak productivity was found to be limited by the availability of carbon, even in heavily loaded ponds. Two 32 m/sup 3/ settling ponds were operated for the same 16-month period. The ponds were operated on a fill and draw basis to recover biomass from the growth pond effluents. Mean settling rates were typically 10 to 30 cm/hr, but rates from 0 to 74 cm/hr were observed on isolate occasions. The dissolved BOD concentration in the settling pond effluent was generally less than 10 mg/l. Total BOD was roughly proportional to suspended solids concentration.

  4. Development of an efficient algal H{sub 2}-producing system

    SciTech Connect

    Ghirardi, M.L.; Toon, S.P.; Seibert, M.

    1995-09-01

    The objectives of this effort are to generate O{sub 2}-tolerant, H{sub 2}-producing mutants from the green alga Chlamydomonas reinhardtii; test them in a laboratory-scale system for the continuous photo-production of H{sub 2} under aerobic conditions; and collaborate with Dr. Greenbaum at Oak Ridge National Laboratory (ORNL) to improve the efficiency of H{sub 2} production in intact and cell-free systems. Hydrogen production by green algae has the following significant advantages over other biological systems: ATP production is not required; high theoretical efficiencies are possible; and water is used as the source of reductant with no stored intermediary metabolites. The current practical limitations to using green algae in a photobiological H{sub 2}-producing system include the sensitivity of hydrogenases to O{sub 2}; the occurrence of a dark back reaction between O{sub 2} and H{sub 2} (i.e., the oxy-hydrogen reaction); competition between the CO{sub 2} reduction and the H{sub 2}-producing pathways for electrons from H{sub 2}O; the low equilibrium pressure of H{sub 2} release; and saturation of H{sub 2}-production at low light intensity. ORNL has been working extensively on the last issue. In this new initiative, we will address the hydrogenase O{sub 2}-sensitivity problem in Chlamydomonas reinhardtii by generating and selecting for O{sub 2}-tolerant, H{sub 2}-producing mutants. Our approach will involve treating cell suspensions of Chlamydomonas with a mutagen, followed by selection for growth under photoreducing conditions (which favor a functional, O{sub 2}-tolerant H{sub 2}-consuming hydrogenase), as well as for survival under conditions that favor a functional O{sub 2}-tolerant H{sub 2}-producing hydrogenase under increasing O{sub 2} stress. The dual approach will allow us to select for mutants that not only show increased O{sub 2} tolerance but may also exhibit decreased levels of the oxy-hydrogen back reaction.

  5. A fiber-based fluorometric system for in situ algal classification

    NASA Astrophysics Data System (ADS)

    Zhang, Yilong; Liu, Le; Tao, Yi; He, Yonghong; Zhang, Pengfei; Cai, Zhonghua

    2016-01-01

    We develop a fast fiber-based in situ fluorescence system for phytoplankton taxonomy. The fluorescence is excited by high power LEDs with different wavelengths through a customized fiber bundle to the place of interest. Sinusoidal-amplitude-modulation (SAM) techniques are employed. The detection time is shorten to 0.1 s because the fluorescence is excited and demodulated by different wavelengths simultaneously. The fluorescence signal is demodulated by a digital lock-in amplifier. The device is tested in Shenzhen Bay, South China Sea.

  6. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.

    PubMed

    Samorì, Giulia; Samorì, Chiara; Guerrini, Franca; Pistocchi, Rossella

    2013-02-01

    The microalgal biomass applications strongly depend on cell composition and the production of low cost products such as biofuels appears to be economically convenient only in conjunction with wastewater treatment. As a preliminary study, in view of the development of a wastewater treatment pilot plant for nutrient removal and algal biomass production, a biological wastewater system was carried out on a laboratory scale growing a newly isolated freshwater algal strain, Desmodesmus communis, and a natural consortium of microalgae in effluents generated by a local wastewater reclamation facility. Batch cultures were operated by using D. communis under different growth conditions to better understand the effects of CO₂, nutrient concentration and light intensity on the biomass productivity and biochemical composition. The results were compared with those obtained using a natural algal consortium. D. communis showed a great vitality in the wastewater effluents with a biomass productivity of 0.138-0.227 g L⁻¹ d⁻¹ in the primary effluent enriched with CO₂, higher biomass productivity compared with the one achieved by the algal consortium (0.078 g L⁻¹ d⁻¹). D. communis cultures reached also a better nutrient removal efficiency compared with the algal consortium culture, with almost 100% for ammonia and phosphorous at any N/P ratio characterizing the wastewater nutrient composition. Biomass composition was richer in polysaccharides and total fatty acids as the ammonia concentration in the water decreased. In view of a future application of this algal biomass, due to the low total fatty acids content of 1.4-9.3 wt% and the high C/N ratio of 7.6-39.3, anaerobic digestion appeared to be the most appropriate biofuel conversion process. PMID:23211134

  7. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  8. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. PMID:23499181

  9. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun

    2016-05-01

    Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean. PMID:26857371

  10. Economic Systems: A Modular Approach. Cultural Anthropology.

    ERIC Educational Resources Information Center

    Kassebaum, Peter

    Designed for use as supplementary instructional material in a cultural anthropology course, this learning module uses a systems approach to allow students to see the connections and similarities which most cultural groups share on the basis of the type of economic organization that they exhibit. The module begins with a general discussion of…

  11. Constructing a High Density Cell Culture System

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  12. Comparison of Marine Microalgae Culture Systems for Fuels Production and Carbon Sequestration

    SciTech Connect

    Weissman, Joseph C; Polle, Juergen

    2006-05-30

    The dual problems of global fossil fuels supplies and global warming focus attention on the need to develop technologies that can provide large amounts of renewable fuels without contributing to global warming. The capture of power plant flue gas CO2 using microalgae cultures is one potential technology that could meet this objective. The central R&D issues are the design and operation of low-cost algal mass culture systems and the development of algal strains and cultivation techniques that can achieve very high biomass productivities. The major objective of this project was to develop mass culture techniques that could result in greatly increased biomass productivities, well above the about 50 metric tons per hectare per year (mt/ha/y) currently achievable. In this project, two marine microalgae species, the diatom Cyclotella sp.. and the green alga Tetraselmis sp., were cultivated on seawater in both open ponds and closed photo bioreactors, under a variety of different cultivation conditions. Simultaneous operation of the closed photo bioreactors and open ponds demonstrated similar productivities, under the same operating conditions. Thus the very expensive closed systems do not provide any major or inherent advantages in microalgae production over open ponds. Mutants of Cyclotella sp. were developed that exhibited reduced pigment content, which theoretically would result in greatly increased productivities when grown under full sunlight. However, in open ponds, these mutant strains exhibited similar productivities as the parental strains. The mutant strains all grew relatively slowly, suggesting that additional mutations masked whatever inherent potential for increased productivities may have resulted from the reduced pigment content. Research is still required to develop improved low pigment strains. When open pond cultures were exposed to intermittent sunlight, by partially covering the ponds with slats, solar conversion efficiencies increased dramatically

  13. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms. PMID:25682049

  14. Culturing Mouse Cardiac Valves in the Miniature Tissue Culture System.

    PubMed

    Kruithof, Boudewijn P T; Lieber, Samuel C; Kruithof-de Julio, Marianna; Gaussin, Vincian; Goumans, Marie José

    2015-01-01

    Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve. PMID:26555276

  15. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  16. Effect of algal extract on H2 production by a photosynthetic bacterium Rhodobium marinum A-501: analysis of stimulating effect using a kinetic model.

    PubMed

    Kawaguchi, Hideo; Nagase, Hiroyasu; Hashimoto, Kyoko; Kimata, Shiho; Doi, Mikio; Hirata, Kazumasa; Miyamoto, Kazuhisa

    2002-01-01

    We have established a system for hydrogen (H2) production from algal starch via lactic acid using a mixed culture of a lactic acid bacterium, Lactobacillus amylovorus, and a photosynthetic bacterium, Rhodobium marinum A-501. We found that the H2 production from lactate was stimulated in the presence of algal extract, which was obtained from algal biomass homogenate used as a substrate in the system by removing settleable solids including starch. To analyze the stimulating effect of algal extract on H2 production, we developed a kinetic model for H2 production by R. marinum A-501. The model revealed that approximately 20% of lactate was consumed for cell mass production, and the remaining portion was a source of reducing power to drive hydrogen production or other cellular processes. In the presence of algal extract, the model indicated that the conversion efficiency from lactate to the reducing power increased from 0.56 to 0.80 and nitrogenase activity increased up to twofold, resulting in the increase in yield of hydrogen from lactate from 29% to 48%. These results suggest that algal extract can attenuate the limitation process in lactate catabolism by which the supplementation of reducing power to drive H2 production was suppressed. PMID:16233271

  17. Algal functional annotation tool

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  18. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  19. Turbulence and nutrient interactions that control benthic algal production in an engineered cultivation raceway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow turbulence can be a controlling factor to the growth of benthic algae, but few studies have quantified this relationship in engineered cultivation systems. Experiments were performed to understand the limiting role of turbulence to algal productivity in an algal turf scrubber for benthic algal...

  20. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. PMID:26625979

  1. Using hyperspectral imagery to monitor algal persence

    SciTech Connect

    Anderson, J.M.; Monk, J.; Yan, Gu; Brignal, W.

    1997-08-01

    This paper illustrates how an inexpensive and easily deployable imaging spectrometer can be used to monitor and identify algal blooms at short notice, thus making practical the addition of airborne data to the usual in-situ measurements. Two examples are described, one in the Irish Sea and the other in a reservoir system in the London area.

  2. Algal refossilization of atmospheric carbon dioxide. [Contains bibliography

    SciTech Connect

    Neushul, M. )

    1991-07-01

    The atmospheric concentration of carbon dioxide (CO{sub 2}) is steadily increasing. With our increasing awareness of the economic and environmental impacts of the greenhouse effects'' of CO{sub 2}, methane and other gases, there is interest in finding new methods to reduce the amounts of these gases in the atmosphere. This study evaluates the possibility that large-scale oceanic cultures of macroalgae (macroscopic seaweeds'') could be used to capture atmospheric CO{sub 2}. It is a design for a marine farm system in which a crop'' of calcareous macroalgae grows attached to, and supported by, floating macroalgae that comprise the farm structure.'' The least complicated, yet feasible, macroalgal farm system appears to be one in which laboratory-propagated calcareous algal epiphytes'' and floating algal basiphytes'' are dispersed together in natural ocean upwelling regions. From there, the plants drift with surface currents to the open ocean and then sink to the sea floor, where the buried carbon is refossilized.'' An important caveat regarding the use of calcareous algae is that the process of calcification may release CO{sub 2} to the atmosphere. There is some evidence that CO{sub 2} is not released by calcification in red calcareous algae, but in contrast many geochemists feel that all biologically -- as well as chemically --mediated calcification processes release CO{sub 2}. A substantial amount of research will be necessary to answer basic questions about algal carbon fixation and biomineralization on one hand, while on the other hand to devise strategies for farming the open ocean. 76 refs., 14 figs., 7 tabs.

  3. HBV culture and infectious systems.

    PubMed

    Hayes, C Nelson; Chayama, Kazuaki

    2016-07-01

    While an effective vaccine against hepatitis B virus (HBV) has long been available, chronic HBV infection remains a severe global public health concern. Current treatment options have limited effectiveness, and long-term therapy is required to suppress HBV replication; however, complete elimination of the virus is rare. The lack of suitable animal models and infection systems has hindered efforts to unravel the HBV life cycle, particularly the early events in HBV entry, which appear to be highly species- and tissue-specific. Human primary hepatocytes remain the gold standard for HBV replication studies but are limited by availability and variability. While the HepaRG cell line is permissive for HBV replication, other hepatoma cell lines such as HepG2 do not support HBV replication. The recent discovery of sodium taurocholate transporting peptide (NTCP) as a primary receptor for HBV binding has led to the development of replication-competent cell lines such as HepG2-NTCP. Human hepatocytes grown in chimeric mice have provided another approach that allows primary human hepatocytes to be used while overcoming many of their limitations. Although the difficulty in developing HBV infection systems has hindered development of effective treatments, the variability and limited replication efficiency among cell lines point to additional liver-specific factors involved in HBV infection. It is hoped that HBV infection studies will lead to novel drug targets and therapeutic options for the treatment of chronic HBV infection. PMID:26935052

  4. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  5. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors. PMID:24960016

  6. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest. PMID:21330711

  7. Toxicological effects of cypermethrin to marine phytoplankton in a co-culture system under laboratory conditions.

    PubMed

    Wang, Zhao-Hui; Nie, Xiang-Ping; Yue, Wen-Jie

    2011-08-01

    The growth of three marine phytoplankton species Skeletonema costatum, Scrippsiella trochoidea and Chattonella marina and the response of the antioxidant defense system have been investigated on exposure to commercial cypermethrin for 96 h and 32 days in a co-culture system. Growth of the three species was generally comparable over 96 h with an inoculation of 1:3:6.5 (C. marina:S. trochoidea:S. costatum), with stimulation at 5 μg l(-1) and inhibition under higher concentrations (50, 100 μg l(-1)). However, when inoculating at ratios of 1:1:1 during a 32 day test, S. costatum became the most sensitive species and was significantly inhibited in all test groups under the dual stresses of cypermethrin and interspecies competition. The growth of C. marina was significantly inhibited at the concentrations higher than 5 μg l(-1), while the growth of S. trochoidea was significantly promoted at low concentrations. Superoxide dismutase (SOD) activities significantly increased during 6-12 h exposure periods in test treatments at low concentrations, and enhanced in the control as well due to interspecies competition. The lipid peroxidation product malondialdehyde was enhanced at high concentrations, but did not increase in control and low concentration cultures with high SOD activities, indicating that algal cells activated the antioxidant enzymes promptly to protect the cells from lipid membrane damage. Results from this study suggested that cypermethrin pollution in maricultural sea waters might lead to a shift in phytoplankton community structure from diatom to harmful dinoflagellate species, and thus potentially stimulatory for harmful algal blooms. PMID:21499869

  8. Culture systems for hepatitis E virus.

    PubMed

    Okamoto, Hiroaki

    2013-02-01

    The lack of an efficient cell culture system for hepatitis E virus (HEV) has greatly hampered detailed analyses of this virus. The first efficient cell culture systems for HEV that were developed were capable of secreting infectious HEV progenies in high titers into culture media, using PLC/PRF/5 cells derived from human hepatocellular carcinoma and A549 cells derived from human lung cancer as host cells. The success achieved with the original genotype 3 JE03-1760F strain has now been extended to various HEV strains in fecal and serum samples obtained from hepatitis E patients and to HEV strains in fecal and serum samples and liver tissues obtained from pigs and wild boar across species barriers. In addition, infectious HEV cDNA clones of the wild-type JE03-1760F strain and its variants have been engineered. Cell culture-generated HEV particles and those in circulating blood were found to be associated with lipids and open reading frame 3 (ORF3) protein, thereby likely contributing to the assembly and release of HEV from infected cells both in vivo and in vitro. The ORF3 protein interacts with the tumor susceptibility gene 101, a critical cellular protein required for the budding of enveloped viruses, through the Pro, Ser, Ala, and Pro (PSAP) motif in infected cells; ORF3 is co-localized with multivesicular bodies (MVBs) in the cytoplasm of infected cells, thus suggesting that HEV requires the MVB pathway for the egress of virus particles. This article reviews the development of efficient cell culture systems for a wide variety of infectious HEV strains obtained from humans, pigs, and wild boar, and also provides details of a new model for virion egress. PMID:23104469

  9. Production of biofuel using molluscan pseudofeces derived from algal cells

    SciTech Connect

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  10. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms

    EPA Science Inventory

    The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...

  11. The use of glycylhistidyllysine in culture systems.

    PubMed

    Pickart, L

    1981-06-01

    Glycylhistidyllysine (GHL), a tripeptide isolated from plasma, has been shown to alter the growth rate of many cell types and organisms in culture systems. The tripeptide is optimally active at concentrations between 10 and 200 ng/ml. Some of the more interesting uses of GHL are highlighted in this paper. Present information suggests that GHL functions as a transporter of transition metals, in particular copper, to the cell surface for uptake into the cell. PMID:7021400

  12. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  13. Cyanobacteria and algae blooms: Review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007-2011.

    PubMed

    Backer, Lorraine C; Manassaram-Baptiste, Deana; LePrell, Rebecca; Bolton, Birgit

    2015-04-01

    Algae and cyanobacteria are present in all aquatic environments. We do not have a good sense of the extent of human and animal exposures to cyanobacteria or their toxins, nor do we understand the public health impacts from acute exposures associated with recreational activities or chronic exposures associated with drinking water. We describe the Harmful Algal Bloom-related Illness Surveillance System (HABISS) and summarize the collected reports describing bloom events and associated adverse human and animal health events. For the period of 2007-2011, Departments of Health and/or Environment from 11 states funded by the National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention contributed reports for 4534 events. For 2007, states contributed 173 reports from historical data. The states participating in the HABISS program built response capacity through targeted public outreach and prevention activities, including supporting routine cyanobacteria monitoring for public recreation waters. During 2007-2010, states used monitoring data to support196 public health advisories or beach closures. The information recorded in HABISS and the application of these data to develop a wide range of public health prevention and response activities indicate that cyanobacteria and algae blooms are an environmental public health issue that needs continuing attention. PMID:25826054

  14. Cyanobacteria and Algae Blooms: Review of Health and Environmental Data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011

    PubMed Central

    Backer, Lorraine C.; Manassaram-Baptiste, Deana; LePrell, Rebecca; Bolton, Birgit

    2015-01-01

    Algae and cyanobacteria are present in all aquatic environments. We do not have a good sense of the extent of human and animal exposures to cyanobacteria or their toxins, nor do we understand the public health impacts from acute exposures associated with recreational activities or chronic exposures associated with drinking water. We describe the Harmful Algal Bloom-related Illness Surveillance System (HABISS) and summarize the collected reports describing bloom events and associated adverse human and animal health events. For the period of 2007–2011, Departments of Health and/or Environment from 11 states funded by the National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention contributed reports for 4534 events. For 2007, states contributed 173 reports from historical data. The states participating in the HABISS program built response capacity through targeted public outreach and prevention activities, including supporting routine cyanobacteria monitoring for public recreation waters. During 2007–2010, states used monitoring data to support196 public health advisories or beach closures. The information recorded in HABISS and the application of these data to develop a wide range of public health prevention and response activities indicate that cyanobacteria and algae blooms are an environmental public health issue that needs continuing attention. PMID:25826054

  15. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  16. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  17. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  18. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content.

    PubMed

    Genin, Scott N; Stewart Aitchison, J; Grant Allen, D

    2014-03-01

    A parallel plate air lift reactor was used to examine the growth kinetics of mixed culture algal biofilms grown on various materials (acrylic, glass, polycarbonate, polystyrene and cellulose acetate). The growth kinetics of the algal biofilms were non-linear overall and their overall productivities ranged from 1.10-2.08g/m(2)day, with those grown on cellulose acetate having the highest productivity. Overall algal biofilm productivity was largely explained by differences in the colonization time which in turn was strongly correlated to the polar surface energy of the material, but weakly correlated to water-material contact angle. When colonization time was taken into account, the productivity for all materials except acrylic was not significantly different at approximately 2g/m(2)/day. Lipid content of the algal biofilms ranged from 6% to 8% (w/w) and was not correlated to water-material contact angle or polar surface energy. The results have potential application for selecting appropriate materials for algal film photobioreactors. PMID:24441594

  19. Effects of changing continuous iron input rates on a Southern Ocean algal assemblage

    NASA Astrophysics Data System (ADS)

    Hare, C. E.; DiTullio, G. R.; Riseman, S. F.; Crossley, A. C.; Popels, L. C.; Sedwick, P. N.; Hutchins, D. A.

    2007-05-01

    The upwelling of nutrients and iron (Fe) sustains biological production in much of the Southern Ocean. Using a shipboard natural community continuous culture system (Ecostat), we supplied a single added Fe concentration at two dilution rates chosen to examine the effects of variations in realistic growth and loss rates on an Fe-limited algal community in the Antarctic Zone south of Australia. A parallel growout experiment provided "no-dilution" +Fe and -Fe controls. In the continuous flow experiment, phytoplankton biomass was lower and more constant throughout the incubation and major nutrients were never depleted. Nanophytoplankton abundance remained similar in both growout treatments, and therefore, growth of this group did not appear to be Fe-limited. The addition of Fe in a continuous fashion resulted in a community co-dominated by both small diatoms and nanophytoplankton. Increases in dilution rate favored diatom species that were smaller and faster-growing, as well as non-silicified algal groups. Particulate carbon (PC) to particulate nitrogen (PN) ratios increased above the Redfield ratio when Fe was added in a continuous fashion, while biogenic silica (BSi) to PC and PN ratios decreased 2-3 fold in the continuous flow experiment compared to the initial conditions and the parallel growout control experiment. Photosynthetic efficiency increased in the continuous flow treatments above the control but remained significantly lower than in the 1.4 nM Fe addition. The results of our shipboard continuous flow experiments are compared and contrasted with those of the mesoscale Southern Ocean Iron RElease Experiment (SOIREE) carried out at the same site. Our results suggest that increases in natural dilution rates (i.e. vertical turbulent diffusion) in polar Antarctic waters could shift the algal community towards smaller, faster-growing algal species, thus having a major effect on nutrient cycling and carbon export in the Southern Ocean.

  20. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  1. Materials of Construction in Algal Culture

    PubMed Central

    Dyer, Denzel L.; Richardson, D. E.

    1962-01-01

    A number of plastics and metals were tested for their compatibility with the algae Synechococcus lividus and Chlorella pyrenoidosa strain TX71105 in a nitrate medium at pH 7.5. Plastics in general were not inhibitory. Of the metals tested, copper and some of its alloys inhibited growth. Other copper alloys did not. Seven aluminum alloys were entirely compatible. PMID:13888824

  2. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  3. Cultural systems for growing potatoes in space

    NASA Technical Reports Server (NTRS)

    Tibbitts, T.; Bula, R.; Corey, R.; Morrow, R.

    1988-01-01

    Higher plants are being evaluated for life support to provide needed food, oxygen and water as well as removal of carbon dioxide from the atmosphere. The successful utilization of plants in space will require the development of not only highly productive growing systems but also highly efficient bioregenerative systems. It will be necessary to recycle all inedible plant parts and all human wastes so that the entire complement of elemental compounds can be reused. Potatoes have been proposed as one of the desirable crops because they are 1) extremely productive, yielding more than 100 metric tons per hectare from field plantings, 2) the edible tubers are high in digestible starch (70%) and protein (10%) on a dry weight basis, 3) up to 80% of the total plant production is in tubers and thus edible, 4) the plants are easily propagated either from tubers or from tissue culture plantlets, 5) the tubers can be utilized with a minimum of processing, and 6) potatoes can be prepared in a variety of different forms for the human diet (Tibbitts et al., 1982). However potatoes have a growth pattern that complicates the development of growing the plants in controlled systems. Tubers are borne on underground stems that are botanically termed 'rhizomes', but in common usage termed 'stolons'. The stolons must be maintained in a dark, moist area with sufficient provision for enlargement of tubers. Stems rapidly terminate in flowers forcing extensive branching and spreading of plants so that individual plants will cover 0.2 m2 or more area. Thus the growing system must be developed to provide an area that is darkened for tuber and root growth and of sufficient size for plant spread. A system developed for growing potatoes, or any plants, in space will have certain requirements that must be met to make them a useful part of a life support system. The system must 1) be constructed of materials, and involve media, that can be reused for many successive cycles of plant growth, 2

  4. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  5. Development and optimization of biofilm based algal cultivation

    NASA Astrophysics Data System (ADS)

    Gross, Martin Anthony

    This dissertation describes research done on biofilm based algal cultivation systems. The system that was developed in this work is the revolving algal biofilm cultivation system (RAB). A raceway-retrofit, and a trough-based pilot-scale RAB system were developed and investigated. Each of the systems significantly outperformed a control raceway pond in side-by-side tests. Furthermore the RAB system was found to require significantly less water than the raceway pond based cultivation system. Lastly a TEA/LCA analysis was conducted to evaluate the economic and life cycle of the RAB cultivation system in comparison to raceway pond. It was found that the RAB system was able to grow algae at a lower cost and was shown to be profitable at a smaller scale than the raceway pond style of algal cultivation. Additionally the RAB system was projected to have lower GHG emissions, and better energy and water use efficiencies in comparison to a raceway pond system. Furthermore, fundamental research was conducted to identify the optimal material for algae to attach on. A total of 28 materials with a smooth surface were tested for initial cell colonization and it was found that the tetradecane contact angle of the materials had a good correlation with cell attachment. The effects of surface texture were evaluated using mesh materials (nylon, polypropylene, high density polyethylene, polyester, aluminum, and stainless steel) with openings ranging from 0.05--6.40 mm. It was found that both surface texture and material composition influence algal attachment.

  6. Critical evaluation and modeling of algal harvesting using dissolved air flotation.

    PubMed

    Zhang, Xuezhi; Hewson, John C; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-12-01

    In this study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al(3+) , Fe(3+) , and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g(-1) , respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. Evaluation of the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. The model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al(3+) dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified. PMID:24889919

  7. Oxygenation of intensive cell-culture system.

    PubMed

    Emery, A N; Jan, D C; al-Rubeai, M

    1995-11-01

    The abilities of various methods of oxygenation to meet the demands of high-cell-density culture were investigated using a spin filter perfusion system in a bench-top bioreactor. Oxygen demand at high cell density could not be met by sparging with air inside a spin filter (oxygen transfer values in this condition were comparable with those for surface aeration). Sparging with air outside a spin filter gave adequate oxygen transfer for the support of cell concentrations above 10(7) ml-1 in fully aerobic conditions but the addition of antifoam to control foaming caused blockage of the spinfilter mesh. Bubble-free aeration through immersed silicone tubing with pure oxygen gave similar oxygen transfer rates to that of sparging with air but without the problems of bubble damage and fouling of the spin filter. A supra-optimal level of dissolved oxygen (478% air saturation) inhibited cell growth. However, cells could recover from this stress and reach high density after reduction of the dissolved oxygen level to 50% air saturation. PMID:8590652

  8. ARS Research on Harmful Algal Blooms in SE USA Aquaculture Impoundments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of an EPA sponsored state of knowledge symposium on toxic cyanobacteria, six workgroups were established to assess published literature. A review of ARS research on harmful algal blooms was made by the incumbent. Aquaculture systems have had four types of freshwater toxic algal blooms. De...

  9. Functional Systems and Culturally-Determined Cognitive Differences.

    ERIC Educational Resources Information Center

    Wiseman, Richard L.

    Noting that one means of better understanding the nature of cultural differences is to elucidate the cognitive differences between members of differing cultures, this paper examines Alexander Luria's sociohistorical theory of functional cognitive systems. The paper first describes Luria's notion of functional systems, the crux of which postulates…

  10. Towards a Culturally Competent System of Care. Volume II: Programs Which Utilize Culturally Competent Principles.

    ERIC Educational Resources Information Center

    Isaacs, Mareasa R.; Benjamin, Marva P.

    This monograph was developed to assist states and communities in planning, designing, and implementing culturally competent systems of care for children with serious emotional disturbances. It highlights the culturally competent aspects of 11 programs serving people of color. Each program targets at least one of the four major ethnic minority…

  11. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. PMID:27008510

  12. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  13. Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures

    PubMed Central

    Kim, Jae-Seok; Kang, Go-Eun; Kim, Han-Sung; Song, Wonkeun; Lee, Kyu Man

    2016-01-01

    The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures. PMID:26904669

  14. Algal lectins as promising biomolecules for biomedical research.

    PubMed

    Singh, Ram Sarup; Thakur, Shivani Rani; Bansal, Parveen

    2015-02-01

    Lectins are natural bioactive ubiquitous proteins or glycoproteins of non-immune response that bind reversibly to glycans of glycoproteins, glycolipids and polysaccharides possessing at least one non-catalytic domain causing agglutination. Some of them consist of several carbohydrate-binding domains which endow them with the properties of cell agglutination or precipitation of glycoconjugates. Lectins are rampant in nature from plants, animals and microorganisms. Among microorganisms, algae are the potent source of lectins with unique properties specifically from red algae. The demand of peculiar and neoteric biologically active substances has intensified the developments on isolation and biomedical applications of new algal lectins. Comprehensively, algal lectins are used in biomedical research for antiviral, antinociceptive, anti-inflammatory, anti-tumor activities, etc. and in pharmaceutics for the fabrication of cost-effective protein expression systems and nutraceutics. In this review, an attempt has been made to collate the information on various biomedical applications of algal lectins. PMID:23855360

  15. Biona-C Cell Culture pH Monitoring System

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  16. Cultural Development through Human Resource Systems Integration.

    ERIC Educational Resources Information Center

    Albert, Michael

    1985-01-01

    Discusses the framework for developing a cultural human resources management (HRM) perspective. Central to this framework is modifying HRM programs to reinforce the organization's preferred practices. Modification occurs through selection, orientation, training and development, performance appraisal, career development, and compensation and…

  17. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  18. Sustaining organizational culture change in health systems.

    PubMed

    Willis, Cameron David; Saul, Jessie; Bevan, Helen; Scheirer, Mary Ann; Best, Allan; Greenhalgh, Trisha; Mannion, Russell; Cornelissen, Evelyn; Howland, David; Jenkins, Emily; Bitz, Jennifer

    2016-03-21

    Purpose - The questions addressed by this review are: first, what are the guiding principles underlying efforts to stimulate sustained cultural change; second, what are the mechanisms by which these principles operate; and, finally, what are the contextual factors that influence the likelihood of these principles being effective? The paper aims to discuss these issues. Design/methodology/approach - The authors conducted a literature review informed by rapid realist review methodology that examined how interventions interact with contexts and mechanisms to influence the sustainability of cultural change. Reference and expert panelists assisted in refining the research questions, systematically searching published and grey literature, and helping to identify interactions between interventions, mechanisms and contexts. Findings - Six guiding principles were identified: align vision and action; make incremental changes within a comprehensive transformation strategy; foster distributed leadership; promote staff engagement; create collaborative relationships; and continuously assess and learn from change. These principles interact with contextual elements such as local power distributions, pre-existing values and beliefs and readiness to engage. Mechanisms influencing how these principles sustain cultural change include activation of a shared sense of urgency and fostering flexible levels of engagement. Practical implications - The principles identified in this review, along with the contexts and mechanisms that influence their effectiveness, are useful domains for policy and practice leaders to explore when grappling with cultural change. These principles are sufficiently broad to allow local flexibilities in adoption and application. Originality/value - This is the first study to adopt a realist approach for understanding how changes in organizational culture may be sustained. Through doing so, this review highlights the broad principles by which organizational action

  19. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  20. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds.

    PubMed

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-Del-Valle, Manuel; Vílchez, Carlos

    2016-05-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  1. Growing B Lymphocytes in a Three-Dimensional Culture System

    NASA Technical Reports Server (NTRS)

    Wu, J. H. David; Bottaro, Andrea

    2010-01-01

    A three-dimensional (3D) culture system for growing long-lived B lymphocytes has been invented. The capabilities afforded by the system can be expected to expand the range of options for immunological research and related activities, including testing of immunogenicity of vaccine candidates in vitro, generation of human monoclonal antibodies, and immunotherapy. Mature lymphocytes, which are the effectors of adaptive immune responses in vertebrates, are extremely susceptible to apoptotic death, and depend on continuous reception of survival-inducing stimulation (in the forms of cytokines, cell-to-cell contacts, and antigen receptor signaling) from the microenvironment. For this reason, efforts to develop systems for long-term culture of functional, non-transformed and non-activated mature lymphocytes have been unsuccessful until now. The bone-marrow microenvironment supports the growth and differentiation of many hematopoietic lineages, in addition to B-lymphocytes. Primary bone-marrow cell cultures designed to promote the development of specific cell types in vitro are highly desirable experimental systems, amenable to manipulation under controlled conditions. However, the dynamic and complex network of stromal cells and insoluble matrix proteins is disrupted in prior plate- and flask-based culture systems, wherein the microenvironments have a predominantly two-dimensional (2D) character. In 2D bone-marrow cultures, normal B-lymphoid cells become progressively skewed toward precursor B-cell populations that do not retain a normal immunophenotype, and such mature B-lymphocytes as those harvested from the spleen or lymph nodes do not survive beyond several days ex vivo in the absence of mitogenic stimulation. The present 3D culture system is a bioreactor that contains highly porous artificial scaffolding that supports the long-term culture of bone marrow, spleen, and lymph-node samples. In this system, unlike in 2D culture systems, B-cell subpopulations developing

  2. Autonomous benthic algal cultivator under feedback control of ecosystem metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...

  3. Insights into Nitrogen Isotopic Fractionation During Algal Assimilation of Nitrate and Ammonium

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Swart, P. K.; Capo, T. R.

    2008-12-01

    Nitrogen availability is an important factor controlling algal growth in marine environments, representing a limiting nutrient throughout much of the global ocean. Anthropogenic inputs to the coastal zone may shift the nutrient regime, leading to questions regarding the extent of anthropogenic nutrient impacts in near-shore environments. A large body of work has been completed relating the δ15N of algae, seagrasses, and other benthic organisms to anthropogenic nutrient sources. However, previous work by our research group characterizing the δ15N of organic material associated with waste water discharge points, and in reef and embayment environments of the south Florida coastal zone, has suggested that δ15N values alone do not provide unequivocal evidence of anthropogenic nitrogen loading. Greater understanding of nitrogen processing and isotopic fractionation in coastal benthic organisms is necessary before blanket assumptions regarding nutrient uptake and source association can be universally accepted. Closed system mesocosm incubations examining fractionation associated with assimilation of nitrate and ammonium in cultured red algae, Gracilaria sp. and Agardhiella sp., were completed under varied nitrate and ammonium concentrations from 10 to 500 μM with initial nitrogen isotopic compositions of 2.7-3 ‰. Following 8-day incubations, the isotopic composition of new algal growth ranged between +2.43 and -5.77 ‰, with more depleted values coincident with higher N-availability. Rayleigh fractionation calculations yield fractionation factors of 4-9 ‰ (α values of 1.0045 to 1.008), which represent significantly larger values than those previously reported in the literature for macroalgae. 15N-tracer experiments (initial δ15N = 1000 ‰) were also conducted to assess nutrient preferences in the cultured algae. Isotopic composition of new algal growth varied from -1.3 to +495.0 ‰ with only Agardhiella exhibiting an obvious preference for ammonium

  4. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System.

    PubMed

    Mitchell, J Paul; Court, Jacqueline; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled

    2008-06-01

    Exosomes are nanometer-sized vesicles, secreted from most cell types, with documented immune-modulatory functions. Exosomes can be purified from cultured cells but to do so effectively, requires maintenance of cells at high density in order to obtain sufficient accumulation of exosomes in the culture medium, prior to purification. Whilst high density cultures can be achieved with cells in suspension, this remains difficult with adherent cells, resulting in low quantity of exosomes for subsequent study. We have used the Integra CELLine culture system, originally designed for hybridoma cultures, to achieve a significant increase in obtainable exosomes from adherent and non-adherent tumour cells. Traditional cultures of mesothelioma cells (cultured in 75 cm(2) flasks) gave an average yield of 0.78 microg+/-0.14 microg exosome/ml of conditioned medium. The CELLine Adhere 1000 (CLAD1000) flask, housing the same cell line, increased exosome yield approximately 12 fold to 10.06 microg+/-0.97 microg/ml. The morphology, phenotype and immune function of these exosomes were compared, and found to be identical in all respects. Similarly an 8 fold increase in exosome production was obtained from NKL cells (a suspension cell line) using a CELLine 1000 (CL1000) flask. The CELLine system also incurred ~5.5 fold less cost and reduced labour for cell maintenance. This simple culture system is a cost effective, useful method for significantly increasing the quantity of exosomes available from cultured cells, without detrimental effects. This tool should prove advantageous in future studies of exosome-immune modulation in cancer and other settings. PMID:18423480

  5. a Cultural Landscape Information System Developed with Open Source Tools

    NASA Astrophysics Data System (ADS)

    Chudyk, C.; Müller, H.; Uhler, M.; Würriehausen, F.

    2013-07-01

    Since 2010, the state of Rhineland-Palatinate in Germany has developed a cultural landscape information system as a process to secure and further enrich aggregate data about its cultural assets. In an open dialogue between governing authorities and citizens, the intention of the project is an active cooperation of public and private actors. A cultural landscape information system called KuLIS was designed as a web platform, combining semantic wiki software with a geographic information system. Based on data sets from public administrations, the information about cultural assets can be extended and enhanced by interested participants. The developed infrastructure facilitates local information accumulation through a crowdsourcing approach. This capability offers new possibilities for e-governance and open data developments. The collaborative approach allows governing authorities to manage and supervise official data, while public participation enables affordable information acquisition. Gathered cultural heritage information can provide incentives for touristic valorisation of communities or concepts for strengthening regional identification. It can also influence political decisions in defining significant cultural regions worth of protecting from industrial influences. The presented cultural landscape information allows citizens to influence the statewide development of cultural landscapes in a democratic way.

  6. Miniature Bioreactor System for Long-Term Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  7. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  8. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. PMID:27486951

  9. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). PMID:27007038

  10. Design of a Miniature Tissue Culture System to Culture Mouse Heart Valves

    PubMed Central

    Lieber, Samuel C.; Kruithof, Boudewijn P. T.; Aubry, Nadine; Vatner, Stephen F.; Gaussin, Vinciane

    2010-01-01

    Valvular heart disease is a leading cause of morbidity and mortality in adults but little is known about the underlying etiology. A better understanding of the genetic and hemodynamic mechanisms involved in growth and remodeling of heart valves during physiological and pathological conditions is needed for a better understanding of valvular heart disease. Here, we report the design of a miniature tissue culture system (MTCS) that allows the culture of mitral valves from perinatal to adult mice. The design of the MTCS is novel in that fine positioning and cannulation can be conducted with hearts of different sizes (perinatal to adult). Perfusion of the heart and hence, culture of the mitral valve in its natural position, occurs in a hydraulically sealed culture bath environment. Using the MTCS, we successfully cultured the mitral valve of adult mouse hearts for 3 days. Histological analysis indicated that the cultured valves remained viable and their extracellular matrix organization was similar to age-matched native valves. Gene expression could also be modified in cultured valves by perfusion with medium containing beta-galactosidase-expressing adenovirus. Thus, the MTCS is a new tool to study the genetic and hemodynamic mechanisms underlying the three-dimensional organization of the heart valves, which could provide insights in the pathology of valvular heart disease and be used in animal models for the development of tissue-engineered heart valves. PMID:20099034

  11. Microfluidics co-culture systems for studying tooth innervation

    PubMed Central

    Pagella, Pierfrancesco; Neto, Estrela; Jiménez-Rojo, Lucia; Lamghari, Meriem; Mitsiadis, Thimios A.

    2014-01-01

    Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation. PMID:25202282

  12. Seven essential strategies for promoting and sustaining systemic cultural competence.

    PubMed

    Delphin-Rittmon, Miriam E; Andres-Hyman, Raquel; Flanagan, Elizabeth H; Davidson, Larry

    2013-03-01

    Racial and ethnic disparities are disturbing facets of the American healthcare system that document the reality of unequal treatment. Research consistently shows that patients of color experience poorer quality of care and health outcomes contributing to increased risks and accelerated mortality rates relative to their white counterparts. While initially conceptualized as an approach for increasing the responsiveness of children's behavioral health care, cultural competence has been adopted as a key strategy for eliminating racial and ethnic health disparities across the healthcare system. However, cultural competence research and practices largely focus on improving provider competencies, while agency and system level approaches for meeting the service needs of diverse populations are given less attention. In this article we offer seven essential strategies for promoting and sustaining organizational and systemic cultural competence. These strategies are to: (1) Provide executive level support and accountability, (2) Foster patient, community and stakeholder participation and partnerships, (3) Conduct organizational cultural competence assessments, (4) Develop incremental and realistic cultural competence action plans, (5) Ensure linguistic competence, (6) Diversify, develop, and retain a culturally competent workforce, and (7) Develop an agency or system strategy for managing staff and patient grievances. For each strategy we offer several recommendations for implementation. PMID:22581030

  13. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    PubMed Central

    Stemmler, Kevin; Massimi, Rebecca

    2016-01-01

    Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock. PMID:26989618

  14. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production.

    PubMed

    Stemmler, Kevin; Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock. PMID:26989618

  15. Automatic identification of algal community from microscopic images.

    PubMed

    Santhi, Natchimuthu; Pradeepa, Chinnaraj; Subashini, Parthasarathy; Kalaiselvi, Senthil

    2013-01-01

    A good understanding of the population dynamics of algal communities is crucial in several ecological and pollution studies of freshwater and oceanic systems. This paper reviews the subsequent introduction to the automatic identification of the algal communities using image processing techniques from microscope images. The diverse techniques of image preprocessing, segmentation, feature extraction and recognition are considered one by one and their parameters are summarized. Automatic identification and classification of algal community are very difficult due to various factors such as change in size and shape with climatic changes, various growth periods, and the presence of other microbes. Therefore, the significance, uniqueness, and various approaches are discussed and the analyses in image processing methods are evaluated. Algal identification and associated problems in water organisms have been projected as challenges in image processing application. Various image processing approaches based on textures, shapes, and an object boundary, as well as some segmentation methods like, edge detection and color segmentations, are highlighted. Finally, artificial neural networks and some machine learning algorithms were used to classify and identifying the algae. Further, some of the benefits and drawbacks of schemes are examined. PMID:24151424

  16. Effects of marine algal toxins on thermoregulation in mice.

    PubMed

    Gordon, Christopher J; Ramsdell, John S

    2005-01-01

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevetoxin in the mouse. Radiotelemetry was used to measure core temperature in the unrestrained mouse while it was housed in a temperature gradient allowing the exhibition of thermoregulatory behavior. Both maitotoxin (338 ng/kg) and brevetoxin (180 microg/kg) were shown to elicit profound hypothermic responses accompanied by a preference for cooler ambient temperatures in the gradient. This behavioral response would suggest that the toxins alter the central neural control of body temperature, resulting in a regulated reduction in body temperature. Following recovery from the acute hypothermic effects of brevetoxin, mice developed an elevation in their daytime core temperature that persisted for several days after exposure. This fever-like response may represent a delayed toxicological effect of the marine algal toxins that is manifested through the thermoregulatory system. Overall, algal toxins have acute and delayed effects on temperature regulation in the mouse. A better understanding of the mechanisms of action of the toxins on thermoregulation should lead to improved methods for treating victims of ciguatera and other toxin exposures. PMID:16111859

  17. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  18. Strengths and limitations of the neurosphere culture system.

    PubMed

    Jensen, Josephine B; Parmar, Malin

    2006-12-01

    After the initial reports of free-floating cultures of neural stem cells termed neurospheres (1,2), a wide array of studies using this promising culture system emerged. In theory, this was a near-perfect system for large-scale production of neural cells for use in cell replacement therapies and to assay for and characterize neural stem cells. More than a decade later, after rigorous scrutiny and ample experimental testing of the neurosphere culture system, it has become apparent that the culture system suffers from several disadvantages, and its usefulness is limited for several applications. Nevertheless, the bulk of high-quality research produced over the last decade has also shown that under the right circumstances and for the appropriate purposes, neurospheres hold up to their initial promise. This article discusses the pros and cons of the neurosphere culture system regarding its three major applications: as an assay for neural stem cells, as a model system for neurogenesis and neural development, and for expansion of neural stem cells for transplantation purposes. PMID:17308349

  19. Algal biosensor array on a single electrode.

    PubMed

    Tatsuma, Tetsu; Yoshida, Yutaka; Shitanda, Isao; Notsu, Hideo

    2009-02-01

    An algal array was prepared on a single transparent electrode, and photosynthetic activity of each algal channel and its inhibition by a toxin were monitored with a single-channel potentiostat by successive light irradiation with a LED array. PMID:19173040

  20. TEXAS HARMFUL ALGAL BLOOM COORDINATION MX964014

    EPA Science Inventory

    Harmful algal blooms (HAB) are an expanding problem in coastal Texas. Nearly � of the known harmful algal blooms along the Texas coast have occurred in the past ten years and have led to significant resource and tourism losses. For example, there are at least two types of toxic...

  1. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  2. Therapeutically important proteins from in vitro plant tissue culture systems.

    PubMed

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production. PMID:23210789

  3. CULTURAL SYSTEM AFFECTS FRUIT QUALITY AND ANTIOXIDANT CAPACITY IN STRAWBERRIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultural system [hill plasticulture (HC) vs. matted row (MR)] and genotypes interactions affected strawberry fruit quality. In general, fruit soluble content, total sugar, fructose, glucose, ascorbic acid, titratable acid and citric acid content were increased in the HC system. Fruit from HC also ...

  4. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  5. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study

    NASA Astrophysics Data System (ADS)

    Li, Qinqin; Hu, Weiping; Zhai, Shuhua

    2016-01-01

    Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading.

  6. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study.

    PubMed

    Li, Qinqin; Hu, Weiping; Zhai, Shuhua

    2016-01-01

    Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading. PMID:26296739

  7. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  8. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  9. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    NASA Astrophysics Data System (ADS)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  10. Culture and systems of oppression in abused women's lives.

    PubMed

    Phillips, D S

    1998-01-01

    Women's experiences of abuse are shaped by the social and cultural contexts in which they live. Recognition of the complex ways in which culture and systems of oppression interact, creating qualitatively different abuse experiences, is important nursing knowledge. Of particular concern are the ways in which women are constrained in their efforts to combat abuse as they experience the harsh and alienating effects of racism, sexism, classism, and other forms of social injustice. An understanding of the ways in which race and ethnicity, class, language and citizenship, religion, and culture intersect and shape women's experiences of abuse is critical to the provision of culturally competent nursing care. This understanding is the springboard from which more effective assessment and intervention strategies with vulnerable abused women of diverse backgrounds can emerge. PMID:9836163

  11. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  12. Stimulation of commercial algal biomass production by the use of geothermal water for temperature control

    SciTech Connect

    Bedell, G.W.

    1985-01-01

    The first pilot algal biomass production project to use geothermal water for the maintenance of optimal culture temperatures in Nevada is described. The project was initiated during the fall of 1982 by TAD's Enterprises, Inc., Wabuska (near Yerington), Nevada. The facility was designed to produce Spirulina under conditions that would more than meet the requirements of the United States Food and Drug Administration for sale to the health food market. As a result, the algae were grown in large plastic bags in order to prevent contamination by extraneous organisms. Although this system has not been tuned to its optimum potential, preliminary yields obtained over most of a year indicate not only the feasibility of the project but also a stimulation of daily output yields when compared to the daily growth yields for Spirulina reported by Israel.

  13. Simulating pH effects in an algal-growth hydrodynamics model(1).

    PubMed

    James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T

    2013-06-01

    Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. PMID:27007048

  14. The effect of three culture methods on intensive culture system of pacific white shrimp ( Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Wan, Rong; Song, Xiefa; Gao, Lei

    2013-09-01

    Different culture methods may affect the intensive culture system of Pacific white shrimp ( Litopenaeus vannamei) regarding water quality and growth and economic performance. This study evaluated the potential effects of three culture methods through cultivation of juvenile shrimps under consistent tank management conditions for 84 d. The three methods involved shrimp cultivation in different tanks, i.e., outdoor tanks with cement bottom (mode-C), greenhouse tanks with cement bottom (mode-G) and outdoor tanks with mud-substrate (mode-M). Results showed that water temperature was significantly higher in mode-G than that in mode-C ( P < 0.05). In contrast to the other two treatments, mode-M had stable pH after 50 d cultivation of shrimps. In the mid-late period, the average concentrations of TAN, NO2-N, DIP and COD were significantly lower in mode-M and mode-G compared with those in mode-C ( P < 0.05). Despite lack of differences in the final shrimp weight among different treatments ( P > 0.05), mode-M had significantly higher shrimp yield, survival rate and feed conversion rate ( P < 0.05) than other modes. There were significant differences in revenue and net return among different treatments ( P < 0.05). These demonstrated that the treatments of mode-G and mode-M were conductive to the intensive culture system of L. vannamei.

  15. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  16. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System

    PubMed Central

    Zandi, Mohammad; Muzaffar, Musharifa; Shah, Syed Mohmad; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Manik, Radheysham; Chauhan, Manmohan Singh

    2015-01-01

    Objective In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. Materials and Methods In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. Results The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. Conclusion We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells. PMID:26199905

  17. Moving Towards Culturally Competent Health Systems: Organizational and Market Factors

    PubMed Central

    Weech-Maldonado, Robert; Elliott, Marc; Pradhan, Rohit; Schiller, Cameron; Dreachslin, Janice; Hays, Ron D.

    2012-01-01

    Cultural competency has been proposed as an organizational strategy to address racial/ethnic disparities in the health care system; disparities are a long-standing policy challenge whose relevance is only increasing with the increasing population diversity of the US and across the world. Using an integrative conceptual framework based on the resource dependency and institutional theories, we examine the relationship between organizational and market factors and hospitals’ degree of cultural competency. Our sample consists of 119 hospitals located in the state of California (US) and is constructed using the following datasets for the year 2006: Cultural Competency Assessment Tool of Hospitals (CCATH) Survey, California’s Office of Statewide Health Planning & Development’s Hospital Inpatient Discharges and Annual Hospital Financial Data, American Hospital Association’s Annual Survey, and the Area Resource File. The dependent variable consists of the degree of hospital cultural competency, as assessed by the CCATH overall score. Organizational variables include ownership status, teaching hospital, payer mix, size, system membership, financial performance, and the proportion of inpatient racial/ethnic minorities. Market characteristics included hospital competition, the proportion of racial/ethnic minorities in the area, metropolitan area, and per capita income. Regression analyses were conducted to assess the relationship between the CCATH overall score and organizational and market variables. Our results show that hospitals which are not-for-profit, serve a more diverse inpatient population, and are located in more competitive and affluent markets exhibit a higher degree of cultural competency. Our results underscore the importance of both institutional and competitive market pressures in guiding hospital behavior. For instance, while not-for-profit may adopt innovative/progressive policies like cultural competency simply as a function of their organizational

  18. Voice knowledge acquisition system for the management of cultural heritage

    NASA Astrophysics Data System (ADS)

    Du Château, Stefan; Boulanger, Danielle; Mercier-Laurent, Eunika

    This document presents our work on a definition and experimentation of a voice interface for cultural heritage inventory. This hybrid system includes signal processing, natural language techniques and knowledge modeling for future retrieval. We discuss the first results and give some points on future work.

  19. Cultural Influences on Number Preferences: Christmas and Grading Systems

    ERIC Educational Resources Information Center

    Stieger, Stefan; Krizan, Zlatan

    2013-01-01

    People consistently prefer numbers associated with themselves (e.g., birth dates) over other numbers. We argue that such number preferences are also shaped by cultural influences, such as customs regarding the day on which Christmas is celebrated and customs regarding ranking of numerals used in national school's grading system. Across 6 different…

  20. Parents' Cultural Belief Systems: Their Origins, Expressions, and Consequences.

    ERIC Educational Resources Information Center

    Harkness, Sara, Ed.; Super, Charles M., Ed.

    This volume presents observations and thinking of scholars from a variety of disciplines about parental cultural belief systems. The chapters are concerned with the sources and consequences of parental ethnotheories in a number of societies. The following chapters are included: (1) "Introduction" (Sara Harkness and Charles M. Super); (2) "Parents'…

  1. Barriers to Excellence: The Culture of Silence in School Systems.

    ERIC Educational Resources Information Center

    Rusch, Edith A.

    Little is known about how restructuring networks actually affect the cultures of school systems. This report examines the creation of an "island" of reform in a school district in northwest Ohio. The research emanated from the discovery of a new "island" in northwest Ohio called the Pathfinder Network. The group formed through like-minded…

  2. World Culture in the Capitalist World-System in Transition

    ERIC Educational Resources Information Center

    Griffiths, Tom G.; Arnove, Robert F.

    2015-01-01

    World culture theory (WCT) offers an explanatory framework for macro-level comparative analyses of systems of mass education, including their structures, accompanying policies and their curricular and pedagogical practices. WCT has contributed to broader efforts to overcome methodological nationalism in comparative research. In this paper, we…

  3. Development of an attached microalgal growth system for biofuel production.

    PubMed

    Johnson, Michael B; Wen, Zhiyou

    2010-01-01

    Algal biofuel production has gained a renewed interest in recent years but is still not economically feasible due to several limitations related to algal culture. The objective of this study is to explore a novel attached culture system for growing the alga Chlorella sp. as biodiesel feedstock, with dairy manure wastewater being used as growth medium. Among supporting materials tested for algal attachment, polystyrene foam led to a firm attachment, high biomass yield (25.65 g/m(2), dry basis), and high fatty acid yield (2.31 g/m(2)). The biomass attached on the supporting material surface was harvested by scraping; the residual colonies left on the surface served as inoculum for regrowth. The algae regrowth on the colony-established surface resulted in a higher biomass yield than that from the initial growth on fresh surface due to the downtime saved for initial algal attachment. The 10-day regrowth culture resulted in a high biodiesel production potential with a fatty acid methyl esters yield of 2.59 g/m(2) and a productivity of 0.26 g/m(-2) day(-1). The attached algal culture also removed 61-79% total nitrogen and 62-93% total phosphorus from dairy manure wastewater, depending on different culture conditions. The biomass harvested from the attached growth system (through scraping) had a water content of 93.75%, similar to that harvested from suspended culture system (through centrifugation). Collectively, the attached algal culture system with polystyrene foam as a supporting material demonstrated a good performance in terms of biomass yield, biodiesel production potential, ease to harvest biomass, and physical robustness for reuse. PMID:19636552

  4. Growth of Heterotrophic Bacteria and Algal Extracellular Products in Oligotrophic Waters

    PubMed Central

    McFeters, Gordon A.; Stuart, Sidney A.; Olson, Susan B.

    1978-01-01

    The unexpected observation of 200 to 400 coliform bacteria per 100 ml in an unpolluted pristine stream was studied within Grand Teton National Park, Wyo. The high numbers of waterborne bacteria occurred in mid- to late summer at a location where there was a coincidental bloom of an algal mat community. Periphyton samplers were used to measure the algal growth that coincided with the increase in number of bacteria. Laboratory studies followed the growth of various coliform bacteria in the supernatant obtained from a Chlorella culture isolated from the mat community. Mixed natural bacterial populations from the stream and pure cultures of water-isolated fecal and nonfecal coliforms increased by two to three orders of magnitude at 13°C when grown in the algal supernatant. Radioactive algal products were obtained by feeding an axenic Chlorella culture 14C-labeled bicarbonate under laboratory cultivation at 13°C with illumination. Radioactive organic material from the algae became incorporated into the particulate fraction of pure cultures of coliform bacteria as they reproduced and was later released as they died. PMID:16345278

  5. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    PubMed

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-01

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  6. An Optically Controlled 3D Cell Culturing System

    PubMed Central

    Ishii, Kelly S.; Hu, Wenqi; Namekar, Swapnil A.; Ohta, Aaron T.

    2012-01-01

    A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability. PMID:22701475

  7. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  8. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  9. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  10. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  11. INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE

    SciTech Connect

    MCDONALD JA JR

    2009-01-16

    In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

  12. Connecting Florida Bay algal blooms to freshwater nutrient sources

    NASA Astrophysics Data System (ADS)

    Blakey, T.; Melesse, A. M.

    2013-12-01

    factors influencing the nutrient circulation that is pertinent to observed patterns in Florida Bay algal blooms. These results point to the utility of regional hydrogeologic characterizations at fine spatial and temporal resolutions in tracking seasonally variable hydrologic inputs in complex and dynamic systems.

  13. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps.

    PubMed

    Norvill, Zane N; Shilton, Andy; Guieysse, Benoit

    2016-08-01

    Whereas the fate of emerging contaminants (ECs) during 'conventional' and 'advanced' wastewater treatment (WWT) has been intensively studied, little research has been conducted on the algal WWT ponds commonly used in provincial areas. The long retention times and large surface areas exposed to light potentially allow more opportunities for EC removal to occur, but experimental evidence is lacking to enable definite predictions about EC fate across different algal WWT systems. This study reviews the mechanisms of EC hydrolysis, sorption, biodegradation, and photodegradation, applying available knowledge to the case of algal WWT. From this basis the review identifies three main areas that need more research due to the unique environmental and ecological conditions occurring in algal WWT ponds: i) the effect of diurnally fluctuating pH and dissolved oxygen upon removal mechanisms; ii) the influence of algae and algal biomass on biodegradation and sorption under relevant conditions; and iii) the significance of EC photodegradation in the presence of dissolved and suspended materials. Because of the high concentration of dissolved organics typically found in algal WWT ponds, most EC photodegradation likely occurs via indirect mechanisms rather than direct photolysis in these systems. PMID:27135171

  14. Longitudinal Analysis of Microbiota in Microalga Nannochloropsis salina Cultures.

    PubMed

    Geng, Haifeng; Sale, Kenneth L; Tran-Gyamfi, Mary Bao; Lane, Todd W; Yu, Eizadora T

    2016-07-01

    Large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded with the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems. PMID:26956183

  15. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  16. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  17. Culture and the Immune System: Cultural Consonance in Social Support and C-reactive Protein in Urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2016-06-01

    In this article, we examine the distribution of a marker of immune system stimulation-C-reactive protein-in urban Brazil. Social relationships are associated with immunostimulation, and we argue that cultural dimensions of social support, assessed by cultural consonance, are important in this process. Cultural consonance is the degree to which individuals, in their own beliefs and behaviors, approximate shared cultural models. A measure of cultural consonance in social support, based on a cultural consensus analysis regarding sources and patterns of social support in Brazil, was developed. In a survey of 258 persons, the association of cultural consonance in social support and C-reactive protein was examined, controlling for age, sex, body mass index, low-density lipoprotein cholesterol, depressive symptoms, and a social network index. Lower cultural consonance in social support was associated with higher C-reactive protein. Implications of these results for future research are discussed. PMID:25828739

  18. Raman microspectroscopy based sensor of algal lipid unsaturation

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  19. Gender and cultural issues in psychiatric nosological classification systems.

    PubMed

    van de Water, Tanya; Suliman, Sharain; Seedat, Soraya

    2016-08-01

    Much has changed since the two dominant mental health nosological systems, the International Classification of Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM), were first published in 1900 and 1952, respectively. Despite numerous modifications to stay up to date with scientific and cultural changes (eg, exclusion of homosexuality as a disorder) and to improve the cultural sensitivity of psychiatric diagnoses, the ICD and DSM have only recently renewed attempts at harmonization. Previous nosological iterations demonstrate the oscillation in the importance placed on the biological focus, highlighting the tension between a gender- and culture-free nosology (solely biological) and a contextually relevant understanding of mental illness. In light of the release of the DSM 5, future nosological systems, such as the ICD 11, scheduled for release in 2017, and the Research Development Criteria (RDoC), can learn from history and apply critiques. This article aims to critically consider gender and culture in previous editions of the ICD and DSM to inform forthcoming classifications. PMID:27133577

  20. Controlled clinical comparison of three commercial blood culture systems.

    PubMed

    Frank, U; Malkotsis, D; Mlangeni, D; Daschner, F D

    1999-04-01

    In a controlled clinical comparison, three commercial blood culture systems--the standard aerobic BacT/Alert bottle (STD), the aerobic BacT/Alert FAN bottle (FAN) and the Isolator system (ISO; Wampole Laboratories, USA) were compared for their ability to detect aerobic and facultatively anaerobic microorganisms. A total of 945 BacT/Alert (STD and FAN) blood culture sets were compared. Of these, 110 blood culture sets (11.6%) yielded growth of 116 clinically significant bacterial and fungal isolates. Microorganisms were recovered from 10.7% (101/945) of the FAN bottles compared to 8.9% (84/945) of the STD bottles. Of the significant isolates, 78 (67.2%) were recovered by both bottles, 29 (25%) by the FAN bottle only and nine (7.8%) by the STD bottle only (P<0.01). Along with 56.1% (530/945) of BacT/Alert blood culture sets, a concomitant ISO tube was obtained. Of the triple (STD + FAN + ISO) blood culture sets, 54 (10.2%) yielded growth of 59 clinically relevant isolates. Microorganisms were detected in 9.1% (48/530) of the FAN bottles, 8.3% (44/530) of the STD bottles and 4% (21/530) of the ISO tubes (P<0.001). Overall, the BacT/Alert system detected more clinically significant microorganisms than the ISO tube; the STD and the FAN bottle each recovered significantly more staphylococci (P<0.01 and P<0.001, respectively) and gram-negative rods (P<0.01, both). In conclusion, the BacT/Alert FAN bottle performed better than the BacT/Alert STD bottle; both BacT/Alert bottles, however, were superior to the ISO tube in terms of recovery of clinically significant microorganisms, including gram-positive and gram-negative bacteria. PMID:10385012

  1. Microflotation performance for algal separation.

    PubMed

    Hanotu, James; Bandulasena, H C Hemaka; Zimmerman, William B

    2012-07-01

    The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm. In contrast, continuous air flow at the same rate through the same diffusers yielded an average bubble size of 1,059 µm, 28 times larger than the pore size. Following microbubble generation, the separation of algal cells under fluidic oscillator generated microbubbles was investigated by varying metallic coagulant types, concentration and pH. Best performances were recorded at the highest coagulant dose (150 mg/L) applied under acidic conditions (pH 5). Amongst the three metallic coagulants studied, ferric chloride yielded the overall best result of 99.2% under the optimum conditions followed closely by ferric sulfate (98.1%) and aluminum sulfate with 95.2%. This compares well with conventional dissolved air flotation (DAF) benchmarks, but has a highly turbulent flow, whereas microflotation is laminar with several orders of magnitude lower energy density. PMID:22290221

  2. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  3. Effects of anodic oxidation of a substoichiometric titanium dioxide reactive electrochemical membrane on algal cell destabilization and lipid extraction.

    PubMed

    Hua, Likun; Guo, Lun; Thakkar, Megha; Wei, Dequan; Agbakpe, Michael; Kuang, Liyuan; Magpile, Maraha; Chaplin, Brian P; Tao, Yi; Shuai, Danmeng; Zhang, Xihui; Mitra, Somenath; Zhang, Wen

    2016-03-01

    Efficient algal harvesting, cell pretreatment and lipid extraction are the major steps challenging the algal biofuel industrialization. To develop sustainable solutions for economically viable algal biofuels, our research aims at devising innovative reactive electrochemical membrane (REM) filtration systems for simultaneous algal harvesting and pretreatment for lipid extraction. The results in this work particularly demonstrated the use of the Ti4O7-based REM in algal pretreatment and the positive impacts on lipid extraction. After REM treatment, algal cells exhibited significant disruption in morphology and photosynthetic activity due to the anodic oxidation. Cell lysis was evidenced by the changes of fluorescent patterns of dissolved organic matter (DOM) in the treated algal suspension. The lipid extraction efficiency increased from 15.2 ± 0.6 g-lipidg-algae(-1) for untreated algae to 23.4 ± 0.7 g-lipidg-algae(-1) for treated algae (p<0.05), which highlights the potential to couple algal harvesting with cell pretreatment in an integrated REM filtration process. PMID:26722810

  4. Information support systems for cultural heritage protection against flooding

    NASA Astrophysics Data System (ADS)

    Nedvedova, K.; Pergl, R.

    2015-08-01

    The goal of this paper is to present use of different kind of software applications to create complex support system for protection of cultural heritage against flooding. The project is very complex and it tries to cover the whole area of the problem from prevention to liquidation of aftermath effects. We used GIS for mapping the risk areas, ontology systems for vulnerability assessment application and the BORM method (Business Object Relation Modelling) for flood protection system planning guide. Those modern technologies helped us to gather a lot of information in one place and provide the knowledge to the broad audience.

  5. A Geospatial Analysis of Harmful Algal Blooms along the California Coast

    NASA Astrophysics Data System (ADS)

    Jensen, C.; Rothwell, R.; Johnson, E.; Condamoor, M.; Patil, M.; Largier, J. L.; Schmidt, C.

    2012-12-01

    Algal blooms are natural phenomena consisting of the rapid growth of phytoplankton populations. Some blooms have negative ecological or public health effects due to toxin production and removal of oxygen from the water column. In recent years, such "harmful algal blooms" (HABs) have been linked to human illness, economic loss from decreased fishing, and ecological damage related to marine life mortality as well as eutrophication. A notable HAB event occurred along the coast of northern California in August 2011, resulting in economic and ecological impacts of approximately $82 million. This was one of several algal blooms that occurred in fall 2011, with similar northward propagating algal blooms occurring in autumn of other years. Although the scale of the bloom impact is well-known, the spatial and temporal extent of the bloom boundary is still unclear. This study tracked the space-time pattern of numerous blooms during August-October 2011 using multiple NASA Earth observing systems in an effort to quantify and understand the structure of these recurrent bloom events. Aqua MODIS images were used to quantify surface chlorophyll-α levels, and thus to map the extent and development of all autumn algal blooms. The relation between sea surface temperature, ocean surface topography, and algal blooms was further explored with AVHRR and Jason-2 satellite data. A Generalized Additive Model (GAM) was used to identify the environmental factors most statistically influential in algal blooms and specifically in HAB events. Results from this study will assist California's Departments of Public Health and Fish & Game in mitigating and managing the impact of future harmful algal blooms.

  6. Organisational culture matters for system integration in health care.

    PubMed

    Munir, Samina K; Kay, Stephen

    2003-01-01

    This paper illustrates the importance of organisational culture for Clinical Information Systems (CIS) integration. The study is based on data collected in intensive care units in the UK and Denmark. Data were collected using qualitative methods, i.e., observations, interviews and shadowing of health care providers, together with a questionnaire at each site. The data are analysed to extract salient variables for CIS integration, and it is shown that these variables can be separated into two categories that describe the 'Actual Usefulness' of the system and the 'Organisational Culture'. This model is then extended to show that CIS integration directly affects the work processes of the organisation, forming an iterative process of change as a CIS is introduced and integrated. PMID:14728220

  7. An Ex vivo Culture System to Study Thyroid Development

    PubMed Central

    Delmarcelle, Anne-Sophie; Villacorte, Mylah

    2014-01-01

    The thyroid is a bilobated endocrine gland localized at the base of the neck, producing the thyroid hormones T3, T4, and calcitonin. T3 and T4 are produced by differentiated thyrocytes, organized in closed spheres called follicles, while calcitonin is synthesized by C-cells, interspersed in between the follicles and a dense network of blood capillaries. Although adult thyroid architecture and functions have been extensively described and studied, the formation of the “angio-follicular” units, the distribution of C-cells in the parenchyma and the paracrine communications between epithelial and endothelial cells is far from being understood. This method describes the sequential steps of mouse embryonic thyroid anlagen dissection and its culture on semiporous filters or on microscopy plastic slides. Within a period of four days, this culture system faithfully recapitulates in vivo thyroid development. Indeed, (i) bilobation of the organ occurs (for e12.5 explants), (ii) thyrocytes precursors organize into follicles and polarize, (iii) thyrocytes and C-cells differentiate, and (iv) endothelial cells present in the microdissected tissue proliferate, migrate into the thyroid lobes, and closely associate with the epithelial cells, as they do in vivo. Thyroid tissues can be obtained from wild type, knockout or fluorescent transgenic embryos. Moreover, explants culture can be manipulated by addition of inhibitors, blocking antibodies, growth factors, or even cells or conditioned medium. Ex vivo development can be analyzed in real-time, or at any time of the culture by immunostaining and RT-qPCR. In conclusion, thyroid explant culture combined with downstream whole-mount or on sections imaging and gene expression profiling provides a powerful system for manipulating and studying morphogenetic and differentiation events of thyroid organogenesis. PMID:24961920

  8. Biological control of harmful algal blooms: A modelling study

    NASA Astrophysics Data System (ADS)

    Solé, Jordi; Estrada, Marta; Garcia-Ladona, Emilio

    2006-07-01

    A multispecies dynamic simulation model (ERSEM) was used to examine the influence of allelopathic and trophic interactions causing feeding avoidance by predators, on the formation of harmful algal blooms, under environmental scenarios typical of a Mediterranean harbour (Barcelona). The biological state variables of the model included four functional groups of phytoplankton (diatoms, toxic and non-toxic flagellates and picophytoplankton), heterotrophic flagellates, micro- and mesozooplankton and bacteria. The physical-chemical forcing (irradiance, temperature and major nutrient concentrations) was based on an actual series of measurements taken along a year cycle in the Barcelona harbour. In order to evaluate potential effects of advection, some runs were repeated after introducing a biomass loss term. Numerical simulations showed that allelopathic effects of a toxic alga on a non-toxic but otherwise similar competitor did not have appreciable influence on the dynamics of the system. However, induction of avoidance of the toxic alga by predators, which resulted on increased predation pressure on other algal groups had a significant effect on the development of algal and predator populations. The presence of advection overrided the effect of these interactions and only allowed organisms with sufficiently high potential growth rates to thrive.

  9. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F. C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  10. Lysing bloom-causing alga Phaeocystis globosa with microbial algicide: An efficient process that decreases the toxicity of algal exudates.

    PubMed

    Cai, Guanjing; Yang, Xujun; Lai, Qiliang; Yu, Xiaoqi; Zhang, Huajun; Li, Yi; Chen, Zhangran; Lei, Xueqian; Zheng, Wei; Xu, Hong; Zheng, Tianling

    2016-01-01

    Algicidal microbes could effectively remove the harmful algae from the waters. In this study, we were concerned with the ecological influence of an algicide extracted from Streptomyces alboflavus RPS, which could completely lyse the Phaeocystis globosa cells within two days. In microcosms, 4 μg/mL of the microbial algicide could efficiently remove P. globosa cells without suppressing other aquatic organisms. Bioluminescent assays confirmed that the toxicity of microbial algicide at this concentration was negligible. Interestingly, the toxicity of P. globosa exudates was also significantly reduced after being treated with the algicide. Further experiments revealed that the microbial algicide could instantly increase the permeability of the plasma membrane and disturb the photosynthetic system, followed by the deformation of organelles, vacuolization and increasing oxidative stress. The pre-incubation of N-acetyl cysteine (NAC) verified that the rapid damages to the plasma membrane and photosynthetic system caused the algal death in the early phase, and the increasing oxidative stress killed the rest. The late accumulation and possible release of CAT also explained the decreasing toxicity of the algal culture. These results indicated that this microbial algicide has great potential in controlling the growth of P. globosa on site. PMID:26847810

  11. Lysing bloom-causing alga Phaeocystis globosa with microbial algicide: An efficient process that decreases the toxicity of algal exudates

    PubMed Central

    Cai, Guanjing; Yang, Xujun; Lai, Qiliang; Yu, Xiaoqi; Zhang, Huajun; Li, Yi; Chen, Zhangran; Lei, Xueqian; Zheng, Wei; Xu, Hong; Zheng, Tianling

    2016-01-01

    Algicidal microbes could effectively remove the harmful algae from the waters. In this study, we were concerned with the ecological influence of an algicide extracted from Streptomyces alboflavus RPS, which could completely lyse the Phaeocystis globosa cells within two days. In microcosms, 4 μg/mL of the microbial algicide could efficiently remove P. globosa cells without suppressing other aquatic organisms. Bioluminescent assays confirmed that the toxicity of microbial algicide at this concentration was negligible. Interestingly, the toxicity of P. globosa exudates was also significantly reduced after being treated with the algicide. Further experiments revealed that the microbial algicide could instantly increase the permeability of the plasma membrane and disturb the photosynthetic system, followed by the deformation of organelles, vacuolization and increasing oxidative stress. The pre-incubation of N-acetyl cysteine (NAC) verified that the rapid damages to the plasma membrane and photosynthetic system caused the algal death in the early phase, and the increasing oxidative stress killed the rest. The late accumulation and possible release of CAT also explained the decreasing toxicity of the algal culture. These results indicated that this microbial algicide has great potential in controlling the growth of P. globosa on site. PMID:26847810

  12. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the USA" (Alisa Woodring);…

  13. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  14. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  15. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  16. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  17. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  18. Gill cell culture systems as models for aquatic environmental monitoring.

    PubMed

    Bury, Nic R; Schnell, Sabine; Hogstrand, Christer

    2014-03-01

    A vast number of chemicals require environmental safety assessments for market authorisation. To ensure acceptable water quality, effluents and natural waters are monitored for their potential harmful effects. Tests for market authorisation and environmental monitoring usually involve the use of large numbers of organisms and, for ethical, cost and logistic reasons, there is a drive to develop alternative methods that can predict toxicity to fish without the need to expose any animals. There is therefore a great interest in the potential to use cultured fish cells in chemical toxicity testing. This review summarises the advances made in the area and focuses in particular on a system of cultured fish gill cells grown into an epithelium that permits direct treatment with water samples. PMID:24574380

  19. An Information System for European culture collections: the way forward.

    PubMed

    Casaregola, Serge; Vasilenko, Alexander; Romano, Paolo; Robert, Vincent; Ozerskaya, Svetlana; Kopf, Anna; Glöckner, Frank O; Smith, David

    2016-01-01

    Culture collections contain indispensable information about the microorganisms preserved in their repositories, such as taxonomical descriptions, origins, physiological and biochemical characteristics, bibliographic references, etc. However, information currently accessible in databases rarely adheres to common standard protocols. The resultant heterogeneity between culture collections, in terms of both content and format, notably hampers microorganism-based research and development (R&D). The optimized exploitation of these resources thus requires standardized, and simplified, access to the associated information. To this end, and in the interest of supporting R&D in the fields of agriculture, health and biotechnology, a pan-European distributed research infrastructure, MIRRI, including over 40 public culture collections and research institutes from 19 European countries, was established. A prime objective of MIRRI is to unite and provide universal access to the fragmented, and untapped, resources, information and expertise available in European public collections of microorganisms; a key component of which is to develop a dynamic Information System. For the first time, both culture collection curators as well as their users have been consulted and their feedback, concerning the needs and requirements for collection databases and data accessibility, utilised. Users primarily noted that databases were not interoperable, thus rendering a global search of multiple databases impossible. Unreliable or out-of-date and, in particular, non-homogenous, taxonomic information was also considered to be a major obstacle to searching microbial data efficiently. Moreover, complex searches are rarely possible in online databases thus limiting the extent of search queries. Curators also consider that overall harmonization-including Standard Operating Procedures, data structure, and software tools-is necessary to facilitate their work and to make high-quality data easily accessible

  20. Ultraviolet radiation dose calculation for algal suspensions using UVA and UVB extinction coefficients.

    PubMed

    Navarro, Enrique; Muñiz, Selene; Korkaric, Muris; Wagner, Bettina; de Cáceres, Miquel; Behra, Renata

    2014-03-01

    Although the biological importance of ultraviolet light (UVR) attenuation has been recognised in marine and freshwater environments, it is not generally considered in in vitro ecotoxicological studies using algal cell suspensions. In this study, UVA and UVB extinction were determined for cultures of algae with varying cell densities, and the data were used to calculate the corresponding extinction coefficients for both UVA and UVB wavelength ranges. Integrating the Beer-Lambert equation to account for changes in the radiation intensity reaching each depth, from the surface until the bottom of the experimental vessel, we obtained the average UVA and UVB intensity to which the cultured algal cells were exposed. We found that UVR intensity measured at the surface of Chlamydomonas reinhardtii cultures lead to a overestimation of the UVR dose received by the algae by 2-40 times. The approach used in this study allowed for a more accurate estimation of UVA and UVB doses. PMID:24607609

  1. Techno-economic and Fluid Dynamics Analysis for Growing Microalgae with the Intent of Producing Biofuel Using a System Model

    NASA Astrophysics Data System (ADS)

    Raffaeli, Leah R.

    Techno-economic and systems studies on microalgal growth scenarios to date are abbreviated and missing a number of important variables. By including these variables in a detailed model integrating biology, chemistry, engineering, and financial aspects, a more defined systems analysis is possible. Through optimizing the model productivity based on the resulting net profit, the system analysis results in a more accurate assessment of environmental and economic sustainability of specific algal growth scenarios. Photobioreactor algal growth scenario optimization in the system model has resulted in realistic engineering design requirements based on algal growth requirements and fluid dynamics analysis. Results show feasibility for photobioreactor growth scenarios to be economically sustainable when co-products are included, but definite technological advancements and productivity improvements must be made. The main factors inhibiting a cost effective photobioreactor growth scenario are culture density, temperature, and lighting distribution for solar illuminated photobioreactors, and lighting cost for artificially illuminated photobioreactors. Open pond algal growth scenarios do not show any prospect of economic or environmental sustainability with current technology due to the large amount of surface area required, inefficient water use, and low culture density. All algal growth scenarios are inferior to petro-diesel regarding energy inputs, carbon emissions, and environmental sustainability. No algal growth scenarios analyzed in this study meet the U.S. requirement of biofuel emitting at least 20% less carbon emissions than diesel from crude oil.

  2. TERATOGENICITY OF CYCLOPHOSPHAMIDE IN A COUPLED MICROSOMAL ACTIVATING/EMBRYO CULTURE SYSTEM

    EPA Science Inventory

    Using the coupled microsomal activating/embryo culture system, in vitro experiments were performed to establish the role of metabolism in the embryo toxicity and teratogenicity of cyclophosphamide. Cyclophosphamide in the coupled microsomal activating/embryo culture system produc...

  3. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology.

    PubMed

    Ding, Yi; Wang, Wei; Liu, Xingpo; Song, Xinshan; Wang, Yuhui; Ullman, Jeffrey L

    2016-11-01

    High rate algal pond (HRAP) was combined with constructed wetland (CW) to intensify nitrogen removal through optimizing nitrification and denitrification. Nitrification and denitrification process mainly depends on the oxygen content and carbon source level in CWs. Algal biomass was enriched in HRAP, and dissolved oxygen (DO) concentration was increased via photosynthesis. Algal debris increased COD as degradable bioresource. The results showed that HRAP-CW hybrid systems effectively promoted the nitrogen removal performance due to rich DO and COD. The extension of hydraulic retention time in HRAP significantly improved NH4-N and TN removals by 10.9% and 11.1% in hybrid systems, respectively. The highest NH4-N and TN removals in hybrid systems respectively reached 67.2% and 63.5%, which were significantly higher than those in single CW. The study suggested that the hybrid system had the application potentials in nitrogen removal from wastewater. PMID:27544265

  4. ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1).

    PubMed

    Veraart, Annelies J; Romaní, Anna M; Tornés, Elisabet; Sabater, Sergi

    2008-06-01

    Nutrient input in streams alters the density and species composition of attached algal communities in open systems. However, in forested streams, the light reaching the streambed (rather than the local nutrient levels) may limit the growth of these communities. A nutrient-enrichment experiment in a forested oligotrophic stream was performed to test the hypothesis that nutrient addition has only minor effects on the community composition of attached algae and cyanobacteria under light limitation. Moderate nutrient addition consisted of increasing basal phosphorus (P) concentrations 3-fold and basal nitrogen (N) concentrations 2-fold. Two upstream control reaches were compared to a downstream reach before and after nutrient addition. Nutrients were added continuously to the downstream reach for 1 year. Algal biofilms growing on ceramic tiles were sampled and identified for more than a year before nutrient addition to 12 months after. Diatoms were the most abundant taxonomic group in the three stream reaches. Nutrient enrichment caused significant variations in the composition of the diatom community. While some taxa showed significant decreases (e.g., Achnanthes minutissima, Gomphonema angustum), increases for other taxa (such as Rhoicosphenia abbreviata and Amphora ovalis) were detected in the enriched reach (for taxonomic authors, see Table 2). Epiphytic and adnate taxa of large size were enhanced, particularly during periods of favorable growth conditions (spring). Nutrients also caused a change in the algal chl a, which increased from 0.5-5.8 to 2.1-10.7 μg chl · cm(-2) . Our results indicate that in oligotrophic forested streams, long-term nutrient addition has significant effects on the algal biomass and community composition, which are detectable despite the low light availability caused by the tree canopy. Low light availability moderates but does not detain the long-term tendency toward a nutrient-tolerant community. Furthermore, the effects

  5. Algal photoreceptors: in vivo functions and potential applications.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2014-01-01

    Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems. PMID:24081482

  6. Tissue culture system for infection with human hepatitis delta virus.

    PubMed Central

    Sureau, C; Jacob, J R; Eichberg, J W; Lanford, R E

    1991-01-01

    An in vitro culture system was developed for assaying the infectivity of the human hepatitis delta virus (HDV). Hepatocytes were isolated from chimpanzee liver and grown in a serum-free medium. Cells were shown to be infectible by HDV and to remain susceptible to infection for at least 3 weeks in culture, as evidenced by the appearance of RNA species characteristic of HDV replication as early as 6 days postinfection. When repeated experiments were carried out on cells derived from an animal free of hepatitis B virus (HBV), HDV infection occurred in a consistent fashion but there was no indication of infection with the HBV that was present in the inoculum. Despite numerous attempts with different sources of HBV inocula free of HDV, there was no evidence that indicated susceptibility of these cells to HBV infection. This observation may indicate that HBV and HDV use different modes of entry into hepatocytes. When cells derived from an HBV-infected animal were exposed to HDV, synthesis and release of progeny HDV particles were obtained in addition to HBV replication and production of Dane particles. Although not infectible with HBV, primary cultures of chimpanzee hepatocytes are capable of supporting part of the life cycle of HBV and the entire life cycle of HDV. Images PMID:2041075

  7. Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species.

    PubMed

    Schoeny, R; Cody, T; Warshawsky, D; Radike, M

    1988-02-01

    Polycyclic aromatic hydrocarbons (PAH) known to produce carcinogenic and mutagenic effects have been shown to contaminate waters, sediments and soils. While it is accepted that metabolites of these compounds are responsible for most of their biological effects in mammals, their metabolism, and to a large extent their bioactivity, in aquatic plants have not been explored. Cultures of photosynthetic algal species were assayed for their ability to metabolize benzo[a]pyrene (BaP), a carcinogenic PAH under conditions which either permitted (white light) or disallowed (gold light) photooxidation of the compound. Growth of Selenastrum capricornutum, a fresh-water green alga, was completely inhibited when incubated in white light with 160 micrograms BaP/l medium. By contrast concentrations at the upper limit of BaP solubility in aqueous medium had no effect on algal growth when gold light was used. BaP quinones and phenol derivatives were found to inhibit growth of Selenastrum under white light incubation. BaP phototoxicity and metabolism were observed to be species-specific. All 3 tested species of the order Chlorococcales were growth-inhibited by BaP in white light whereas neither the green alga Chlamydomonas reinhardtii nor a blue-green, a yellow-green or an euglenoid alga responded in this fashion. Assays of radiolabeled BaP metabolism in Selenastrum showed that the majority of radioactivity associated with BaP was found in media as opposed to algal cell pellets, that the extent of metabolism was BaP concentration dependent, and that the proportion of various metabolites detected was a function of the light source. After gold light incubation, BaP diols predominated while after white light treatment at equal BaP concentrations, the 3,6-quinone was found in the highest concentration. Extracted material from algal cell pellets and from media was tested for mutagenicity in a forward mutation suspension assay in Salmonella typhimurium using resistance to 8-azaguanine for

  8. The Cultural Erosion Metaphor and the Transcultural Impact of Media Systems.

    ERIC Educational Resources Information Center

    Varan, Duane

    1998-01-01

    Contributes to scholarship on the transcultural impact of media systems (and draws on media effects, political economy, and cultural studies research) by applying the soil erosion metaphor to transcultural impact of television. Discusses four processes associated with this model: cultural abrasion, cultural deflation, cultural deposition, and…

  9. Optimization of culture conditions for an efficient xeno-feeder free limbal cell culture system towards ocular surface regeneration.

    PubMed

    Varghese, Viji Mary; Prasad, Tilak; Kumary, T V

    2010-10-01

    Ex vivo expansion of limbal stem cells from a small biopsy and its subsequent transplantation is the golden choice of treatment for limbal stem cell deficiency. Use of murine 3T3 feeder layer is a prerequisite for this ex vivo expansion. There is an ever-increasing demand for feeder free cultures to avoid xenotoxicity and transmission of xeno-diseases to human system. This study was aimed to establish an efficient xeno-feeder free limbal culture system towards ocular surface regeneration. To study the effect of initial dispase treatment and culture system used, migratory distance of cells from explants was analyzed from phase contrast images using "interactive measurements" of Qwin software (Leica). Expression of p63 in different culture systems was studied by immunofluorescent staining, followed by quantitative confocal microscopy (Carl Zeiss). Results showed dispase treatment was not necessary for establishing limbal explant culture. A combination of Iscove's modified Dulbecco's medium and Panserin 801 resulted in formation of autofeeder layer with maintenance of progenitor characteristics, thus mimicking natural tissue architecture. Further analysis of this culture system showed that cells could be cultured till confluency. Immunofluorescent staining of ABCG2 revealed presence of stem cell marker in the confluent cell layer. Scanning Electron Micrographs demonstrated homogenous population of tightly packed cells in this culture system. Replacement of bovine serum with autologous serum did not affect morphology or growth of cells in this culture system. This study will be a major step in the development of xeno-feeder free epithelial equivalents towards ocular surface reconstruction. PMID:20196106

  10. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.

    PubMed

    Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P

    2014-09-01

    Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. PMID:24781339

  11. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems

    PubMed Central

    Hartman, Kira G.; Bortner, James D.; Falk, Gary W.; Ginsberg, Gregory G.; Jhala, Nirag; Yu, Jian; Martín, Martín G.; Rustgi, Anil K.; Lynch, John P.

    2014-01-01

    Gastrointestinal (GI) illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammation are a common element of many GI diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett’s esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. PMID:24781339

  12. Discussions About “Synthetic Intelligence" in Dissociated Culture System

    NASA Astrophysics Data System (ADS)

    Kudoh, Suguru N.; Kiyohara, Ai; Taguchi, Takahisa

    The fundamental frameworks for possessing qualia are “embodiment” and the network structures of the relationships between internal modules. We proposed “Anaplastic cognitive agent (ACA)” composed by interactions between sub modules with hierarchical history functions and network structures. A dissociated culture system can discriminate several distinct spatiotemporal patterns of action potentials evoked by current inputs, and possesses kinds of history function; a history properties of network dynamics, synaptic plasticity, and so on. These features are fundamental for parts to compose ACA.

  13. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof

  14. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  15. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  16. LOWER CLARK FORK RIVER SYSTEM - RESULTS OF ALGAL ASSAYS PERFORMED ON WATERS COLLECTED AT STATIONS BELOW MILLTOWN DAM TO BELOW NOXON DAM, 1985

    EPA Science Inventory

    A large amount of public concern has been expressed over the general health of the lower Clark Fork River system, Idaho (17010213). The proposed modification of the existing wastewater discharge permit for the Champion International paper mill at Frenchtown has generated much of...

  17. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  18. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  19. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Algistatic means having the property of inhibiting algal growth. (3) ECx means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion. (4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal...

  20. Culturally Competent School Leaders: The Individual and the System

    ERIC Educational Resources Information Center

    Hansuvadha, Nat; Slater, Charles L.

    2012-01-01

    Cultural competence is the knowledge, behaviors, and dispositions necessary to effectively interact with other cultural groups. Two case studies are presented which illustrate the cultural competence of administrators in urban settings. Theories are reviewed to investigate the themes of cultural competence that emerged from the professional…

  1. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  2. Development of zooplankton culture subsystem for a closed ecological recirculating aquaculture system (CERAS)

    NASA Astrophysics Data System (ADS)

    Omori, Katsunori; Oguchi, Mitsuo; Takeuchi, Toshio

    2006-01-01

    Ten parthenogenetic females of Moina macrocopa were placed in small cells with different flow conditions. The cells were opened after three-days of cultivation, and the water fleas in each cell were counted. It appeared that M. macrocopa were cultured effectively in a relatively slow current, 10 cm/min., but the population growth was not significantly influenced by the difference in flow direction. Subsequent, filtration efficiencies of filters with various pore sizes were compared. Four available porous hollow-fiber membrane modules, ACP-1010, AHP-1010, PSP-103, and PMP-102 (Asahi-Kasei Corp.), were tested. The module with the larger pore size initially filtered a greater amount of water but clogged up sooner. ACP-1010, which has the smallest pores, was considered to be suitable to filter condensed algal water due to its durability and stable filtration. An improved zooplankton culture device (IZCD) was designed and constructed based on these examinations. IZCD is a 13.2L airtight device characterized by a short and thick rearing tank and alternate filtration with paired fine hollow-fiber membrane modules. It must be tested and revised to be used in research into the optimal conditions for a zooplankton culture in a closed environment.

  3. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors.

    PubMed

    Muñoz, Raul; Jacinto, Marco; Guieysse, Benoit; Mattiasson, Bo

    2005-06-01

    When compared with Chlorella vulgaris, Scenedesmus obliquus and Selenastrum capricornutum, C. sorokiniana presented the highest tolerance to acetonitrile and the highest O(2) production capacity. It also supported the fastest acetonitrile biodegradation when mixed with a suitable acetonitrile-degrading bacterial consortium. Consequently, this microalga was tested in symbiosis with the bacterial culture for the continuous biodegradation of acetonitrile at 2 g l(-1) in a stirred tank photobioreactor and in a column photobioreactor under continuous illumination (250 microE m(-2) s(-1)). Acetonitrile removal rates of up to 2.3 g l(-1) day(-1) and 1.9 g l(-1) day(-1) were achieved in the column photobioreactor and the stirred-tank photobioreactor, respectively, when operated at the shortest retention times tested (0.4 days, 0.6 days, respectively). In addition, when the stirred-tank photobioreactor was operated with a retention time of 3.5 days, the microbial culture was capable of assimilating up to 71% and nitrifying up to 12% of the NH(4) (+) theoretically released through the biodegradation of acetonitrile, thus reducing the need for subsequent nitrogen removal. This study suggests that complete removal of N-organics can be combined with a significant removal of nitrogen by using algal-bacterial systems and that further residual biomass digestion could pay-back part of the operation costs of the treatment plant. PMID:15666149

  4. Development of a bovine luteal cell in vitro culture system suitable for co-culture with early embryos.

    PubMed

    Batista, M; Torres, A; Diniz, P; Mateus, L; Lopes-da-Costa, L

    2012-10-01

    The cross talk between the corpus luteum (CL) and the early embryo, potentially relevant to pregnancy establishment, is difficult to evaluate in the in vivo bovine model. In vitro co-culture of bovine luteal cells and early embryos (days 2-8 post in vitro fertilization) may allow the deciphering of this poorly understood cross talk. However, early embryos and somatic cells require different in vitro culture conditions. The objective of this study was to develop a bovine luteal cell in vitro culture system suitable for co-culture with early embryos in order to evaluate their putative steroidogenic and prostanoid interactions. The corpora lutea of the different stages of the estrous cycle (early, mid, and late) were recovered postmortem and enriched luteal cell populations were obtained. In experiments 1 and 2, the effects of CL stage, culture medium (TCM, DMEM-F12, or SOF), serum concentration (5 or 10%), atmosphere oxygen tension (5 or 20%), and refreshment of the medium on the ability of luteal cells to produce progesterone (P(4)) were evaluated. The production of P(4) was significantly increased in early CL cultures, and luteal cells adapted well to simple media (SOF), low serum concentrations (5%), and oxygen tensions (5%). In experiment 3, previous luteal cell cryopreservation did not affect the production of P(4), PGF(2α), and PGE(2) compared to fresh cell cultures. This enables the use of pools of frozen-thawed cells to decrease the variation in cell function associated with primary cell cultures. In experiment 4, mineral oil overlaying culture wells resulted in a 50-fold decrease of the P(4) quantified in the medium, but had no effect on PGF(2α) and PGE(2) quantification. In conclusion, a luteal cell in vitro culture system suitable for the 5-d-long co-culture with early embryos was developed. PMID:23054443

  5. AL HARMFUL ALGAL BLOOM (HAB) INFORMATION EXCHANGE

    EPA Science Inventory

    This project proposes to implement an integrated web site that will serve as an Alabama Harmful Algal Bloom (HAB) Information Exchange Network. This network will be a stand-alone site where HAB data from all agencies and research efforts in the State of Alabama will be integrate...

  6. Lean management systems: creating a culture of continuous quality improvement.

    PubMed

    Clark, David M; Silvester, Kate; Knowles, Simon

    2013-08-01

    This is the first in a series of articles describing the application of Lean management systems to Laboratory Medicine. Lean is the term used to describe a principle-based continuous quality improvement (CQI) management system based on the Toyota production system (TPS) that has been evolving for over 70 years. Its origins go back much further and are heavily influenced by the work of W Edwards Deming and the scientific method that forms the basis of most quality management systems. Lean has two fundamental elements--a systematic approach to process improvement by removing waste in order to maximise value for the end-user of the service and a commitment to respect, challenge and develop the people who work within the service to create a culture of continuous improvement. Lean principles have been applied to a growing number of Healthcare systems throughout the world to improve the quality and cost-effectiveness of services for patients and a number of laboratories from all the pathology disciplines have used Lean to shorten turnaround times, improve quality (reduce errors) and improve productivity. Increasingly, models used to plan and implement large scale change in healthcare systems, including the National Health Service (NHS) change model, have evidence-based improvement methodologies (such as Lean CQI) as a core component. Consequently, a working knowledge of improvement methodology will be a core skill for Pathologists involved in leadership and management. PMID:23757036

  7. A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle.

    PubMed

    van der Steen, Peter; Rahsilawati, Kuntarini; Rada-Ariza, Angélica M; Lopez-Vazquez, Carlos M; Lens, Piet N L

    2015-01-01

    Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 μmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater. PMID:26204077

  8. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions. PMID:21977667

  9. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  10. The Relationship between National Culture and the Usability of an E-Learning System

    ERIC Educational Resources Information Center

    Downey, Steve; Wentling, Rose Mary; Wentling, Tim; Wadsworth, Andrew

    2004-01-01

    This study sought to measure the relationship between national culture and the usability of an e-Learning system by using Hofstede's cultural dimensions and Nielson's usability attributes. The study revealed that high uncertainty avoidance cultures found the system more frustrating to use. The study also revealed that individuals from cultures…

  11. Energy-efficient photobioreactor configuration for algal biomass production.

    PubMed

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs. PMID:23079413

  12. Characterization of nucleoside transport systems in cultured rat epididymal epithelium.

    PubMed

    Leung, G P; Ward, J L; Wong, P Y; Tse, C M

    2001-05-01

    The nucleoside transport systems in cultured epididymal epithelium were characterized and found to be similar between the proximal (caput and corpus) and distal (cauda) regions of the epididymis. Functional studies revealed that 70% of the total nucleoside uptake was Na(+) dependent, while 30% was Na(+) independent. The Na(+)-independent nucleoside transport was mediated by both the equilibrative nitrobenzylthioinosine (NBMPR)-sensitive system (40%) and the NBMPR-insensitive system (60%), which was supported by a biphasic dose response to NBMPR inhibition. The Na(+)-dependent [(3)H]uridine uptake was selectively inhibited 80% by purine nucleosides, indicating that the purine nucleoside-selective N1 system is predominant. Since Na(+)-dependent [(3)H]guanosine uptake was inhibited by thymidine by 20% and Na(+)-dependent [(3)H]thymidine uptake was broadly inhibited by purine and pyrimidine nucleosides, this suggested the presence of the broadly selective N3 system accounting for 20% of Na(+)-dependent nucleoside uptake. Results of RT-PCR confirmed the presence of mRNA for equilibrative nucleoside transporter (ENT) 1, ENT2, and concentrative nucleoside transporter (CNT) 2 and the absence of CNT1. It is suggested that the nucleoside transporters in epididymis may be important for sperm maturation by regulating the extracellular concentration of adenosine in epididymal plasma. PMID:11287319

  13. Sedimentation of an upper Pennsylvanian phylloid algal mound complex, Hueco Mountains, El Paso County, TX

    SciTech Connect

    Pol, J.C.

    1984-04-01

    A Late Pennsylvanian mixed carbonate-clastic sequence is exposed in the Hueco Mountains of west Texas. The sequence begins with deposition of a progradational fan-delta system and marine and tidal-flat carbonates. This unit is dominated by calclithite and shale with minor interbeds of shallow-water calcareous mudstone and wackestone. Shallow-water spiculites are commonly associated with these limestones. A thick carbonate unit composed predominantly of limestone overlies the clastics; it was deposited during or just after a major local transgression. The carbonate sediments were deposited on the submerged delta platform in the following sequence: (1) colonization of the shallow platform by rugose corals and early (or syndepositional) cementation of the zone; (2) establishment of shallow-water dasycladacean algal flats; (3) increasing domination of the environment by phylloid algae in response to increasing water depth; (4) accretion of phylloid algal sediments and formation of mounds (directly overlying the dasycladacean algal flats are a number of small mounds formed by accelerated sedimentation within phylloids algal meadows. The high productivity of the phylloid algae and their sediment-trapping ability allowed sedimentation to keep up with sea level rise. Large bioherms resulted, but because of the difference in accretion rates of various mounds, some grew while others were buried by more successful neighbors); and (5) reestablishment of shallow-water dasycladacean algal flats as a result of shoaling of mounds crests and subsequent increase sedimentation in deeper, quieter water on the lee side of the mound complex.

  14. Biochemical Study of Mixed Culture Prototype in a Closed Ecological System

    NASA Technical Reports Server (NTRS)

    Tischer, R. G.

    1960-01-01

    Since June 1, 1960, the date of initiation of this research project, efforts have been directed toward studying cultural and fermentation patterns and the methodology of pure culture isolation of prototype microorganisms to be employed in closed ecological systems.

  15. A Neuronal Culture System to Detect Prion Synaptotoxicity

    PubMed Central

    Fang, Cheng; Imberdis, Thibaut; Garza, Maria Carmen; Wille, Holger; Harris, David A.

    2016-01-01

    Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents. PMID:27227882

  16. Fish Growth in Marine Culture Systems: A Challenge for Biotechnology.

    PubMed

    Lyndon

    1999-07-01

    : Aquaculture production is constrained largely by the growth efficiency of the species being produced. Nutritional approaches have played an important part in improving this situation, but, it is argued, the room for further improvement using such established techniques is limited. Alternative ways of improving fish production by utilizing recent biotechnological advances are explored and assessed as to their potential for commercialization in the near future. Transgenic technologies promise a revolution in aquaculture, but it is considered that consumer resistance may delay the use of transgenic fish for food production. An alternative approach could be the breeding of transgenic fodder plants without the amino acid deficiencies of existing alternatives to fish meal in aquaculture diets. The use of probiotics could reduce antibiotic use on fish farms while they might also provide the basis for "smart" diets, tailored to specific purposes by the inclusion of microorganisms. The selection and genetic engineering of nitrifying and denitrifying bacteria could also pave the way for fully enclosed, recirculating marine culture systems, which would allow control of the environmental variables that currently restrain marine fish culture. PMID:10489415

  17. A Neuronal Culture System to Detect Prion Synaptotoxicity.

    PubMed

    Fang, Cheng; Imberdis, Thibaut; Garza, Maria Carmen; Wille, Holger; Harris, David A

    2016-05-01

    Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents. PMID:27227882

  18. Arsenoriboside degradation in marine systems: the use of bacteria culture incubation experiments as model systems.

    PubMed

    Duncan, Elliott G; Maher, William A; Foster, Simon D; Mikac, Katarina M; Krikowa, Frank; Florance, Anthea

    2014-01-01

    Arsenoribosides (as glycerol; phosphate; sulfate and sulfonate) persisted in all bacteria-inoculated cultures irrespective of the source of bacteria (seawater, macro-algae surface) or the culture media used (DIFCO Marine Broth 2216 or novel blended Hormosira banksii tissue-based). This is unlike observations from traditional macro-algae tissue decomposition studies or in nature. In addition known arsenoriboside degradation products such as dimethylarsenoethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) and arsenate - As(V) were not detected in any cultures. Consequently, the use of bacterial culture incubation experiments to explain the fate of arsenoribosides in marine systems appears limited as the processes governing arsenoriboside degradation in these experiments appear to be different to those in macro-algae tissue decomposition studies or in nature. PMID:24025537

  19. Mobile system for in-situ imaging of cultural objects

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Jakubek, J.; Krejci, F.; Hradil, D.; Hradilova, J.; Mislerova, H.

    2012-01-01

    Non-invasive analytical techniques recently developed with the Timepix pixel detector have shown great potential for the inspection of objects of cultural heritage. We have developed new instrumentation and methodology for in-situ X-ray transmission radiography and X-ray fluorescence imaging and successfully tested and evaluated a mobile system for remote terrain tasks. The prototype portable imaging device comprises the radiation source tube and the spectral sensitive X-ray camera. Both components can be moreover mounted on independent motorized positioning systems allowing adaptation of irradiation geometry to the object shape. Both parts are placed onto a pair of universal portable holders (tripods). The detector is placed in a shielded box with exchangeable entrance window (beam filters and pinhole collimator). This adjustable setup allows performing in-situ measurements for both transmission and emission (XRF) radiography. The assembled system has been successfully tested in our laboratory with phantoms and real samples. The obtained and evaluated results are presented in this paper. Future work will include successive adaptation of the current system for real in-situ utilization and preparation of software allowing semi-automatic remote control of measurements.

  20. Organotypic slice co-culture systems to study axon regeneration in the dopaminergic system ex vivo.

    PubMed

    Heine, Claudia; Franke, Heike

    2014-01-01

    Organotypic slice co-cultures are suitable tools to study axonal regeneration and development (growth or regrowth) of different projection systems of the CNS under ex vivo conditions.In this chapter, we describe in detail the reconstruction of the mesocortical and nigrostriatal dopaminergic projection system culturing tissue slices from the ventral tegmental area/substantia nigra (VTA/SN) with the prefrontal cortex (PFC) or the striatum (STR). The protocol includes the detailed slice preparation and incubation. Moreover, different application possibilities of the ex vivo model are mentioned; as an example, the substance treatment procedure and biocytin tracing are described to reveal the effect of applied substances on fiber outgrowth. PMID:24838961

  1. Cultural Eutrophication of Crawford Lake, Ontario: Effects of Disturbance Upon a Pristine and Pre-modified System

    NASA Astrophysics Data System (ADS)

    Ekdahl, E. J.; Teranes, J. L.; Stoermer, E. F.

    2004-05-01

    Lake eutrophication, a condition where human activities increase nutrient input rates to aquatic ecosystems, thereby stimulating blooms of algae, is a major global water quality problem. Yet, the prehistoric dimension of eutrophication remains relatively undescribed, in part due to limitations in the temporal resolution of paleoenvironmental archives and, perhaps, equally influenced by the preconception (especially in North America) that population density and agricultural practices of native inhabitants would not be large enough to significantly impact local ecology. Here we present fossil diatom assemblages, organic and inorganic carbon accumulations, C/N ratios and calcite δ 13C values from a 1000-year sediment core recovered from Crawford Lake, Ontario, Canada that describe cultural disturbance and eutrophication related to Iroquoian settlement of the watershed in the 13th century and to Canadian logging and agriculture in the 19th century. Geochemical and biological data show increased nutrient availability and productivity associated with first evidence for human activity in the watershed at 1268 AD. Sediment accumulation rates of organic and inorganic carbon increase, and higher C/N ratios indicate export was caused by higher rates of algal productivity. A increase in calcite δ 13C values show a dissolved inorganic carbon (DIC) pool increasingly enriched in 13C, as 12C is increasingly utilized by primary producers. Diatom assemblages change from a meso-oligotrophic flora to an assemblage dominated by species indicative of nutrient-rich waters within just a few years. Following abandonment of the Crawford Lake watershed by 1486 AD geochemical proxies record a gradual decrease in productivity, related to decreased nutrient loading. Diatoms, however, remain in a meso-eutrophic assemblage. A second period of cultural disturbance, related to Canadians with plow agriculture and deforestation, begins in 1867 AD. Primary productivity is again elevated, yet the

  2. Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices.

    PubMed

    Brito, Ivina R; Lima, Isadora M T; Xu, Min; Shea, Lonnie D; Woodruff, Teresa K; Figueiredo, José R

    2014-08-01

    The in vitro culture of ovarian follicles has provided critical insight into the biology of the follicle and its enclosed oocyte and the physical interaction and communication between the theca and granulosa cells and the oocyte that is necessary to produce meiotically competent oocytes. Various two-dimensional (2D) and three-dimensional (3D) culture systems have been developed to evaluate the effect of growth factors, hormones, extracellular matrix components and culture conditions on follicle development and oocyte growth and maturation. Among these culture systems, 3D systems make it possible to maintain follicle structure and support communication between the various cell compartments within the follicle. In this review article, we will discuss the three main approaches to ovarian follicle culture: 2D attachment systems, 3D floating systems and 3D encapsulated systems. We will specifically emphasise the development of and advances in alginate-based encapsulated systems for in vitro follicle culture. PMID:23866836

  3. The Hawaiian Freshwater Algal Database (HfwADB): a laboratory LIMS and online biodiversity resource

    PubMed Central

    2012-01-01

    Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS). The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”), the first five of which correspond to the collection site (“Environmental Accession”). Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations) and download images of collection sites, specimen photographs and

  4. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  5. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  6. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  7. Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage.

    PubMed

    Awuah, Esi; Oppong-Peprah, M; Lubberding, H J; Gijzen, H J

    A bench-scale continuous-flow wastewater treatment system comprising three parallel lines using duckweed (Spirodela polyrhiza), water lettuce (Pistia stratiotes), and algae (natural colonization) as treatment agents was set up to determine environmental conditions, fecal coliform profiles and general treatment performance. Each line consisted of four ponds connected in series fed by diluted sewage. Influent and effluent parameters measured included environmental conditions, turbidity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, nitrite, ammonia, total phosphorus, fecal coliforms, mosquito larvae, and sludge accumulations. Environmental conditions and fecal coliforms profiles were determined in the sediments (0.63 m), suspensions (0.35 m), and surfaces (0.1 m) of each pond. Acidic conditions were observed in the pistia ponds, neutral conditions in duckweed ponds, and alkaline conditions in algal ponds. Fecal coliforms log removals of 6, 4, and 3 were observed in algal, duckweed, and pistia ponds, respectively, in the final effluents, with die-off rates per pond of 2.7, 2.0, and 1.6. Sedimentation accounted for over 99% fecal coliform removal in most of the algal and pistia ponds. BOD removal was highest in the duckweed system, followed by pistia and algae at 95%, 93%, and 25%, respectively. COD removals were 65% and 59%, respectively, for duckweed and pistia, while COD increased in algal ponds by 56%. Nitrate removals were 72%, 70%, and 36%, respectively for duckweed, pistia, and algal ponds. Total phosphorus removals were 33% and 9% for pistia and duckweed systems, while an increase of 19% was observed in the algal treatment system. Ammonia removals were 95% in both pistia and duckweed and 93% in algal systems. Removals of total dissolved solids (TDS) were 70% for pistia, 15% for duckweed, and 9% for algae. Mosquito populations of 11,175/m(2), 3516/m(2), and 96/m(2) were counted in pistia, algal, and duckweed ponds, respectively. Low

  8. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  9. A Photosynthesis Lab. Response of Algal Suspensions to a Gradient of Photosynthetically Active Radiation (PAR).

    ERIC Educational Resources Information Center

    Zee, Delmar Vander

    1995-01-01

    This photosynthesis exercise is intended for introductory college biology or botany courses. It is based on the principle that a closed suspension of algal cells may be expected to produce more dissolved oxygen with a greater photon fluence rate, but within limits of the photosynthetic capacity of the system. Describes materials and methods. (LZ)

  10. Phylogenetic Analysis of Algal Symbionts Associated with Four North American Amphibian Egg Masses

    PubMed Central

    Kim, Eunsoo; Lin, Yuan; Kerney, Ryan; Blumenberg, Lili; Bishop, Cory

    2014-01-01

    Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga “Oophila amblystomatis” (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the ‘Oophila’ clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae. PMID:25393119

  11. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.

    PubMed

    Kim, Eunsoo; Lin, Yuan; Kerney, Ryan; Blumenberg, Lili; Bishop, Cory

    2014-01-01

    Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae. PMID:25393119

  12. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  13. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations. PMID:25300549

  14. Detection of toxic organometallic complexes in wastewaters using algal assays.

    PubMed

    Wong, S L; Nakamoto, L; Wainwright, J F

    1997-05-01

    Chlorella (a unicellular green alga) and Cladophora (a filamentous alga) were used in algal assays to identify the presence and toxicity of organometallic complexes in four industrial wastewaters. Toxicities of inorganic Pb and organometallic compounds (trimethyl, tetramethyl and tetraethyl leads, cacodylic acid and Cu-picolinate) were examined, using algal cells grown in 10% BBM solution. Inorganic Pb and organometallic compounds altered the fine structure of Chlorella cells in a distinguishable manner. X-ray microanalysis revealed that organometallic compounds accumulated in the neutral lipids of Cladophora cells. By applying the above techniques to the wastewater assays, two of the four wastewaters tested were found to contain organometallic complexes. Wastewater from a chemical company contained only traces of organo-Cu, but one mining effluent contained significant quantities of organo-Cu and organo-Pb, and traces of organo-Cr and organo-Tl (thallium). These studies suggest that X-ray microanalysis of algae may be a useful tool in identifying aquatic systems contaminated with metals and organometallic compounds. PMID:9175500

  15. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  16. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research

    PubMed Central

    Stover, Alexander E.; Herculian, Siranush; Banuelos, Maria G.; Navarro, Samantha L.; Jenkins, Michael P.; Schwartz, Philip H.

    2016-01-01

    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  17. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research.

    PubMed

    Stover, Alexander E; Herculian, Siranush; Banuelos, Maria G; Navarro, Samantha L; Jenkins, Michael P; Schwartz, Philip H

    2016-01-01

    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  18. Algal-based, single-step treatment of urban wastewaters.

    PubMed

    Henkanatte-Gedera, S M; Selvaratnam, T; Caskan, N; Nirmalakhandan, N; Van Voorhies, W; Lammers, Peter J

    2015-08-01

    Currently, urban wastewaters (UWW) laden with organic carbon (BOD) and nutrients (ammoniacal nitrogen, N, and phosphates, P) are treated in multi-stage, energy-intensive process trains to meet the mandated discharge standards. This study presents a single-step process based on mixotrophic metabolism for simultaneous removal of carbon and nutrients from UWWs. The proposed system is designed specifically for hot, arid environments utilizing an acidophilic, thermotolerant algal species, Galdieria sulphuraria, and an enclosed photobioreactor to limit evaporation. Removal rates of BOD, N, and P recorded in this study (14.93, 7.23, and 1.38 mg L(-1) d(-1), respectively) are comparable to literature reports. These results confirm that the mixotrophic system can reduce the energy costs associated with oxygen supply in current UWW treatment systems, and has the potential to generate more energy-rich biomass for net energy extraction from UWW. PMID:25898089

  19. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro.

    PubMed

    Zhao, Shuan; Liu, Zhen-Xing; Gao, Hui; Wu, Yi; Fang, Yuan; Wu, Shuai-Shuai; Li, Ming-Jie; Bai, Jia-Hua; Liu, Yan; Evans, Alexander; Zeng, Shen-Ming

    2015-07-15

    No successful method exists to maintain the three-dimensional architecture of hatched embryos in vitro. Alginate, a linear polysaccharide derived from brown algae, has characteristics that make it an ideal material as a three-dimensional (3D) extracellular matrix for in vitro cell, tissue, or embryo culture. In this study, alginate hydrogel was used for IVC of posthatched bovine embryos to observe their development under the 3D system. In vitro-fertilized and parthenogenetically activated posthatched bovine blastocysts were cultured in an alginate encapsulation culture system (AECS), an alginate overlay culture system (AOCS), or control culture system. After 18 days of culture, the survival rate of embryos cultured in AECS was higher than that in the control group (P < 0.05), and the embryos were expanded and elongated in AECS with the maximal length of 1.125 mm. When the AECS shrinking embryos were taken out of the alginate beads on Day 18 and cultured in the normal culture system, 9.09% of them attached to the bottoms of the plastic wells and grew rapidly, with the largest area of an attached embryo being 66.00 mm(2) on Day 32. The embryos cultured in AOCS developed monovesicular or multivesicular morphologies. Total cell number of the embryos cultured in AECS on Day 19 was significantly higher than that of embryos on Day 8. Additionally, AECS and AOCS supported differentiation of the embryonic cells. Binuclear cells were visible in Day-26 adherent embryos, and the messenger RNA expression patterns of Cdx2 and Oct4 in AOCS-cultured embryos were similar to those in vivo embryos, whereas IFNT and ISG15 messenger RNA were still expressed in Day-26 and Day-32 prolong-cultured embryos. In conclusion, AECS and AOCS did support cell proliferation, elongation, and differentiation of hatched bovine embryos during prolonged IVC. The culture system will be useful to further investigate the molecular mechanisms controlling ruminant embryo elongation and implantation. PMID

  20. Nutrient removal using algal-bacterial mixed culture.

    PubMed

    Ashok, Vaishali; Shriwastav, Amritanshu; Bose, Purnendu

    2014-12-01

    Simultaneous nitrate (N), phosphate (P), and COD removal was investigated in photobioreactors containing both algae and bacteria. The reactors were operated in the semi-batch mode with a hydraulic retention time of 2 days. Reactors were operated in two phases, (1) with 33 % biomass recycle and (2) with no biomass recycle. In both phases, more than 90 % of N and P and 80 % of COD present in synthetic wastewaters with initial N and P concentrations of up to 110 and 25 mg/L, respectively, and initial COD of 45 mg/L could be removed. Biomass growth in reactors did not increase with the increase in initial N and P concentration in either phase. However, biomass growth was slightly more in reactors operated with no biomass recycle. In both phases, N and P uptake was greater in reactors with greater initial N and P concentrations. Also in all cases, N and P uptake in the reactors was far in excess of the stoichiometric requirements for the observed biomass growth. This "luxury uptake" of nitrogen and phosphorus by biomass was responsible for excellent nitrogen and phosphorus removal as observed. However, based on the results of this study, no advantage of biomass recycling could be demonstrated. PMID:25293638

  1. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed. PMID:18465872

  2. Multispectral light metering system for cultural heritage diagnosis and conservation

    NASA Astrophysics Data System (ADS)

    Miccoli, Matteo; Melis, Marcello

    2013-05-01

    In the world of Cultural Heritage the first concern is all about Conservation of the works of art. A piece of art in bad shape is meant to deteriorate to an irreversible stage. To avoid this, quite often it's needed to go through one or more cycles of restoration to clean and consolidate the various elements of the piece. The very second concern, once the work of art is restored and in good and stable shape, is its fruition. At the end of the day why one should do all that restoration work if nobody then can access and view? Yet viewing and enjoying an artwork means that a visitor would be able to see it at its best, and this means, almost always, to have a good lighting system. Today, both restoration and fruition can greatly benefit of all the available technologies, and achieve very high level quality. The goal of this paper is the development of an exposimetric system suitable to be extremely useful as a tool for the the non invasive analysis, as well as for the lighting design and lighting systems monitoring. Many diagnosis techniques that are used before the restoration stage, require a suitable lighting system to allow to extract from the painting the maximum amount of information through the acquisition of images in the range of visible as well as UV and IR light. A standard exposimeter is for its own nature, sensitive only to the visible light, constrained by the standard photometric sensitivity curve V(lambda). A wide band exposimeter would be, on the other hand, an invaluable tool to get higher precision and to speed up multispectral wide band images acquisition, avoiding time wasting fail and try cycles to record the subject under wide spectrum conditions. The same equipment can be used to monitor the quality of the light in a expo lighting system at, for example, a museum or a gallery. The light hitting a piece of art has to allow the visitor to see and appreciate all the color shades, and to appreciate the contrast of dark and bright areas due only to

  3. No-observed-effect concentrations in batch and continuous algal toxicity tests

    SciTech Connect

    Chao, M.R.; Chen, C.Y.

    2000-06-01

    In this study, the authors compare the no-observed-effect concentrations (NOECs) of Cd, Ni, Zn, Cu, and Pb based on different response parameters, using batch and continuous algal toxicity tests. For both batch and continuous tests, parameters based on total cell volume (TCV) were found to be less sensitive than those related to cell densities. The above observation mainly occurred because, under the stresses from metal toxicants evaluated in this and a previous study, the mean cell volume (MCV) of algae increased considerably. The increase of MCV compensates for the effects brought about by the reduction in cell density and eventually results in less variation in TCVs. This study shows that parameters based on cell density are quite sensitive and ideal for the estimation of NOECs. In addition, comparison of the NOEC values derived from different culture techniques shows that the continuous methods generally yields lower NOEC values than that obtained by the batch tests. The results of this study also indicate that the NOEC provides more protection to the test organism than the effective concentration at 10% growth reduction (EC10). For toxicity test methods that produce small variations among replicates, the NOEC is still a good indicator of low toxic effect. Furthermore, for the continuous algal toxicity test, a relatively simple approach is proposed to determine the NOEC values based on the algal culture's control charts. The proposed method produced identical results as those based on conventional hypothesis-testing methods.

  4. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance

    PubMed Central

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C.

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  5. Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance.

    PubMed

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  6. Disk Diffusion Assay to Assess the Antimicrobial Activity of Marine Algal Extracts.

    PubMed

    Desbois, Andrew P; Smith, Valerie J

    2015-01-01

    Marine algae are a relatively untapped source of bioactive natural products, including those with antimicrobial activities. The ability to assess the antimicrobial activity of cell extracts derived from algal cultures is vital to identifying species that may produce useful novel antibiotics. One assay that is used widely for this purpose is the disk diffusion assay due to its simplicity, rapidity, and low cost. Moreover, this assay gives output data that are easy to interpret and can be used to screen many samples at once irrespective of the solvent used during preparation. In this chapter, a step-by-step protocol for performing a disk diffusion assay is described. The assay is particularly well suited to testing algal cell extracts and fractions resulting from separation through bioassay-guided approaches. PMID:26108520

  7. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  8. Development of a simple means for predicting algal blooms

    SciTech Connect

    Litten, S.; Effler, S.W.; Meyer, M.

    1980-09-01

    A simple technique to predict the future occurrence of algal blooms was evaluated for seven test lake systems proximate to Syracuse, NY during the summer of 1978 and 1979. The selected test systems represent a broad range of trophic status, from mesotrophic to hypereutrophic. The technique includes a simple filtering process followed by the identification of the color imparted to the filter, based on comparison to National Bureau of Standards' color chips. The reference measure of phytoplankton standing crop was chlorophyll-a. Particular colors of filtered particulates were not demonstrated to be useful estimators of chlorophyll-a concentration, though the hues olive and yellow-green were associated with higher chlorophyll-a levels. The particulate color method was demonstrated to be useful in following certain physical/chemical changes in a lake.

  9. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  10. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply.

    PubMed

    Abdelaziz, Ahmed E M; Leite, Gustavo B; Hallenbeck, Patrick C

    2013-01-01

    Microalgae hold promise for the production of sustainable replacement of fossil fuels due to their high growth rates, ability to grow on non-arable land and their high content, under the proper conditions, of high energy compounds that can be relatively easily chemically converted to fuels using existing technology. However, projected large-scale algal production raises a number of sustainability concerns concerning land use, net energy return, water use and nutrient supply. The state-of-the-art of algal production of biofuels is presented with emphasis on some possible avenues to provide answers to the sustainability questions that have been raised. Here, issues concerning algal strains and supply of nutrients for large-scale production are discussed. Since sustainability concerns necessitate the use of wastewaters for supply of bulk nutrients, emphasis is placed on the composition and suitability of different wastewater streams. At the same time, algal cultivation has proven useful in waste treatment processes, and thus this aspect is also treated in some detail. PMID:24350435

  11. A model for culturally adapting a learning system.

    PubMed

    Del Rosario, M L

    1975-12-01

    The Cross-Cultural Adaption Model (XCAM) is designed to help identify cultural values contained in the text, narration, or visual components of a learning instrument and enables the adapter to evaluate his adapted model so that he can modify or revise it, and allows him to assess the modified version by actually measuring the amount of cultural conflict still present in it. Such a model would permit world-wide adaption of learning materials in population regulation. A random sample of the target group is selected. The adapter develops a measurin g instrument, the cross-cultural adaption scale (XCA), a number of statements about the cultural affinity of the object evaluated. The pretest portion of the sample tests the clarity and understandability of the rating scale to be used for evaluating the instructional materials; the pilot group analyzes the original version of the instructional mater ials, determines the criteria for change, and analyzes the adapted version in terms of these criteria; the control group is administered the original version of the learning materials; and the experimental group is administered the adapted version. Finally, the responses obtained from the XRA rating scale and discussions of both the experimental and control groups are studied and group differences are ev aluated according to cultural conflicts met with each version. With this data, the preferred combination of elements is constructed. PMID:12307758

  12. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia.

    PubMed

    Tan, Xiao-Bo; Zhang, Ya-Lei; Yang, Li-Bin; Chu, Hua-Qiang; Guo, Jun

    2016-01-01

    A freshwater algae Chlorella pyrenoidosa was cultured outdoors using anaerobically digested activated sludge effluent. The effects of pH variations were evaluated. The coupled pH variations and free ammonia toxicity significantly affected the algal growth, lipids accumulation and contamination control during every season. The free ammonia toxicity at high pH levels actually inhibited the algal growth. Compared to an optimal algal growth at a pH of 5.7-6.5, biomass productivity at a high pH of 8.3-8.8 was reduced by 67.15±6.98%, 54.39±6.42% and 83.63±5.71% in the spring, fall and summer, respectively. When the pH rose above 9.1-9.6, algae were unable to grow in the wastewater. However, high pH levels reduced contamination (e.g., bacteria and microalgae grazers) and triggered lipids accumulation in algal cells. These findings suggest that pH control strategies are essential for this type of algal wastewater system, where ammonia is the dominant nitrogen source. PMID:26547810

  13. RAT TRACHEAL CELL CULTURE TRANSFORMATION SYSTEM FOR ASSESSMENT OF ENVIRONMENTAL AGENTS AS CARCINOGENS AND PROMOTERS

    EPA Science Inventory

    A tracheal cell culture system which can be used for detection of hazardous environmental agents is described. The culture system makes use of primary tracheal cells that are isolated from rats by protease digestion of the tracheal epithelium. The epithelial cells are plated on a...

  14. Revisiting the Role of Cultural Capital in East Asian Educational Systems: The Case of South Korea

    ERIC Educational Resources Information Center

    Byun, Soo-yong; Schofer, Evan; Kim, Kyung-keun

    2012-01-01

    The concept of cultural capital has proved invaluable in understanding educational systems in Western countries, and recent work seeks to extend those insights to the diverse educational systems of other geographic regions. Using data from the 2000 Programme for International Student Assessment, the authors explored cultural capital in South Korea…

  15. Adult Educators and Cultural Competence within Health Care Systems: Change at the Individual and Structural Levels

    ERIC Educational Resources Information Center

    Ziegahn, Linda; Ton, Hendry

    2011-01-01

    Goals of cultural competence are commonly described as creation of a health care system and workforce capable of delivering high-quality care to all patients regardless of race, ethnicity, culture, or language. While this "system" is made up of individuals, it also has a life of its own, as with all institutions. In this chapter, the authors…

  16. Nitric oxide delivery system for cell culture studies.

    PubMed

    Wang, Chen; Deen, William M

    2003-01-01

    To investigate the toxicity and mutagenicity of NO, methods are needed to deliver it to cell cultures at known, constant rates. To permit continuous exposures over lengthy periods, we fabricated a simple apparatus utilizing gas-permeable polydimethylsiloxane (Silastic) tubing to supply both NO and O2 to a stirred, cylindrical vessel. Mass transfer in this system was characterized by measuring the delivery rates of NO or O2 alone, and of NO to air-saturated solutions. The concentrations of NO, O2, and NO2- (the end product of NO oxidation) were monitored continuously. The total flux of nitrogen species into the liquid (as determined from the sum of NO and NO2- accumulation) was 50%-90% greater in the presence of O2, depending on the NO partial pressure in the gas. Also, the simultaneously measured mass transfer coefficients for NO and O2 differed greatly from the corresponding unreactive values. An analysis of the data using diffusion-reaction models showed that NO oxidation in the aqueous boundary layer contributed very little to the nitrogen flux increase or to variations in the mass transfer coefficients. However, the unusually strong dependence of the delivery rates on chemical reactions could be explained by postulating that partial oxidation of NO to NO2 occurred within the membrane. The rate constant we estimated for polydimethylsiloxane, 4.4 x 10(5) M-2 s(-1) at 23 degrees C, is only about one-fifth of values reported previously for water and nonpolar solvents, but the high solubilities of NO and O2 in the polymer are sufficient to make NO2 formation significant. Although considerable NO2 is calculated to enter the liquid, its reaction with aqueous NO is rapid enough to keep this undesired compound at trace levels, except within a few microns of the tubing. Thus, cells will have little exposure to NO2 PMID:12572657

  17. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  18. A novel culture system for adult porcine intestinal crypts.

    PubMed

    Khalil, Hassan A; Lei, Nan Ye; Brinkley, Garrett; Scott, Andrew; Wang, Jiafang; Kar, Upendra K; Jabaji, Ziyad B; Lewis, Michael; Martín, Martín G; Dunn, James C Y; Stelzner, Matthias G

    2016-07-01

    Porcine models are useful for investigating therapeutic approaches to short bowel syndrome and potentially to intestinal stem cell (ISC) transplantation. Whereas techniques for the culture and genetic manipulation of ISCs from mice and humans are well established, similar methods for porcine stem cells have not been reported. Jejunal crypts were isolated from murine, human, and juvenile and adult porcine small intestine, suspended in Matrigel, and co-cultured with syngeneic intestinal subepithelial myofibroblasts (ISEMFs) or cultured without feeder cells in various culture media. Media containing epidermal growth factor, noggin, and R-spondin 1 (ENR medium) were supplemented with various combinations of Wnt3a- or ISEMF-conditioned medium (CM) and with glycogen synthase kinase 3 inhibitor (GSK3i), and their effects were studied on cultured crypts. Cell lineage differentiation was assessed by immunohistochemistry and quantitative polymerase chain reaction. Cultured porcine cells were serially passaged and transduced with a lentiviral vector. Whereas ENR medium supported murine enteroid growth, it did not sustain porcine crypts beyond 5 days. Supplementation of Wnt3a-CM and GSK3i resulted in the formation of complex porcine enteroids with budding extensions. These enteroids contained a mixture of stem and differentiated cells and were successfully passaged in the presence of GSK3i. Crypts grown in media supplemented with porcine ISEMF-CM formed spheroids that were less well differentiated than enteroids. Enteroids and spheroids were transfected with a lentivirus with high efficiency. Thus, our method maintains juvenile and adult porcine crypt cells long-term in culture. Porcine enteroids and spheroids can be successfully passaged and transduced by using lentiviral vectors. PMID:26928041

  19. Establishment of banking system for allogeneic cultured dermal substitute.

    PubMed

    Kuroyanagi, Yoshimitsu; Kubo, Kentaro; Matsui, Hiromich; Kim, Hyun Jung; Numari, Shinichiro; Mabuchi, Yho; Kagawa, Shizuko

    2004-01-01

    Allogeneic cultured dermal substitute (CDS) was prepared by culturing fibroblasts on a two-layered spongy matrix of hyaluronic acid (HA) and atelo-collagen (Col). Allogeneic CDS can be cryopreserved and transported to other hospitals in a frozen state. Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), platelet derived growth factor (PDGF)-AA, transforming growth factor (TGF)-beta1, keratinocytes growth factor (KGF), interleukin (IL)-6 and IL-8 were contained in the culture medium which was used in preparing CDS over a cultivation period of one week (fresh CDS culture medium sample). After thawing a cryopreserved CDS, the CDS was recultured in a culture medium for one week. VEGF, bFGF, HGF, TGF-beta1 and IL-8 were contained in the culture medium which was used in reculturing CDS for one week (cryopreserved CDS culture medium sample), although some cytokines were detected at a lower level than those before freezing. This finding suggests that the cryopreserved CDS retains its ability to release these cytokines. Clinical research on allogeneic CDS, which was newly developed at the R & D Center for Artificial Skin of Kitasato University, has been carried out in medical centers across Japan with the support of the Millennium Project of the Ministry of Health, Labor and Welfare. It was demonstrated that the allogeneic CDS functions as an excellent cell therapy for intractable skin ulcers as well as burn injuries. The spongy matrix itself, as well as the cytokines released from the allogeneic CDS, seemed to be beneficial for the treatment of intractable skin defect. PMID:14720283

  20. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae. PMID:24599393

  1. Herbivore Recolonization Rate Influences Light and Nutrient Effects on Algal Based Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Taulbee, K.

    2005-05-01

    The dynamics of algal based ecosystems are influenced by both resource availability and herbivory. Following a disturbance, the relative importance of top down versus bottom up regulation of algal dynamics in a particular system depends on both herbivore immigration rates and local resource availabilities. The effects of herbivore recolonization and resource availability on the recovery dynamics of algal ecosystems following a disturbance were investigated during two field experiments conducted in 24 in situ stream channels in Convict Creek, California. In each experiment, light and nutrients were cross-classified in a 6x2 factorial design, with 2 replicates per treatment. Initial algal and invertebrate densities were low. Using upstream drift nets of different mesh sizes, herbivore immigration was restricted in one experiment and unrestricted in a second experiment. The relative importance of herbivore versus resource regulation of algae was influenced by herbivore immigration. When immigration was restricted, as might occur following a severe disturbance, algae were more closely regulated by resource availability. In contrast, when herbivore immigration was not restricted, algae were regulated by both resource availability and herbivory. Finally, the effects of light and nutrients on algae were interactive when immigration was restricted, but not when immigration was unrestricted.

  2. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Han, Jeongwoo; Palou-Rivera, Ignasi; Elgowainy, Amgad; Wang, Michael Q.

    2012-03-01

    Researchers around the world are developing sustainable plant-based liquid transportation fuels (biofuels) to reduce petroleum consumption and greenhouse gas emissions. Algae are attractive because they promise large yields per acre compared to grasses, grains and trees, and because they produce oils that might be converted to diesel and gasoline equivalents. It takes considerable energy to produce algal biofuels with current technology; thus, the potential benefits of algal biofuels compared to petroleum fuels must be quantified. To this end, we identified key parameters for algal biofuel production using GREET, a tool for the life-cycle analysis of energy use and emissions in transportation systems. The baseline scenario produced 55 400 g CO2 equivalent per million BTU of biodiesel compared to 101 000 g for low-sulfur petroleum diesel. The analysis considered the potential for greenhouse gas emissions from anaerobic digestion processes commonly used in algal biofuel models. The work also studied alternative scenarios, e.g., catalytic hydrothermal gasification, that may reduce these emissions. The analysis of the nitrogen recovery step from lipid-extracted algae (residues) highlighted the importance of considering the fate of the unrecovered nitrogen fraction, especially that which produces N2O, a potent greenhouse gas with global warming potential 298 times that of CO2.

  3. Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry.

    PubMed

    Juneau, P; Dewez, D; Matsui, S; Kim, S G; Popovic, R

    2001-11-01

    In this study, the pulse-amplitude-modulation (PAM)-fluorometric method was used to evaluate the difference in the sensitivity to mercury (Hg) and metolachlor of six algal species: Ankistrodesmus falcatus, Selenastrum capricornutum, Chlorella vulgaris, Nannoplankton (PLS), Microcystis aeruginosa and Pediastrum biwae. We found that the fluorescence parameters (phiM, the maximal photosystem II (PSII) quantum yield, phi'M, the operational PSII quantum yield at steady state of electron transport, Q(P), the photochemical quenching value, and Q(N), the non-photochemical quenching value) were appropriate indicators for inhibitory effects of mercury but only phi'M and Q(N) were useful for metolachlor. The examined algal species showed very different levels of sensitivity to the effect of Hg and of metolachlor. The most sensitive species to Hg and metolachlor were respectively M. aeruginosa and A. falcatus, while the least sensitive were C. vulgaris and P. biwae. We interpreted these differences by the action mode of pollutants and by the different metabolism properties and morphological characteristics between algal species. These results related to fluorescence parameters may offer useful tool to be used in bioassay for different pollutants. Heterogeneous algal sensitivity to the same pollutant suggests the need to use a battery of species to evaluate the effects of mixtures of pollutants in aquatic systems. PMID:11680755

  4. Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions.

    PubMed

    Ryu, Byung-Gon; Kim, Jungmin; Farooq, Wasif; Han, Jong-In; Yang, Ji-Won; Kim, Woong

    2014-06-01

    In this work, a cooperative algal-bacterial system that efficiently degrades thiocyanate (SCN(-)), a toxic contaminant, and exhibits high lipid productivity, was developed. A consortium of mixed bacteria (activated sludge) and microalgae was sequentially cultivated under photoautotrophic and photoheterotrophic modes. The hydrolysis of SCN(-) to ammonium (NH4(+))-nitrogen and subsequent nitrification steps were performed by the initial activated sludge under lithoautotrophic conditions. The NH4(+) and oxidized forms of nitrogen, nitrite (NO2(-)) and nitrate (NO3(-)), were then assimilated and removed by the microalgal cells when light was supplied. After the degradation of SCN(-), the cultivation mode was changed to photoheterotrophic conditions in a sequential manner. Algal-bacterial cultures containing Chlorella protothecoides and Ettlia sp. yielded significantly increased lipid productivity under photoheterotrophic conditions compared to photoautotrophic conditions (28.7- and 17.3-fold higher, respectively). Statistical methodologies were also used to investigate the effects of volatile fatty acids and yeast extract on biomass and lipid production. PMID:24747384

  5. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption. PMID:22528997

  6. 40 CFR 797.1050 - Algal acute toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Algal acute toxicity test. 797.1050 Section 797.1050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1050 Algal acute toxicity test. (a) Purpose. The...

  7. What is causing the harmful algal blooms in Lake Erie?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmful and nuisance algal blooms have been increasing in size and extent since about 2000. In recent years, the release of the algal toxin microcystin has become a growing concern and has resulted in the inability to use water from Lake Erie as a drinking water source to the 400,000 residents of T...

  8. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  9. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  10. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  11. Near- and mid-infrared spectroscopic determination of algal composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the feasibility of using near-infrared reflectance spectroscopy (NIRS) and mid-infrared reflectance spectroscopy (MIRS) to determine the composition of algal samples. We assayed a set of algal biomass samples (n=117), collected from algae turf scrubber...

  12. Multifunctional encoding system for assessment of movable cultural heritage

    NASA Astrophysics Data System (ADS)

    Tornari, V.; Bernikola, E.; Osten, W.; Groves, R. M.; Marc, G.; Hustinx, G. M.; Kouloumpi, E.; Hackney, S.

    2007-07-01

    This is an introductory paper of a recent EC project dealing with research in cultural heritage and aiming to communicate new fields of application for optical metrology techniques. The project is in its initial state and more conclusive information is expected to be available at the time of the perspective conference. Nowadays safety, ethical, economical and security issues as well as the increase demand for loaning of art objects for exhibitions in transit, are forcing the Conservation Community to undertake strong initiatives and actions against various types of mistreatment, damage or fraud, during transportation of movable Cultural Heritage. Therefore the interest directs to the development of innovative methodologies and instrumentation to respond to critical aspects of increased importance in cultural heritage preservation, among which of prior consideration are: to secure proper treatment, assess probable damage, fight fraud actions in transportation.

  13. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  14. Teratological research using in vitro systems. I. Mammalian whole embryo culture.

    PubMed Central

    Flynn, T J

    1987-01-01

    Approximately 390 literature references (through spring 1986) were reviewed for mammalian whole embryo culture procedures, with particular attention to the development of those cultures as systems for teratogenicity testing. The existing procedures could be conveniently divided into three groups, which are defined by the periods of embryogenesis that they embrace: preimplantation, peri-implantation, and post-implantation culture systems. The literature on peri-implantation embryo culture was sparse, and it did not appear that this procedure is being actively developed as a teratogen screening test. The extensive literature on both preimplantation and postimplantation embryo culture suggested considerable use of these two methods in evaluating embryotoxicants. The following discussion was compiled from information gleaned from all references. However, in the interest of brevity, only representative articles are specifically cited. Because the background and methodology for each system are distinct, each system will be discussed separately. PMID:3304996

  15. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  16. An Easy-to-Use Polystyrene Microchip-based Cell Culture System.

    PubMed

    Tazawa, Hidekatsu; Sunaoshi, Shohei; Tokeshi, Manabu; Kitamori, Takehiko; Ohtani-Kaneko, Ritsuko

    2016-01-01

    In this study, we developed an integrated, low-cost microfluidic cell culture system that is easy to use. This system consists of a disposable polystyrene microchip, a polytetrafluoroethylene valve, an air bubble trap, and an indium tin oxide temperature controller. Valve pressure resistance was validated with a manometer to be 3 MPa. The trap protected against bubble contamination. The temperature controller enabled the culture of Macaca mulatta RF/6A 135 vascular endothelial cells, which are difficult to culture in glass microchips, without a CO2 incubator. We determined the optimal coating conditions for these cells and were able to achieve stable, confluent culture within 1 week. This practical system is suitable for low-cost screening and has potential applications as circulatory cell culture systems and research platforms in cell biology. PMID:26960617

  17. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  18. A Single-Cell and Feeder-Free Culture System for Monkey Embryonic Stem Cells

    PubMed Central

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application. PMID:24505480

  19. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    PubMed

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. PMID:24602569

  20. Evaluation of anticoagulant activity of two algal polysaccharides.

    PubMed

    Faggio, C; Pagano, M; Dottore, A; Genovese, G; Morabito, M

    2016-09-01

    Marine algae are important sources of phycocolloids like agar, carrageenans and alginates used in industrial applications. Algal polysaccharides have emerged as an important class of bioactive products showing interesting properties. The aim of our study was to evaluate the potential uses as anticoagulant drugs of algal sulphate polysaccharides extracted from Ulva fasciata (Chlorophyta) and Agardhiella subulata (Rhodophyta) collected in Ganzirri Lake (Cape Peloro Lagoon, north-eastern Sicily, Italy). Toxicity of algal extracts through trypan blue test and anticoagulant action measured by activated partial thromboplastin time (APTT), prothrombin time (PT) test has been evaluated. Algal extracts showed to prolong the PT and APTT during the coagulation cascade and to avoid the blood coagulation of samples. Furthermore, the algal extracts lack toxic effects towards cellular metabolism and their productions are relatively at low cost. This permits to consider the algae as the biological source of the future. PMID:26360806

  1. Analysis of pollutant enhanced bacterial-blue-green algal interrelationships potentiating surface water contamination by noxious blue-green algal blooms. Completion report

    SciTech Connect

    Bedell, G.W.

    1984-02-01

    Sulfate-reducing bacteria from the genus Desulfovibro can stimulate the blue-green alga (Cyanobacterium) Anabaena variabilis (Strain 6411) into increasing its dry weight biomass production by more than 200 percent over that of the control as the total phosphate in the medium approaches zero. Results suggest that methods which utilize total nitrogen to phosphorus ratios in waters as predictors of blue-green algal 'blooms' may be unreliable when the waters are very low in phosphorus yet remain high in sulfate with conditions favorable for sulfate-reducing bacterial growth in benthic sediments. Otherwise, if the phosphate levels alone in the aqueous systems are reduced below threshold levels under these conditions, the magnitude of the blue-green algal blooms may be increased substantially.

  2. How hydrodynamics control algal blooms in the Ythan estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, Khruewan; Hoey, Trevor; Thomas, Rhian

    2016-04-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilizers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as understanding how nutrients and sediments are transported in the estuary is crucial for understanding the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. In order to understand those controls, study of interactions between hydrodynamic factors and water quality, in particular chlorophyll levels, at different time scales has been carried out. The results from the study reveal complex seasonal and event-scale relationships of river flow with the amount of chlorophyll, which provide an initial comprehension of controls over the concentrations of chlorophyll in the estuary. The concentration of chlorophyll changes, whether increasing or decreasing, with regards to changes in river flow. During high flow events, high amounts of chlorophyll are found when the tide is low. During low flow events, high amounts of chlorophyll are found at high tides. These phenomena reveal that both river flow and tidal cycle affect the amount of chlorophyll in the estuary. In addition, the Delft3d flow model, which has been extensively applied to many coastal and estuarine studies is used to simulate hydrodynamic patterns in the estuary during high flow and low flow events. The model is composed of 36,450 fine resolution grids and the upstream/ downstream boundary that represents water level is based on time-series data from river flow and tidal measurements. The bathymetry used for the model domain is

  3. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof

  4. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). PMID:23764593

  5. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.

    PubMed

    Muñoz, Raul; Alvarez, Maria Teresa; Muñoz, Adriana; Terrazas, Enrique; Guieysse, Benoit; Mattiasson, Bo

    2006-05-01

    The residual algal-bacterial biomass from photosynthetically supported, organic pollutant biodegradation processes, in enclosed photobioreactors, was tested for its ability to accumulate Cu(II), Ni(II), Cd(II), and Zn(II). Salicylate was chosen as a model contaminant. The algal-bacterial biomass combined the high adsorption capacity of microalgae with the low cost of the residual biomass, which makes it an attractive biosorbent for environmental applications. Cu(II) was preferentially taken-up from the medium when the metals were present both separately and in combination. There was no observed competition for adsorption sites, which suggested that Cu(II), Ni(II), Cd(II), and Zn(II) bind to different sites and that active Ni(II), Cd(II) and Zn(II) binding groups were present at very low concentrations. Therefore, special focus was given to Cu(II) biosorption. Cu(II) biosorption by the algal-bacterial biomass was characterized by an initial fast cell surface adsorption followed by a slower metabolically driven uptake. pH, Cu(II), and algal-bacterial concentration significantly affected the biosorption capacity for Cu(II). Maximum Cu(II) adsorption capacities of 8.5+/-0.4 mg g-1 were achieved at an initial Cu(II) concentration of 20 mg l-1 and at pH 5 for the tested algal-bacterial biomass. These are consistent with values reported for other microbial sorbents under similar conditions. The desorption of Cu(II) from saturated biomass was feasible by elution with a 0.0125 M HCl solution. Simultaneous Cu(II) and salicylate removal in a continuous stirred tank photobioreactor was not feasible due to the high toxicity of Cu(II) towards the microbial culture. The introduction of an adsorption column, packed with the algal-bacterial biomass, prior to the photobioreactor reduced Cu(II) concentration, thereby allowing the subsequent salicylate biodegradation in the photobioreactor. PMID:16307789

  6. Higher recovery rate of microorganisms from cerebrospinal fluid samples by the BACTEC culture system in comparison with agar culture.

    PubMed

    Calderaro, Adriana; Martinelli, Monica; Montecchini, Sara; Motta, Federica; Covan, Silvia; Larini, Sandra; Medici, Maria Cristina; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2016-04-01

    The aim of this study was to assess the diagnostic value of the BACTEC FX blood culture (BC) system as compared to the agar culture (AC) of cerebrospinal fluid samples (CSF), evaluating the recovery rate and the time to detection of microorganisms in a 3.5-year period. From December 2011 to May 2015, 1326 CSF samples (694 patients) were submitted to both AC and BC. Among the 150 positive samples (96 patients), 165 microorganisms were detected: 81 by both the protocols, 77 by BC alone, and 7 by AC alone, demonstrating a higher detection rate of BC (95.8%) than AC (53.3%). Although BC presents some disadvantages, it is able to improve the yield of clinically significant microorganisms, and it could potentially reduce the reporting time as compared to AC. The results obtained highlighted the necessity of a combined approach for the successful detection of central nervous system microbial infections. PMID:26867963

  7. Design and Evaluation of a Cross-Cultural Training System

    NASA Technical Reports Server (NTRS)

    Santarelli, Thomas; Stagl, Kevin C.

    2011-01-01

    Cross-cultural competency, and the underlying communication and affective skills required to develop such expertise, is becoming increasingly important for a wide variety of domains. To address this need, we developed a blended learning platform which combines virtual role-play with tutorials, assessment and feedback. A Middle-Eastern Curriculum (MEC) exemplar for cross-cultural training U.S. military personnel was developed to guide the refinement of an existing game-based training platform. To complement this curriculum, we developed scenario authoring tools to enable end-users to define training objectives, link performance measures and feedback/remediation to these objectives, and deploy experiential scenarios within a game-based virtual environment (VE). Lessons learned from the design and development of this exemplar cross-cultural competency curriculum, as well as formative evaluation results, are discussed. Initial findings suggest that the underlying training technology promotes deep levels of semantic processing of the key information of relevant cultural and communication skills.

  8. Multi-Cultural Education: New Perspectives - New Delivery Systems.

    ERIC Educational Resources Information Center

    Dick, James; Van Every, Ivalyn J.

    This paper describes the cooperative development of multi-cultural inservice courses by the University of Nebraska Teacher Corps and the Omaha public schools. A planning group with representatives from the university and from the local school district met to develop courses to meet the specific needs of teachers in the project schools which…

  9. Bridging the Two Cultures: Disciplinary Divides and Educational Reward Systems

    ERIC Educational Resources Information Center

    Schiferl, E. I.

    2007-01-01

    In 1959 C.P. Snow believed that communication and education could span the cultural gap between the sciences and the humanities. In the twenty-first century, language, research models, and academic structures hinder intellectual communication between art history, cognitive neuroscience and perceptual psychology--three disciplines dedicated to…

  10. A Systemic Approach to Culturally Responsive Assessment Practices and Evaluation

    ERIC Educational Resources Information Center

    Slee, June

    2010-01-01

    In an earlier paper, Slee and Keenan demonstrated that it was possible for tertiary education institutions to design culturally responsive assessment procedures that complied with standardised assessment policy. The authors' paper described "Growing Our Own," an initiative between Charles Darwin University and Northern Territory Catholic…

  11. Modular plant culture systems for life support functions

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The current state of knowledge with regard to culture of higher plants in the zero-G environment is assessed; and concepts for the empirical development of small plant growth chambers for the production of salad type vegetables on space shuttle or space station are evaluated. American and Soviet space flight experiences in gravitational biology are summarized.

  12. Educational Policy vs. Culturally Sensitive Programs in Turkish Educational System

    ERIC Educational Resources Information Center

    Arslan, Hasan

    2009-01-01

    The purpose of this study is to examine the perceptions of elementary school teachers about the sensitiveness of principals, teachers, and curriculum on multicultural education. Education provides the transmission and the advancement of its culture while it is developing and enhancing the common values, the integrity and the progress of…

  13. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  14. ALGAL NUTRIENT AVAILABILITY AND LIMITATION IN LAKE ONTARIO DURING IFYGL. PART III. ALGAL NUTRIENT LIMITATION IN LAKE ONTARIO DURING IFYGL

    EPA Science Inventory

    This study was conducted on the potential significance of nitrogen, phosphorus and micronutrients in limiting planktonic algal growth in Lake Ontario and its major tributaries. Standard algal assay procedures were used. Samples of the open waters of Lake Ontario and Niagara River...

  15. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    PubMed

    Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T

    2014-07-01

    (GBEF) system, which increases supply of nutrients in addition to the land-derived inputs triggering surface algal blooms in this region. Low density (initiation stage) of such blooms observed in clear oceanic waters southeast and northeast of Sri Lanka may be caused by the vertical mixing processes (strong monsoonal winds) and the occurrence of Indian Ocean Dipole events. Findings based on the analyses of time series satellite data indicate that the new information on surface algal blooms will have important bearing on regional fisheries, ecosystem and environmental studies, and implications of climate change scenarios. PMID:24554022

  16. Investigation of severe UF membrane fouling induced by three marine algal species.

    PubMed

    Merle, Tony; Dramas, Laure; Gutierrez, Leonardo; Garcia-Molina, Veronica; Croué, Jean-Philippe

    2016-04-15

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonema costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3. PMID:26874470

  17. Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis.

    PubMed

    Rajević, Nives; Kovačević, Goran; Kalafatić, Mirjana; Gould, Sven B; Martin, William F; Franjević, Damjan

    2015-12-01

    Symbiotic associations are of broad significance in evolution and biodiversity. Green Hydra is a classic example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors endosymbiotic unicellular green algae, most commonly from the genus Chlorella. We reconstructed the phylogeny of cultured algal endosymbionts isolated and maintained in laboratory conditions for years from green Hydra strains collected from four different geographical sites within Croatia, one from Germany and one from Israel. Nuclear (18S rDNA, ITS region) and chloroplast markers (16S, rbcL) for maximum likelihood phylogenetic analyses were used. We focused on investigating the positions of these algal endosymbiotic strains within the chlorophyte lineage. Molecular analyses established that different genera and species of unicellular green algae are present as endosymbionts in green Hydra, showing that endosymbiotic algae growing within green Hydra sampled from four Croatian localities are not monophyletic. Our results indicate that the intracellular algal endosymbionts of green Hydra have become established several times independently in evolution. PMID:26220839

  18. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content. PMID:25909734

  19. Effects of modified clay on cysts of Scrippsiella trochoidea for harmful algal bloom control

    NASA Astrophysics Data System (ADS)

    Wang, Zhifu; Yu, Zhiming; Song, Xiuxian; Cao, Xihua; Han, Xiaotian

    2014-11-01

    We present results on the effect of modified clay on cyst formation of Scrippsiella trochoidea in harmful algal bloom (HAB). Modified clay (in concentration of 0, 0.1, 0.5, and 1.0 g/L) were added to cultures, and observations were made on cysts of S. trochoidea under controlled laboratory conditions. Results indicate that the removal rate of algal cells reached 97.7% at the clay concentration of 1.0 g/L. The cyst formation rate increased from 4.6% to 24.6% when the concentration of clay was increased from 0 to 1.0 g/L. Two cyst metamorphs were observed: spinal calcareous cysts and smooth noncalcareous ones. The proportion of the spinal cysts decreased from 76.9% to 24.1% when clay concentration increased from 0 to 1.0 g/L. In addition, modified clay affected cyst germination. The germination rate decreased with the increases in the clay concentrations. Non-calcareous cysts had a lower germination rate with a longer germination time. We conclude that modified clay could depress algal cell multiplication and promote formation of temporal cysts of S. trochoidea, which may help in controlling HAB outbreaks.

  20. Norwegian remote sensing spectrometry for mapping and monitoring of algal blooms and pollution - NORSMAP-89

    SciTech Connect

    Pettersson, L.H.; Johannessen, O.M.; Frette, O. )

    1990-01-09

    During the late spring of 1988 an extensive bloom of the toxic algae Chrysocromulina polylepis occurred in the Skagerrak region influencing most life in the upper 30 meter of the ocean. The algal front was advected northward with the Norwegian Coastal Current along the coast of southern Norway, where it became a severe threat to the Norwegian seafarming industry. An ad-hoc expert team was established to monitor and forecast the movement of the algae front. Remote sensing of sea surface temperature from the operational US NOAA satellites monitored the movement of the algal front, consistent with a warm ocean front. The lack of any optical remote sensing instrumentation was recognized as a major de-efficiency during this algal bloom. To prepare for similar events in the future Nansen Remote Sensing Center initiated a three week pilot study in the Oslofjord and Skagerrak region, during May 1989. The Canadian Compact Airborne Spectrographic Imager (CASI) was installed in the surveillance aircraft. Extensive in situ campaigns was also carried out by the Norwegian Institute for Water Research and Institute of Marine Research. A ship-borne non-imaging spectrometer was operated from the vessels participating in the field campaign. As a contribution from a joint campaign (EISAC '89) between the Joint Research Centre (JRC) of the European Community and the European Space Agency (ESA) both the Canadian Fluorescence Line Imager (FLI) and the US 64-channel GER scanner was operated simultaneously at the NORSMAP 89 test site. Regions of different biological and physical conditions were covered during the pilot study and preliminary analysis are obtained from oil slicks, suspended matter from river, as well as minor algal bloom. The joint analysis of the data collected during the NORSMAP 89 campaign and conclussions will be presented, as well as suggestions for future utilization of airborne spectroscopy systems for operational monitoring of algal bloom and water pollution.

  1. MOSAICA: A Web-2.0 Based System for the Preservation and Presentation of Cultural Heritage

    ERIC Educational Resources Information Center

    Barak, Miri; Herscoviz, Orit; Kaberman, Zvia; Dori, Yehudit J.

    2009-01-01

    The question of how to present cultural heritage resources in a way that attracts potential users is becoming important in our ever-changing world. This paper describes MOSAICA system--a web 2.0-based toolbox, dedicated for the preservation and presentation of cultural heritage. This paper also describes an evaluation study that examined MOSAICA…

  2. The Relationship between National Culture and the Usability of an E-Learning System

    ERIC Educational Resources Information Center

    Adeoye, Blessing; Wentling, Rose Mary

    2007-01-01

    The purpose of this study was to investigate possible relationships between national culture and the usability of an e-learning system. The theoretical frameworks that were used to guide this study were Hofstede's (1980) cultural dimensions, and Nielson's (1993) usability attributes. The sample for this study was composed of 24 international…

  3. Multiple Embedded Inequalities and Cultural Diversity in Educational Systems: A Theoretical and Empirical Exploration

    ERIC Educational Resources Information Center

    Verhoeven, Marie

    2011-01-01

    This article explores the social construction of cultural diversity in education, with a view to social justice. It examines how educational systems organize ethno-cultural difference and how this process contributes to inequalities. Theoretical resources are drawn from social philosophy as well as from recent developments in social organisation…

  4. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  5. Algal Lipids and Omega-3 Production via Autotrophic and Heterotrophic Pathways at Cellana?s Kona Demonstration Facility, Hawaii

    SciTech Connect

    Bai, Xuemei; Knurek, Emily; Goes, Nikki; Griswold, Lynn

    2012-05-05

    Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes are operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.

  6. Revisiting the Role of Cultural Capital in East Asian Educational Systems: The Case of South Korea

    PubMed Central

    Byun, Soo-yong; Schofer, Evan; Kim, Kyung-keun

    2013-01-01

    The concept of cultural capital has proved invaluable in understanding educational systems in Western countries, and recent work seeks to extend those insights to the diverse educational systems of other geographic regions. We explored cultural capital in South Korea by investigating the relationships among family socioeconomic status (SES), cultural capital, and children's academic achievement using data from the 2000 Programme for International Student Assessment. South Korea was compared with Japan, France, and the United States to understand how institutional features of South Korean education shape the role of cultural capital in academic success. Results showed that family SES had a positive effect on both parental objectified cultural capital and children's embodied cultural capital in South Korea, consistent with evidence from the other countries. Moreover, parental objectified cultural capital had a positive effect on children's academic achievement in South Korea. In contrast to other countries, however, children's embodied cultural capital had a negative effect on academic achievement in South Korea controlling for the other variables. We highlighted several institutional features of South Korean education including a standardized curriculum, extreme focus on test preparation, and extensive shadow education, which may combine to suppress the effect of children's embodied cultural capital on academic achievement. PMID:24285909

  7. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    PubMed

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. PMID:26358782

  8. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920

  9. Harmful Algal Blooms and Public Health

    PubMed Central

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  10. Extreme Algal Bloom Detection with MERIS

    NASA Astrophysics Data System (ADS)

    Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.

    2009-05-01

    Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.

  11. Stability of alginate-immobilized algal cells

    SciTech Connect

    Dainty, A.L.; Goulding, K.H.; Robinson, P.K.; Simpkins, I; Trevan, M.D.

    1986-01-01

    Investigations were carried out using immobilized Chlorella cells to determine the diameter, compressibility, tolerance to phosphate chelation, and ability to retain algal cells during incubation of various alginate beads. These physical bead-characteristics were affected by a variety of interactive factors, including multivalent cation type (hardening agent) and cell, cation, and alginate concentration, the latter exhibiting a predominant influence. The susceptibility of alginate beads to phosphate chelation involved a complex interaction of cation type, concentration, and pH of phosphate solution. A scale of response ranging from gel swelling to gel shrinking was observed for a range of conditions. However, stable Ca alginate beads were maintained in incubation media with a pH of 5.5 and a phosphate concentration of 5 micro M. A preliminary investigation into cell leakage from the beads illustrated the importance of maintaining a stable gel structure and limiting cell growth to reduce leakage.

  12. A Well-Controlled Nucleus Pulposus Tissue Culture System with Injection Port for Evaluating Regenerative Therapies.

    PubMed

    Arkesteijn, Irene T M; Mouser, Vivian H M; Mwale, Fackson; van Dijk, Bart G M; Ito, Keita

    2016-05-01

    In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular matrix composition remained unchanged during the culture period and gene expression profiles were similar to those obtained in earlier studies. Furthermore, to test the responsiveness of bovine caudal NPs in the system, samples were cultured for 4 days and injected twice (day 1 and 3) with (1) PBS, (2) Link-N, for regeneration, and (3) TNF-α, for degeneration. It was shown that TNF-α increased COX2 gene expression, whereas no effect of Link-N was detected. In conclusion, the newly designed system allows long-term culture of NP tissue, wherein tissue reactions to injected stimulants can be observed. PMID:26294008

  13. Problems associated with the utilization of algae in bioregenerative life support systems

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Karel, M.; Radmer, R.

    1984-01-01

    A workshop was conducted to identify the potential problems associated with the use of microalgae in biorregenerative life support systems, and to identify algae rlated research issues that must be addressed through space flight experimentation. Major questions to be resolved relate to the choice of algal species for inclusion in a bioregenerative life support system, their long term behavior in the space environment, and the nature of the techniques required for the continuous growth of algae on the scale required. Consideration was given to the problems associated with the conversion of algal biomass into edible components. Specific concerns were addressed and alternative transformation processes identified and compared. The workshop identified the following major areas to be addressed by space flight experimentation: (1) long term culture stability, (2) optimal design of algal growth reactors, and (3) post growth harvesting and processing in the space environment.

  14. Evaluation of performance of full-scale duckweed and algal ponds receiving septage.

    PubMed

    Papadopoulos, Frantzis H; Metaxa, Eirini G; Iatrou, Miltos N; Papadopoulos, Aristotelis H

    2014-12-01

    The performance of duckweed and algal systems in removing fecal bacteria, organic matter, and nutrients was evaluated in three full-scale ponds operating in series. Trucks collected septage from holding tanks and discharged it into the system, daily. The inflow rates varied between the warm and the cold season. Duckweed and algae naturally colonized the ponds in two successive periods of 10 and 13 months, respectively. Environmental conditions were determined at various pond depths. Without harvesting, the duckweed system was neutral and anoxic. Alkaline and oversaturation conditions were observed in the algal system. The overall removals of 5-day biochemical oxygen demand, total suspended solids, total nitrogen removal, and orthophosphate (ortho-PO4(3-)) ranged from 94 to 97, 62 to 84, 68 to 74, and 0 to 26%, respectively. The E. coli and enterococci reductions varied between 2.2 to 3.0 and 1.1 to 1.4 log units, respectively. The upper values were always associated with the algal system. PMID:25654933

  15. Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds

    PubMed Central

    Stevenson, Louise M.; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A.; McCauley, Edward; Nisbet, Roger M.

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles. PMID:24086348

  16. Increasing algal biofuel production using Nannocholropsis oculata cultivated with anaerobically and aerobically treated swine wastewater.

    PubMed

    Wu, Pei-Fen; Teng, Jui-Chin; Lin, Yun-Huin; Hwang, Sz-Chwun John

    2013-04-01

    For mass production of Nannocholropsis oculata, a cheap nutrition source such as swine wastewater is required. The use of a combination of anaerobically/aerobically treated swine wastewater (AnATSW) was compared to artificial 3×f/2 medium in terms of algal growth rate and oil content. For microalgae cultured in 0-50% (v/v) AnATSW, a biomass of 0.94-3.22 g L(-1) was reached in 5 days. For microalgae cultured in 3×f/2 medium with vitamins, the lipid productivity was 0.122 g L(-1) d(-1) although its oil content reached 48.9%. Culturing N. oculata in 0-50% AnATSW resulted in an optimal lipid productivity of 0.035-0.177 g L(-1) d(-1). Only vitamins improved algal production of more oxidatively stable compositions of unsaturated oils. These oils were similar to the chemical structure of rapeseed oil based on analysis of the bis-allylic-position-equivalent value (30.64-46.13) and the iodine value (90.5-117.46). These oils were similar to coal based on the calculated low-heating-value of 17.6-22.9 MJ/kg. PMID:23422305

  17. Medical Devices; Obstetrical and Gynecological Devices; Classification of the Intravaginal Culture System. Final order.

    PubMed

    2016-01-01

    The Food and Drug Administration (FDA) is classifying the intravaginal culture system into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the intravaginal culture system's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:26742184

  18. The Role of State Early Childhood Comprehensive Systems in Promoting Cultural Competence and Effective Cross-Cultural Communication. Building State Early Childhood Comprehensive Systems Series, Number 8

    ERIC Educational Resources Information Center

    Sareen, Harvinder; Visencio, Diane; Russ, Shirley; Halfon, Neal

    2005-01-01

    If early childhood systems are to be effective at the population level then they must be able to provide family-centered care to all the racial, ethnic and cultural groups that they serve. Despite major policy driven and technological advances in healthcare, health disparities across different races and ethnicities persist. For example, the infant…

  19. [Effects of different culture system of isolating and passage of sheep embryonic stem-like cells].

    PubMed

    Bai, Changming; Liu, Chousheng; Wang, Zhigang; Wang, Xinzhuang

    2008-07-01

    In this research, we use mouse embryonic fibroblasts as feeder layers. To eliminate the influence of serum and mouse embryonic stem cells (ESCs) conditioned medium (ESCCM) on self-renewal of sheep embryonic stem-like cells, knockout serum replacement (KSR) was used to replace serum, then supplanted with ESCCM for the isolation and cloning of sheep embryonic stem-like cells. We found when inner cell masses (ICMs) cultured in the control group with medium supplanted with fetal bovine serum (FBS), sheep ES-like cells could not survive for more than 3 passages. However, sheep embryonic stem-like cells could remain undifferentiated for 5 passages when cultured in the medium that FBS was substituted by KSR. The result indicates that KSR culture system was more suitable for the isolation and cloning of sheep embryonic stem-like cells compared to FBS culture system. Finally we applied medium with 15% KSR as basic medium supplanted with 40% ESCCM as a new culture system to isolate sheep embryonic stem-like cells, we found one embryonic stem-like cell line still maintained undifferentiating for 8 passages, which characterized with a normal and stable karyotype and high expression of alkaline phosphatase. These results suggest that it is suitable to culture sheep ICM in the new culture system with 15% KSR as basic medium and supplanted with 40% ESCCM, which indicated that mouse ES cells might secrete factors playing important roles in promoting sheep ES-like cells' self-renewal. PMID:18837407

  20. The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures

    PubMed Central

    Seil, Fredrick J.

    2014-01-01

    Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693

  1. Lysine hydroxylation of collagen in a fibroblast cell culture system

    NASA Technical Reports Server (NTRS)

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  2. Cells and Culture Systems Used to Model the Small Airway Epithelium.

    PubMed

    Bhowmick, Rudra; Gappa-Fahlenkamp, Heather

    2016-06-01

    The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems. PMID:27071933

  3. THE FUTURE OF HARMFUL ALGAL BLOOMS: AN EMPIRICAL APPROACH TO PREDICTING THE COMBINED IMPACTS OF RISING CO2, TEMPERATURE, AND EUTROPHICATION

    EPA Science Inventory

    Recent worldwide increases in harmful algal blooms (HABs) are almost certainly linked to cultural eutrophication of coastal environments. Virtually no attention has been given, however, to how other major anthropogenic impacts such as rising CO2 and greenhouse warmi...

  4. Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions.

    PubMed

    Ponnusamy, Sundaravadivelnathan; Reddy, Harvind Kumar; Muppaneni, Tapaswy; Downes, Cara Meghan; Deng, Shuguang

    2014-10-01

    A life cycle assessment study is performed for the energy requirements and greenhouse gas emissions in an algal biodiesel production system. Subcritical water (SCW) extraction was applied for extracting bio-crude oil from algae, and conventional transesterification method was used for converting the algal oil to biodiesel. 58MJ of energy is required to produce 1kg of biodiesel without any co-products management, of which 36% was spent on cultivation and 56% on lipid extraction. SCW extraction with thermal energy recovery reduces the energy consumption by 3-5 folds when compared to the traditional solvent extraction. It is estimated that 1kg of algal biodiesel fixes about 0.6kg of CO2. An optimized case considering the energy credits from co-products could further reduce the total energy demand. The energy demand for producing 1kg of biodiesel in the optimized case is 28.23MJ. PMID:25164337

  5. A bio-anodic filter facilitated entrapment, decomposition and in situ oxidation of algal biomass in wastewater effluent.

    PubMed

    Mohammadi Khalfbadam, Hassan; Cheng, Ka Yu; Sarukkalige, Ranjan; Kaksonen, Anna H; Kayaalp, Ahmet S; Ginige, Maneesha P

    2016-09-01

    This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step. PMID:27268438

  6. Evaluation of a new biphasic culture system for the recovery of mycobacteria.

    PubMed

    Giger, T; Burkardt, H J

    1990-06-01

    A newly developed biphasic culture system (MB-Check) for recovery of mycobacteria was evaluated. The biphasic system consists of a bottle containing selective modified Middlebrook 7H9 broth and a mounted dip slide with chocolate agar and modified Middlebrook 7H11 agar with and without NAP. The system was compared with culture on two egg-based media, Lowenstein medium and a selective Gottsacker medium, using 995 routine specimens and 90 artificially seeded sputa. Mycobacterium tuberculosis was detected in 17 of the 995 routine specimens by the biphasic system and in 14 specimens by the egg-based media together. In the artificially seeded sputa the biphasic system showed higher sensitivity in detection of both tuberculosis complex and non-tuberculous mycobacteria than the egg-based media. The recovery times of the new system were comparable to those of the two conventional culture methods. PMID:2387296

  7. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  8. Airborne Monitoring of Harmful Algal Blooms over Lake Erie

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John

    2013-01-01

    The Hyperspectral Imager mounted to an aircraft was used to develop a remote sensing capability to detect the pigment Phycocyanin, an indicator of Microcystis, in low concentration as an early indicator of harmful algal bloom prediction.

  9. ORGANOHALIDE FORMATION ON CHLORINATION OF ALGAL EXTRACELLULAR PRODUCTS

    EPA Science Inventory

    When certain chemical and physical parameters were controlled during chlorination of algal extracellular products (ECP), organohalide formation was modified. In general, decreases in temperature and contact time decreased the generation of purgeable (POX), nonpurgeable (NPOX), an...

  10. A seasnake's colour affects its susceptibility to algal fouling

    PubMed Central

    Shine, R.; Brischoux, F.; Pile, A. J.

    2010-01-01

    Evolutionary transitions from terrestrial to aquatic life modify selective forces on an animal's coloration. For example, light penetrates differently through water than air, and a new suite of predators and visual backgrounds changes the targets of selection. We suggest that an aquatic animal's coloration may also affect its susceptibility to algal fouling. In a colour-polymorphic field population of seasnakes (Emydocephalus annulatus) in New Caledonia, black individuals supported higher algal cover than did banded conspecifics. In experimental tests, black snake models (plastic tubes) accumulated more algae than did banded models. Algal cover substantially reduced snake activity (in the field) and swimming speeds (in the laboratory). Effects of algal cover on a snake's hydrodynamic efficiency and/or its rate of cutaneous gas exchange thus may impose selection on the colours of aquatic organisms. PMID:20375055

  11. Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  12. Ripples in a pond: an open system model of the evolution of safety culture.

    PubMed

    Morley, F J Joel; Harris, Don

    2006-01-01

    The development of an effective safety culture is essential to promote safe operations. Previous studies have either identified the characteristics of effective safety culture analytically, inferring them from signs and symbols derived from working practices, or have restricted the study of the development of safety culture to workers within an organisation. This paper describes a large-scale survey-based study in which the factors influencing the evolution of safety culture are identified empirically and, drawing upon open systems theory, are also extended beyond the bounds of the organisation. Three major determinants of safety culture are identified: safety concerns, influences and actions. Sub-components within each of these categories are also identified and the relationship between them is hypothesised. PMID:16553996

  13. Oligotrophic Bacteria Enhance Algal Growth under Iron-Deficient Conditions

    PubMed Central

    Keshtacher-Liebso..., E.; Hadar, Y.; Chen, Y.

    1995-01-01

    A Halomonas sp., a marine halophilic and oligotrophic bacterium, was grown on exudates of Dunaliella bardawil. The bacteria increased the solubility of Fe, thereby enhancing its availability to the algae. As a result, the algal growth rate increased. Because of these syntrophic relations, growth of the marine alga D. bardawil was facilitated at Fe levels that would otherwise induce Fe deficiency and inhibit algal growth. PMID:16535058

  14. Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom

    PubMed Central

    González, José M.; Simó, Rafel; Massana, Ramon; Covert, Joseph S.; Casamayor, Emilio O.; Pedrós-Alió, Carlos; Moran, Mary Ann

    2000-01-01

    The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δ Proteobacteria) were primarily found in deeper waters (200 to 500 m). PMID:11010865

  15. Tissue culture system using a PANDA ring resonator and wavelength router for hydroponic plant.

    PubMed

    Kamoldilok, Surachart; Suwanpayak, Nathaporn; Suttirak, Saisudawan; Yupapin, Preecha P

    2012-06-01

    A novel system of nanofluidics trapping and delivery, which is known as a tissue culture system is proposed. By using the intense optical pulse(i.e., a soliton pulse) and a system constructed by a liquid core waveguide, the optical vortices (gradient optical fields/wells) can be generated, where the trapping tools in the same way as the optical tweezers in the PANDA ring resonator can be formed. By controlling the suitable parameters, the intense optical vortices can be generated within the PANDA ring resonator, in which the nanofluidics can be trapped and moved (transported) dynamically within the Tissue culture system(a wavelength router), which can be used for tissue culture and delivery in the hydroponic plant system. PMID:22411055

  16. Toxicologic evaluations of DHA-rich algal oil in rats: developmental toxicity study and 3-month dietary toxicity study with an in utero exposure phase.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Edwards, T; Greeley, M

    2012-11-01

    DHA-rich algal oil ONC-T18, tested for subchronic, reproductive, and developmental toxicity in the rat, did not produce any significant toxicologic manifestations. Based on the absence of maternal or developmental toxicity at any dosage level, a dosage level of 2000 mg/kg/day was considered to be the no observed adverse-effect level (NOAEL) for maternal toxicity and embryo/fetal development when DHA-rich algal oil was administered orally by gavage to pregnant Crl:CD(SD) rats during gestation days 6-19. In a dietary combined one-generation/90-day reproductive toxicity study in rats, the NOAEL for F0 male and female and F1 male systemic toxicity was considered to be 50,000 ppm (highest concentration administered) and 25,000 ppm for F1 female systemic toxicity (higher mean body weight, body weight gain, and food consumption). F0 reproductive performance values, estrous cycle length, gestation length, or the process of parturition, and the numbers of former implantation sites and unaccounted-for sites were unaffected by algal oil exposure. Postnatal survival and developmental parameters in the F1 generation were unaffected by algal oil exposure at all dietary concentrations. There were no neurotoxic effects noted at any algal oil exposure level. The results support the safety of DHA-rich algal oil for its proposed use in food. PMID:22960629

  17. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

    PubMed

    Shen, Qiao-Hui; Gong, Yu-Peng; Fang, Wen-Zhe; Bi, Zi-Cheng; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-10-01

    Chlorella vulgaris, a marine microalgae strain adaptable to 0-50 g L(-1) of salinity, was selected for studying the coupling system of saline wastewater treatment and lipid accumulation. The effect of total nitrogen (T N) concentration was investigated on algal growth, nutrients removal as well as lipid accumulation. The removal efficiencies of TN and total phosphorus (TP) were found to be 92.2-96.6% and over 99%, respectively, after a batch cultivation of 20 days. To illustrate the response of lipid accumulation to nutrients removal, C. vulgaris was further cultivated in the recycling experiment of tidal saline water within the photobioreactor. The lipid accumulation was triggered upon the almost depletion of nitrate (<5 mg L(-1)), till the final highest lipid content of 40%. The nitrogen conversion in the sequence of nitrate, nitrite, and then to ammonium in the effluents was finally integrated with previous discussions on metabolic pathways of algal cell under nitrogen deficiency. PMID:26117237

  18. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.

    PubMed

    Iman Shayan, Sahand; Agblevor, Foster A; Bertin, Lorenzo; Sims, Ronald C

    2016-07-01

    Rotating algal biofilm reactor (RABR) technology was successfully employed in an effective strategy to couple the removal of wastewater nutrients with accumulation of valuable bioproducts by grown algae. A secondary stage municipal wastewater was fed to the developed system and the effects of the hydraulic retention time (HRT) parameter on both nutrient removal and bioproduct production were evaluated under fed-batch operation mode. Two sets of bench scale RABRs were designed and operated with HRTs of 2 and 6days in order to provide competitive environment for algal growth. The HRT significantly affected nitrogen and phosphorus uptakes along with lipid and starch accumulations by microalgae in harvested biofilms. Domination of nitrogen removal in 2-day HRT with higher lipid accumulation (20% on dried weight basis) and phosphorus removal in 6-day HRT with higher starch production (27% on dried weight basis) was observed by comparing the performances of the RABRs in duplicate runs. PMID:27038261

  19. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism

    PubMed Central

    Chang, Roger L; Ghamsari, Lila; Manichaikul, Ani; Hom, Erik F Y; Balaji, Santhanam; Fu, Weiqi; Shen, Yun; Hao, Tong; Palsson, Bernhard Ø; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2011-01-01

    Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. PMID:21811229

  20. Changing the Management Culture in a Public School System

    ERIC Educational Resources Information Center

    Cohen, Allan R.; Gadon, Herman

    1978-01-01

    The intervention described led to the creation of a new management structure for a public school system with different decision-making processes, greater administrator involvement, and increased commitment to the total system. A number of propositions for change agents have been formulated. Available from: JABS Order Dept., NTL Institute for…

  1. Investigating Educational Systems, Leadership, and School Culture: A Holistic Approach

    ERIC Educational Resources Information Center

    Pratt, Jill Elizabeth

    2014-01-01

    Most populous school districts operate using a bureaucratic hierarchical organizational structure developed primarily for industry, a system structure that has remained intact for a century despite evolving from a manufacturing to a knowledge-based economy. Although strong for efficiency, this system structure is resistant to change and promotes…

  2. Development of 3D hydrogel culture systems with on-demand cell separation.

    PubMed

    Hamilton, Sharon K; Bloodworth, Nathaniel C; Massad, Christopher S; Hammoudi, Taymour M; Suri, Shalu; Yang, Peter J; Lu, Hang; Temenoff, Johnna S

    2013-04-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3D co-culture methods lack the ability to effectively separate two cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme, while cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. PMID:23447378

  3. The algal lift: Buoyancy-mediated sediment transport

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, Clara; Federlein, Laura L.; Knie, Matthias; Mutz, Michael

    2016-01-01

    The role of benthic algae as biostabilizers of sediments is well-known, however, their potential to lift and transport sediments remains unclear. Under low-flow conditions, matured algal mats may detach from the bed and may lift up sediment, thereby causing disturbance to the uppermost streambed sediment. We tested the potential of algal mats to lift sediments in 12 indoor flumes filled with sand (0.2 - 0.8 mm), gravel (2 - 8 mm) or a sand-gravel mixture (25/75% mass). After four weeks, the algal mats covered about 50% of the flumes area. Due to the accumulation of oxygen gas bubbles in the mats, that developed from high primary production at 4.5 weeks, about half of the algal mats detached from the bed carrying entangled sediments. Both the area covered by algal mats and detached area were similar among sediment types, but the amount of sediment transported tended to be higher for sand and sand-gravel mixture compared to gravel. Our results reveal that biologically mediated sediment transport mainly depends on the development of a dense filamentous algal matrix, that traps gas bubbles, increasing the mats buoyancy. This novel mechanism of sediment transport will occur in shallow ecosystems during low-flow periods, with the highest impact for sandy sediments.

  4. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  5. The ins and outs of algal metal transport

    PubMed Central

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2012-01-01

    Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. PMID:22569643

  6. Self-driven perfusion culture system using a paper-based double-layered scaffold.

    PubMed

    Ozaki, Ai; Arisaka, Yoshinori; Takeda, Naoya

    2016-01-01

    Shear stress caused by fluid flow is known to promote tissue development from cells in vivo. Therefore, perfusion cultures have been studied to investigate the mechanisms involved and to fabricate engineered tissues in vitro, particularly those that include blood vessels. Microfluidic devices, which function with fine machinery of chambers and microsyringes for fluid flow and have small culture areas, are conventionally used for perfusion culture. In contrast, we have developed a self-driven perfusion culture system by using a paper-based double-layered scaffold as the fundamental component. Gelatin microfibers were electrospun onto a paper material to prepare the scaffold system, in which the constant perfusion of the medium and the scaffold for cell adhesion/proliferation were functionally divided into a paper and a gelatin microfiber layer, respectively. By applying both the capillary action and siphon phenomenon of the paper-based scaffold, which bridged two medium chambers at different height levels, a self-driven medium flow was achieved and the flow rate was also stable, constant, and quantitatively controllable. Moreover, the culture area was enlargeable to the cm(2) scale. The endothelial cells cultivated on this system oriented along the medium-flow direction, suggesting that the shear stress caused by medium flow was effectively applied. This perfusion culture system is expected to be useful for fabricating three-dimensional and large engineered tissues in the future. PMID:27550929

  7. Expanding Fungal Diets Through Synthetic Algal-Fungal Mutualism

    NASA Technical Reports Server (NTRS)

    Sharma, Alaisha; Galazka, Jonathan (Editor)

    2015-01-01

    Fungi can synthesize numerous molecules with important properties, and could be valuable production platforms for space exploration and colonization. However, as heterotrophs, fungi require reduced carbon. This limits their efficiency in locations such as Mars, where reduced carbon is scarce. We propose a system to induce mutualistic symbiosis between the green algae Chlamydomonas reinhardtii and the filamentous fungi Neurospora crassa. This arrangement would mimic natural algal-fungal relationships found in lichens, but have added advantages including increased growth rate and genetic tractability. N. crassa would metabolize citrate (C6H5O7 (sup -3)) and release carbon dioxide (CO2) that C. reinhardtii would assimilate into organic sugars during photosynthesis. C. reinhardtii would metabolize nitrate (NO3-) and release ammonia (NH3) as a nitrogen source for N. crassa. A N. crassa mutant incapable of reducing nitrate will be used to force this interaction. This system eliminates the need to directly supply its participants with carbon dioxide and ammonia. Furthermore, the release of oxygen by C. reinhardtii via photosynthesis would enable N. crassa to respire. We hope to eventually create a system closer to lichen, in which the algae transfers not only nitrogen but reduced carbon, as organic sugars, to the fungus for growth and production of valuable compounds.

  8. In Vivo Bone Regeneration Using Tubular Perfusion System Bioreactor Cultured Nanofibrous Scaffolds

    PubMed Central

    Yeatts, Andrew B.; Both, Sanne K.; Yang, Wanxun; Alghamdi, Hamdan S.; Yang, Fang; Jansen, John A.

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23±0.35 mm2 at 21 days compared to 0.99±0.43 mm2 and 0.50±0.29 mm2 in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (p<0.05) were only observed between defects implanted with cell containing scaffolds and the acellular control. After 42 days, however, defects implanted with TPS cultured scaffolds had the greatest new bone area with 1.72±0.40 mm2. Defects implanted with statically cultured and acellular scaffolds had a new bone area of 1.26±0.43 mm2 and 1.19±0.33 mm2, respectively. The increase in bone growth observed in defects implanted with TPS cultured scaffolds was statistically significant (p<0.05) when compared to both the static and acellular groups at this timepoint. This study demonstrates the efficacy of the TPS bioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering. PMID:23865551

  9. Lab on a chip-based hepatic sinusoidal system simulator for optimal primary hepatocyte culture.

    PubMed

    Choi, Yoon Young; Kim, Jaehyung; Lee, Sang-Hoon; Kim, Dong-Sik

    2016-08-01

    Primary hepatocyte cultures have been used in studies on liver disease, physiology, and pharmacology. While they are an important tool for in vitro liver studies, maintaining liver-specific characteristics of hepatocytes in vitro is difficult, as these cells rapidly lose their unique characteristics and functions. Portal flow is an important condition to preserve primary hepatocyte functions and liver regeneration in vivo. We have developed a microfluidic chip that does not require bulky peripheral devices or an external power source to investigate the relationship between hepatocyte functional maintenance and flow rates. In our culture system, two types of microfluidic devices were used as scaffolds: a monolayer- and a concave chamber-based device. Under flow conditions, our chips improved albumin and urea secretion rates after 13 days compared to that of the static chips. Reverse transcription polymerase chain reaction demonstrated that hepatocyte-specific gene expression was significantly higher at 13 days under flow conditions than when using static chips. For both two-dimensional and three-dimensional culture on the chips, flow resulted in the best performance of the hepatocyte culture in vitro. We demonstrated that flow improves the viability and efficiency of long-term culture of primary hepatocytes and plays a key role in hepatocyte function. These results suggest that this flow system has the potential for long-term hepatocyte cultures as well as a technique for three-dimensional culture. PMID:27334878

  10. Glycoprotein secretion in a tracheal organ culture system

    SciTech Connect

    Warunek, D.J.

    1985-01-01

    Glycoprotein secretion in the rat trachea was studied in vitro, utilizing a modified, matrix embed/perfusion chamber. Baseline parameters of the culture environment were determined by enzymatic and biochemical procedures. The effect of pilocarpine on the release of labelled glycoproteins from the tracheal epithelium was assessed. After a single stimulation with the drug, there was a significant increase in the release of /sup 14/C-glucosamine and /sup 3/H-fucose-labelled glycoprotein. The response was dose-dependent. Similar results were obtained after a second exposure to pilocarpine. However, no dose response was observed. Morphological analyses of the tracheal epithelial secretory cells by Alcian Blue/Periodic Acid Schiff staining showed a significant decrease in the total number of Alcian Blue staining cells and an increase in the mixed cell population after a single exposure to pilocarpine. Second stimulation with the drug showed that the trachea was able to respond again, this time with a further decrease in the number of Alcian Blue staining cells and a decrease in the PAS staining cells as well. Carbohydrate analyses after the first simulation with pilocarpine showed increased levels of N-acetyl neuraminic acid and the neutral carbohydrates, fucose and galactose, in the precipitated glycoproteins.

  11. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    NASA Technical Reports Server (NTRS)

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  12. Magnetic field-magnetic nanoparticle culture system used to grow in vitro murine embryonic stem cells.

    PubMed

    de Freitas, Erika Regina Leal; Soares, Paula Roberta Otaviano; de Santos, Rachel Paula; dos Santos, Regiane Lopes; Porfírio, Elaine Paulucio; Báo, Sônia N; Lima, Emília Celma Oliveira; Guillo, Lídia Andreu

    2011-01-01

    The in vitro growth of embryonic stem cells (ESCs) is usually obtained in the presence of murine embryonic fibroblasts (MEF), but new methods for in vitro expansion of ESCs should be developed due to their potential clinical use. This study aims to establish a culture system to expand and maintain ESCs in the absence of MEF by using murine embryonic stem cells (mECS) as a model of embryonic stem cell. Magnetic nanoparticles (MNPs) were used for growing mESCs in the presence of an external magnetic field, creating the magnetic field-magnetic nanoparticle (MF-MNP) culture system. The growth characteristics were evaluated showing a doubling time slightly higher for mESCs cultivated in the presence of the system than in the presence of the MEF. The undifferentiated state was characterized by RT-PCR, immunofluorescence, alkaline phosphatase activity and electron microscopy. Murine embryonic stem cells cultivated in presence of the MF-MNP culture system exhibited Oct-4 and Nanog expression and high alkaline phosphatase activity. Ultrastructural morphology showed that the MF-MNP culture system did not interfere with processes that cause structural changes in the cytoplasm or nucleus. The MF-MNP culture system provides a tool for in vitro expansion of mESCs and could contribute to studies that aim the therapeutic use of embryonic stem cells. PMID:21446404

  13. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. PMID:26558344

  14. Algal blooms and the nitrogen-enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management.

    PubMed

    Heffernan, James B; Liebowitz, Dina M; Frazer, Thomas K; Evans, Jason M; Cohen, Matthew J

    2010-04-01

    Contradictions between system-specific evidence and broader paradigms to explain ecosystem behavior present a challenge for natural resource management. In Florida (U.S.A.) springs, increasing nitrate (NO3-) concentrations have been implicated as the cause of algal overgrowth via alleviation of N-limitation. As such, policy and management efforts have centered heavily on reduction of nitrogen (N) loads. While the N-limitation hypothesis appears well founded on broadly supported aquatic eutrophication models, several observations from Florida springs are inconsistent with this hypothesis in its present simplified form. First, NO3- concentration is not correlated with algal abundance across the broad population of springs and is weakly negatively correlated with primary productivity. Second, within individual spring runs, algal mats are largely confined to the headwater reaches within 250 m of spring vents, while elevated NO3- concentrations persist for several kilometers or more. Third, historic observations suggest that establishment of macroalgal mats often lags behind observed increases in NO3- by more than a decade. Fourth, although microcosm experiments indicate high thresholds for N-limitation of algae, experiments in situ have demonstrated only minimal response to N enrichment. These muted responses may reflect large nutrient fluxes in springs, which were sufficient to satisfy present demand even at historic concentrations. New analyses of existing data indicate that dissolved oxygen (DO) has declined dramatically in many Florida springs over the past 30 years, and that DO and grazer abundance are better predictors of algal abundance in springs than are nutrient concentrations. Although a precautionary N-reduction strategy for Florida springs is warranted given demonstrable effects of nutrient enrichment in a broad suite of aquatic systems worldwide, the DO-grazer hypothesis and other potential mechanisms merit increased scientific scrutiny. This case study

  15. Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina.

    PubMed

    Elshobary, Mostafa E; Osman, Mohamed E; Abo-Shady, Atef M; Komatsu, Emy; Perreault, Hélène; Sorensen, John; Piercey-Normore, Michele D

    2016-01-01

    Lichen secondary metabolites (polyketides) are produced by the fungal partner, but the role of algal carbohydrates in polyketide biosynthesis is not clear. This study examined whether the type and concentration of algal carbohydrate explained differences in polyketide production and gene transcription by a lichen fungus (Cladonia rangiferina). The carbohydrates identified from a free-living cyanobacterium (Spirulina platensis; glucose), a lichen-forming alga (Diplosphaera chodatii; sorbitol) and the lichen alga that associates with C. rangiferina (Asterochloris sp.; ribitol) were used in each of 1%, 5% and 10% concentrations to enrich malt yeast extract media for culturing the mycobiont. Polyketides were determined by high performance liquid chromatography (HPLC), and polyketide synthase (PKS) gene transcription was measured by quantitative PCR of the ketosynthase domain of four PKS genes. The lower concentrations of carbohydrates induced the PKS gene expression where ribitol up-regulated CrPKS1 and CrPKS16 gene transcription and sorbitol up-regulated CrPKS3 and CrPKS7 gene transcription. The HPLC results revealed that lower concentrations of carbon sources increased polyketide production for three carbohydrates. One polyketide from the natural lichen thallus (fumarprotocetraric acid) also was produced by the fungal culture in ribitol supplemented media only. This study provides a better understanding of the role of the type and concentration of the carbon source in fungal polyketide biosynthesis in the lichen Cladonia rangiferina. PMID:27091386

  16. A Bacterial Continuous Culture System Based on a Microfluidic Droplet Open Reactor.

    PubMed

    Ito, Manami; Sugiura, Haruka; Ayukawa, Shotaro; Kiga, Daisuke; Takinoue, Masahiro

    2016-01-01

    Recently, micrometer-sized bacterial culture systems have attracted attention as useful tools for synthetic biology studies. Here, we present the development of a bacterial continuous culture system based on a microdroplet open reactor consisting of two types of water-in-oil microdroplets with diameters of several hundred micrometers. A continuous culture was realized the through supply of nutrient substrates and the removal of waste and excess bacterial cells based on repeated fusion and fission of droplets. The growth dynamics was controlled by the interval of fusion. We constructed a microfluidic system and quantitatively assessed the dynamics of the bacterial growth using a mathematical model. This system will facilitate the study of synthetic biology and metabolic engineering in the future. PMID:26753707

  17. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays.

    PubMed

    Huang, Song-Bin; Wang, Shih-Siou; Hsieh, Chia-Hsun; Lin, Yung Chang; Lai, Chao-Sung; Wu, Min-Hsien

    2013-03-21

    Although microfluidic cell culture systems are versatile tools for cellular assays, their use has yet to set in motion an evolutionary shift away from conventional cell culture methods. This situation is mainly due to technical hurdles: the operational barriers to the end-users, the lack of compatible detection schemes capable of reading out the results of a microfluidic-based cellular assay, and the lack of fundamental data to bridge the gap between microfluidic and conventional cell culture models. To address these issues, we propose a high-throughput, perfusion, three-dimensional (3-D) microfluidic cell culture system encompassing 30 microbioreactors. This integrated system not only aims to provide a user-friendly cell culture tool for biologists to perform assays but also to enable them to obtain precise data. Its technical features include (i) integration of a heater chip based on transparent indium tin oxide glass, providing stable thermal conditions for cell culturing; (ii) a microscale 3-D culture sample loading scheme that is both efficient and precise; (iii) a non-mechanical pneumatically driven multiplex medium perfusion mechanism; and (iv) a microplate reader-compatible waste medium collector array for the subsequent high throughput bioassays. In this study, we found that the 3-D culture sample loading method provided uniform sample loading [coefficient of variation (CV): 3.2%]. In addition, the multiplex medium perfusion mechanism led to reasonably uniform (CV: 3.6-6.9%) medium pumping rates in the 30 microchannels. Moreover, we used the proposed system to perform a successful cell culture-based chemosensitivity assay. To determine the effects of cell culture models on the cellular proliferation, and the results of chemosensitivity assays, we compared our data with that obtained using three conventional cell culture models. We found that the nature of the cell culture format could lead to different evaluation outcomes. Consequently, when establishing a

  18. Culture system and long-term storage of culture media in the in vitro production of bovine embryos.

    PubMed

    Varga, Santiago; Diez, Carmen; Fernández, Lina; Alvarez, Jenny; Katchicualula, Adelino; Hidalgo, Carlos Olegario; Tamargo, Carolina; Carbajo, Maite

    2011-03-01

    The optimum culture system for in vitro matured and fertilised oocytes still remains to be clarified. Culture media (CM) for mammalian embryos are routinely prepared fresh for use and preserved under refrigeration during one or two weeks. The purposes of this work were (1) to compare the efficiency of a synthetic oviduct fluid (SOF) with two different bovine serum albumin (BSA) concentrations (3 and 8 g/L) for the in vitro production of bovine blastocysts, (2) to test the effect of timing on adding fetal calf serum (FCS) to the SOF, and (3) to evaluate the effects on bovine embryo development of freezing and lyophilisation as procedures for preserving the SOF. Supplementation of SOF with 3 g/L BSA increased Day-7 blastocyst expansion rates (18.3 ± 1.6 vs. 14.4 ± 0.7; P < 0.05), although no differences in hatching rates were found. Addition of FCS to SOFaa (SOF with amino acids) medium supplemented with sodium citrate (SOFaaci) at 48 and at 72 h post-insemination (PI) allowed obtaining higher Day-6 embryo development rates than when FCS was added at 18 or 96 h PI (Day-6 morulae + blastocyst rate: 30.0 ± 1.1, 40.8 ± 1.1, 43.9 ± 2.3 and 39.3 ± 0.5 for FCS addition at 18, 48, 72 and 96 h, respectively). Hatching rates were significantly improved when serum was added at 72 h PI. Finally, both refrigeration and lyophilisation appeared as useful cryopreservation procedures for SOFaaci, although a significant loss of its ability to support embryo development, compared to the control fresh culture medium, was observed. PMID:21354948

  19. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    PubMed

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system. PMID:23420706

  20. Culture, Indigenous Knowledge Systems and Sustainable Development: A Critical View of Education in an African Context

    ERIC Educational Resources Information Center

    Breidlid, Anders

    2009-01-01

    The article's focus is the relationship between culture, indigenous knowledge systems (IKS), sustainable development and education in Africa. It analyzes the concept of sustainability with particular reference to education and indigenous knowledge systems. In particular the article analyzes the documents from the World Summit in Johannesburg in…

  1. Organizational Culture and the Design of Computer-Mediated Communication Systems: Issues for Organizational Communication Research.

    ERIC Educational Resources Information Center

    Hacker, Kenneth L.; And Others

    The study of computer mediated communication (CMC) systems in organizations is necessary for a complete examination and explanation of organizational culture and communication. Research has shown that the effects of CMC systems have been both positive and negative. Positively, they have helped to augment oral communication. Negatively, they have…

  2. Revisiting Bourdieu: Alternative Educational Systems in the Light of the Theory of Social and Cultural Reproduction

    ERIC Educational Resources Information Center

    Azaola, Marta Cristina

    2012-01-01

    The paper reflects upon the principles and practice of an alternative educational system operating in rural Mexico in the light of Bourdieu's theory of cultural and social reproduction. Bourdieu's theory seeks to explain processes of reproduction of power relations within schools and society; whereas alternative educational systems seek to expand…

  3. Summary of the Culture, History and Educational System of Viet Nam.

    ERIC Educational Resources Information Center

    Nguyen, Chinh B., Comp.

    This booklet gives information on the culture, history and educational system of Vietnam as it relates to Vietnamese students in the American educational system. It is intended for use by teachers who have Vietnamese students in their classes. It consists of the following chapters: (1) Vietnamese Geography and History; (2) Vietnamese Family…

  4. The Transformation of Ergonomic Affordances into Cultural Affordances: The Case of the Alnuset System

    ERIC Educational Resources Information Center

    Chiappini, Giampaolo

    2012-01-01

    Is it possible to study the ergonomic affordances offered by a system designed for educational aims and their transformation into cultural affordances? To this purpose, what references can we adopt? This work describes the theoretical framework used to realise this study referring to AlNuSet, a system realised within the EC ReMath project to…

  5. Cometabolism of Monochloramine by Distribution System Relevant Mixed Culture Nitrifiers

    EPA Science Inventory

    Monochloramine (NH2Cl) is increasingly used as a residual disinfectant. A major problem related to NH2Cl is nitrification in distribution systems, leading to rapid NH2Cl residual loss. Ammonia-oxidizing bacteria (AOB), which oxidize ammonia (NH3) to nitrite, can cometabolize chem...

  6. The cultural articulation of patriarchy: legal systems, Islam and women.

    PubMed

    Shaheed, F

    1986-01-01

    Patriarchy in Pakistan results in inequalities to women. Issues emphasized include Islamic customary laws, the movement to Islamize penal and social behavioral codes, the mislabeling of Islamic beliefs as "westernization", and the rising women's movement's attempt to oppose present trends. Many practices thought to reflect Muslim culture are really the infliction of Islamic religious principles on pre-existing behavioral codes in Pakistan; thus, such practices are not actually Islamic teachings and are used to control social behavior. It is necessary to separate Islamic institution and actual Pakistanian practices in order to identify Islamic ideology's role in sustaining and vindicating patriachary. 3 roots of shaping jurisprudence are customary law, religious law, and British civil and criminal law. Further investigation of customary and religious laws currently employed indicates acceptance of Muslim practices promoting superiority of men and rejection of Islamic teachings promoting women's rights. Such Islamic teachings include a marriage settlement requiring men to give money to their wives, acknowledgement of marriages as an agreement between consenting adults, and a woman's right to divorce. Customs contradicting Islamic teachings and leading to inequalities for women include denial of a woman's access to economic resources, the annulment of the marriage settlement, and the relative ease of Muslim men to divorce their wives. Some communities practice purdah in which women are secluded from men and excluded in economic and political decisions. Such social restrictions minimize women's involvement in political decision making and in the judiciary. Exercising their right to vote and participating in trade unions, women would influence decision making. Resistance to current practices has been trade unions, women could influence decision making. resistance to current practices has been primarily from upper and middle class women; but to be effective all classes

  7. Algal bloom-associated disease outbreaks among users of freshwater lakes--United States, 2009-2010.

    PubMed

    Hilborn, Elizabeth D; Roberts, Virginia A; Backer, Lorraine; Deconno, Erin; Egan, Jessica S; Hyde, James B; Nicholas, David C; Wiegert, Eric J; Billing, Laurie M; Diorio, Mary; Mohr, Marika C; Hardy, Joan F; Wade, Timothy J; Yoder, Jonathan S; Hlavsa, Michele C

    2014-01-10

    Harmful algal blooms (HABs) are excessive accumulations of microscopic photosynthesizing aquatic organisms (phytoplankton) that produce biotoxins or otherwise adversely affect humans, animals, and ecosystems. HABs occur sporadically and often produce a visible algal scum on the water. This report summarizes human health data and water sampling results voluntarily reported to CDC's Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS) and the Harmful Algal Bloom-Related Illness Surveillance System (HABISS)* for the years 2009-2010. For 2009-2010, 11 waterborne disease outbreaks associated with algal blooms were reported; these HABs all occurred in freshwater lakes. The outbreaks occurred in three states and affected at least 61 persons. Health effects included dermatologic, gastrointestinal, respiratory, and neurologic signs and symptoms. These 11 HAB-associated outbreaks represented 46% of the 24 outbreaks associated with untreated recreational water reported for 2009-2010, and 79% of the 14 freshwater HAB-associated outbreaks that have been reported to CDC since 1978. Clinicians should be aware of the potential for HAB-associated illness among patients with a history of exposure to freshwater. PMID:24402467

  8. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production

    PubMed Central

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W.; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office’s (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes. PMID:26593899

  9. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production.

    PubMed

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office's (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes. PMID:26593899

  10. Production of algal-based biofuel using non-fresh water sources.

    SciTech Connect

    Sun, Amy Cha-Tien; Reno, Marissa Devan

    2007-09-01

    The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual simulation framework and historical data are based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The overall water balance ignores both transportation options and water chemistry and is broken down by county level. The resulting model contains an algal growth module, a dairy module, an oil production module, and a gas production module. A user interface is also created for controlling the adjustable parameters in the model. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil- and gas-produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

  11. European phylogeography of the epiphytic lichen fungus Lobaria pulmonaria and its green algal symbiont.

    PubMed

    Widmer, Ivo; Dal Grande, Francesco; Excoffier, Laurent; Holderegger, Rolf; Keller, Christine; Mikryukov, Vladimir S; Scheidegger, Christoph

    2012-12-01

    In lichen symbiosis, fungal and algal partners form close associations, often codispersed by vegetative propagules. Due to the particular interdependence, processes such as colonization, dispersal or genetic drift are expected to result in congruent patterns of genetic structure in the symbionts. To study the population structure of an obligate symbiotic system in Europe, we genotyped the fungal and algal symbionts of the epiphytic lichen Lobaria pulmonaria at eight and seven microsatellite loci, respectively, and analysed about 4300 L. pulmonaria thalli from 142 populations from the species' European distribution range. Based on a centroid approach, which localizes centres of genetic differentiation with a high frequency of geographically restricted alleles, we identified the South Italy-Balkan region as the primary glacial refugial area of the lichen symbiosis. Procrustean rotation analysis and a distance congruence test between the fungal and algal population graphs indicated general concordance between the phylogeographies of the symbionts. The incongruent patterns found in areas of postglacial recolonization may show the presence of an additional refugial area for the fungal symbiont, and the impact that horizontal photobiont transmission and different mutation rates of the symbionts have on their genotypic associations at a continental scale. PMID:23094600

  12. Role of initial cell density of algal bioassay of toxic chemicals.

    PubMed

    Singh, Prashant Kumar; Shrivastava, Alok Kumar

    2016-07-01

    A variety of toxicants such as, metal ions, pesticides, dyes, etc. are continuously being introduced anthropogenically in the environment and adversely affect to the biotic component of the ecosystem. Therefore, the assessment of negative effects of these toxicants is required. However, toxicity assessment anticipated by chemical analysis are extremely poor, therefore the application of the living systems for the same is an excellent approach. Concentration of toxicant as well as cell density both influenced the result of the algal toxicity assay. Here, Scenedesmus sp, a very fast growing green microalgae was selected for study the effects of initial cell densities on the toxicity of Cu(II), Cd(II), Zn(II), paraquat and 2,4-D. Results demonstrated concentration dependent decrease in biomass and specific growth rate of Scenedesmus sp. on exposure of abovesaid toxicants. Paraquat and 2,4-D emerged as extremely toxic to the test alga which reflected from the lowest EC value and very steep decline in biomass was evident with increasing concentration of paraquat and 2,4-D in the medium. Result also demonstrated that initial cell density is a very important parameter than specific growth rate for algal bioassay of various toxicants. Present study clearly illustrated that the use of smaller cell density is always recommended for assaying toxicity of chemicals in algal assays. PMID:26593761

  13. Clinical comparison of the isolator and BacT/Alert aerobic blood culture systems.

    PubMed Central

    Hellinger, W C; Cawley, J J; Alvarez, S; Hogan, S F; Harmsen, W S; Ilstrup, D M; Cockerill, F R

    1995-01-01

    The performance characteristics of the Isolator (Wampole Laboratories, Cranbury, N.J.) and the BacT/Alert (Organon Teknika Corporation, Durham, N.C.) aerobic blood culture systems were compared for 6,009 blood culture sets obtained from patients with suspected bloodstream infections. The BacT/Alert aerobic bottle [BTA(O2)] was continuously agitated while it was incubated in 5% CO2 at 36 degrees C; culture plates prepared from the Isolator tube [I(O2)] were incubated in 5% CO2 at 37 degrees C. From 394 blood cultures, 416 clinically significant isolates of bacteria and yeasts were recovered. The overall yields for BTA(O2) and I(O2) were not significantly different (319 versus 336; P = 0.20). I(O2) recovered significantly more staphylococcus (P < 0.05) and yeast isolates (P < 0.01). BTA(O2) recovered significantly more aerobic and facultatively anaerobic gram-negative bacilli (P < 0.05). In blood culture sets which produced growth of the same organisms in both the BTA(O2) and I(O2) systems, the BTA(O2) system detected growth sooner, but more rapid identification was possible with the I(O2) system by virtue of earlier isolation of colonies on solid media. PMID:7665647

  14. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system.

    PubMed

    Ding, Haiyan; Cheng, Zhihui; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  15. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    PubMed Central

    Ding, Haiyan; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    ABSTRACT A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  16. A modular culture system for the generation of multiple specialized tissues.

    PubMed

    Minuth, Will W; Denk, Lucia; Glashauser, Anne

    2010-04-01

    Numerous factors influence cell functions and tissue development in culture. A modular culture system has been developed to allow the control of many of these important environmental parameters. Optimal adhesion of cells is obtained by selecting an individual biomaterial. Selected specimens are mounted in a tissue carrier in order to protect it against damage during handling and after seeding cells, the carriers can be used in a series of compatible perfusion culture containers. This technique allows the simple bathing of growing tissue under continuous medium transport and the exposure of epithelia to a gradient with different fluids at the luminal and basal sides. A further container is made of transparent material to observe microscopically the developing tissue. In addition, a special model features a flexible silicone lid to apply force to mimic the mechanical load required for developing connective and muscular tissue. Perfusion culture of stem/progenitor cells at the interface of an artificial interstitium made by a polyester fleece results in the spatial development of tubules. During long term culture over weeks the growing tissue is continuously exposed to fresh nutrition and respiratory gas. The medium is transported in a constant flow or in pulses, preventing unstirred layers of fluid. A variety of applications of this modular system, described in this paper, demonstrates that the biological profile of cells and tissues can be strongly improved when perfusion culture with a permanent provision of fresh medium is applied. PMID:20096452

  17. An integrated system for synchronous culture of animal cells under controlled conditions.

    PubMed

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture. PMID:27625207

  18. The Porcine Aortic Tissue Culture System in vitro for Stem Cell Research

    PubMed Central

    Kim, Dong-Eun; Oh, Keun-Hee; Yang, Ji-Hye; Kwon, Sun-Keun; Cho, Tae-Jun; Lee, Seul-Bi; Nam, Hyun; Lee, Dong-Sup; Lee, Jung-Ryul; Lee, Gene

    2011-01-01

    Background and Objectives: Due to the shortage of human donors for transplantation, the use of animal organs for xenotransplantation has come into great interest. Xeno-derived vessels and cardiac valves would be possible alternatives for the patient suffering from cardiovascular diseases. Therefore, we established in vitro culture system of a porcine vessel that could be helpful for the research of xenograft and stem cell research. Methods and Results: We primarily isolated porcine thoracic aorta, cultured square-shaped pieces up to 17 days and analyzed its morphology and characters. The endothelial cells were primarily isolated from cultured porcine aortic pieces and their morphology, function and character were analyzed in order to confirm them as endothelial cells at day 3, 4, 8, 10 and 17. Even at day 17, the morphology exhibited the intact endothelial layer as well as specifically expressed CD31 and von Willebrand factor. The morphology of primarily isolated cells from cultured tissues was identical as an endothelial cell. By flow cytometry analysis, more than 80% of the isolated cells expressed CD31 and up to 80% took up acetyl low density lipoprotein (ac-LDL) until day 10 of tissue culture period even though it decreased to about 50% at day 17 that means they not only showed typical endothelial cell characters but also functioned properly. Conclusions: We successfully established and optimized a porcine vascular tissue in vitro culture system that could be a valuable model for in vitro study of xenotransplantation and stem cell research. PMID:24298344

  19. A three-dimensional culture system for the growth of hematopoietic cells.

    PubMed

    Naughton, B A; Jacob, L; Naughton, G K

    1990-01-01

    A physiological three-dimensional culture system was developed for the growth of human bone marrow. Bone marrow stromal cells were established on a nylon filtration screen template, suspended in liquid medium and grown to 70% confluence, and inoculated with hematopoietic cells. An intricate microenvironment is established to support hematopoiesis, which proceeds in a three-dimensional orientation. Analysis of the adherent zone of these cultures with flow cytometry and progenitor cell assays reveals multilineage hematologic expression and active proliferation of immature cells for the 12 week experimental period. Similar results were obtained with rat bone marrow cultures using this methodology. The suspended nylon mesh system is novel in that it supports the growth of several hematologic lineages concurrently. This system may lend itself to the growth of purged or untreated bone marrow for transplantation. PMID:2308994

  20. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    PubMed Central

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  1. Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae).

    PubMed

    Frouz, Jan; Ali, Arshad; Lobinske, Richard J

    2004-12-01

    Glyptotendipes paripes Edwards midge larval growth, development, survival, emerging adult size, and food digestibility when provided with six species of algae as food were studied in the laboratory. For the study, eggs from G. paripes adults maintained in the laboratory were reared to the adult stage at 30 degrees C for 60 d on pure culture of each algal species at densities of 0.4, 0.1, and 0.02 mg of algae (fresh weight) per milliliter, as a sole food source. All larvae reared on Microcystis sp., Botryoccocus braunii, and Scenedesmus quadricauda died before completing development. The only larvae to complete development to adult were those reared on 0.4 mg/ml Lyngbia cf. aeruginosa (44.0 d), Anabaena flos-aquae (29.7 d), and Chlorella keslerii (44.8 d). No significant differences in body size of the adults achieving complete development on the three algal species were found. Algal digestion, measured by comparing amounts of live and dead algal cells in remains of cultures used for feeding and in larval excrement, revealed that >95% of all L. cf. aeruginosa, A. flos-aquae, and Microcystis sp. cells were digested; for C. keslerii, 13% of cells were digested, whereas little or no digestion of B. braunii and S. quadricauda was observed. To evaluate the effects of algal species on larval growth, laboratory-reared (on artificial food) late third/early fourth instars of G. paripes were fed individual algal species, and 10 d later, body mass changes were recorded and compared with nonfed larvae. Body mass of larvae reared on L. cf. aeruginosa and A. flos-aquae significantly increased, whereas those provided Microcystis sp. and the nonfed larvae showed significant body mass reductions. Overall, B. braunii and S. quadricauda were not suitable as larval food, probably due to their low digestibility, and Microcystis sp. because of its toxicity. This study identifies some algae that do and others that do not support G. paripes larval growth. The information is useful in

  2. Use of image analysis tool for the development of light distribution pattern inside the photobioreactor for the algal cultivation.

    PubMed

    Kumar, Kanhaiya; Sirasale, Anusha; Das, Debabrata

    2013-09-01

    Light is one of the important parameters for the growth of photosynthetic microorganisms. In algal photobioreactors, pigmentation of algal cells has additional shading effect which reduces light penetration. Information on the local light intensity inside the photobioreactor is helpful for its efficient designs. Image analysis is based on trichromatic theory and it is used as a tool in studying the light distribution. Digital images of the top view of the photobioreactor were taken and processed using image processing tool in the MATLAB software. This was used to estimate the light intensity distribution in the externally radiating stirred tank photobioreactor across the radial path length. In addition, the effect of light tubes arrangement was studied. This was to find out the effect of light distribution along the periphery of culture suspension. Modified Beer-Lambert's law was found to fit the generated light intensity profile at various cell concentrations and light intensity. PMID:23792657

  3. Proteomics analysis of nasopharyngeal carcinoma cell secretome using a hollow fiber culture system and mass spectrometry.

    PubMed

    Wu, Hsin-Yi; Chang, Ying-Hwa; Chang, Yu-Chen; Liao, Pao-Chi

    2009-01-01

    Secreted proteins, referred to as the secretome, are known to regulate a variety of biological functions and are involved in a multitude of pathological processes. However, some secreted proteins from cell cultures are difficult to detect because of their intrinsic low abundance. They are frequently masked by proteins shed from lysed cells and the substantial amounts of serum proteins used in culture medium. We have proposed an analytical platform for sensitive detection of secreted proteins by utilizing a hollow fiber culture (HFC) system coupled with proteomic approaches. The HFC system enables culture of high-density cells in a small volume where secreted proteins can be accumulated. In addition, cell lysis rates can be greatly reduced, which alleviates the contamination from lysed cells. In this study, nasopharyngeal carcinoma (NPC) cells were utilized to evaluate the efficiency of this system in the collection and analysis of the cell secretome. Cells were adapted to serum-free medium and inoculated into the HFC system. The cell lysis rate in the culture system was estimated to be 0.001-0.022%, as determined by probing four intracellular proteins in the conditioned medium (CM), while a cell lysis rate of 0.32-1.84% was observed in dish cultures. Proteins in the CM were analyzed using SDS-PAGE and liquid chromatography tandem mass spectrometry (LC-MS/MS). A total of 134 proteins were identified in 62 gel bands, of which 61% possess a signal peptide and/or a transmembrane domain. In addition, 37% of the identified secretome were classified as extracellular or membrane proteins, whereas 98% of the lysate proteins were identified as intracellular proteins. We suggest that the HFC system may be used to collect secreted proteins efficiently and facilitate comprehensive characterization of cell secretome. PMID:19012429

  4. Assessment of Long-Term Effects of Nanoparticles in a Microcarrier Cell Culture System

    PubMed Central

    Mrakovcic, Maria; Absenger, Markus; Riedl, Regina; Smole, Claudia; Roblegg, Eva; Fröhlich, Leopold F.; Fröhlich, Eleonore

    2013-01-01

    Nano-sized materials could find multiple applications in medical diagnosis and therapy. One main concern is that engineered nanoparticles, similar to combustion-derived nanoparticles, may cause adverse effects on human health by accumulation of entire particles or their degradation products. Chronic cytotoxicity must therefore be evaluated. In order to perform chronic cytotoxicity testing of plain polystyrene nanoparticles on the endothelial cell line EAhy 926, we established a microcarrier cell culture system for anchorage-dependent cells (BioLevitatorTM). Cells were cultured for four weeks and exposed to doses, which were not cytotoxic upon 24 hours of exposure. For comparison, these particles were also studied in regularly sub-cultured cells, a method that has traditionally been used to assess chronic cellular effects. Culturing on basal membrane coated microcarriers produced very high cell densities. Fluorescent particles were mainly localized in the lysosomes of the exposed cells. After four weeks of exposure, the number of cells exposed to 20 nm polystyrene particles decreased by 60% as compared to untreated controls. When tested in sub-cultured cells, the same particles decreased cell numbers to 80% of the untreated controls. Dose-dependent decreases in cell numbers were also noted after exposure of microcarrier cultured cells to 50 nm short multi-walled carbon nanotubes. Our findings support that necrosis, but not apoptosis, contributed to cell death of the exposed cells in the microcarrier culture system. In conclusion, the established microcarrier model appears to be more sensitive for the identification of cellular effects upon prolonged and repeated exposure to nanoparticles than traditional sub-culturing. PMID:23457616

  5. Assessment of long-term effects of nanoparticles in a microcarrier cell culture system.

    PubMed

    Mrakovcic, Maria; Absenger, Markus; Riedl, Regina; Smole, Claudia; Roblegg, Eva; Fröhlich, Leopold F; Fröhlich, Eleonore

    2013-01-01

    Nano-sized materials could find multiple applications in medical diagnosis and therapy. One main concern is that engineered nanoparticles, similar to combustion-derived nanoparticles, may cause adverse effects on human health by accumulation of entire particles or their degradation products. Chronic cytotoxicity must therefore be evaluated. In order to perform chronic cytotoxicity testing of plain polystyrene nanoparticles on the endothelial cell line EAhy 926, we established a microcarrier cell culture system for anchorage-dependent cells (BioLevitator(TM)). Cells were cultured for four weeks and exposed to doses, which were not cytotoxic upon 24 hours of exposure. For comparison, these particles were also studied in regularly sub-cultured cells, a method that has traditionally been used to assess chronic cellular effects. Culturing on basal membrane coated microcarriers produced very high cell densities. Fluorescent particles were mainly localized in the lysosomes of the exposed cells. After four weeks of exposure, the number of cells exposed to 20 nm polystyrene particles decreased by 60% as compared to untreated controls. When tested in sub-cultured cells, the same particles decreased cell numbers to 80% of the untreated controls. Dose-dependent decreases in cell numbers were also noted after exposure of microcarrier cultured cells to 50 nm short multi-walled carbon nanotubes. Our findings support that necrosis, but not apoptosis, contributed to cell death of the exposed cells in the microcarrier culture system. In conclusion, the established microcarrier model appears to be more sensitive for the identification of cellular effects upon prolonged and repeated exposure to nanoparticles than traditional sub-culturing. PMID:23457616

  6. The Impact of National Cultural Differences on Nurses' Acceptance of Hospital Information Systems.

    PubMed

    Lin, Hsien-Cheng

    2015-06-01

    This study aims to explore the influence of national cultural differences on nurses' perceptions of their acceptance of hospital information systems. This study uses the perspective of Technology Acceptance Model; national cultural differences in terms of masculinity/femininity, individualism/collectivism, power distance, and uncertainty avoidance are incorporated into the Technology Acceptance Model as moderators, whereas time orientation is a control variable on hospital information system acceptance. A quantitative research design was used in this study; 261 participants, US and Taiwan RNs, all had hospital information system experience. Data were collected from November 2013 to February 2014 and analyzed using a t test to compare the coefficients for each moderator. The results show that individualism/collectivism, power distance, and uncertainty avoidance all exhibit significant difference on hospital information system acceptance; however, both masculinity/femininity and time orientation factors did not show significance. This study verifies that national cultural differences have significant influence on nurses' behavioral intention to use hospital information systems. Therefore, hospital information system providers should emphasize the way in which to integrate different technological functions to meet the needs of nurses from various cultural backgrounds. PMID:25899441

  7. Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Zhu, Xi; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2014-06-01

    The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by a complex metabolic system of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. In this paper, in consideration of the fact that the transport ways of 1,3-PD and glycerol with different weights across cell membrane are still unclear in batch culture, we consider 121 possible metabolic pathways and establish a novel mathematical model which is represented by a complex metabolic system. Taking into account the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium point for the metabolic system of batch culture, the novel approach used here is to define quantitatively biological robustness of the intracellular substance concentrations for the overall process of batch culture. To determine the most possible metabolic pathway, we take the defined biological robustness as cost function and establish an identification model, in which 1452 system parameters and 484 pathway parameters are involved. Simultaneously, the identification model is subject to the metabolic system, continuous state constraints and parameter constraints. As such, solving the identification model by a serial program is a very complicated task. We propose a parallel migration particle swarm optimization algorithm (MPSO) capable of solving the identification model in conjunction with the constraint transcription and smoothing approximation techniques. Numerical results show that the most possible metabolic pathway and the corresponding metabolic system can reasonably describe the process of batch culture.

  8. The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications

    PubMed Central

    Roberts, David A.; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m-2 d-1 to a maximum of 22.5 g DW m-2 d-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  9. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

    PubMed

    Roberts, David A; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  10. Malt house wastewater treatment with settleable algal-bacterial flocs.

    PubMed

    Stříteský, Luboš; Pešoutová, Radka; Hlavínek, Petr

    2015-01-01

    This paper deals with biological treatment of malt house wastewater using algal-bacterial flocs. During three months of testing, optimisation of growth conditions and biomass separation leads to maximisation of biomass production, improved flocs settleability and increased pollutant removal efficiency while maintaining low energy demand. At a high food to microorganism ratio (0.16 to 0.29 kg BOD5 kg(-1) TSS d(-1)), the biological oxygen demand (BOD5), chemical oxygen demand (CODCr), total phosphorus (Ptot) and total suspended solids (TSS) removal efficiencies were all higher than 90%. At a food to microorganism ratio of 0.06 kg BOD5 kg(-1) TSS d(-1), BOD5, CODCr, total nitrogen (Ntot), Ptot and TSS removal efficiencies of 99.5%, 97.6%, 91.5%, 97.8% and 98.4%, respectively, were achieved. The study also proved a strong dependence of removal efficiencies on solar radiation. The results suggest the algae-bacteria system is suitable for treatment of similar wastewater in locations with available land and sufficient solar radiation and temperature during the whole year. PMID:26540541

  11. Dynamic mathematical model of high rate algal ponds (HRAP).

    PubMed

    Jupsin, H; Praet, E; Vasel, J L

    2003-01-01

    This article presents a mathematical model to describe High-Rate Algal Ponds (HRAPs). The hydrodynamic behavior of the reactor is described as completely mixed tanks in series with recirculation. The hydrodynamic pattern is combined with a subset of River Water Quality Model 1 (RWQM1), including the main processes in liquid phase. Our aim is to develop models for WSPs and aerated lagoons, too, but we focused on HRAPs first for several reasons: Sediments are usually less abundant in HRAP and can be neglected, Stratification is not observed and state variables are constant in a reactor cross section, Due to the system's geometry, the reactor is quite similar to a plugflow type reactor with recirculation, with a simple advection term. The model is based on mass balances and includes the following processes: *Phytoplankton growth with NO3-, NO2- and death, *Aerobic growth of heterotrophs with NO3-, NH4+ and respiration, *Anoxic growth of heterotrophs with NO3-, NO2- and anoxic respiration, *Growth of nitrifiers (two stages) and respiration. The differences with regard to RWQM1 are that we included a limiting term associated with inorganic carbon on the growth rate of algae and nitrifiers, gas transfers are taken into account by the familiar Adeney equation, and a subroutine calculates light intensity at the water surface. This article presents our first simulations. PMID:14510211

  12. In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae

    PubMed Central

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-01-01

    The current fascination with algal biofuel production stems from a high lipid biosynthetic capacity and little conflict with land plant cultivation. However, the mechanisms which enable algae to accumulate massive oil remain elusive. An enzyme for triacylglycerol (TAG) biosynthesis in Chlamydomonas reinhardtii, CrDGTT2, can produce a large amount of TAG when expressed in yeast or higher plants, suggesting a unique ability of CrDGTT2 to enhance oil production in a heterologous system. Here, we performed metabolic engineering in Saccharomyces cerevisiae by taking advantage of CrDGTT2. We suppressed membrane phospholipid biosynthesis at the log phase by mutating OPI3, enhanced TAG biosynthetic pathway at the stationary phase by overexpressing PAH1 and CrDGTT2, and suppressed TAG hydrolysis on growth resumption from the stationary phase by knocking out DGK1. The resulting engineered yeast cells accumulated about 70-fold of TAG compared with wild type cells. Moreover, TAG production was sustainable. Our results demonstrated the enhanced and sustainable TAG production in the yeast synthetic platform. PMID:26913021

  13. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  14. Copepod Trajectory Characteristics in Thin Layers of Toxic Algal Exudates

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; True, A. C.; Weissburg, M. J.; Yen, J.

    2013-11-01

    Recently documented thin layers of toxic phytoplankton (``cryptic blooms'') are modeled in a custom flume system for copepod behavioral assays. Planar laser-induced fluorescence (LIF) measurements quantify the spatiotemporal structure of the chemical layers ensuring a close match to in situ bloom conditions and allowing for quantification of threshold dissolved toxin levels that induce behavioral responses. Assays with the copepods Acartia tonsa (hop-sinker) and Temora longicornis (cruiser) in thin layers of toxic exudates from the common dinoflagellate Karenia brevis (cell equivalent ~ 1 - 10,000 cells/mL) examine the effects of dissolved toxic compounds and copepod species on swimming trajectory characteristics. Computation of parameters such as swimming speed and the fractal dimension of the two-dimensional trajectory (F2D) allows for statistical evaluation of copepod behavioral responses to dissolved toxic compounds associated with harmful algal blooms (HABs). Changes in copepod swimming behavior caused by toxic compounds can significantly influence predator, prey, and mate encounter rates by altering the fracticality (``diffuseness'' or ``volume-fillingness'') of a copepod's trajectory. As trophic mediators linking primary producers and higher trophic levels, copepods can significantly influence HAB dynamics and modulate large scale ecological effects through their behavioral interactions with toxic blooms.

  15. Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture.

    PubMed

    Vesty, Eleanor F; Kessler, Ralf W; Wichard, Thomas; Coates, Juliet C

    2015-01-01

    Green Ulvophyte macroalgae represent attractive model systems for understanding growth, development, and evolution. They are untapped resources for food, fuel, and high-value compounds, but can also form nuisance blooms. To fully analyze green seaweed morphogenesis, controlled laboratory-based culture of these organisms is required. To date, only a single Ulvophyte species, Ulva mutabilis Føyn, has been manipulated to complete its whole life cycle in laboratory culture and to grow continuously under axenic conditions. Such cultures are essential to address multiple key questions in Ulva development and in algal-bacterial interactions. Here we show that another Ulva species, U. linza, with a broad geographical distribution, has the potential to be grown in axenic culture similarly to U. mutabilis. U. linza can be reliably induced to sporulate (form gametes and zoospores) in the laboratory, by cutting the relevant thallus tissue into small pieces and removing extracellular inhibitors (sporulation and swarming inhibitors). The germ cells work as an ideal feed stock for standardized algae cultures. The requirement of U. linza for bacterial signals to induce its normal morphology (particularly of the rhizoids) appears to have a species-specific component. The axenic cultures of these two species pave the way for future comparative studies of algal-microbial interactions. PMID:25674100

  16. Evaluation of mono or mixed cultures of lactic acid bacteria in type II sourdough system.

    PubMed

    Ekinci, Raci; Şimşek, Ömer; Küçükçuban, Ayca; Nas, Sebahattin

    2016-04-01

    The aim of this study was to evaluate the use of mono and mixed lactic acid bacteria (LAB) cultures to determine suitable LAB combinations for a type II sourdough system. In this context, previously isolated sourdough LAB strains with antimicrobial activity, which included Lactobacillus plantarum PFC22, Lactobacillus brevis PFC31, Pediococcus acidilactici PFC38, and Lactobacillus sanfranciscensis PFC80, were used as mono or mixed culture combinations in a fermentation system to produce type II sourdough, and subsequently in bread dough production. Compared to the monoculture fermentation of dough, the use of mixed cultures shortened the adaptation period by half. In addition, the use of mixed cultures ensured higher microbial viability, and enhanced the fruity flavor during bread dough production. It was determined that the combination of L. plantarum PFC22 + P. acidilactici PFC38 + L. sanfranciscensis PFC80 is a promising culture mixture that can be used in the production of type II sourdough systems, and that may also contribute to an increase in metabolic activity during bread production process. PMID:25807196

  17. A Novel Inducer of Roseobacter Motility Is Also a Disruptor of Algal Symbiosis

    PubMed Central

    Sule, Preeti

    2013-01-01

    Silicibacter sp. strain TM1040, a member of the Roseobacter clade, forms a symbiosis with unicellular phytoplankton, which is inextricably linked to the biphasic “swim or stick” lifestyle of the bacteria. Mutations in flaC bias the population toward the motile phase. Renewed examination of the FlaC− strain (HG1016) uncovered that it is composed of two different cells: a pigmented type, PS01, and a nonpigmented cell, PS02, each of which has an identical mutation in flaC. While monocultures of PS01 and PS02 had few motile cells (0.6 and 6%, respectively), coculturing the two strains resulted in a 10-fold increase in the number of motile cells. Cell-free supernatants from coculture or wild-type cells were fully capable of restoring motility to PS01 and PS02, which was due to increased fliC3 (flagellin) transcription, FliC3 protein levels per cell, and flagella synthesis. The motility-inducing compound has an estimated mass of 226 Da, as determined by mass spectrometry, and is referred to as Roseobacter Motility Inducer (RMI). Mutations affecting genes involved in phenyl acetic acid synthesis significantly reduced RMI, while defects in tropodithietic acid (TDA) synthesis had marginal or no effect on RMI. RMI biosynthesis is induced by p-coumaric acid, a product of algal lignin degradation. When added to algal cultures, RMI caused loss of motility, cell enlargement, and vacuolization in the algal cells. RMI is a new member of the roseobacticide family of troponoid compounds whose activities affect roseobacters, by shifting their population toward motility, as well as their phytoplankton hosts, through an algicidal effect. PMID:23161030

  18. In Vivo Culture System Using the INVOcell Device Shows Similar Pregnancy and Implantation Rates to Those Obtained from In Vivo Culture System in ICSI Procedures

    PubMed Central

    García-Ferreyra, Javier; Hilario, Roly; Luna, Daniel; Villegas, Lucy; Romero, Rocío; Zavala, Patricia; Dueñas-Chacón, Julio

    2015-01-01

    CAPSULE Clinical outcomes using INVOcell device with ICSI. OBJECTIVE Intravaginal culture of oocytes (INVO) procedure is an intravaginal culture system that utilizes the INVOcell device in which the fertilization and embryo culture occur. In this procedure, the vaginal cavity serves as an incubator for oocyte fertilization and early embryonic development. The objective of this study was to evaluate the clinical outcomes of this intravaginal culture system in intracytoplasmic sperm injection (ICSI). METHODS A total of 24 cycles INVO-ICSI (study group) and 74 cycles of ICSI (control group) were included in the study. The cleaved oocytes at day 3/total injected oocytes, embryo quality, pregnancy rate (PR), implantation rate (IR), and miscarriage rate (MR) were compared between both groups. RESULTS At day 3, there was no difference in the cleaved oocyte rate (78.7 and 76.1%) and embryo quality (77 and 86.8%) for the study and control groups, respectively. In the study group, more embryos were significantly transferred compared to the control group (2.63 ± 0.58 versus 1.93 ± 0.25; P < 0.05). PRs, IRs, and MRs were similar for the study group compared with the control group (PR: 54.2% versus 58.1%; IR: 31.7% versus 33.6%; MR: 7.7% versus 20.9%). CONCLUSIONS Good PR and IR can be obtained using the INVOcell device, and the INVO-ICSI procedure can be considered as an alternative option to infertile patients. PMID:26085790

  19. Revised culture-based system for identification of Malassezia species.

    PubMed

    Kaneko, Takamasa; Makimura, Koichi; Abe, Michiko; Shiota, Ryoko; Nakamura, Yuka; Kano, Rui; Hasegawa, Atsuhiko; Sugita, Takashi; Shibuya, Shuichi; Watanabe, Shinichi; Yamaguchi, Hideyo; Abe, Shigeru; Okamura, Noboru

    2007-11-01

    Forty-six strains of Malassezia spp. with atypical biochemical features were isolated from 366 fresh clinical isolates from human subjects and dogs. Isolates obtained in this study included 2 (4.7%) lipid-dependent M. pachydermatis isolates; 1 (2.4%) precipitate-producing and 6 (14.6%) non-polyethoxylated castor oil (Cremophor EL)-assimilating M. furfur isolates; and 37 (34.3%) M. slooffiae isolates that were esculin hydrolyzing, 17 (15.7%) that were non-tolerant of growth at 40 degrees C, and 2 (1.9%) that assimilated polyethoxylated castor oil. Although their colony morphologies and sizes were characteristic on CHROMagar Malassezia medium (CHROM), all strains of M. furfur developed large pale pink and wrinkled colonies, and all strains of M. slooffiae developed small (<1 mm) pale pink colonies on CHROM. These atypical strains were distinguishable by the appearance of their colonies grown on CHROM. Three clinically important Malassezia species, M. globosa, M. restricta, and M. furfur, were correctly identified by their biochemical characteristics and colony morphologies. The results presented here indicate that our proposed identification system will be useful as a routine tool for the identification of clinically important Malassezia species in clinical laboratories. PMID:17881545

  20. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro.

    PubMed

    Emont, Margo P; Yu, Hui; Jun, Heejin; Hong, Xiaowei; Maganti, Nenita; Stegemann, Jan P; Wu, Jun

    2015-12-01

    It has long been recognized that body fat distribution and regional adiposity play a major role in the control of metabolic homeostasis. However, the ability to study and compare the cell autonomous regulation and response of adipocytes from different fat depots has been hampered by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into mature adipocytes in culture. Here, we present an easily created 3-dimensional (3D) culture system that can be used to differentiate preadipocytes from the visceral depot as robustly as those from the sc depot. The cells differentiated in these 3D collagen gels are mature adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, and functional assays. This 3D culture system therefore allows for study of the development and function of adipocytes from both depots in vitro and may ultimately lead to a greater understanding of site-specific functional differences of adipose tissues to metabolic dysregulation. PMID:26425808

  1. 3D culture of ovarian follicles: a system towards their engineering?

    PubMed

    Zuccotti, Maurizio; Merico, Valeria; Rebuzzini, Paola; Belli, Martina; Vigone, Giulia; Mulas, Francesca; Fassina, Lorenzo; Wruck, Wasco; Adjaye, James; Bellazzi, Riccardo; Garagna, Silvia

    2015-01-01

    Infertility in women is a health priority. Designing a robust culture protocol capable of attaining complete follicle growth is an exciting challenge, for its potential clinical applications, but also as a model to observe and closely study the sequence of molecular events that lie behind the intricate relationship existing between the oocyte and surrounding follicle cells. Here, we describe the procedures used to maintain the ovarian follicle 3D architecture employing a variety of in vitro systems and several types of matrices. Collagen and alginate are the matrices that led to better results, including proof-of-concept of full-term development. Pioneer in its kind, these studies underlie the drawbacks encountered and the need for a culture system that allows more quantitative analyses and predictions, projecting the culture of the ovarian follicle into the realm of tissue engineering. PMID:26505254

  2. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.

    PubMed

    Satoh, T; Narazaki, G; Sugita, R; Kobayashi, H; Sugiura, S; Kanamori, T

    2016-06-21

    Here, we report a pneumatic pressure-driven microfluidic device capable of multi-throughput medium circulation culture. The circulation culture system has the following advantages for application in drug discovery: (i) simultaneous operation of multiple circulation units, (ii) use of a small amount of circulating medium (3.5 mL), (iii) pipette-friendly liquid handling, and (iv) a detachable interface with pneumatic pressure lines via sterile air-vent filters. The microfluidic device contains three independent circulation culture units, in which human umbilical vein endothelial cells (HUVECs) were cultured under physiological shear stress induced by circulation of the medium. Circulation of the medium in the three culture units was generated by programmed sequentially applied pressure from two pressure-control lines. HUVECs cultured in the microfluidic device were aligned under a one-way circulating flow with a shear stress of 10 dyn cm(-2); they exhibited a randomly ordered alignment under no shear stress and under reciprocating flow with a shear stress of 10 dyn cm(-2). We also observed 2.8- to 4.9-fold increases in expression of the mRNAs of endothelial nitric oxide synthase and thrombomodulin under one-way circulating flow with a shear stress of 10 dyn cm(-2) compared with conditions of no shear stress or reciprocating flow. PMID:27229626

  3. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection

    PubMed Central

    Sainz, Bruno; TenCate, Veronica; Uprichard, Susan L

    2009-01-01

    Background In order to elucidate how Hepatitis C Virus (HCV) interacts with polarized hepatocytes in vivo and how HCV-induced alterations in cellular function contribute to HCV-associated liver disease, a more physiologically relevant hepatocyte culture model is needed. As such, NASA-engineered three-dimensional (3-D) rotating wall vessel (RWV) bioreactors were used in effort to promote differentiation of HCV-permissive Huh7 hepatoma cells. Results When cultured in the RWV, Huh7 cells became morphologically and transcriptionally distinct from more standard Huh7 two-dimensional (2-D) monolayers. Specifically, RWV-cultured Huh7 cells formed complex, multilayered 3-D aggregates in which Phase I and Phase II xenobiotic drug metabolism genes, as well as hepatocyte-specific transcripts (HNF4α, Albumin, TTR and α1AT), were upregulated compared to 2-D cultured Huh7 cells. Immunofluorescence analysis revealed that these HCV-permissive 3-D cultured Huh7 cells were more polarized than their 2D counterparts with the expression of HCV receptors, cell adhesion and tight junction markers (CD81, scavenger receptor class B member 1, claudin-1, occludin, ZO-1, β-Catenin and E-Cadherin) significantly increased and exhibiting apical, lateral and/or basolateral localization. Conclusion These findings show that when cultured in 3-D, Huh7 cells acquire a more differentiated hepatocyte-like phenotype. Importantly, we show that these 3D cultures are highly permissive for HCV infection, thus providing an opportunity to study HCV entry and the effects of HCV infection on host cell function in a more physiologically relevant cell culture system. PMID:19604376

  4. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan

    2003-01-01

    A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD5, 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO2-N, 90%) and nitrate nitrogen (NO3-N, 68%). Phosphate (PO4-P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO3-N in the culture tank water in RAS were significantly (Psystem (CAS) that simulated static pond culture without wetland treatment. However, no significant difference (Psystems. At the end of the study, the harvest results showed that shrimp weight and survival rate in the RAS (3.8 +/-1.8 g/shrimp and 90%) significantly (Pculture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system. PMID:12663210

  5. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    NASA Astrophysics Data System (ADS)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  6. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  7. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed

    Van Dolah, F M

    2000-03-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. PMID:10698729

  8. Energy evaluation of algal cell disruption by high pressure homogenisation.

    PubMed

    Yap, Benjamin H J; Dumsday, Geoff J; Scales, Peter J; Martin, Gregory J O

    2015-05-01

    The energy consumption of high pressure homogenisation (HPH) was analysed to determine the feasibility of rupturing algal cells for biodiesel production. Experimentally, the processing capacity (i.e. flow rate), power draw and cell disruption efficiency of HPH were independent of feed concentration (for Nannochloropsis sp. up to 25%w/w solids). Depending on the homogenisation pressure (60-150 MPa), the solids concentration (0.25-25%w/w), and triacylglyceride (TAG) content of the harvested algal biomass (10-30%), the energy consumed by HPH represented between 6% and 110-times the energy density of the resulting biodiesel. Provided the right species (weak cell wall and high TAG content) is selected and the biomass is processed at a sufficiently high solids concentration, HPH can consume a small fraction of the energy content of the biodiesel produced. This study demonstrates the feasibility of process-scale algal cell disruption by HPH based on its energy requirement. PMID:25435068

  9. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed Central

    Van Dolah, F M

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729

  10. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production.

    PubMed

    Tan, Yinyee; Fang, Mingyue; Jin, Lihua; Zhang, Chong; Li, He-Ping; Xing, Xin-Hui

    2015-10-01

    For biomass production of Spirulina platensis as feedstock of fermentation, the culture characteristics of three typical mutants of 3-A10, 3-B2 and 4-B3 generated by atmospheric and room temperature plasmas (ARTP) mutagenesis were systematically studied by using CO2 aeration culture system and compared with the wild strain. The specific growth rate of wild strain in the pure air aeration culture system exhibited a 76.2% increase compared with static culture, while the specific growth rates of the 3-A10, 3-B2 and 4-B3 in pure air aeration culture system were increased by 114.4%, 95.9% and 88.2% compared with their static cultures. Compared with static culture, the carbohydrate contents of wild strain, 3-A10, 3-B2 and 4-B3 in pure air aeration culture system dropped plainly by 51.0%, 79.3%, 85.5% and 26.1%. Increase of CO2 concentration enhanced carbohydrate content and productivity. Based on the carbohydrate productivity, the optimal inlet of CO2 concentration in aeration culture was determined to be 12% (v/v). Under this condition, 3-B2 exhibited the highest carbohydrate content (30.7%), CO2 fixation rate (0.120gCO2·g(-1)·d(-1)) and higher growth rate (0.093 g L(-1)·d(-1)), while 3-A10 showed the highest growth rate (0.118 g L(-1)·d(-1)) and higher CO2 fixation rate (0.117gCO2·g(-1)·d(-1)) but low carbohydrate content (24.5%), and 4-B3 showed the highest chlorophyll (Chl) content (3.82 mg·g(-1)). The most outstanding mutant by static culture in terms of growth rate and carbohydrate productivity (3-B2), was also demonstrated by CO2 aeration culture system. This study revealed that the ARTP mutagenesis could generate the S. platensis mutants suitable for CO2 aeration culture aiming at biomass production. PMID:25795571

  11. Culturing thick brain slices: An interstitial 3D microperfusion system for enhanced viability

    PubMed Central

    Rambani, Komal; Vukasinovic, Jelena; Glezer, Ari; Potter, Steve M.

    2009-01-01

    Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep in the tissue resulting from a destroyed circulatory system and subsequent diffusion-limited supply of nutrients and oxygen. Although thin organotypic brain slice cultures can be successfully cultured using a well established roller tube method (a monolayer organotypic culture) (Gahwiler B H, 1981) or a membrane insert method (up to 1–4 cell layers, <150μm)(Stoppini L et al., 1991), these methods fail to support thick tissue preparations. A few perfusion methods (using submerged or interface/microfluidic chambers) have been reported to enhance the longevity (up to few hours) of acute slice preparations (up to 600μm thick) (Hass H L et al., 1979; Nicoll R A and Alger B E, 1981; Passeraub P A et al., 2003). Here, we report a unique interstitial microfluidic perfusion technique to culture thick (700μm) organotypic brain slices. The design of the custom-made micro-perfusion chamber facilitates laminar, interstitial perfusion of oxygenated nutrient medium throughout the tissue thickness with concomitant removal of depleted medium and catabolites. We examined the utility of this perfusion method to enhance the viability of the thick organotypic brain slice cultures after 2 days and 5 days in vitro (DIV). We investigated the range of amenable flow rates that enhance the viability of 700μm thick organotypic brain slices compared to the unperfused control cultures. Our perfusion method allows up to 84.6% viability (P<0.01) and up to 700μm thickness, even after 5 DIV. Our results also confirm that these cultures are functionally active and have their in vivo cytoarchitecture

  12. A primary culture system of mouse thick ascending limb cells with preserved function and uromodulin processing.

    PubMed

    Glaudemans, Bob; Terryn, Sara; Gölz, Nadine; Brunati, Martina; Cattaneo, Angela; Bachi, Angela; Al-Qusairi, Lama; Ziegler, Urs; Staub, Olivier; Rampoldi, Luca; Devuyst, Olivier

    2014-02-01

    The epithelial cells lining the thick ascending limb (TAL) of the loop of Henle perform essential transport processes and secrete uromodulin, the most abundant protein in normal urine. The lack of differentiated cell culture systems has hampered studies of TAL functions. Here, we report a method to generate differentiated primary cultures of TAL cells, developed from microdissected tubules obtained in mouse kidneys. The TAL tubules cultured on permeable filters formed polarized confluent monolayers in ∼12 days. The TAL cells remain differentiated and express functional markers such as uromodulin, NKCC2, and ROMK at the apical membrane. Electrophysiological measurements on primary TAL monolayers showed a lumen-positive transepithelial potential (+9.4 ± 0.8 mV/cm(2)) and transepithelial resistance similar to that recorded in vivo. The transepithelial potential is abolished by apical bumetanide and in primary cultures obtained from ROMK knockout mice. The processing, maturation and apical secretion of uromodulin by primary TAL cells is identical to that observed in vivo. The primary TAL cells respond appropriately to hypoxia, hypertonicity, and stimulation by desmopressin, and they can be transfected. The establishment of this primary culture system will allow the investigation of TAL cells obtained from genetically modified mouse models, providing a critical tool for understanding the role of that segment in health and disease. PMID:23887378

  13. A Defined, Controlled Culture System for Primary Bovine Chromaffin Progenitors Reveals Novel Biomarkers and Modulators

    PubMed Central

    Masjkur, Jimmy; Levenfus, Ian; Lange, Sven; Arps-Forker, Carina; Poser, Steve; Qin, Nan; Vukicevic, Vladimir; Chavakis, Triantafyllos; Eisenhofer, Graeme; Bornstein, Stefan R.; Ehrhart-Bornstein, Monika

    2014-01-01

    We present a method to efficiently culture primary chromaffin progenitors from the adult bovine adrenal medulla in a defined, serum-free monolayer system. Tissue is dissociated and plated for expansion under support by the mitogen basic fibroblast growth factor (bFGF). The cultures, although not homogenous, contain a subpopulation of cells expressing the neural stem cell marker Hes3 that also propagate. In addition, Hes3 is also expressed in the adult adrenal medulla from where the tissue is taken. Differentiation is induced by bFGF withdrawal and switching to Neurobasal medium containing B27. Following differentiation, Hes3 expression is lost, and cells acquire morphologies and biomarker expression patterns of chromaffin cells and dopaminergic neurons. We tested the effect of different treatments that we previously showed regulate Hes3 expression and cell number in cultures of fetal and adult rodent neural stem cells. Treatment of the cultures with a combination of Delta4, Angiopoietin2, and a Janus kinase inhibitor increases cell number during the expansion phase without significantly affecting catecholamine content levels. Treatment with cholera toxin does not significantly affect cell number but reduces the ratio of epinephrine to norepinephrine content and increases the dopamine content relative to total catecholamines. These data suggest that this defined culture system can be used for target identification in drug discovery programs and that the transcription factor Hes3 may serve as a new biomarker of putative adrenomedullary chromaffin progenitor cells. PMID:24855275

  14. Co-culture systems and technologies: taking synthetic biology to the next level

    PubMed Central

    Goers, Lisa; Freemont, Paul; Polizzi, Karen M.

    2014-01-01

    Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell–cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. PMID:24829281

  15. Co-culture systems and technologies: taking synthetic biology to the next level.

    PubMed

    Goers, Lisa; Freemont, Paul; Polizzi, Karen M

    2014-07-01

    Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell-cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. PMID:24829281

  16. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder

    USGS Publications Warehouse

    Depew, David C.; Stevens, Andrew W.; Smith, Ralph E.H.; Hecky, Robert E.

    2009-01-01

    A high-frequency echosounder was used to detect and characterize percent cover and stand height of the benthic filamentous green alga Cladophora sp. on rocky substratum of the Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal stand characteristics (percent cover, stand height) derived from the acoustic data show good agreement for algal stands that exceeded the height threshold for detection by acoustics (~7.5 cm). Backscatter intensity and volume scattering strength were unable to provide any predictive power for estimating algal biomass. A comparative analysis between the only current commercial software (EcoSAV™) and an alternate method using a graphical user interface (GUI) written in MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height classification on adjustable thresholds that can be visualized by a trained analyst. This study documents the successful characterization of nuisance quantities of filamentous algae on hard substrate using an acoustic system and demonstrates the potential to significantly increase the efficiency of collecting information on the distribution of nuisance macroalgae. This study also highlights the need for further development of more flexible classification algorithms that can be used in a variety of aquatic ecosystems.

  17. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  18. From the World-Systems Perspective to Institutional World History: Culture and Economy in Global Theory.

    ERIC Educational Resources Information Center

    Benton, Lauren

    1996-01-01

    Summarizes critical attacks on Immanuel Wallerstein's World Systems approach to history and offers new critical evaluations. Wallerstein argued that an emerging capitalist world economy dominated politics and history from the 16th century to the present. Defines two new approaches, institutional analysis and post colonial cultural theory, that…

  19. Hybrid System for the Inventory of the Cultural Heritage Using Voice Interface for Knowledge acquisition

    NASA Astrophysics Data System (ADS)

    Château, Stefan Du; Boulanger, Danielle; Mercier-Laurent, Eunika

    This document presents our work on a definition and experimentation of a voice interface for cultural heritage inventory. This hybrid system includes signal processing, natural language techniques and knowledge modeling for future retrieval. We discuss the first results and present some challenges for our future work.

  20. Cultural Capital in East Asian Educational Systems: The Case of Japan

    ERIC Educational Resources Information Center

    Yamamoto, Yoko; Brinton, Mary C.

    2010-01-01

    Cultural capital has been an important but often elusive concept in the study of educational processes and social class reproduction. The authors suggest that this is partly because a country's educational system and ways of evaluating students at different educational transitions set the context for the mechanisms through which embodied and…

  1. Development of Quality Assurance System in Culture and Nation Character Education in Primary Education in Indonesia

    ERIC Educational Resources Information Center

    Susilana, Rudi; Asra

    2013-01-01

    The purpose of national education is to develop skills and build dignified national character and civilization in educating nation life (Act No. 20, 2003). The paper describes a system of quality assurance in culture and character education in primary education. This study employs the six sigma model which consists of the formula DMAIC (Define,…

  2. The Learning Transfer System Inventory (LTSI) in Ukraine: The Cross-Cultural Validation of the Instrument

    ERIC Educational Resources Information Center

    Yamkovenko, Bogdan V.; Holton, Elwood, III; Bates, R. A.

    2007-01-01

    Purpose: The purpose of this research is to expand cross-cultural research and validate the Learning Transfer System Inventory in Ukraine. The researchers seek to translate the LTSI into Ukrainian and investigate the internal structure of this translated version of the questionnaire. Design/methodology/approach: The LTSI is translated into…

  3. PLANT CULTURAL SYSTEM FOR MONITORING EVAPOTRANSPIRATION AND PHYSIOLOGICAL RESPONSES UNDER FIELD CONDITIONS

    EPA Science Inventory

    A plant culture system incorporating the water-table root-screen method for controlling plant water status was adapted for use in open-top field exposure chambers for studying the effects of drought stress on physiological responses. The daily transpiration rates of the plants we...

  4. Raising Cultural Self-Efficacy among Faculty and Staff of a Private Native Hawaiian School System

    ERIC Educational Resources Information Center

    Fong, Randie Kamuela

    2012-01-01

    The Hawaiian cultural revitalization movement in Hawai`i is an important driver for many Hawaiian organizations as well as educational institutions that serve Native Hawaiians. One such organization is Kamehameha Schools, a private school system founded and endowed by Princess Bernice Pauahi Bishop in 1887 to educate Native Hawaiian children. From…

  5. Improving Achievement for Linguistically and Culturally Diverse Learners through an Inquiry-Based Earth Systems Curriculum

    ERIC Educational Resources Information Center

    Lambert, Julie; Ariza, Eileen N. Whelan

    2008-01-01

    This report describes an inquiry-based Earth systems curriculum and strategies for teaching diverse students, which were embedded in the curriculum. The curriculum was implemented with 5th-grade students with varied linguistic, cultural, and socioeconomic backgrounds in five schools in a large, southeastern U.S., urban school district. At the end…

  6. Social-Cultural-Historical Contradictions in an L2 Listening Lesson: A Joint Activity System Analysis

    ERIC Educational Resources Information Center

    Cross, Jeremy

    2011-01-01

    Informed and inspired by neo-Vygotskian theory, this article outlines a study exploiting a contemporary conceptualization of Wells's (2002) joint activity system model as an exploratory framework for examining and depicting the social-cultural-historical contradictions in second-language (L2) learners' joint activity. The participants were a pair…

  7. National Contexts Influencing Principals' Time Use and Allocation: Economic Development, Societal Culture, and Educational System

    ERIC Educational Resources Information Center

    Lee, Moosung; Hallinger, Philip

    2012-01-01

    This study examines the impact of macro-context factors on the behavior of school principals. More specifically, the article illuminates how a nation's level of economic development, societal culture, and educational system influence the amount of time principals devote to their job role and shape their allocation of time to instructional…

  8. FURTHER DEVELOPMENT OF RODENT WHOLE EMBRYO CULTURE: SOLVENT TOXICITY AND WATER INSOLUBLE COMPOUND DELIVERY SYSTEM

    EPA Science Inventory

    In order to study the in vitro embryotoxicity and dysmorphogenesis of water insoluble compounds, solvents or chemical delivery systems of low toxicity and teratogenicity to the developing embryo must be found. Therefore, day 10.5 rat embryos were cultured for 2 days in whole rat ...

  9. Enforced Cultural Change in Academe. A Practical Case Study: Implementing Management Systems in Higher Education.

    ERIC Educational Resources Information Center

    Spencer-Matthews, Sarah

    2001-01-01

    An action research project sought to implement a quality management system in an academic department in an Australian higher education institution. The case study revealed that technical change was attained, but adoption of a quality culture achieved only token acceptance. (EV)

  10. Cultural Influences and Corporate Decision Making: The Humanities/Information Systems Partnership.

    ERIC Educational Resources Information Center

    Skovira, Robert J.

    Robert Morris College received a national Endowment for the Humanities grant to create a faculty study project to internationalize the humanities curriculum. The Humanities can play a role in building the cultural contexts and contributing to a deeper understanding of information-based corporate decision making in Information Systems courses,…

  11. Organizing the Baby Boomer Construct: An Exploration of Marketing, Social Systems, and Culture

    ERIC Educational Resources Information Center

    Lipschultz, Jeremy H.; Hilt, Michael L.; Reilly, Hugh J.

    2007-01-01

    Baby boomer trends are applied in the development of a conceptual framework that offers a social systems and cultural model for future studies. While there has been considerable recent attention paid to baby boomers, the studies lack a coherent theoretical base that would allow for more advanced and continuing research. Aging baby boomers heading…

  12. Spearmint plantlet culture system as a means to study secondary metabolism in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of phytochemicals in vitro has been obtained from a variety of tissue types and organs. A plantlet culture system offers a means to study whole plant growth and development in a miniature scale and their corresponding phytochemical production. Plantlets resemble their in vivo counte...

  13. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of cultural system and essential oil treatment on antioxidant enzyme activities, antioxidant capacities and flavonoid contents in raspberries were evaluated. Raspberries were hand-harvested from organic and conventional farms in Maryland, USA, and were treated with essential oils includi...

  14. Improving Hospital Quality and Patient Safety an Examination of Organizational Culture and Information Systems

    ERIC Educational Resources Information Center

    Gardner, John Wallace

    2012-01-01

    This dissertation examines the effects of safety culture, including operational climate and practices, as well as the adoption and use of information systems for delivering high quality healthcare and improved patient experience. Chapter 2 studies the influence of both general and outcome-specific hospital climate and quality practices on process…

  15. Multispectral image analysis for algal biomass quantification.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2013-01-01

    This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay-free process control feedback in large-scale cultivation platforms. In this technique, three-band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large-scale operation. PMID:23554374

  16. Role of gas vesicles and intra-colony spaces during the process of algal bloom formation.

    PubMed

    Zhang, Yongsheng; Zheng, Binghui; Jiang, Xia; Zheng, Hao

    2013-06-01

    Aggregation morphology, vertical distribution, and algal density were analyzed during the algal cell floating process in three environments. The role of gas vesicles and intra-colony spaces was distinguished by algal blooms treated with ultrasonic waves and high pressure. Results demonstrated that the two buoyancy providers jointly provide buoyancy for floating algal cells. The results were also confirmed by force analysis. In the simulation experiment, the buoyancy acting on algal cells was greater than its gravity at sample ports 2 and 3 of a columnar-cultivated cell vessel, and intra-colony spaces were not detected. In Taihu Lake, gas vesicle buoyancy was notably less than total algal cell gravity. Buoyancy provided by intra-colony spaces exceeded total algal cell gravity at the water surface, but not at other water depths. In the Daning River, total buoyancies provided by the two buoyancy providers were less than total algal cell gravity at different water depths. PMID:23833817

  17. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  18. Cost structures and life cycle impacts of algal biomass and biofuel production

    NASA Astrophysics Data System (ADS)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  19. Comparison of the Expression of Hepatic Genes by Human Wharton’s Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems

    PubMed Central

    Khodabandeh, Zahra; Vojdani, Zahra; Talaei-Khozani, Tahereh; Jaberipour, Mansoureh; Hosseini, Ahmad; Bahmanpour, Soghra

    2016-01-01

    Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expression pattern of naïve HWJMSCs. Methods: HWJMSCs were characterized as MSCs by detecting the surface CD markers and capability to differentiate toward osteoblast and adipocyte. HWJMSCs were cultured in 2D collagen films and 3D collagen scaffolds for 21 days and were compared to control cultures. Real time RT-PCR was used to evaluate the expression of liver-specific genes. Results: The HWJMSCs which were grown on non-coated culture plates expressed cytokeratin-18 and -19, alpha-fetoprotein, albumin, glucose-6-phosphatase, and claudin. The expression of the hepatic nuclear factor 4 (HNF4) was very low. The cells showed a significant increase in caludin expression when they cultured in 3D collagen scaffolds compared to the conventional monolayer culture and 2D collagen scaffold. Conclusion: Various culture systems did not influence on hepatocyte specific marker expression by HWJMSCs, except for claudin. The expression of claudin showed that 3D collagen scaffold provided the extracellular matrix for induction of the cells to interconnect with each other. PMID:26722142

  20. A simple model for forecast of coastal algal blooms

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Hodgkiss, I. J.

    2007-08-01

    In eutrophic sub-tropical coastal waters around Hong Kong and South China, algal blooms (more often called red tides) due to the rapid growth of microscopic phytoplankton are often observed. Under favourable environmental conditions, these blooms can occur and subside over rather short time scales—in the order of days to a few weeks. Very often, these blooms are observed in weakly flushed coastal waters under calm wind conditions—with or without stratification. Based on high-frequency field observations of harmful algal blooms at two coastal mariculture zones in Hong Kong, a mathematical model has been developed to forecast algal blooms. The model accounts for algal growth, decay, settling and vertical turbulent mixing, and adopts the same assumptions as the classical Riley, Stommel and Bumpus model (Riley, G.A., Stommel, H., Bumpus, D.F., 1949. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection Yale University 12, 1-169). It is shown that for algal blooms to occur, a vertical stability criterion, E < 4 μl2/ π2, must be satisfied, where E, μ, l are the vertical turbulent diffusivity, algal growth rate, and euphotic layer depth respectively. In addition, a minimum nutrient threshold concentration must be reached. Moreover, with a nutrient competition consideration, the type of bloom (caused by motile or non-motile species) can be classified. The model requires as input simple and readily available field measurements of water column transparency and nutrient concentration, and representative maximum algal growth rate of the motile and non-motile species. In addition, with the use of three-dimensional hydrodynamic circulation models, simple relations are derived to estimate the vertical mixing coefficient as a function of tidal range, wind speed, and density stratification. The model gives a quick assessment of the likelihood of algal bloom occurrence, and has been validated against field