Science.gov

Sample records for algal growth potential

  1. Algal Growth Potential of Microcystis aeruginosa from Reclaimed Water.

    PubMed

    Joo, Jin Chul; Ahn, Chang Hyuk; Lee, Saeromi; Jang, Dae-Gyu; Lee, Woo Hyoung; Ryu, Byong Ro

    2016-01-01

    Algal growth potential (AGP) of the cyanobacterium Microcystis aeruginosa (M. aeruginosa, NIES-298) using reclaimed water from various wastewater reclamation pilot plants was investigated to evaluate the feasibility of the reclaimed water usage for recreational purposes. After completing the coagulation and ultrafiltration processes, the concentrations of most contaminants in the reclaimed water were lower than the reuse guidelines for recreational water. However, M. aeruginosa successfully adapted to low levels of soluble reactive phosphorus (PO(3-)(4)) concentrations. The AGP values of M. aeruginosa decreased with the progression of treatment processes, and with the increases in the dilution volume. Also, both the AGP and chlorophyll-a values can be estimated a priori without conducting the AGP tests. Therefore, aquatic ecosystems in locations prone to environmental conditions favorable for the growth of M. aeruginosa require more rigorous nutrient management plans (e.g., reverse osmosis and dilution with clean water resources) to reduce the nutrient availability. PMID:26803027

  2. Potential of carbon nanotubes in algal biotechnology.

    PubMed

    Lambreva, Maya Dimova; Lavecchia, Teresa; Tyystjärvi, Esa; Antal, Taras Kornelievich; Orlanducci, Silvia; Margonelli, Andrea; Rea, Giuseppina

    2015-09-01

    A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.

  3. Comparison of toxicity to terrestrial plants with algal growth inhibition by herbicides

    SciTech Connect

    Garten, C.T. Jr.; Frank, M.L.

    1984-10-01

    The toxicities of 21 different herbicides to algae (Selenastrum capricornutum and Chlorella vulgaris) and to terrestrial plants (radishes, barley, and bush beans or soybeans) were compared to order to determine the feasibility of using a short-term (96-h) algal growth inhibition test for identifying chemicals having potential toxicity in a 4-week terrestrial plant bioassay. The toxicity of each test chemical, usually in combination with a commercial formulation, was evaluated at six nominal concentrations, between 0 and 100 mg/L growth medium in the algal bioassay or between 0 and 100 mg/kg substate in the terrestrial plant bioassay, in terms of both (1) the no-observed-effect concentration (NOEC), i.e., the highest concentration tested at which no significant (P < 0.05, one-sided test) reduction in algal growth rate or in terrestrial plant yield, relative to controls, was observed; and (2) the concentration at which algal growth rate or terrestrial plant yield was reduced by 50% or more relative to controls. There was generally poor agreement between results from the two types of bioassays; results from algal growth inhibition tests were not significantly correlated with results from the terrestrial plant bioassays. Overall, there was an approximately 50% chance of an algal bioassay, using Selenastrum capricornutum, successfully screening (detecting) herbicide levels that reduced terrestrial plant yield. The results indicated that algal growth inhibition tests cannot be used generically to predict phytotoxicity of herbicides to terrestrial plant species. 7 references, 14 tables.

  4. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  5. Studies of the effect of gibberellic acid on algal growth.

    NASA Technical Reports Server (NTRS)

    Evans, W. K.; Sorokin, C.

    1971-01-01

    The effect of gibberellic acid on exponential growth rate of four strains of Chlorella was investigated under variety of experimental conditions. In concentrations from 10 ppm to 100 ppm, gibberellic acid was shown to have no effect on Chlorella growth. In concentration of 200 ppm, gibberellic acid exerted some unfavorable effect on algal growth.

  6. A stoichiometrically derived algal growth model and its global analysis.

    PubMed

    Li, Xiong; Wang, Hao

    2010-10-01

    Organisms are composed of multiple chemical elements such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can severely restrict organismal and population growth. However, many trophic interaction models only consider carbon limitation via energy flow. In this paper, we construct an algal growth model with the explicit incorporation of light and nutrient availability to characterize both carbon and phosphorus limitations. We provide a global analysis of this model to illustrate how light and nutrient availability regulate algal dynamics. PMID:21077710

  7. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-08-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a

  8. Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth

    NASA Astrophysics Data System (ADS)

    Lirman, D.

    2001-05-01

    Recent declines in coral abundance accompanied by increases in macroalgal cover on Florida reefs highlight the importance of competition for space between these groups. This paper documents the frequency of coral-algal interactions on the Northern Florida Reef Tract and evaluates the effects of grazer exclusions and experimental algal addition on growth and tissue mortality of three coral species, Siderastrea siderea, Porites astreoides, and Montastraea faveolata. The frequency of interactions between corals and macroalgae was high as more than 50% of the basal perimeter of colonies was in contact with macroalgae; turf forms, Halimeda spp., and Dictyota spp. were the most common groups in contact with corals. Decreased grazing pressure resulted in significant increases in algal biomass within cages, and caged corals showed species-specific susceptibility to increased algal biomass. While no effects were detected for S. siderea, significant decreases in growth rates were documented for caged P. astreoides which had growth rates three to four times lower than uncaged colonies. When an algal addition treatment was included to duplicate maximum algal biomass levels documented for reefs in the area, colonies of P. astreoides in the algal addition treatment had growth rates up to ten times lower than uncaged colonies. High susceptibility to algal overgrowth was also found for the reef-building coral M. faveolata, which experienced significant tissue mortality under both uncaged (5.2% decrease in live tissue area per month) and caged (10.2% per month) conditions. The documented effects of increased algal biomass on coral growth and tissue mortality suggest a potential threat for the long-term survivorship and growth of corals in the Florida Reef Tract if present rates of algal growth and space utilization are maintained.

  9. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system.

    PubMed

    Ma, Xiaochen; Zhou, Wenguang; Fu, Zongqiang; Cheng, Yanling; Min, Min; Liu, Yuhuan; Zhang, Yunkai; Chen, Paul; Ruan, Roger

    2014-09-01

    Centrate, a type of nutrient-rich municipal wastewater was used to determine the effect of wastewater-borne bacteria on algal growth and nutrients removal efficiency in this study. The characteristics of algal and bacterial growth profiles, wastewater nutrient removal and effect of initial algal inoculums were systematically examined. The results showed that initial algal concentration had apparent effect on bacterial growth, and the presence of bacteria had a significant influence on algal growth pattern, suggesting symbiotic relationship between algae and bacteria at the initial stage of algae cultivation. The maximum algal biomass of 2.01 g/L with 0.1g/L initial algal inoculums concentration can be obtained during algae cultivation in raw centrate medium. The synergistic effect of centrate-borne bacteria and microalgae on algae growth and nutrient removal performance at initial fast growth stage has great potential to be applied to pilot-scale wastewater-based algae wastewater system cultivated in continuous or semi-continuous mode.

  10. Kinetics of phosphate limited algal growth.

    PubMed

    Nyholm, N

    1977-04-01

    The kinetics of phosphate limited growth of two green algae Chlorella pyrenoidosa and Selenastrum capricornutum have been studied in chemostats. Several kinetic models which express the specific growth rate as a function of the intracellular phosphorus content have been examined, and one of the models was found to be significantly better than the other models. The principles of this model were described in a recent paper by Nyholm. The kinetics of phosphate uptake have been investigated by adding pulses of phosphate to the chemostats, The uptake by phosphorus deficient cells could be described by Michaelis-Menten kinetics for phosphate concentrations below approximately 500 microng P/liter. Further, with the assumption of a discontinuous adjustment of the uptake rate at the onset of phosphorus deficiency, a complete kinetic model for growth and phosphate removal is proposed. The mean cell size and the contents of chlorophyll a and RNA per unit dry weight have been measured for C. pyrenoidosa as a function of the dilution rate. PMID:856323

  11. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  12. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production.

    PubMed

    Stemmler, Kevin; Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock. PMID:26989618

  13. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    PubMed Central

    Stemmler, Kevin; Massimi, Rebecca

    2016-01-01

    Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock. PMID:26989618

  14. Riparian shading controls instream spring phytoplankton and benthic algal growth.

    PubMed

    Halliday, S J; Skeffington, R A; Wade, A J; Bowes, M J; Read, D S; Jarvie, H P; Loewenthal, M

    2016-06-15

    Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually suppressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade.

  15. Riparian shading controls instream spring phytoplankton and benthic algal growth.

    PubMed

    Halliday, S J; Skeffington, R A; Wade, A J; Bowes, M J; Read, D S; Jarvie, H P; Loewenthal, M

    2016-06-15

    Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually suppressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade. PMID:27192431

  16. Effects of simetryne on growth of various freshwater algal taxa.

    PubMed

    Kasai, F; Takamura, N; Hatakeyama, S

    1993-01-01

    The sensitivity of 56 algal strains, representing 7 taxonomic groups to the triazine herbicide, simetryne, was examined using EC50 values for growth. There was a wide range of values from 6.5 to 1500 microg litre(-1). The Volvocales (Chlorophyceae, Chlorophyta) and Cyanophyceae (Cyanophyta) as a whole were the most sensitive, whereas the Desmidiales (Charophyceae, Chlorophyta) and Bacillariophyceae (Chromophyta) were the most tolerant, although sensitivity differed among strains of a single species. Sensitive and tolerant species were both isolated from samples collected at the same site. The results suggest that changes in species composition and relative abundance will occur when herbicides are applied in natural habitats.

  17. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  18. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation. PMID:25149444

  19. Algal growth response to particle-bound orthophosphate and zinc

    SciTech Connect

    Kuwabara, J.S.; Davis, J.A.; Chang, C.C.Y.

    1986-05-01

    Dissolved nutrient concentrations in natural waters may at times be controlled by interactions between particulate and solution phases. Effects of Zn (0-1 ..mu..M total Zn(II)) and orthophosphate (8-12 ..mu..M total P) additions on growth indices for the chlorophyte Selenastrum capricornutum Printz were examined in a synthetic growth medium containing 50 mg liter/sup -1/ colloidal titania. Over the Zn(II) concentration range used, detrimental growth and yield effects were observed. Addition of P to a synthetic growth medium (S-3) increased stationary phase cell density, but had minimal effect on growth rate and duration of lag phase. Presence of TiO/sub 2/ particles in culture media significantly reduced Zn and P dissolved fractions. Although adsorbed Zn and P were less available to Selenastrum, desorption of both solutes increased their availability. Rapid desorption of Zn(II) from TiO/sub 2/ particles served in effect to buffer Zn/sup 2 +/ free ion concentration, until Zn became partitioned primarily with the algal fraction as cell concentration approached stationary phase density. Although phosphate desorption from TiO/sub 2/ in nonbiological systems was negligible, Selenastrum was able to scavenge some P initially adsorbed onto TiO/sub 2/. Accurate primary productivity predictions in nature may therefore require an understanding of equilibrium and reaction rates involved in the partitioning of nutrients and toxic substances between dissolved and particulate phases.

  20. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions. PMID:21977667

  1. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production.

    PubMed

    Igou, Thomas; Van Ginkel, Steven W; Penalver-Argueso, Patricia; Fu, Hao; Doi, Shusuke; Narode, Asmita; Cheruvu, Sarasija; Zhang, Qian; Hassan, Fariha; Woodruff, Frazier; Chen, Yongsheng

    2014-12-01

    The latest research shows that algal biofuels, at the production levels mandated in the Energy Independence and Security Act of 2007, will place significant demands on water and compete with agriculture meant for food production. Thus, there is a great need to recycle water while producing algal biofuels. This study shows that when using a synthetic medium, soluble algal products, bacteria, and other inhibitors can be removed by centrifugation and enable water recycling. Average water recovery reached 84% and water could be recycled at least 10 times without reducing algal growth.

  2. Parasitic chytrids sustain zooplankton growth during inedible algal bloom

    PubMed Central

    Rasconi, Serena; Grami, Boutheina; Niquil, Nathalie; Jobard, Marlène; Sime-Ngando, Télesphore

    2014-01-01

    This study assesses the quantitative impact of parasitic chytrids on the planktonic food web of two contrasting freshwater lakes during different algal bloom situations. Carbon-based food web models were used to investigate the effects of chytrids during the spring diatom bloom in Lake Pavin (oligo-mesotrophic) and the autumn cyanobacteria bloom in Lake Aydat (eutrophic). Linear inverse modeling was employed to estimate undetermined flows in both lakes. The Monte Carlo Markov chain linear inverse modeling procedure provided estimates of the ranges of model-derived fluxes. Model results confirm recent theories on the impact of parasites on food web function through grazers and recyclers. During blooms of “inedible” algae (unexploited by planktonic herbivores), the epidemic growth of chytrids channeled 19–20% of the primary production in both lakes through the production of grazer exploitable zoospores. The parasitic throughput represented 50% and 57% of the zooplankton diet, respectively, in the oligo-mesotrophic and in the eutrophic lakes. Parasites also affected ecological network properties such as longer carbon path lengths and loop strength, and contributed to increase the stability of the aquatic food web, notably in the oligo-mesotrophic Lake Pavin. PMID:24904543

  3. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.

  4. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity.

  5. In situ experimental evidence of phosphorus limitation on algal growth in a lake ecosystem.

    PubMed

    An, Kwang-Guk; Park, Seok Soon

    2002-01-01

    This paper presents the results of in situ Nutrient Stimulation Experiments (NSEs) demonstrating that phosphorus was the primary nutrient controlling algal growth in the Taechung Reservoir, Korea. Algal response in most treatments with only nitrogen added was less than or the same as in the controls, whereas the growth in treatments enriched with phosphorus increased by as much as fivefold. Phosphorus limitation was consistent over the experimental period when bioassay experiments were conducted, but the magnitude of growth response to phosphorus enrichments varied with the season. Algal yield in P-treatments was maximum when thermal stratification was strong and total dissolved phosphorus (TDP) was near the level of depletion. Regression analyses of NSEs showed that in situ algal response in P treatments, measured as log-transformed CHLf:CHLi ratios, declined (R2 = 0.995, p < 0.001) with ambient concentrations of log-transformed TDP. Also, algal response in the P treatments showed a first-order linear fit (R2 = 0.961, p < 0.001) with log-transformed DIN (dissolved inorganic nitrogen):TDP ratios. These outcomes indicate that the magnitude of in situ algal response increased with lower levels of P and higher dissolved N:P ratios in the ambient lake water. Our experimental approach employing NSEs suggests that abatement of phosphorus from the watershed seems to be an efficient management strategy to control the eutrophication of this system.

  6. Characteristic time scales of mixing, mass transfer and biomass growth in a Taylor vortex algal photobioreactor.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2015-12-01

    Recently it has been demonstrated that algal biomass yield can be enhanced using fluid flow patterns known as Taylor vortices. It has been suggested that these growth rate improvements can be attributed to improved light delivery as a result of rapid transport of microorganisms between light and dark regions of the reactor. However, Taylor vortices also strongly impact fluid mixing and interphase (gas-liquid) mass transport, and these in turn may also explain improvements in biomass productivity. To identify the growth-limiting factor in a Taylor vortex algal photobioreactor, experiments were performed to determine characteristic time scales for mixing and mass transfer. By comparing these results with the characteristic time scale for biomass growth, it is shown that algal growth rate in Taylor vortex reactors is not limited by fluid mixing or interphase mass transfer, and therefore the observed biomass productivity improvements are likely attributable to improved light utilization efficiency.

  7. Techno-economic and life-cycle assessment of an attached growth algal biorefinery.

    PubMed

    Barlow, Jay; Sims, Ronald C; Quinn, Jason C

    2016-11-01

    This study examined the sustainability of generating renewable diesel via hydrothermal liquefaction (HTL) of biomass from a rotating algal biofilm reactor. Pilot-scale growth studies and laboratory-scale HTL experiments were used to validate an engineering system model. The engineering system model served as the foundation to evaluate the economic feasibility and environmental impact of the system at full scale. Techno-economic results indicate that biomass feedstock costs dominated the minimum fuel selling price (MFSP), with a base case of $104.31per gallon. Life-cycle assessment results show a base-case global warming potential (GWP) of 80gCO2-eMJ(-1) and net energy ratio (NER) of 1.65 based on a well-to-product system boundary. Optimization of the system reduces MFSP, GWP and NER to $11.90Gal(-1), -44gCO2-eMJ(-1), and 0.33, respectively. The systems-level impacts of integrating algae cultivation with wastewater treatment were found to significantly reduce environmental impact. Sensitivity analysis showed that algal productivity most significantly affected fuel selling price, emphasizing the importance of optimizing biomass productivity. PMID:27595701

  8. Techno-economic and life-cycle assessment of an attached growth algal biorefinery.

    PubMed

    Barlow, Jay; Sims, Ronald C; Quinn, Jason C

    2016-11-01

    This study examined the sustainability of generating renewable diesel via hydrothermal liquefaction (HTL) of biomass from a rotating algal biofilm reactor. Pilot-scale growth studies and laboratory-scale HTL experiments were used to validate an engineering system model. The engineering system model served as the foundation to evaluate the economic feasibility and environmental impact of the system at full scale. Techno-economic results indicate that biomass feedstock costs dominated the minimum fuel selling price (MFSP), with a base case of $104.31per gallon. Life-cycle assessment results show a base-case global warming potential (GWP) of 80gCO2-eMJ(-1) and net energy ratio (NER) of 1.65 based on a well-to-product system boundary. Optimization of the system reduces MFSP, GWP and NER to $11.90Gal(-1), -44gCO2-eMJ(-1), and 0.33, respectively. The systems-level impacts of integrating algae cultivation with wastewater treatment were found to significantly reduce environmental impact. Sensitivity analysis showed that algal productivity most significantly affected fuel selling price, emphasizing the importance of optimizing biomass productivity.

  9. Potential for eutrophication and nuisance algal blooms in the lower Neuse river estuary. Final report

    SciTech Connect

    Paerl, H.W.; Mallin, M.; Rudek, J.; Bates, P.W.

    1990-12-01

    Phytoplankton primary production and its environmental regulation were examined at 3 stations representative of the lower Neuse River Estuary near the Pamlico Sound interface. This study covered a 3-year period (November 1987-October 1990). The authors also examined the roles of the major phytoplankton nutrients nitrogen and phosphorus in controlling growth and bloom formation. The overall potential for nuisance blooms and associated episodes of bottom water hypoxia and anoxia was investigated in field studies. Algal biomass and production varied seasonally, with high values in summer and low values in winter. In situ nutrient addition bioassays indicated the estuary experienced a general state of N limitation with especially profound limitation during summer periods. The authors recommendations for a management strategy include reductions in Dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and suspended sediment loads in order to maintain the system in a nuisance bloom-free condition.

  10. Algal photoreceptors: in vivo functions and potential applications.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2014-01-01

    Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems. PMID:24081482

  11. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation. PMID:25855209

  12. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation.

  13. Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems.

    PubMed

    Michael, Clayton; del Ninno, Matteo; Gross, Martin; Wen, Zhiyou

    2015-03-01

    This work is to use thin film nano-materials as light filters to selectively transmit certain wavelengths from natural sunlight to algal culture. A red light filter (620-710 nm) and blue filter (450-495 nm) were evaluated. Algae were grown in flasks, flat panel reactors, and rotating algal biofilm (RAB) system. It was found that the light filters did not improve algal growth in flask cultures, probably due to the additional reflection of light by the glass wall of the flasks. However, the light filters significantly (P<0.05) improved biomass yield (13-34%) in flat panel reactors and biomass productivity (70-100%) in RAB system, depending on the growth mode and lighter filters. Such improvements may be due to the eliminating the ultra-violet (UV) damaging the cellular structure. The biomass compositions did not change significantly among different light-filter cultures (P>0.05). The research shows a great potential of using light filters to improve microalgal growth.

  14. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  15. Algal growth response to particle-bound orthophosphate and zinc.

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1986-01-01

    Effects of Zn (0-1 mu M total Zn(II)) and orthophosphate (8-12 mu M total P) additions on growth indices for the chlorophyte Selenastrum capricornutum were examined in a medium containing 50 mg liter-1 colloidal titania. Over the Zn(II) concentration range used, detrimental growth and yield effects were observed. Addition of P to a synthetic growth medium increased stationary phase cell density, but had minimal effect on growth rate and duration of lag phase. Presence of TiO2 particles in culture media significantly reduced Zn and P dissolved fractions.-from Authors

  16. Growth of Heterotrophic Bacteria and Algal Extracellular Products in Oligotrophic Waters

    PubMed Central

    McFeters, Gordon A.; Stuart, Sidney A.; Olson, Susan B.

    1978-01-01

    The unexpected observation of 200 to 400 coliform bacteria per 100 ml in an unpolluted pristine stream was studied within Grand Teton National Park, Wyo. The high numbers of waterborne bacteria occurred in mid- to late summer at a location where there was a coincidental bloom of an algal mat community. Periphyton samplers were used to measure the algal growth that coincided with the increase in number of bacteria. Laboratory studies followed the growth of various coliform bacteria in the supernatant obtained from a Chlorella culture isolated from the mat community. Mixed natural bacterial populations from the stream and pure cultures of water-isolated fecal and nonfecal coliforms increased by two to three orders of magnitude at 13°C when grown in the algal supernatant. Radioactive algal products were obtained by feeding an axenic Chlorella culture 14C-labeled bicarbonate under laboratory cultivation at 13°C with illumination. Radioactive organic material from the algae became incorporated into the particulate fraction of pure cultures of coliform bacteria as they reproduced and was later released as they died. PMID:16345278

  17. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis.

    PubMed

    Hong, Jinglan; Ma, Hua; Otaki, Masahiro

    2005-06-01

    In the treatment of synthetic dye wastewater by photosynthetic bacteria under optical irradiation, excessive algal growth and adhesion on the walls of the reactor are serious problems. The adverse effects of excessive algal growth on photosynthetic bacterial activity are significantly greater than those of the decreased optical irradiation of the solution. In this report, we investigated the effects of photocatalysis on the growth of algae (Chroococcus sp.) and photosynthetic bacteria. The different sensitivities of Chroococcus sp. and photosynthetic bacteria to photocatalysis were observed by an ATP assay. Moreover, from microscopy findings, some algae were damaged by TiO2 with UV. We suggested that some algae suffered from membrane damage and consequently cell substances were released, resulting in the increase of dissolved material following treatment using TiO2 with UV.

  18. Meteorological influences on algal bloom potential in a nutrient-rich blackwater river

    EPA Science Inventory

    The effect of variability in rainfall on the potential for algal blooms was examined for the St. Johns River in northeast Florida. Water chemistry and phytoplankton data were collected at selected sites monthly from 1993 through 2003. Information on rainfall and estimates ofw at...

  19. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth. PMID:26344339

  20. Sludge-grown algae for culturing aquatic organisms: Part I. Algal growth in sludge extracts

    NASA Astrophysics Data System (ADS)

    Hung, K. M.; Chiu, S. T.; Wong, M. H.

    1996-05-01

    This project is aimed at studying the feasibility of using sewage sludge to prepare culture media for microalgae ( Chlorella-HKBU) and the use of the sludge-grown algae as a feed for some aquatic organisms. Part I of the project included results on preparing sludge extracts and their use on algal culture. By comparing two culturing techniques, “aeration” and “shaking,” it was noted that both lag and log phases were shortened in the aeration system. A subsequent experiment noted that algal growth subject to aeration rates of 1.0 and 1.5 liters/min had similar lag and log phases. In addition, both aeration rates had a significantly higher ( P < 0.05) final cell density than that of 0.5 liters/min. A detailed study on the variation of growth conditions on the algal growth was done. The results indicated that pH values of all the cultures declined below 5 at day 12. The removal rates of ammonia N ranged from 62% to 70%. The sludge-grown algae contained a rather substantial amount of heavy metals (µg/g): Zn 289 581, Cu 443 682, Ni 310 963, Mn 96 126, Cr 25 118, and Fe 438 653. This implied that the rather high levels of heavy metals may impose adverse effects on higher trophic organisms.

  1. In-depth characterization of wastewater bacterial community in response to algal growth using pyrosequencing.

    PubMed

    Lee, Jangho; Lee, Juyoun; Lee, Tae Kwon; Woo, Sung-Geun; Baek, Gyu Seok; Park, Joonhong

    2013-10-28

    Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment. PMID:23867704

  2. Unicellular Algal Growth: A Biomechanical Approach to Cell Wall Dynamics

    NASA Astrophysics Data System (ADS)

    Kam, Royce; Levine, Herbert

    1997-11-01

    We model a growing cell in a calcium solution as an elastic shell on short time scales. The turgor pressure and elastic properties (Young's modulus, thickness) of the cell wall determine a stressed cell shape. Enzyme-mediated relaxation of the unstressed toward the stressed configuration results in a slow (plastic) deformation of the cell. The cell wall thickness is then modulated by calcium-mediated fusion of material and elongation. We analyze small perturbations to a circular cell and find an instability related to modulations of the wall thickness, leading to growth rates which peak at a finite wave number.

  3. Food processing wastes as nutrient sources in algal growth

    SciTech Connect

    Wong, M-H; Chan, W-C; Chu, L-M

    1983-03-01

    Utilization of food processing wastes for biological production will ease part of the disposal problem, especially the potential hazards of eutrophication, andat the same time recycle the inherently rich plant nutrients in the waste materials. The present investigation is an attempt to study the feasibility of using five food processing wastes, including carrot, coconut, eggshell, soybean, and sugarcane, for culturing Chlorella pyrenoidosa (a unicellular green alga).

  4. Importance of algal biomass to growth and development of Anopheles gambiae larvae.

    PubMed

    Kaufman, Michael G; Wanja, Elizabeth; Maknojia, Shahnaz; Bayoh, M Nabie; Vulule, John M; Walker, Edward D

    2006-07-01

    We conducted experiments to investigate the importance of algal food resources for larval growth and adult emergence of Anopheles gambiae Giles s.s. in simulated larval habitats in Kenya, and in greenhouse and laboratory microcosms in the United States. In the first experiment, we used shading to reduce algal biomass, and because algal production and larval development might be a function of underlying soil nutrients, we crossed sun-shade treatments with soils of two distinct types collected near larval habitats. Shading reduced pupation rates and total adult biomass of An. gambiae by approximately 50%. Soil type had no significant effect on mosquito production, but it did significantly affect concentrations of phosphorus and chlorophyll a in the surface microlayer. In a subsequent experiment conducted in the greenhouse to reduce temperature differences found between the shaded and sunlit treatments, <1% of larvae in the shaded treatments reached the pupal stage. There was a marked reduction of chlorophyll a levels as a function of shading and larval density. In a third experiment, larvae receiving material harvested from sunlit surface microlayers performed as well as those receiving liver powder, whereas those receiving surface microlayer from shaded habitats suffered >90% mortality and failed to pupate. In a fourth experiment, glucose was added to shaded microcosms to stimulate bacterial activity in the absence of algae. Bacterial growth rates were 2 to 3 times higher, and larval development was enhanced in glucose-amended treatments. However, pupation rates and adult weights in glucose-amended shaded microcosms were still poor compared with those in nonamended sunlit microcosms. Overall, these results demonstrate the importance of algal biomass in the surface microlayers of larval habitats to development and adult production of An. gambiae.

  5. Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici

    PubMed Central

    Kim, Jiyoung

    2008-01-01

    The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici. PMID:23997634

  6. Potential utilization of algal protein concentrate as a food ingredient in space habitats

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.

    1989-01-01

    Green alga Scenedesmus obliquus was studied as one of the potential sources of macronutrients in a space habitat. Algal protein concentrate (70.5% protein) was incorporated into a variety of food products such as bran muffins, fettuccine (spinach noodle imitation) and chocolate chip cookies. Food products containing 20 to 40% of incorporated algal proteins were considered. In the sensory analysis the greenish color of the bran muffins and cookies was not found to be objectional. The mild spinachy flavor (algae flavor) was less detectable in chocolate chip cookies than in bran muffins. The color and taste of the algae noodles were found to be pleasant and compared well with commercially available spinach noodles. Commercially available spray-dried Spirulina algae was also incorporated so the products can be compared with those containing Scenedesmus obliquus concentrate. Food products containing commercial algae had a dark green color and a "burnt after taste" and were less acceptable to the panelists.

  7. Potential utilization of algal protein concentrate as a food ingredient in space habitats.

    PubMed

    Nakhost, Z; Karel, M

    1989-01-01

    Green alga Scenedesmus obliquus was studied as one of the potential sources of macronutrients in a space habitat. Algal protein concentrate (70.5% protein) was incorporated into a variety of food products such as bran muffins, fettuccine (spinach noodle imitation) and chocolate chip cookies. Food products containing 20 to 40% of incorporated algal proteins were considered. In the sensory analysis the greenish color of the bran muffins and cookies was not found to be objectional. The mild spinachy flavor (algae flavor) was less detectable in chocolate chip cookies than in bran muffins. The color and taste of the algae noodles were found to be pleasant and compared well with commercially available spinach noodles. Commercially available spray-dried Spirulina algae was also incorporated so the products can be compared with those containing Scenedesmus obliquus concentrate. Food products containing commercial algae had a dark green color and a "burnt after taste" and were less acceptable to the panelists.

  8. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability. PMID:26593729

  9. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  10. Analysis of pollutant enhanced bacterial-blue-green algal interrelationships potentiating surface water contamination by noxious blue-green algal blooms. Completion report

    SciTech Connect

    Bedell, G.W.

    1984-02-01

    Sulfate-reducing bacteria from the genus Desulfovibro can stimulate the blue-green alga (Cyanobacterium) Anabaena variabilis (Strain 6411) into increasing its dry weight biomass production by more than 200 percent over that of the control as the total phosphate in the medium approaches zero. Results suggest that methods which utilize total nitrogen to phosphorus ratios in waters as predictors of blue-green algal 'blooms' may be unreliable when the waters are very low in phosphorus yet remain high in sulfate with conditions favorable for sulfate-reducing bacterial growth in benthic sediments. Otherwise, if the phosphate levels alone in the aqueous systems are reduced below threshold levels under these conditions, the magnitude of the blue-green algal blooms may be increased substantially.

  11. High Resolution Monitoring of Algal Growth Dynamics in a Hypereutrophic River in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Henson, S. S.; Dahlgren, R.; van Nieuwenhuyse, E.; O'Geen, A. T.; Gallo, E. L.; Ahearn, D. S.

    2005-05-01

    The lower San Joaquin River in California's Central Valley experiences periods of hypoxia during the late summer and fall that is detrimental to aquatic organisms and migration of fall-run chinook salmon and steelhead trout. Hypoxia is attributable, in part, to excess nutrients from urban waste water and agricultural runoff, which contribute to growth of high concentrations of phytoplankton. This study examined spatial and temporal growth patterns that control algal loading using continuous fluorescence measurements at three sites along a 50 km section of the lower San Joaquin River between April and October. A strong diel fluorescence signal was observed and associated grab samples verified that fluorescence was an accurate measure of chlorophyll. Peak chlorophyll concentrations occurred between 18:00 and 20:00 and minimum concentrations between 10:00 and 12:00. Maximum concentrations were nearly two times greater than minimum concentrations although this ratio varied temporally and spatially. Although the mechanism for the diel chlorophyll signal is not very well understood several parameters including temperature, irradiance, turbidity, residence time, stream depth, and zooplankton grazing were considered within the scope of this study. This study highlights the importance of considering high resolution sampling on algal loading rates within heavily impacted riverine systems.

  12. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. PMID:26716890

  13. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  14. Impact of atmospheric deposition on algal growth in Lake Tahoe, CA

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Mackey, K. R.; Jiang, Y.; Liston, A.; Allen, B.; Schladow, S. G.

    2010-12-01

    Lake Tahoe’s clarity has been declining over the past decades and it is important to understand the causes and consequences of this decline. Lake Tahoe’s clarity is determined by fine sediment particles and by nutrients. Nutrients affect lake clarity by promoting algae growth. Indeed primary productivity, the rate at which algae produce biomass through photosynthesis, has been increasing since 1959. Offshore, algae make the water greenish and less clear. The two nutrients that most affect algal growth in this system are nitrogen and phosphorus. Atmospheric deposition is an important source of nutrients to the lake contributing 55% of the nitrogen load and 15% of the phosphate load (State of the Lake Report - http://terc.ucdavis.edu/stateofthelake/StateOfTheLake2009.pdf). To evaluate if and how atmospheric deposition impacts phytoplankton growth and abundance we have preformed bioassay experiments with inorganic nutrient and aerosol additions during the summer of 2010. Our results indicate that, as expected for this season, nitrogen or combined nitrogen and phosphate induce growth. Our aerosol additions also induced growth and suggest that nutrients originating from aerosols are bio-available and can stimulate phytoplankton production. Atmospheric deposition can therefore affect lake clarity and should be monitored to ensure that the state of the lake does not deteriorate further.

  15. Monoraphidium sp. as an algal feedstock for biodiesel: Determining optimal growth conditions in wastewater

    NASA Astrophysics Data System (ADS)

    Davidson, Zachary William

    This thesis set out to investigate different conditions for growth of the freshwater algal species Monoraphidium sp. for use as a feedstock for biodiesel. The algae was inoculated into effluent gathered from a local water treatment plant and placed into 50gal mesocosms. Cells were grown at large scale in wastewater, harvested, and run through extractions to collect lipids (26%DW). The lipids were then turned into biodiesel. The algae also removed most of the pollutants in the wastewater, lowering nitrate and phosphate levels usually to less than 1mg/L. Erlenmeyer flask cultures (1L) were used to determine optimal growth conditions for temperature (10°C), light intensity (30microE/m2/sec with a 10 hour photoperiod), and initial inoculation density (1x104cells/mL). The addition of bicarbonate during the initial or exponential growth phase had no effect on growth. It was concluded that Monoraphidium sp. grown in USDA Hardiness Zone 5 is capable of producing biodiesel.

  16. Refining the alkenone-pCO2 method: The role of algal growth conditions

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Zhang, Y.; Huybers, P. J.; Pagani, M.

    2015-12-01

    The alkenone-pCO2 method based on carbon isotope fractionation during growth of haptophyte algae is one of the most widely used approaches to reconstruct atmospheric CO2 level in the Cenozoic. Based on the fractionation of stable carbon isotopes between dissolved CO2 and phytoplankton biomass, as represented by alkenone lipid biomarkers, this relationship (known as ɛp37:2) scales inversely with growth rate and cell volume to surface area ratio, and positively with CO2. Recently-published estimates for late Pleistocene CO2 levels, however, are poorly correlated with ice core CO2 records, suggesting that alkenone paleobarometry needs to be refined. Here we compiled published records over recent glacial-interglcial (G-IG) cycles and revised the relationship between algal growth rate, as expressed by the physiological parameter 'b', and dissolved phosphate concentration. We further show that the magnitude of change in ɛp37:2 over glacial-interglacial cycles at different sites is dependent on local nutrient conditions, highlighting the importance of constraining b for accurate CO2 estimates. The correlation between GDGT-2/3 ratio and back-calculated b at Ceara Rise (ODP Site 925) suggests that archaeal lipids could be used as proxies to calibrate b. Application of our variable-b method to reported data yields pCO2 estimates that are similar in both trends and magnitude to ice core-derived records.

  17. Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.

    PubMed

    Davis, Ryan E; Fishman, Daniel B; Frank, Edward D; Johnson, Michael C; Jones, Susanne B; Kinchin, Christopher M; Skaggs, Richard L; Venteris, Erik R; Wigmosta, Mark S

    2014-05-20

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr(-1) (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and interannual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, but economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  18. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale

    SciTech Connect

    Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

    2014-04-21

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  19. Chlorophyll fluorescence imaging of individual algal cells: effects of herbicide on Spirogyra distenta at different growth stages.

    PubMed

    Endo, Ryosuke; Omasa, Kenji

    2004-08-01

    Serious environmental degradation of aquatic ecosystems has been caused by eutrophication and by pollutants such as herbicides. Therefore, measurement of in situ algal photosynthetic activity is important for environmental monitoring. With ordinary nonimaging fluorometers, algal chlorophyll fluorescence can be measured easily, but heterogeneity within samples cannot be detected. Effects of a herbicide preparation containing 3-(3,4-dichlorophenyl)-1,1 -dimethylurea (DCMU) on photosynthetic activity at different growth stages of Spirogyra distenta were investigated by using a computer-aided microscopic imaging system for chlorophyll afluorescence. Photosystem II photochemical yield (phiPSII) images were used to diagnose photosynthetic activity of spiral filate chloroplasts in algal cells. The herbicide treatment caused a stronger decline in phiPSII values in younger than in mature algae cells. This result indicated that heterogeneity within algal samples should be considered when algae are used for environmental monitoring. Thus, measurement of chlorophyll fluorescence from young and mature chloroplasts with a microscopic imaging system makes it possible to improve the sensitivity for monitoring the environmental degradation of aquatic ecosystems.

  20. Linking algal growth inhibition to chemical activity: baseline toxicity required 1% of saturation.

    PubMed

    Schmidt, Stine N; Mayer, Philipp

    2015-02-01

    Recently, high-quality data were published on the algal growth inhibition caused by 50 non-polar narcotic compounds, of which 39 were liquid compounds with defined water solubility. In the present study, the toxicity data for these liquids were applied to challenge the chemical activity range for baseline toxicity. First, the reported effective concentrations (EC50) were divided by the respective water solubilities (S water), since the obtained EC50/S water ratio essentially equals the effective chemical activity (Ea50). The majority of EC50/S water ratios were within the expected chemical activity range of 0.01-0.1 for baseline toxicity, and none of the ratios were significantly below 0.01. On a practical level, these findings suggest EC50 values for baseline toxicity to be at or above 1% of liquid solubility, which would have been accurate or conservative for all 39 liquids with defined water solubility in the applied dataset. On an environmental risk assessment level, predicted no-effect concentrations (PNECs) for baseline toxicity could even be set as a percentage of saturation, which can easily be extended to mixtures. However, EC50 values well below 1% of liquid saturation can still occur and would be a direct indication of excess toxicity.

  1. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine.

    PubMed

    Laue, Pauline; Bährs, Hanno; Chakrabarti, Shumon; Steinberg, Christian E W

    2014-06-01

    Allelochemical action against planktonic phototrophs is one central issue in freshwater ecology and quality management. To determine some basic mechanisms of this toxic action, we exposed the coccal green alga, Desmodesmus armatus, and the coccal cyanobacterium, Microcystis aeruginosa, in a batch culture well-supplied with carbon dioxide to increasing concentrations of the polyphenols tannic acid and gallic acid and the alkaloid gramine. The phototrophs were checked after 2d and at the end of the culture for biomass-based growth rates, cell volume, maximum quantum yield of photosystem II (ΦPSIImax), chlorophyll a content (chla) after 2d and at the end of the culture, and lipid peroxidation only at the end of the culture. During the culture, the pH rose from 7.64 to 10.95, a pH characteristic of eutrophic freshwater bodies during nuisance algal blooms. All xenobiotics reduced the growth rate, ΦPSIImax, and chla during the first 2d with M. aeruginosa being more sensitive to the polyphenols than D. armatus. The efficacy of the polyphenols declined with increasing pH, indicating potential polymerization and corresponding reduced bioavailability of the polyphenols. In contrast to the polyphenols, gramine increased its toxic action over time, independent of the prevailing pH. All exposures caused slight to severe lipid peroxidation (LPO) in the phototrophs. Hence, one mechanism of growth inhibition may be oxidative stress-mediated reduction in photosynthesis. The presented results suggest that in successful field trials with leachate, the prevailing environmental conditions may inactivate polyphenols and xenobiotics other than polyphenols may be more effective.

  2. Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework

    PubMed Central

    Shen, Li; Xu, Huiping; Guo, Xulin

    2012-01-01

    Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372

  3. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework.

    PubMed

    Shen, Li; Xu, Huiping; Guo, Xulin

    2012-01-01

    Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372

  4. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework.

    PubMed

    Shen, Li; Xu, Huiping; Guo, Xulin

    2012-01-01

    Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives.

  5. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics.

    PubMed

    Ruffell, Sarah E; Frank, Richard A; Woodworth, Adam P; Bragg, Leslie M; Bauer, Anthony E; Deeth, Lorna E; Müller, Kirsten M; Farwell, Andrea J; Dixon, D George; Servos, Mark R; McConkey, Brendan J

    2016-11-01

    Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies.

  6. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics.

    PubMed

    Ruffell, Sarah E; Frank, Richard A; Woodworth, Adam P; Bragg, Leslie M; Bauer, Anthony E; Deeth, Lorna E; Müller, Kirsten M; Farwell, Andrea J; Dixon, D George; Servos, Mark R; McConkey, Brendan J

    2016-11-01

    Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies. PMID:27497784

  7. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  8. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  9. Effects of DDT and dicofol on population growth of Brachionus calyciflorus under different algal (Scenedesmus obliquus) densities.

    PubMed

    Xu, Xiao-Ping; Xi, Yi-Long; Chu, Zhao-Xia; Xiang, Xian-Ling

    2014-09-01

    A number of organochlorine pesticides, including DDT and dicofol, used to be important in crop protection and management. Their residues may reach water bodies and eventually affect the non-target organisms such as rotifers. In the present study, we evaluated the effects of DDT (0.05, 0.1, 0.2 and 0.4 mg l(-1)) and dicofol (0.1, 0.2, 0.4 and 0.8 mg l(-1)) on the population growth of rotifer Brachionus calyciflorus under two levels of Scenedesmus obliquus (1.0 x 10(6) and 3.0 x 10(6) cell ml(-1)). Regardless of the food level, DDT was more toxic than dicofol to B. calyciflorus. Under low food level, DDT at 0.1 and 0.2 mg l(-1) decreased the population growth rate (r), and DDT at 0.05-0.4 mg l(-1) decreased the maximum population density (K). Dicofol at 0.4 and 0.8 mg l(-1) decreased r and K, but dicofol at 0.2 mg l(-1) increased K. Under high food level, DDT at 0.05-0.2 mg l(-1) increased K, whereas DDT at 0.4 mg l(-1) as well as dicofol at 0.4 and 0.8 mg l(-1) decreased r and K. Increase in food level increased r exposed to DDT at 0.05-0.2 mg l(-1) as well as dicofol at 0.8 mg l(-1), and Kexposed to DDTat 0.05-0.2 mg l(-1) as well as dicofol at 0.1 and 0.2 mg l(-1). DDT concentration, algal density and their interaction affected r and K of B. calyciflorus. Both dicofol concentration and algal density affected r. Dicofol concentration, algal density and their interaction affected K. Both r and K were suitable endpoints for assessing the effects of DDT and dicofol on the rotifers population dynamics under two algal densities, and the latter was more sensitive.

  10. Potentials for Indication of Potentially Harmful Toxic Algal Blooms Using PROBA1-CHRIS Hyperspectral Imagery- A Case Study in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Beiermann, Timo

    2010-12-01

    Toxic algal blooms are an issue affecting water quality and can cause harmful health impacts. The aim of the conducted case study is to assess such blooms by chlorophyll a and phycocyanin detection as indicators of the occurrence. Using demonstrated single reflectance ratio algorithms published as in [7] and processed with provided tools for hyperspectral Proba1-CHRIS imagery in a study site including Loumbila reservoir near Ouagadougou, capital of Burkina Faso to investigate potentials of this approach.

  11. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

    PubMed

    Roberts, David A; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks.

  12. The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications

    PubMed Central

    Roberts, David A.; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m-2 d-1 to a maximum of 22.5 g DW m-2 d-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  13. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

    PubMed

    Roberts, David A; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  14. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel

    PubMed Central

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel. PMID:27610146

  15. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel.

    PubMed

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel. PMID:27610146

  16. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel

    PubMed Central

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel.

  17. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef.

    PubMed

    Rasher, Douglas B; Engel, Sebastian; Bonito, Victor; Fraser, Gareth J; Montoya, Joseph P; Hay, Mark E

    2012-05-01

    Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.

  18. Abiotic controls of potentially harmful algal blooms in Santa Monica Bay, California

    NASA Astrophysics Data System (ADS)

    Shipe, R. F.; Leinweber, A.; Gruber, N.

    2008-10-01

    Despite the increasing occurrence of harmful phytoplankton blooms along the North American west coast, records of phytoplankton populations and related environmental conditions are uncommon. In this study, twice monthly measurements in the upper 50 m are used to assess physico-chemical conditions contributing to the growth of potentially harmful bloom taxa over two annual cycles (2004-2005) in the Santa Monica Bay, California. Results were compared to the predictions of the Intaglio model [Smayda, T.J., Reynolds, C.S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23, 447-461.] of phytoplankton community assembly. Potentially harmful taxa were present in every surface sample and were numerically dominant during the largest observed blooms, contributing up to 92% of the total phytoplankton abundance >5 μm. Large interannual variation was observed in the dominant taxa and bloom seasonality; Pseudo-nitzschia sp. dominated blooms in early 2004 (February and April), whereas Prorocentrum micans and Lingulodinium polyedrum blooms occurred in May and September of 2005, respectively. The Pseudo-nitzschia sp. blooms were associated with elevated nitrate, dissolved silicon and phosphate concentrations throughout the euphotic zone; the first bloom followed a strong upwelling and the second occurred during the onset of seasonal stratification. In contrast, the blooms of P. micans were associated with highly stratified, low nutrient waters. Multivariate analysis supports the roles of temperature, mixed-layer depth and nutrient concentrations as primary controls of bloom growth, following the conceptual Intaglio model. The strong presence of potentially harmful bloom species in the Santa Monica Bay during this study appears unusual in comparison to limited studies over the last several decades.

  19. Algal fluorescence: impact and potential for retrieval from measurements of the underwater degree of polarization

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Tonizzo, A.; Ibrahim, A.; Gilerson, A.; Gross, B.; Moshary, F.

    2012-09-01

    Algorithms for retrieving inherent optical properties (IOPs) in coastal waters from remote sensing of water leaving reflectance spectra, are increasingly focused on red and near infrared (NIR) spectral bands, since the simple blue - green ratio approaches, valid in open oceans, fail when in coastal waters with strongly scattering inorganic particles and colored dissolved organic matter (CDOM). NIR spectra can however be significantly impacted by overlapping chlorophyll a fluorescence, and considerable progress has been made to quantify its contribution, and hence achieve more accurate [Chl] retrievals. Recently we have been studying multiangular hyperspectral polarization characteristics of underwater scattered light, using our recently developed Stokes vector polarimeter to fully measure Stokes parameters. From these studies, information on IOPs, in particular the characteristics of non - algal particles (NAP), which are the primary source of underwater polarized elastic scattering, can be obtained. Multiangular hyperspectral polarization measurements, combined with those of IOPs collected in eutrophic waters of Chesapeake/Virginia and New York Harbor/Hudson River areas, showed that chlorophyll a fluorescence markedly impacts (reduces) the underwater degree of polarization (DOP) in the 650 - 700 nm spectral region. By noting the unpolarized nature of algal fluorescence and the partially polarized properties of elastic scattering, we are able to separate the chlorophyll a fluorescence signal from the total reflectance. The analysis is based on comparisons of experimental measurements with vector/scalar radiative transfer computations using measured IOPs as inputs. Relationships between change in observed DOP and fluorescence contributions are examined, and the possibility of using DOP measurements for underwater fluorescence retrieval is evaluated for different scattering geometries.

  20. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  1. Population Growth of the Cladoceran, Daphnia magna: A Quantitative Analysis of the Effects of Different Algal Food

    PubMed Central

    Choi, Jong-Yun; Kim, Seong-Ki; Chang, Kwang-Hyeon; Kim, Myoung-Chul; La, Geung-Hwan; Joo, Gea-Jae; Jeong, Kwang-Seuk

    2014-01-01

    In this study, we examined the effects of two phytoplankton species, Chlorella vulgaris and Stephanodiscus hantzschii, on growth of the zooplankton Daphnia magna. Our experimental approach utilized stable isotopes to determine the contribution of food algae to offspring characteristics and to the size of adult D. magna individuals. When equal amounts of food algae were provided (in terms of carbon content), the size of individuals, adult zooplankton, and their offspring increased significantly following the provision of S. hantzschii, but not after the provision of C. vulgaris or of a combination of the two species. Offspring size was unaffected when C. vulgaris or a mixture of the two algal species was delivered, whereas providing only S. hantzschii increased the production of larger-sized offspring. Stable isotope analysis revealed significant assimilation of diatom-derived materials that was important for the growth of D. magna populations. Our results confirm the applicability of stable isotope approaches for clarifying the contribution of different food algae and elucidate the importance of food quality for growth of D. magna individuals and populations. Furthermore, we expect that stable isotope analysis will help to further precisely examine the contribution of prey to predators or grazers in controlled experiments. PMID:24752042

  2. The color of mass culture: spectral characteristics of a shallow water column through shade-limited algal growth dynamics(1).

    PubMed

    Hewes, Christopher D

    2016-04-01

    It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade-limited photosynthetic growth within depths of 20-30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20-cm water column as a function of Chl-a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1-2 mg Chl-a · L-1, whereby a scalar ~5 μmol photons · m-2 · s-1 at 20-cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl-a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non-photochemical quenching capacities, which could negatively impact crop yield.

  3. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms.

    PubMed

    Rosi-Marshall, Emma J; Kincaid, Dustin W; Bechtold, Heather A; Royer, Todd V; Rojas, Miguel; Kelly, John J

    2013-04-01

    Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.

  4. Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast

    NASA Astrophysics Data System (ADS)

    Giddings, S. N.; MacCready, P.; Hickey, B. M.; Banas, N. S.; Davis, K. A.; Siedlecki, S. A.; Trainer, V. L.; Kudela, R. M.; Pelland, N. A.; Connolly, T. P.

    2014-04-01

    Harmful algal blooms (HABs) pose a significant threat to human and marine organism health, and negatively impact coastal economies around the world. An improved understanding of HAB formation and transport is required to improve forecasting skill. A realistic numerical simulation of the US Pacific Northwest region is used to investigate transport pathways from known HAB formation hot spots, specifically for Pseudo-nitzschia (Pn), to the coast. We show that transport pathways are seasonal, with transport to the Washington (WA) coast from a northern source (the Juan de Fuca Eddy) during the summer/fall upwelling season and from a southern source (Heceta Bank) during the winter/early spring due to the predominant wind-driven currents. Interannual variability in transport from the northern source is related to the degree of wind intermittency with more transport during years with more frequent relaxation/downwelling events. The Columbia River plume acts to mitigate transport to the coast as the plume front blocks onshore transport. The plume's influence on alongshore transport is variable although critical in aiding transport from the southern source to the WA coast via plume entrainment. Overall transport from our simulations captures most observed Pn HAB beach events from 2004 to 2007 (characterized by Pseudo-nitzschia cell abundance); however, numerous false positives occur. We show that incorporating phytoplankton biomass results from a coupled biogeochemical model reduces the number of false positives significantly and thus improves our Pn HAB predictions.

  5. Occurrence and potential risks of harmful algal blooms in the East China Sea.

    PubMed

    Wang, Jinhui; Wu, Jianyong

    2009-06-15

    Harmful algal blooms (HABs) have drawn great attention in coastal areas worldwide in the past decades because of their multiple effects on marine ecosystems as well as public health. This study utilized geographic information system (GIS) techniques to analyze the primary data on HABs, as well as shellfish toxins data, in the East China Sea from 2000 to 2006. The frequency of HABs was mapped by kernel density estimation, and the relative risk posed by HABs was assessed based on their physical-chemical characteristics. In addition, the spatial patterns and the trend of HAB events were examined by nearest neighbor analysis and time series analysis, respectively. The results revealed that HAB events not only had an increasing trend and significant seasonality, but also were clustered in space and time. HAB events displayed a higher frequency and a higher risk in Zhejiang coastal waters, particularly in the Zhoushan Archipelago, the largest marine fishery in China. Shellfish toxins were detected in areas with high HAB risk, but were not correlated with the risk. This paper provides a novel method to assess the relative risk caused by HABs and some useful information for HAB monitoring and management and aquaculture development.

  6. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  7. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  8. A growth inhibitory model with SO(x) influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere.

    PubMed

    Ronda, Srinivasa Reddy; Kethineni, Chandrika; Parupudi, Lakshmi Chandrika Pavani; Thunuguntla, Venkata Bala Sai Chaitanya; Vemula, Sandeep; Settaluri, Vijaya Saradhi; Allu, Prasada Rao; Grande, Suresh Kumar; Sharma, Suraj; Kandala, Chari Venkatakrishna

    2014-01-01

    A theoretical model for the prediction of biomass concentration under rice husk flue gas emission has been developed. The growth inhibitory model (GIM) considers the CO2 mass transfer rate, the critical SOx concentration and its role in pH-based inter-conversion of bicarbonate. The calibration and subsequent validation of the growth profile of Nannochloropsis limnetica at 2% and 10% (v/v) CO2 showed that the predicted values were consistent with the measured values, with r(2) being 0.96 and 0.98, respectively, and p<0.001 in both cases. The constants used in the GIM for the prediction of biomass have been justified using sensitivity analysis. GIM applicability was defined as ±30% of the calibrated flow rate (3.0 L min(-1)). This growth model can be applied to predict algal growth in photo-bioreactors treated with flue gas in the generation of biomass feed stock for biofuel production. PMID:24300846

  9. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model

    SciTech Connect

    Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

    2012-06-01

    The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

  10. Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis.

    PubMed

    Alizadeh Tabatabai, S Assiyeh; Schippers, Jan C; Kennedy, Maria D

    2014-08-01

    This paper investigated the effect of coagulation on fouling potential and removal of algal organic matter (AOM) in seawater ultrafiltration (UF) systems. AOM harvested from a strain of bloom forming marine diatom, Chaetoceros affinis, was coagulated with ferric chloride under different coagulation modes and conditions. The effect of coagulation on fouling potential was determined with the Modified Fouling Index-Ultrafiltration (MFI-UF). Removal of AOM was studied for three different modes of coagulation, namely, coagulation followed by sedimentation, coagulation followed by sedimentation and filtration through 0.45 μm, and inline coagulation followed by filtration through 150 kDa UF membranes. Liquid chromatography - organic carbon detection was used to determine the removal of AOM with particular emphasis on biopolymers. AOM (as biopolymers) had a high fouling potential as measured by MFI-UF, which strongly depended on filtration flux. Moreover, the developed cake/gel layer on the membrane was fairly compressible during filtration; manifested as higher fouling potential at higher filtration flux and non-linear development of pressure in filtration tests. Coagulation substantially reduced fouling potential and compressibility of the AOM cake/gel layer. The impact of coagulation was particularly significant at coagulant doses >1 mg Fe/L. Coagulation also substantially reduced the flux-dependency of AOM fouling potential, resulting in linear development of pressure in filtration tests at constant flux. This was attributed to adsorption of biopolymers on precipitated iron hydroxide and formation of Fe-biopolymer aggregates, such that the fouling characteristics of iron hydroxide precipitates prevailed and AOM fouling characteristics diminished. At low coagulant dose, inline coagulation/UF was more effective in removing AOM than the other two coagulation modes tested. At high coagulant dose where sweep floc conditions prevailed, AOM removal was considerably higher

  11. Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs

    PubMed Central

    Doemel, W. N.; Brock, Thomas D.

    1977-01-01

    Laminated mats of unique character in siliceous alkaline hot springs of Yellowstone Park are formed predominantly by two organisms, a unicellular blue-green alga, Synechococcus lividus, and a filamentous, gliding, photosynthetic bacterium, Chloroflexus aurantiacus. The mats can be divided approximately into two major zones: an upper, aerobic zone in which sufficient light penetrates for net photosynthesis, and a lower, anaerobic zone, where photosynthesis does not occur and decomposition is the dominant process. Growth of the mat was followed by marking the mat surface with silicon carbide particles. The motile Chloroflexus migrates vertically at night, due to positive aerotaxis, responding to reduced O2 levels induced by dark respiration. The growth rates of mats were estimated at about 50 μm/day. Observations of a single mat at Octopus Spring showed that despite the rapid growth rate, the thickness of the mat remained essentially constant, and silicon carbide layers placed on the surface gradually moved to the bottom of the mat, showing that decomposition was taking place. There was a rapid initial rate of decomposition, with an apparent half-time of about 1 month, followed by a slower period of decomposition with a half-time of about 12 months. Within a year, complete decomposition of a mat of about 2-cm thickness can occur. Also, the region in which decomposition occurs is strictly anaerobic, showing that complete decomposition of organic matter from these organisms can occur in the absence of O2. Images PMID:16345254

  12. Polishing of secondary effluent by an algal biofilm process.

    PubMed

    Schumacher, G; Sekoulov, I

    2002-01-01

    The potential in polishing secondary effluent by an algal biofilm composed of different green and bluegreen algae was investigated. During the photosynthesis process of algal biofilm oxygen was produced while dissolved carbon dioxide was consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH caused precipitation of dissolved phosphates. The attached algae took up nitrogen and phosphorus during the growth of biomass. In addition to nutrient removal, an extensive removal of faecal bacteria was observed probably caused by adsorption of the algal biofilm and by photooxidation involving dissolved oxygen. The experimental results suggest that a low-cost, close to nature process especially for small wastewater treatment plants for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm. PMID:12420969

  13. The Influence of Salinity, Growth Rate and Temperature on D/H Fractionation in Algal Lipids from Culture and Field Studies

    NASA Astrophysics Data System (ADS)

    Sachs, J. P.; Schwab, V.; Sachse, D.; Cash, A.; Nelson, D.; Zhang, Z.; Kawka, O.

    2007-12-01

    The use of compound-specific D/H ratios to decipher biochemical, geochemical, oceanographic, and climatic processes is expanding rapidly. The relative success of these efforts depends on an understanding of the environmental conditions that influence the deuterium depletion relative to environmental water observed in all plant, algal and bacterial lipids, and the sensitivity of D/H fractionation responses to changes in those environmental conditions. Presently very little is known about this interplay between the environment and D/H fraction in algal lipids. Here we present results from field studies (in the Chesapeake Bay, Christmas Island, the Great Salt Lake, and saline basins in Alberta and Saskatchewan) and culture studies (both continuous and batch) that indicate that salinity, growth rate and temperature each influence D/H fractionation in algal lipids to varying degrees, depending on the algae and the lipid. Our initial results indicate that D/H fractionation (1) decreases with increasing salinity, (2) increases with increasing growth rate in isoprenoid lipids, (3) is insensitive to growth rate in acetogenic lipids, and (4) increases with increasing temperature.

  14. Impact of Herbivore Identity on Algal Succession and Coral Growth on a Caribbean Reef

    PubMed Central

    Burkepile, Deron E.; Hay, Mark E.

    2010-01-01

    Background Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances. Methodology and Principal Findings In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus bahianus); in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus). On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae. Significance This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental

  15. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Willoughby, Nik

    2013-08-01

    Growth characteristics of two strains of microalgae in bubble column photobioreactors were investigated under different cultivation conditions. Chlorella vulgaris and Gloeothece membranacea were cultivated in luminescent acrylic photobioreactors at different seed culture densities. Luminescent acrylic photobioreactors in blue, green, yellow, orange, and red colours capable of spectral conversion of light were used. The results indicated that the red luminescent photobioreactor enhanced biomass production in both strains of microalgae while pigmentation was induced under different light colours. Green light promoted chlorophyll production in C. vulgaris however chlorophyll production in G. membranacea cultures was less influenced by the light condition or culture density. Phycobiliproteins were the dominant pigments in G. membranacea and red light favoured synthesis of these pigments.

  16. Potential for utilization of algal biomass for components of the diet in CELSS

    NASA Technical Reports Server (NTRS)

    Kamarei, A. R.; Nakhost, Z.; Karel, M.

    1986-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell Density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances is potential nutritional and organoleptic acceptability as a diet component in controlled Ecological Life Support System.

  17. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2016-06-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa (I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  18. Potential for utilization of algal biomass for components of the diet in CELSS

    NASA Technical Reports Server (NTRS)

    Kamarei, A. R.; Nakhost, Z.; Karel, M.

    1985-01-01

    Techniques which eliminate or reduce the undesirable cell components of algae and enhance the potential nutritional and organoleptic acceptability of algae products are studied. The cell walls, nucleic acids, and pigments and lipids of the green algae Scenedesmus obiliquus need to be removed. The procedures for determining the composition of proteins, pigments and lipids, and moisture and ash are described. Chemical, enzymatic, and physical methods of removing the cell wall to make the algae digestable are analyzed; a homogenization technique is utilized. The problems encountered if algae nucleic acids are ingested directly are discussed; the reduction of DNA and RNA by applying extracellular DNase and RNase to the nucleic acids is examined. The color and flavor of the algae are enhanced with the extraction of pigments and lipids from the algae protein concentration.

  19. Role of riboswitches in gene regulation and their potential for algal biotechnology.

    PubMed

    Nguyen, Ginnie T D T; Scaife, Mark A; Helliwell, Katherine E; Smith, Alison G

    2016-06-01

    Riboswitches are regulatory elements in messenger RNA to which specific ligands can bind directly in the absence of proteins. Ligand binding alters the mRNA secondary structure, thereby affecting expression of the encoded protein. Riboswitches are widespread in prokaryotes, with over 20 different effector ligands known, including amino acids, cofactors, and Mg(2+) ions, and gene expression is generally regulated by affecting translation or termination of transcription. In plants, fungi, and microalgae, riboswitches have been found, but only those that bind thiamine pyrophosphate. These eukaryotic riboswitches operate by causing alternative splicing of the transcript. Here, we review the current status of riboswitch research with specific emphasis on microalgae. We discuss new riboswitch discoveries and insights into the underlying mechanism of action, and how next generation sequencing technology provides the motivation and opportunity to improve our understanding of these rare but important regulatory elements. We also highlight the potential of microalgal riboswitches as a tool for synthetic biology and industrial biotechnology.

  20. Fetal growth potential and pregnancy outcome.

    PubMed

    Bukowski, Radek

    2004-02-01

    Although the association of fetal growth restriction and adverse pregnancy outcomes is well known, lack of sensitivity limits its clinical value. To a large extent, this limitation is a result of traditionally used method to define growth restriction by comparing fetal or birth weight to population norms. The use of population norms, by virtue of their inability to fully consider individual variation, results in high false positive and negative rates. An alternative, calculating fetal individually optimal growth potential, based on physiological determinants of individual growth, is superior in predicting adverse outcomes of pregnancy. Impairment of fetal growth potential identifes some adverse pregnancy outcomes that are not associated with growth restrction defined by population norms. When compared with traditional population-based norms, fetal growth potential is a better predictor of several important adverse outcomes of pregnancy which include: stillbirth, neonatal mortality and morbidity, and long-term adverse neonatal outcomes like neonatal encephalopathy, cerebral palsy and cognitive abilities. Impairment of individual growth potential is also strongly associated with spontaneous preterm delivery. Although definitive interventional trials have not been conducted as yet to validate the clinical value of fetal growth potential, many observational studies, conducted in various populations, indicate its significant promise in this respect.

  1. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    PubMed

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  2. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage.

    PubMed

    Roleda, Michael Y; Cornwall, Christopher E; Feng, Yuanyuan; McGraw, Christina M; Smith, Abigail M; Hurd, Catriona L

    2015-01-01

    Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65) and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat. PMID:26469945

  3. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage.

    PubMed

    Roleda, Michael Y; Cornwall, Christopher E; Feng, Yuanyuan; McGraw, Christina M; Smith, Abigail M; Hurd, Catriona L

    2015-01-01

    Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65) and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.

  4. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage

    PubMed Central

    Roleda, Michael Y.; Cornwall, Christopher E.; Feng, Yuanyuan; McGraw, Christina M.; Smith, Abigail M.; Hurd, Catriona L.

    2015-01-01

    Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily x~ = 8.05 (daytime pH = 8.45, night-time pH = 7.65) and daily x~ = 7.65 (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults’ response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat. PMID:26469945

  5. Solutions Network Formulation Report. NASA's Potential Contributions in Remote Quorum Sensing and the Management of Harmful Algal Blooms

    NASA Technical Reports Server (NTRS)

    Fletcher, Rose; Knowlton, Kelly; Ryan, Robert E.

    2007-01-01

    This candidate solution proposes to use the night-imaging capabilities of the HSTC from SAC-C and of the HSC from SAC-D/Aquarius to detect bioluminescent events associated with HABs (harmful algal blooms). Once detected, this information could be fed to the NOAA CSCOR (Center for Sponsored Coastal Ocean Research) Harmful Algal Bloom Event Response Program, which acts quickly to fund the mobilization of research teams and to engage local agencies in a response. The HSC/HSTC data can serve as input to the HABSOS decision support system to provide information on location, extent, and duration of HAB events. Society will benefit from improved protection of the health of humans beings, aquatic ecosystems, and coastal economies. This work supports coastal management, public health, and homeland security applications.

  6. Biodegradation of bisphenol A by an algal-bacterial system.

    PubMed

    Eio, Er Jin; Kawai, Minako; Niwa, Chiaki; Ito, Masato; Yamamoto, Shuichi; Toda, Tatsuki

    2015-10-01

    The degradation of bisphenol A (BPA) by Chlorella sorokiniana and BPA-degrading bacteria was investigated. The results show that BPA was partially removed by a monoculture of C. sorokiniana, but the remaining BPA accounted for 50.2, 56.1, and 60.5 % of the initial BPA concentrations of 10, 20, and 50 mg L(-1), respectively. The total algal BPA adsorption and accumulation were less than 1 %. C. sorokiniana-bacterial system effectively removed BPA with photosynthetic oxygen provided by the algae irrespective of the initial BPA concentration. The growth of C. sorokiniana in the algal system was inhibited by BPA concentrations of 20 and 50 mg L(-1), but not in the algal-bacterial system. This observation indicates that bacterial growth in the algal-bacterial system reduced the BPA-inhibiting effect on algae. A total of ten BPA biodegradation intermediates were identified by GC-MS. The concentrations of the biodegradation intermediates decreased to a low level at the end of the experiment. The hypothetical carbon mass balance analysis showed that the amounts of oxygen demanded by the bacteria are insufficient for effective BPA degradation. However, adding an external carbon source could compensate for the oxygen shortage. This study demonstrates that the algal-bacterial system has the potential to remove BPA and its biodegradation intermediates. PMID:26013738

  7. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process.

    PubMed

    Tu, Qingshi; Lu, Mingming; Thiansathit, Worrarat; Keener, Tim C

    2016-01-01

    Although water is one of the most critical factors affecting the sustainable development of algal biofuels, it is much less studied as compared to the extensive research on algal biofuel production technologies. This paper provides a review of the recent studies on water consumption of the algae biofuel process and presents the water conservation technologies applicable at different stages of the algal biofuel process. Open ponds tend to have much higher water consumption (216 to 2000 gal/gal) than photobioreactors (25 to 72 gal/gal). Algae growth accounts for the highest water consumption (165 to 2000 gal/gal) in the open pond system. Water consumption during harvesting, oil extraction, and biofuel conversion are much less compared with the growth stage. Potential water conservation opportunities include technology innovations and better management practices at different stages of algal biofuel production.

  8. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process.

    PubMed

    Tu, Qingshi; Lu, Mingming; Thiansathit, Worrarat; Keener, Tim C

    2016-01-01

    Although water is one of the most critical factors affecting the sustainable development of algal biofuels, it is much less studied as compared to the extensive research on algal biofuel production technologies. This paper provides a review of the recent studies on water consumption of the algae biofuel process and presents the water conservation technologies applicable at different stages of the algal biofuel process. Open ponds tend to have much higher water consumption (216 to 2000 gal/gal) than photobioreactors (25 to 72 gal/gal). Algae growth accounts for the highest water consumption (165 to 2000 gal/gal) in the open pond system. Water consumption during harvesting, oil extraction, and biofuel conversion are much less compared with the growth stage. Potential water conservation opportunities include technology innovations and better management practices at different stages of algal biofuel production. PMID:26803023

  9. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  10. Decreased growth-induced water potential: A primary cause of growth inhibition at low water potentials

    SciTech Connect

    Nonami, Hiroshi; Wu, Yajun; Boyer, J.S.

    1997-06-01

    Cell enlargement depends on a growth-induced difference in water potential to move water into the cells. Water deficits decrease this potential difference and inhibit growth. To investigate whether the decrease causes the growth inhibition, pressure was applied to the roots of soybean seedlings and the growth and potential difference were monitored in the stems. In water-limited plants, the inhibited stem growth increased when the roots were pressurized and it reverted to the previous rate when the pressure was released. The pressure around the roots was perceived as an increased turgor in the stem in small cells next to the xylem, but not in outlying cortical cells. This local effect implied that water transport was impeded by the small cells. The diffusivity for water was much less in the small cells than in the outlying cells. The small cells thus were a barrier that caused the growth-induced potential difference to be large during rapid growth, but to reverse locally during the early part of a water deficit. Such a barrier may be a frequent property of meristems. Because stem growth responded to the pressure-induced recovery of the potential difference across this barrier, we conclude that a decrease in the growth-induced potential difference was a primary cause of the inhibition.

  11. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  12. Algal functional annotation tool

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  13. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella.

    PubMed

    Amaro, Ana M; Fuentes, María S; Ogalde, Sandra R; Venegas, Juan A; Suárez-Isla, Benjamín A

    2005-01-01

    The toxic dinoflagellate Alexandrium catenella isolated from fjords in Southern Chile produces several analogues of saxitoxin and has been associated with outbreaks of paralytic shellfish poisoning. Three bacterial strains, which remained in close association with this dinoflagellate in culture, were isolated by inoculating the dinoflagellate onto marine agar. The phenotypically different cultivable bacterial colonies were purified. Their genetic identification was done by polymerase chain reaction amplification of the 16S rRNA genes. Partial sequence analysis suggested that the most probable affiliations were to two bacterial phyla: Proteobacteria and the Cytophaga group. The molecular identification was complemented by morphological data and biochemical profiling. The three bacterial species, when grown separately from phytoplankton cells in high-nutrient media, released algal-lytic compounds together with aminopeptidase, lipase, glucosaminidase, and alkaline phosphatase. When the same bacteria, free of organic nutrients, were added back to the algal culture they displayed no detrimental effects on the dinoflagellate cells and recovered their symbiotic characteristics. This observation is consistent with phylogenetic analysis that reveals that these bacteria correspond to species distinct from other bacterial strains previously classified as algicidal bacteria. Thus, bacterial-derived lytic activities are expressed only in the presence of high-nutrient culture media and it is likely that in situ environmental conditions may modulate their expression. PMID:15926994

  14. Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity.

    PubMed

    Liess, Antonia; Kahlert, Maria

    2007-05-01

    The potential interactions of grazing, nutrients and light in influencing autotroph species diversity have not previously been considered. Earlier studies have shown that grazing and nutrients interact in determining autotroph species diversity, since grazing decreases species diversity when nutrients (i.e. N or P) limit autotroph growth, but increases it when nutrients are replete. We hypothesized that increased light intensities would intensify the interactions between grazing and nutrients on algal species diversity, resulting in even stronger reductions in algal species diversity through grazing under nutrient-poor conditions, and to even stronger increases of algal species diversity through grazing under nutrient-rich conditions. We studied the effects of grazing (absent, present), nutrients (ambient, N + P enriched) and light (low light, high light) on benthic algal diversity and periphyton C:nutrient ratios (which can indicate algal nutrient limitation) in a factorial laboratory experiment, using the gastropod grazer Viviparus viviparus. Grazing decreased algal biomass and algal diversity, but increased C:P and N:P ratios of periphyton. Grazing also affected periphyton species composition, by decreasing the proportion of Spirogyra sp. and increasing the proportion of species in the Chaetophorales. Grazing effects on diversity as well as on periphyton N:P ratios were weakened when nutrients were added (interaction between grazing and nutrients). Chlorophyll a (Chl a) per area increased with nutrient addition and decreased with high light intensities. Light did not increase the strength of the interaction between grazing and nutrients on periphytic algal diversity. This study shows that nutrient addition substantially reduced the negative effects of grazing on periphytic algal diversity, whereas light did not interact with grazing or nutrient enrichment in determining periphytic algal diversity. PMID:17285319

  15. Combined effect of concentrations of algal food (Chlorella vulgaris) and salt (sodium chloride) on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera).

    PubMed

    Peredo-Alvarez, Víctor M; Sarma, S S; Nandini, S

    2003-06-01

    Salinity is an important variable influencing the density and diversity of rotifers. Studies on salt tolerance of rotifers have so far concentrated on euryhaline species while very little information is available on non-euryhaline taxa. In the present work, we have evaluated the combined effects of Chlorella vulgaris and sodium chloride on the population growth of two freshwater rotifers B. calyciflorus and B. patulus. A 24 hr acute tolerance test using NaCl revealed that B. calyciflorus was more resistant (LC50 = 3.75 +/- 0.04 g l-1) than B. patulus (2.14 +/- 0.09 g l-1). The maximal population density (mean +/- standard error) for B. calyciflorus in the control at 4.5 x 10(6) cells ml-1 (algal level) was 80 +/- 5 ind. ml-1, which was nearly a fifth of the one for B. patulus (397 +/- 7 ind. ml-1) under comparable conditions. Data on population growth revealed that regardless of salt concentration, the density of B. calyciflorus increased with increasing food levels, while for B. patulus, this trend was evident only in the controls. Regardless of salt concentration and algal food level, the day of maximal population density was lower (4 +/- 0.5 days) for B. calyciflorus than for B. patulus (11 +/- 1 day). The highest rates of population increase (r values) for B. calyciflorus and B. patulus were 0.429 +/- 0.012 and 0.367 +/- 0.004, respectively, recorded at 4.5 x 10(6) cells ml-1 of Chlorella in the controls. The protective role of algae in reducing the effect of salt stress was more evident in B. calyciflorus than B. patulus. PMID:15162733

  16. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka T.; et al

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  17. Origin of growth-induced water potential

    SciTech Connect

    Nonami, H.; Boyer, J.S.

    1987-03-01

    The authors developed a new method to measure the solute concentration in the apoplast of stem tissue involving pressurizing the roots of intact seedlings (Glycine max (L.) Merr. or Pisum sativum L.), collecting a small amount of exudate from the surface of the stem under saturating humidities, and determining the osmotic potential of the solution with a micro-osmometer capable of measuring small volumes (0.5 microliter). In the elongating region, the apoplast concentrations were very low (equivalent to osmotic potentials of -0.03 to -0.04 megapascal) and negligible compared to the water potential of the apoplast (-0.15 to -0.30 megapascal) measured directly by isopiestic psychrometry in intact plants. Most of the apoplast water potential consisted of a negative pressure that could be measured with a pressure chamber (-0.15 to -0.28 megapascal). Tests showed that earlier methods involving infiltration of intercellular spaces or pressurizing cut segments caused solute to be released to the apoplast and resulted in spuriously high concentrations. These results indicate that, although a small amount of solute is present in the apoplast, the major component is a tension that is part of a growth-induced gradient in water potential in the enlarging tissue. The gradient originates from the extension of the cell walls, which prevents turgor from reaching its maximum and creates a growth-induced water potential that causes water to move from the xylem at a rate that satisfies the rate of enlargement. The magnitude of the gradient implies that growing tissue contains a large resistance to water movement.

  18. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  19. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.

    PubMed

    Van Hoecke, Karen; De Schamphelaere, Karel A C; Ramirez-Garcia, Sonia; Van der Meeren, Paul; Smagghe, Guy; Janssen, Colin R

    2011-08-01

    Silica nanoparticles (NPs) belong to the industrially most important NP types. In a previous study it was shown that amorphous SiO(2) NPs of 12.5 and 27.0 nm are stable in algal growth inhibition assays and that their ecotoxic effects are related to NP surface area. Here, it was hypothesized and demonstrated that an alumina coating completely alters the particle-particle, particle-test medium and particle-algae interactions of SiO(2) NPs. Therefore, stability and surface characteristics, dissolution, nutrient adsorption and effects on algal growth rate of both alumina coated SiO(2) NPs and bare SiO(2) NPs in OECD algal test medium as a function of pH (6.0-8.6) and natural organic matter (NOM) contents (0-12 mg C/l) were investigated. Alumina coated SiO(2) NPs aggregated in all media and adsorbed phosphate depending on pH and NOM concentration. On the other hand, no aggregation or nutrient adsorption was observed for the bare SiO(2) NPs. Due to their positive surface charge, alumina coated SiO(2) NPs agglomerated with Pseudokirchneriella subcapitata. Consequently, algal cell density measurements based on cell counts were unreliable and hence fluorescent detection of extracted chlorophyll was the preferred method. Alumina coated SiO(2) NPs showed lower toxicity than bare SiO(2) NPs at concentrations ≥46 mg/l, except at pH 6.0. At low concentrations, no clear pH effect was observed for alumina coated SiO(2) NPs, while at higher concentrations phosphate deficiency could have contributed to the higher toxicity of those particles at pH 6.0-6.8 compared to higher pH values. Bare SiO(2) NPs were not toxic at pH 6.0 up to 220 mg/l. Addition of NOM decreased toxicity of both particles. For SiO(2) NPs the 48 h 20% effect concentration of 21.8 mg/l increased 2.6-21 fold and a linear relationship was observed between NOM concentration and effective concentrations. No effect was observed for alumina coated SiO(2) NPs in presence of NOM up to 1000 mg/l. All experiments point

  20. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2016-07-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  1. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  2. Biotransport of Algal Toxins to Riparian Food Webs.

    PubMed

    Moy, Nicholas J; Dodson, Jenna; Tassone, Spencer J; Bukaveckas, Paul A; Bulluck, Lesley P

    2016-09-20

    The occurrence of harmful algal blooms has resulted in growing worldwide concern about threats to aquatic life and human health. Microcystin (MC), a cyanotoxin, is the most widely reported algal toxin in freshwaters. Prior studies have documented its presence in aquatic food webs including commercially important fish and shellfish. In this paper we present the first evidence that algal toxins propagate into riparian food webs. We show that MC is present in emerging aquatic insects (Hexagenia mayflies) from the James River Estuary and their consumers (Tetragnathidae spiders and Prothonotary Warblers, Protonotaria citrea). MC levels in Prothonotary Warblers varied by age class, with nestlings having the highest levels. At the site where nestlings received a higher proportion of aquatic prey (i.e., mayflies) in their diet, we observed higher MC concentrations in liver tissue and fecal matter. Warbler body condition and growth rate were not related to liver MC levels, suggesting that aquatic prey may provide dietary benefits that offset potential deleterious effects of the toxin. This study provides evidence that threats posed by algal toxins extend beyond the aquatic environments in which blooms occur.

  3. Biotransport of Algal Toxins to Riparian Food Webs.

    PubMed

    Moy, Nicholas J; Dodson, Jenna; Tassone, Spencer J; Bukaveckas, Paul A; Bulluck, Lesley P

    2016-09-20

    The occurrence of harmful algal blooms has resulted in growing worldwide concern about threats to aquatic life and human health. Microcystin (MC), a cyanotoxin, is the most widely reported algal toxin in freshwaters. Prior studies have documented its presence in aquatic food webs including commercially important fish and shellfish. In this paper we present the first evidence that algal toxins propagate into riparian food webs. We show that MC is present in emerging aquatic insects (Hexagenia mayflies) from the James River Estuary and their consumers (Tetragnathidae spiders and Prothonotary Warblers, Protonotaria citrea). MC levels in Prothonotary Warblers varied by age class, with nestlings having the highest levels. At the site where nestlings received a higher proportion of aquatic prey (i.e., mayflies) in their diet, we observed higher MC concentrations in liver tissue and fecal matter. Warbler body condition and growth rate were not related to liver MC levels, suggesting that aquatic prey may provide dietary benefits that offset potential deleterious effects of the toxin. This study provides evidence that threats posed by algal toxins extend beyond the aquatic environments in which blooms occur. PMID:27552323

  4. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes. PMID:25409583

  5. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.

  6. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  7. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  8. Assessment of potential effects of water produced from coalbed natural gas development on macroinvertebrate and algal communities in the Powder River and Tongue River, Wyoming and Montana, 2010

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Feldman, David L.

    2011-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case

  9. The Potential of Growth Mixture Modelling

    ERIC Educational Resources Information Center

    Muthen, Bengt

    2006-01-01

    The authors of the paper on growth mixture modelling (GMM) give a description of GMM and related techniques as applied to antisocial behaviour. They bring up the important issue of choice of model within the general framework of mixture modelling, especially the choice between latent class growth analysis (LCGA) techniques developed by Nagin and…

  10. Loss and Recovery Potential of Marine Habitats: An Experimental Study of Factors Maintaining Resilience in Subtidal Algal Forests at the Adriatic Sea

    PubMed Central

    Perkol-Finkel, Shimrit; Airoldi, Laura

    2010-01-01

    Background Predicting and abating the loss of natural habitats present a huge challenge in science, conservation and management. Algal forests are globally threatened by loss and severe recruitment failure, but our understanding of resilience in these systems and its potential disruption by anthropogenic factors lags well behind other habitats. We tested hypotheses regarding triggers for decline and recovery potential in subtidal forests of canopy-forming algae of the genus Cystoseira. Methodology/Principal Findings By using a combination of historical data, and quantitative in situ observations of natural recruitment patterns we suggest that recent declines of forests along the coasts of the north Adriatic Sea were triggered by increasing cumulative impacts of natural- and human-induced habitat instability along with several extreme storm events. Clearing and transplantation experiments subsequently demonstrated that at such advanced stages of ecosystem degradation, increased substratum stability would be essential but not sufficient to reverse the loss, and that for recovery to occur removal of the new dominant space occupiers (i.e., opportunistic species including turf algae and mussels) would be required. Lack of surrounding adult canopies did not seem to impair the potential for assisted recovery, suggesting that in these systems recovery could be actively enhanced even following severe depletions. Conclusions/Significance We demonstrate that sudden habitat loss can be facilitated by long term changes in the biotic and abiotic conditions in the system, that erode the ability of natural ecosystems to absorb and recover from multiple stressors of natural and human origin. Moreover, we demonstrate that the mere restoration of environmental conditions preceding a loss, if possible, may be insufficient for ecosystem restoration, and is scarcely cost-effective. We conclude that the loss of complex marine habitats in human-dominated landscapes could be mitigated with

  11. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  12. Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction--diffusion patterned catalysis of cell surface growth

    PubMed Central

    Holloway, D. M.

    1999-01-01

    Semi-cell morphogenesis in unicellular desmid algae of the genus Micrasterias generates a stellar shape by repeated dichotomous branching of growing tips of the cell surface. The numerous species of the genus display variations of the branching pattern that differ markedly in number of branchings, lobe width and lobe length. We have modelled this morphogenesis, following previous work by D. M. Harrison and M. Kolar (1988), on the assumptions that patterning occurs by chemical reaction-diffusion activity within the plasma membrane, leading to morphological expression by patterned catalysis of the extension of the cell surface. The latter has been simulated in simplified form by two-dimensional computations. Our results indicate that for generation of repeated branchings and for the control of diverse species-specific shapes, the loss of patterning activity and of rapid growth in regions separating the active growing tips is an essential feature. We believe this conclusion to be much more general than the specific details of our model. We discuss the limitations of the model especially in terms of what extra features might be addressed in three-dimensional computation.

  13. Algal conditions in the Caloosahatchee River (1975-79), Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; La Rose, Henry R.

    1982-01-01

    Maximum numbers of suspended algae occurred in late spring and early summer, in each of the years 1975-79, in the Caloosahatchee River. Numbers exceeded 100,000 cells per milliliter at all stations sometime during the study. Concentrations decreased during late summer and autumn and were low during winter, except in January 1979 when numbers at most sites exceeded 100,000 cells per milliliter. The January 1979 bloom coincided with large discharges from Lake Okeechobee. During previous winters, discharges and algal numbers were lower. During other seasons, algal blooms occurred most frequently under low-flow or stagnant conditions. The upstream site at Moore Haven, which had the least discharge and was most stagnant, had consistently higher algal concentrations than downstream sites. Blue-green algae were dominant in the river during the summer at the upstream site throughout the year. The percentage of blue-green algae decreased downstream. Concentrations of nitrite plus nitrate nitrogen were inversely correlated with concentrations of algae and decreased to near zero during algal blooms. The low concentrations of these forms of inorganic nitrogen relative to other major nutrients probably favor blue-green algae and limit growth of other algae. Contributions by the basin tributaries to the nutritive condition of the river were small because concentrations of nutrients, algal growth potential, and algae in the tributaries were generally less than those in the river. (USGS)

  14. Potential role of human growth hormone in melanoma growth promotion.

    PubMed

    Handler, Marc Z; Ross, Andrew L; Shiman, Michael I; Elgart, George W; Grichnik, James M

    2012-10-01

    BACKGROUND Human growth hormone (HGH) and insulin-like growth factor-1 (IGF-1) have been shown to play a role in the malignant transformation and progression of a variety of cancers. HGH is also known to upregulate molecular signaling pathways implicated in the pathogenesis of melanoma. Although HGH has previously been implicated in promoting the clinical growth of both benign and malignant melanocytic neoplasms, to our knowledge there are no conclusive studies demonstrating an increased risk of melanoma following HGH therapy. Nevertheless, there are reports of melanoma developing subsequent to HGH coadministered with either other hormones or following irradiation. OBSERVATION A 49-year-old white man presented with a new pigmented papule that was diagnosed as melanoma. The patient reported using HGH for 3 months prior to the diagnosis. His 51-year-old wife, who also was white, had also been using exogenous HGH for 3 months and had been diagnosed as having a melanoma 2 weeks prior. CONCLUSIONS Given the unlikelihood of 2 unrelated people developing melanoma within a short time span, it is reasonable to assume that a common environmental component (HGH or other shared exposure) contributed to the development of both melanomas. Because of the increased use of exogenous HGH as an antiaging agent, it is important to be aware of the growth-promoting effects of this hormone. Until better data are available that determines the true risk of exogenous HGH, its use as an antiaging agent merits increased surveillance. PMID:23069955

  15. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  16. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock.

    PubMed

    Tanadul, Orn-U-Ma; VanderGheynst, Jean S; Beckles, Diane M; Powell, Ann L T; Labavitch, John M

    2014-07-01

    Cultured microalgae are viewed as important producers of lipids and polysaccharides, both of which are precursor molecules for the production of biofuels. This study addressed the impact of elevated carbon dioxide (CO2) on Chlorella sorokiniana production of starch and on several properties of the starch produced. The production of C. sorokiniana biomass, lipid and starch were enhanced when cultures were supplied with 2% CO2. Starch granules from algae grown in ambient air and 2% CO2 were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The granules from algae grown in 2% CO2 were disk-shaped and contained mainly stromal starch; granules from cultures grown in ambient air were cup-shaped with primarily pyrenoid starch. The granules from cells grown in 2% CO2 had a higher proportion of the accumulated starch as the highly branched, amylopectin glucan than did granules from cells grown in air. The rate of hydrolysis of starch from 2% CO2-grown cells was 1.25 times greater than that from air-grown cells and 2-11 times higher than the rates of hydrolysis of starches from cereal grains. These data indicate that culturing C. sorokiniana in elevated CO2 not only increases biomass yield but also improves the structure and composition of starch granules for use in biofuel generation. These modifications in culture conditions increase the hydrolysis efficiency of the starch hydrolysis, thus providing potentially important gains for biofuel production.

  17. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  18. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  19. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling.

  20. Variations of algal communities cause darkening of a Greenland glacier.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G

    2014-08-01

    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.

  1. Growth hormone secretagogues: prospects and potential pitfalls.

    PubMed

    Smith, Roy G; Sun, Yuxiang; Betancourt, Lorena; Asnicar, Mark

    2004-09-01

    The growth hormone secretagogues (GHSs) are the first well-characterised agents that rejuvenate the growth hormone (GH)/insulin-like growth factor (IGF-1) axis. This property was discovered during investigations of the underlying causative mechanisms of age-related endocrine changes. Chronic administration of the long acting GHS, MK-0677, reverses the age-related decline in pulse-amplitude of GH secretion and restores IGF-1 levels producing profiles typical of young adults. This restoration is accompanied by improvements in body composition in frail elderly subjects. When given acutely, the GHSs also increase appetite. Following cloning and characterisation of the GHS-receptor (GHS-R) an endogenous ligand, ghrelin, was isolated and identified. Ghrelin shares the GH releasing and orexigenic properties of the GHSs. Studies using Ghsr-null mice confirmed that the GHS-R was the ghrelin-receptor; hence, the GHSs should be considered to be 'ghrelin mimetics.' Ghrelin levels are reported to decline during ageing, therefore long-acting GHSs are ideal candidates for ghrelin replacement therapy. PMID:15261841

  2. Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm.

    PubMed

    Schumacher, G; Blume, T; Sekoulov, I

    2003-01-01

    Attached algae settlement is frequently observed in effluents of wastewater treatment plants at locations with sufficient sunlight. For their growth they incorporate nutrients and the surface of the algal biofilm accumulates suspended solids from the clarified wastewater. During the photosynthesis process of algal biofilms oxygen is produced while dissolved carbon dioxide is consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH causes precipitation of dissolved phosphates. Furthermore an extensive removal of faecal bacteria was observed in the presence of algae, which may be caused by the activity of algae. The experimental results indicate the high potential of these attached algae for polishing secondary effluent of wastewater treatment plants. Especially for small wastewater treatment plants a post connected stage for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm. PMID:12906290

  3. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... Topics Eighth Annual National Conference on Health Communication, Marketing & Media August 19-21, 2014 Atlanta, GA Harmful Algal Blooms Recommend on Facebook Tweet Share Compartir On this Page What's the ...

  4. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  5. Turbulence and nutrient interactions that control benthic algal production in an engineered cultivation raceway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow turbulence can be a controlling factor to the growth of benthic algae, but few studies have quantified this relationship in engineered cultivation systems. Experiments were performed to understand the limiting role of turbulence to algal productivity in an algal turf scrubber for benthic algal...

  6. Prolonged exposure to elevated CO(2) promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima.

    PubMed

    Towanda, Trisha; Thuesen, Erik V

    2012-07-15

    Some photosynthetic organisms benefit from elevated levels of carbon dioxide, but studies on the effects of elevated PCO(2) on the algal symbionts of animals are very few. This study investigated the impact of hypercapnia on a photosynthetic symbiosis between the anemone Anthopleura elegantissima and its zooxanthella Symbiodinium muscatinei. Anemones were maintained in the laboratory for 1 week at 37 Pa PCO(2) and pH 8.1. Clonal pairs were then divided into two groups and maintained for 6 weeks under conditions naturally experienced in their intertidal environment, 45 Pa PCO(2), pH 8.1 and 231 Pa PCO(2), pH 7.3. Respiration and photosynthesis were measured after the 1-week acclimation period and after 6 weeks in experimental conditions. Density of zooxanthellal cells, zooxanthellal cell size, mitotic index and chlorophyll content were compared between non-clonemate anemones after the 1-week acclimation period and clonal anemones at the end of the experiment. Anemones thrived in hypercapnia. After 6 weeks, A. elegantissima exhibited higher rates of photosynthesis at 45 Pa (4.2 µmol O(2) g(-1) h(-1)) and 231 Pa (3.30 µmol O(2) g(-1) h(-1)) than at the initial 37 Pa (1.53 µmol O(2) g(-1) h(-1)). Likewise, anemones at 231 Pa received more of their respiratory carbon from zooxanthellae (CZAR  = 78.2%) than those at 37 Pa (CZAR  = 66.6%) but less than anemones at 45 Pa (CZAR  = 137.3%). The mitotic index of zooxanthellae was significantly greater in the hypercapnic anemones than in anemones at lower PCO(2). Excess zooxanthellae were expelled by their hosts, and cell densities, cell diameters and chlorophyll contents were not significantly different between the groups. The response of A. elegantissima to hypercapnic acidification reveals the potential adaptation of an intertidal, photosynthetic symbiosis for high PCO(2). PMID:23213455

  7. Mechanism and challenges in commercialisation of algal biofuels.

    PubMed

    Singh, Anoop; Nigam, Poonam Singh; Murphy, Jerry D

    2011-01-01

    Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.

  8. Water Potentials Induced by Growth in Soybean Hypocotyls

    PubMed Central

    Cavalieri, Anthony J.; Boyer, John S.

    1982-01-01

    Gradients in water potential form the driving force for the movement of water for cell enlargement. In stems, they are oriented radially around the vascular system but should also be present along the stem. To test this possibility, growth, water potential, osmotic potential, and turgor were determined at intervals along the length of dark-grown soybean (Glycine max L. Merr., cv. Wayne) hypocotyls. Transpiration was negligible in the dark, humid conditions, so that all water uptake was for growth. Elongation occurred in the terminal 1.5 centimeters of the hypocotyl. Water potential was −3.5 bars in the elongating region but −0.5 bar in the mature region, both in intact plants and detached tissue. There was a gradual transition between these values that was related to the growth profile along the hypocotyl. Tissue osmotic potentials generally paralleled tissue water potentials, so that turgor was the same throughout the length of the hypocotyl. If the elongating zone was excised, growth ceased immediately. If the elongating zone was excised along with mature tissue, however, growth continued, which confirmed the presence of a water-potential gradient that caused longitudinal water movement from the mature zone to the elongating zone. When the plants were grown in vermiculite having low water potentials, tissue water potentials and osmotic potentials both decreased, so that water potential gradients and turgor remained undiminished. It is concluded that growth-induced water potentials reflect the local activity for cell enlargement and are supported by appropriate osmotic potentials. PMID:16662235

  9. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  10. Potential of a simple solid-phase extraction method coupled to analytical and bioanalytical methods for an improved determination of microcystins in algal samples.

    PubMed

    Chen, Yi-Min; Lee, Tzong-Huei; Lee, Shyh-Jye; Lin, Jian-Zhi; Huang, Rang; Chou, Hong-Nong

    2006-11-21

    Artemia assays and protein phosphatase assays are commonly used for the screening of microcystins (MCs) in algal samples instead of the standard mouse toxicity assay. However, it has been shown that their results are often biased because of the matrix effects. To eliminate the possible interferences in the algal matrices, a new solid-phase extraction (SPE) method using silica gel as a sorbent was developed and evaluated. Results show that this SPE method could not only reduce the toxicity of the Microcystis samples towards brine shrimp by 50-80% but also eliminate 90-100% of the endogenous phosphatase activity from Spirulina and Chlorella samples, thus improving the determination of microcystins in algal samples using either of the two bioanalytical methods. The application of this SPE method as an off-line cleanup for high-performance liquid chromatography (HPLC) with UV detection is also described in this study. After SPE, the HPLC chromatograms of Microcystis samples have clear baselines that have no interferences with the analyte peaks. PMID:16890502

  11. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River Basin, Connecticut, 2000-2001

    USGS Publications Warehouse

    Colombo, Michael J.; Grady, Stephen J.; Todd Trench, Elaine C.

    2004-01-01

    A consistent and pervasive pattern of nutrient enrichment was substantiated by water-quality sampling in the Quinebaug River and its tributaries in eastern Connecticut during water years 2000 and 2001. Median total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency?s recently recommended regional ambient water-qual-ity criteria for streams (0.71 and 0.031 milligrams per liter, respectively). Maximum total phosphorus concentrations exceeded 0.1 milligrams per liter at nearly half the sampled locations in the Quinebaug River Basin. Elevated total nitrogen and total phosphorus concentrations were measured at all stations on the mainstem of the Quinebaug River, the French River, and the Little River. Nutrient enrichment was related to municipal wastewater point sources at the sites on the mainstem of the Quinebaug River and French River, and to agricultural nonpoint nutrient sources in the Little River Basin. Nutrient enrichment and favorable physical factors have resulted in excessive, nuisance algal blooms during summer months, particularly in the numerous impoundments in the Quinebaug River system. Phytoplankton algal density as high as 85,000 cells per milliliter was measured during such nuisance blooms in water years 2000 and 2001. Different hydrologic conditions during the summers of 2000 and 2001 produced very different seston algal populations. Larger amounts of precipitation sustained higher streamflows in the summer of 2000 (than in 2001), which resulted in lower total algal abundance and inhibited the typical algal succession from diatoms to cyanobacteria. Despite this, nearly half of all seston chlorophyll-a concentrations measured during this study exceeded the recommended regional ambient stream-water-quality criterion (3.75 micrograms per liter), and seston chlorophyll-a concentrations as large as 42 micrograms per liter were observed in wastewa-ter-receiving reaches of the Quinebaug River. Estimates of primary

  12. Is There Hidden Potential for Rural Population Growth in Sweden?

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Amcoff, Jan

    2011-01-01

    Rural depopulation is a concern in many countries, and various policy initiatives have been taken to combat such trends. This article examines whether hidden potential for rural population growth can be found in Sweden. If such potential exists, it implies that the development prospects for many rural areas are not as unpromising as they may seem…

  13. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  14. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  15. On the rational monodromy-free potentials with sextic growth

    NASA Astrophysics Data System (ADS)

    Gibbons, J.; Veselov, A. P.

    2009-01-01

    We study the rational potentials V(x ), with sextic growth at infinity, such that the corresponding one-dimensional Schrödinger equation has no monodromy in the complex domain for all values of the spectral parameter. We investigate in detail the subclass of such potentials which can be constructed by the Darboux transformations from the well-known class of quasiexactly solvable potentials V =x6-νx2+l(l +1)/x2. We show that, in contrast with the case of quadratic growth, there are monodromy-free potentials which have quasirational eigenfunctions, but which cannot be given by this construction. We discuss the relations between the corresponding algebraic varieties and present some elementary solutions of the Calogero-Moser problem in the external field with sextic potential.

  16. Muskellunge growth potential in northern Wisconsin: implications for trophy management

    USGS Publications Warehouse

    Faust, Matthew D.; Isermann, Daniel A.; Luehring, Mark A.; Hansen, Michael J.

    2015-01-01

    The growth potential of Muskellunge Esox masquinongy was evaluated by back-calculating growth histories from cleithra removed from 305 fish collected during 1995–2011 to determine whether it was consistent with trophy management goals in northern Wisconsin. Female Muskellunge had a larger mean asymptotic length (49.8 in) than did males (43.4 in). Minimum ultimate size of female Muskellunge (45.0 in) equaled the 45.0-in minimum length limit, but was less than the 50.0-in minimum length limit used on Wisconsin's trophy waters, while the minimum ultimate size of male Muskellunge (34.0 in) was less than the statewide minimum length limit. Minimum reproductive sizes for both sexes were less than Wisconsin's trophy minimum length limits. Mean growth potential of female Muskellunge in northern Wisconsin appears to be sufficient for meeting trophy management objectives and angler expectations. Muskellunge in northern Wisconsin had similar growth potential to those in Ontario populations, but lower growth potential than Minnesota's populations, perhaps because of genetic and environmental differences.

  17. Turgor and Growth at Low Water Potentials 1

    PubMed Central

    Nonami, Hiroshi; Boyer, John S.

    1989-01-01

    Turgor affects cell enlargement but has not been measured in enlarging tissue of intact plants when growth is inhibited by inadequate water. Mature or excised tissue can be problematic for these measurements because turgor may not be the same as in intact enlarging cells. Therefore, we measured the average turgor in the elongating region of intact stems of soybean (Glycine max [L.] Merr.) while the seedlings were exposed to low water potentials by transplanting to vermiculite of low water content. Stem growth was completely inhibited by the transplanting, and the average turgor decreased in the mature stem tissue. However, it did not decrease in the elongating region whether measured in intact or excised tissue (total of four methods). At the cellular level, turgor was uniform in the elongating tissue except at transplanting, when turgor decreased in a small number of cortical cells near the xylem. The reduced turgor in these cells, but constant turgor in most of the cells, confirmed that no general turgor loss had occurred but indicated that gradients in water potential extending from the xylem into the enlarging tissue were reduced, thus decreasing the movement of water into the tissue for cell enlargement. A modest growth recovery occurred after 2 days and was preceded by a recovery of the gradient. This suggests that under these conditions, growth initially was inhibited not by turgor loss but by a collapse of the water potential gradient necessary for the growth process. PMID:16666624

  18. Evaluation of anticoagulant activity of two algal polysaccharides.

    PubMed

    Faggio, C; Pagano, M; Dottore, A; Genovese, G; Morabito, M

    2016-09-01

    Marine algae are important sources of phycocolloids like agar, carrageenans and alginates used in industrial applications. Algal polysaccharides have emerged as an important class of bioactive products showing interesting properties. The aim of our study was to evaluate the potential uses as anticoagulant drugs of algal sulphate polysaccharides extracted from Ulva fasciata (Chlorophyta) and Agardhiella subulata (Rhodophyta) collected in Ganzirri Lake (Cape Peloro Lagoon, north-eastern Sicily, Italy). Toxicity of algal extracts through trypan blue test and anticoagulant action measured by activated partial thromboplastin time (APTT), prothrombin time (PT) test has been evaluated. Algal extracts showed to prolong the PT and APTT during the coagulation cascade and to avoid the blood coagulation of samples. Furthermore, the algal extracts lack toxic effects towards cellular metabolism and their productions are relatively at low cost. This permits to consider the algae as the biological source of the future.

  19. Effect of Precipitation During Key Months on Forage Growth Potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ranchers and range managers find themselves at the mercy of Mother Nature when making stocking decisions early in the spring. Most forage growth potential is determined by precipitation during key months in the spring (Heitschmidt et al., 1999) – often multiple spring months are important with resp...

  20. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  1. Improving estimates of tree mortality probability using potential growth rate

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.

    2015-01-01

    Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.

  2. Algal sensory photoreceptors.

    PubMed

    Hegemann, Peter

    2008-01-01

    Only five major types of sensory photoreceptors (BLUF-proteins, cryptochromes, phototropins, phytochromes, and rhodopsins) are used in nature to regulate developmental processes, photosynthesis, photoorientation, and control of the circadian clock. Sensory photoreceptors of algae and protists are exceptionally rich in structure and function; light-gated ion channels and photoactivated adenylate cyclases are unique examples. During the past ten years major progress has been made with respect to understanding the function, photochemistry, and structure of key sensory players of the algal kingdom.

  3. Controls on Pennsylvanian algal-mound distribution in mid-continent North America

    SciTech Connect

    Price, R.C.; Mitchell, J.C.; Ravn, R.L.

    1985-02-01

    Middle (Desmoinesian) and Upper (Missourian) Pennsylvanian phylloid algal-mound distribution in Missouri, Kansas, and Oklahoma is largely controlled by subtle sea-floor topography. Topographic highs served as loci favoring initiation and continued growth of complexes. Topographic highs controlling mound distribution are the shelf-edge rise in northeastern Oklahoma, the Bourbon arch in southeastern Kansas and the Mine Creek prodeltaic shale buildup in west-central Missouri. Outcrop studies document controls on development of these mounds and reveal the potential for development of stacked mounds. This will help exploration for these features in the subsurface to the west. The shelf-edge rise and Mine Creek prodeltaic shale buildup control the location of the Oologah algal-mound complex and an isolated algal mound in the Pawnee Limestone, respectively. These apparently were positive features only during Middle Pennsylvanian time. In contrast, the Bourbon arch apparently was controlled by basement faulting and remained high for a more-extended period of time. Both Middle and Upper Pennsylvanian algal mounds coincide with the geographic position of the Bourbon arch and result in a stacked-mound complex. Evidence suggesting that the Bourbon arch was a positive feature are (1) thinning of clastics over the feature and (2) change from anoxic, black, fissile, and phosphatic basinal shales to oxygenated, diversely fossiliferous gray shales over the arch.

  4. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors. PMID:24960016

  5. Transpiration- and growth-induced water potentials in maize

    SciTech Connect

    Westgate, M.E.; Boyer, J.S.

    1984-01-01

    Recent evidence from leaves and stems indicates that gradients in water potential (psi/sub w/) necessary for water movement through growing tissues are larger than previously assumed. Because growth is sensitive to tissue psi/sub w/ and the behavior of these gradients has not been investigated in transpiring plants, the authors examined the water status of all the growing and mature vegetative tissues of maize (Zea mays L.) during high and low rates of transpiration. The psi/sub w/ measured in the mature regions of the plant responded primarily to transpiration, while the psi/sub w/ in the growing regions was affected both by transpiration and growth. The transpiration-induced potentials of the mature tissue formed a gradient of decreasing psi/sub w/ along the transpiration stream while the growth-induced potentials formed a gradient of decreasing psi/sub w/ from the transpiration stream to the expanding cells in the growing tissue. The growth-induced gradient in psi/sub w/ within the leaf remained fairly constant as the xylem psi/sub w/ decreased during the day and was associated with a decreased osmotic potential (psi/sub s/) of the growing region (osmotic adjustment). The growth-induced gradient in psi/sub w/ was not caused by excision of the tissue because intact maize stems exhibited a similar psi/sub w/. These observations support the concept that large gradients in psi/sub w/ are required to maintain water flow to expanding cells within all the vegetative tissues and suggest that the maintenance of a favorable gradient in psi/sub w/ for cell enlargement may be an important role for osmotic adjustment. 33 references, 7 figures, 1 table.

  6. Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell.

    PubMed

    Venkata Mohan, S; Srikanth, S; Chiranjeevi, P; Arora, Somya; Chandra, Rashmi

    2014-08-01

    Replacement of energy intensive mechanical aeration with sustainable oxygenic photosynthesis by microalgae at cathode was studied in dual-chambered microbial fuel cell (MFC). The synergistic association between bacterial fermentation at anode and the oxygenic photosynthesis of microalgae at cathode facilitated good power output as well as treatment efficiency. However, MFC operation during spring showed higher bioelectrogenic activity (57.0 mW/m(2)) over summer (1.1 mW/m(2)) due to the higher oxygenic photosynthetic activity of microalgae and respective dissolved oxygen (DO) levels. This can be attributed to RuBisCO inactivation under high temperatures and light intensity of summer, which prevented rich algal biomass growth as well as their photosynthetic activity. Unlike abiotic cathode, the algal cathode potential increased with operation time due to the algal biomass growth during spring but was negligible during summer. The catalytic currents on voltammetric signatures and the bioprocess parameters also corroborated well with the observed power output.

  7. Processes Affecting Phosphorus and Copper Concentrations and Their Relation to Algal Growth in Two Supply Reservoirs in the Lower Coastal Plain of Virginia, 2002-2003, and Implications for Alternative Management Strategies

    USGS Publications Warehouse

    Speiran, Gary K.; Simon, Nancy S.; Mood-Brown, Maria L.

    2007-01-01

    Elevated phosphorus concentrations commonly promote excessive growth of algae in waters nationwide. When such waters are used for public supply, the algae can plug filters during treatment and impart tastes and odors to the finished water. This increases treatment costs and results in finished water that may not be of the quality desired for public supply. Consequently, copper sulfate is routinely applied to many reservoirs to control algal growth but only is a 'temporary fix' and must be reapplied at intervals that can range from more than 30 days in the winter to less than 7 days in the summer. Because copper has a maximum allowable concentration in public drinking water and can be toxic to aquatic life, water suppliers commonly seek to develop alternative, long-term strategies for managing reservoirs. Because these are nationwide issues and part of the mission of the U.S. Geological Survey (USGS) is to define and protect the quality of the Nation's water resources and better understand the physical, chemical, and biological processes in wetlands, lakes, reservoirs, and estuaries, investigations into these issues are important to the fulfillment of the mission of the USGS. The City of Newport News, Virginia, provides 50 million gallons per day of treated water for public supply from Lee Hall and Harwoods Mill Reservoirs (terminal reservoirs) to communities on the lower York-James Peninsula. About 3,500 pounds of copper sulfate are applied to each reservoir at 3- to 99-day intervals to control algal growth. Consequently, the USGS, in cooperation with the City of Newport News, investigated the effects of management practices and natural processes on phosphorus (the apparent growth-limiting nutrient), copper, and algal concentrations in the terminal reservoirs to provide information that can be used to develop alternative management strategies for the terminal reservoirs. Initial parts of the research evaluated circulation and stratification in the reservoirs

  8. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-01

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  9. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-01

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored. PMID:25220843

  10. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  11. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  12. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  13. Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds.

    PubMed

    Stevenson, Louise M; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A; McCauley, Edward; Nisbet, Roger M

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles.

  14. Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds

    PubMed Central

    Stevenson, Louise M.; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A.; McCauley, Edward; Nisbet, Roger M.

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles. PMID:24086348

  15. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.

    PubMed

    Santiago, Aníbal Fonseca; Calijuri, Maria Lucia; Assemany, Paula Peixoto; Calijuri, Maria do Carmo; dos Reis, Alberto José Delgado

    2013-01-01

    Algal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor- HRAP -and the second received UASB effluent pre-disinfected by UV radiation-(UV)HRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The (UV)HRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the (UV)HRAP were 0.95 +/- 0.65% and 1.58 +/- 0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSSm(-2) day(-1)) compared with the (UV)HRAP (9.3 gVSSm(-2) day(-1)). Mean pH values were 7.7 +/- 0.7 in the HRAP and 8.1 +/- 1.0 in the (UV)HRAP, and mean values of DO percent saturation were 87 +/- 26% and 112 +/- 31% for the HRAP and the (UV)HRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.

  16. Short-term algal toxicity test based on phosphate uptake.

    PubMed

    Kaneko, H Hidehiro; Shimada, Akiko; Hirayama, Kimiaki

    2004-04-01

    In order to develop a short-term algal toxicity test, the growth of and the phosphate uptake by the green alga Selenastrum capricornutum during batch culture were observed. In the control medium, S. capricornutum took up phosphate earlier than it grew. It was also observed that the phosphate uptake was inhibited by the presence of a toxicant. From these results, phosphate uptake was considered as one of the useful effect parameters for a short-term algal toxicity test. As the removal rate of phosphate from the medium is a function of the amount of algal cell initially inoculated, the test period is variable. The relationship between the amount of inoculation and phosphate uptake was examined and the test conditions suitable for a 3-h toxicity test were established as one example. According to this test procedure, the inhibitory effect of some toxicants on the phosphate uptake was determined. For comparison, a conventional algal assay based on algal growth was also performed. The EC50s for both tests were close. This indicated that the algal toxicity test method proposed in this paper would be useful for the uses where rapidity is required. PMID:15087199

  17. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  18. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  19. Growth potential of Clostridium perfringens during cooling of cooked meats.

    PubMed

    Taormina, Peter J; Dorsa, Warren J

    2004-07-01

    Many meat-based food products are cooked to temperatures sufficient to inactivate vegetative cells of Clostridium perfringens, but spores of this bacterium can survive, germinate, and grow in these products if sufficient time, temperature, and other variables exist. Because ingestion of large numbers of vegetative cells can lead to concomitant sporulation, enterotoxin release in the gastrointestinal tract, and diarrhea-like illness, a necessary food safety objective is to ensure that not more than acceptable levels of C. perfringens are in finished products. As cooked meat items cool they will pass through the growth temperature range of C. perfringens (50 to 15 degrees C). Therefore, an important step in determining the likely level of C. perfringens in the final product is the estimation of growth of the pathogen during cooling of the cooked product. Numerous studies exist dealing with just such estimations, yet consensual methodologies, results, and conclusions are lacking. There is a need to consider the bulk of C. perfringens work relating to cooling of cooked meat-based products and attempt to move toward a better understanding of the true growth potential of the organism. This review attempts to summarize observations made by researchers and highlight variations in experimental approach as possible explanations for different outcomes. An attempt is also made here to identify and justify optimal procedures for conducting C. perfringens growth estimation in meat-based cooked food products during cooling. PMID:15270517

  20. Growth characteristics of virulent Bacillus anthracis and potential surrogate strains.

    PubMed

    De Siano, Tara; Padhi, Sally; Schaffner, Donald W; Montville, Thomas J

    2006-07-01

    The objectives of this study were to compare generation and lag times of virulent Bacillus anthracis strains with those of other Bacillus strains, to identify possible surrogates for growth studies, and to determine if the B. cereus module of the U.S. Department of Agriculture Pathogen Modeling Program (PMP) had predictive value for B. anthracis. Growth characteristics of B. anthracis, B. cereus, B. mycoides, and B. subtilis strains in brain heart infusion broth at pH 6.5, 6.0, and 5.5 were determined by absorbance measurements. Growth curves of B. anthracis Sterne and B. cereus strains appeared similar, and the generation times for strain Sterne fell within the PMP's 95% confidence interval for B. cereus. However, the virulent B. anthracis strains Vollum and Pasteur had shorter generation times than the avirulent Sterne strain and most other surrogates and were lower than the PMP's 95% confidence interval for B. cereus. Growth curves of B. cereus ATCC 9818 and B. subtilis ATCC 6633 were more similar to those of virulent B. anthracis strains, but all potential surrogates had significantly different generation times and lag times under some conditions.

  1. Investigation of severe UF membrane fouling induced by three marine algal species.

    PubMed

    Merle, Tony; Dramas, Laure; Gutierrez, Leonardo; Garcia-Molina, Veronica; Croué, Jean-Philippe

    2016-04-15

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonema costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3.

  2. Investigation of severe UF membrane fouling induced by three marine algal species.

    PubMed

    Merle, Tony; Dramas, Laure; Gutierrez, Leonardo; Garcia-Molina, Veronica; Croué, Jean-Philippe

    2016-04-15

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonema costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3. PMID:26874470

  3. Nutritionally directed compensatory growth enhances heifer development and lactation potential.

    PubMed

    Ford, J A; Park, C S

    2001-07-01

    The objectives of this study were 1) to examine the interactive influence of a compensatory nutrition regimen and lasalocid supplementation on dairy heifer growth performance and 2) to document the extent to which compensatory growth sustains lactation potential over the first two lactation cycles. Twelve Holstein heifers, weighing an average of 160 kg (about 6 mo of age) were randomly assigned to treatments arranged in a 2 x 2 factorial design. Treatment variables were two dietary regimens (control and stair-step compensatory nutrition) and two levels of lasalocid (0 and 200 mg/d). The control heifers were fed a diet containing 12% crude protein (CP) and 2.35 Mcal of metabolizable energy (ME) per kilogram of dry matter. The stair-step compensatory nutrition heifers were subjected to a phased nutrition regimen and reared according to an alternating 3-2-4-3-4-2-mo schedule. The first stair-step (prepubertal phase) consisted of energy restriction [17% CP and 2.35 Mcal/kg of ME] for 3 mo followed by realimentation (12% CP and 3.05 Mcal/kg of ME) for 2 mo. The second step (puberty and breeding) consisted of energy restriction for 4 mo followed by realimentation for 3 mo. The third step (gestation period) was energy restriction for 4 mo concluding with realimentation for 2 mo. Dry matter intake of heifers during the restriction phase was limited to 70% of the control intake. Heifers were given ad libitum access to a high energy density diet during realimentation to allow compensatory development. Stair-step heifers supplemented with lasalocid had the highest efficiency of growth (body weight gain/dry matter intake), suggesting synergistic metabolism of lasalocid with compensatory growth action. Compensatory growth induced during the last trimester enhanced metabolic status by increasing circulating insulin and decreasing triglyceride levels. Heifers on the stair-step regimen had a significant increase in milk yield during the first (21%) and second (15%) lactation

  4. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  5. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance

    PubMed Central

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C.

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  6. Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance.

    PubMed

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  7. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  8. PHYTOPLANKTON DYNAMICS IN A GULF OF MEXICO ESTUARY: THE POTENTIAL USE OF PHOTO-PHYSIOLOGY AND ALGAL PHOSPHATASE ACTIVITY TO PREDICT NUTRIENT STATUS.

    EPA Science Inventory

    Development of rapid techniques to determine in situ phytoplankton nutrient status could facilitate understanding of phytoplankton growth and species succession. Variable fluorescence parameters of phytoplankton communities can be easily and rapidly measured, and changes in param...

  9. Carbon and light limitation in mass algal culture

    SciTech Connect

    Brune, D.E.

    1980-01-01

    The carbon limited kinetic responses of various fast growing algal species have been summarized. These results suggest that the growth responses of many algae used in mass culture may best be represented as a Monod fit of the specific growth rate (..mu..) to the free carbon dioxide concentration (CO/sub 2//sub f/). The environmental modifiers of primary importance appear to be light levels, temperature and the ionic strength of the growth media. The various mathematical models describing the algal biological response to limitng CO/sub 2//sub f/ concentration, the carbonate equilibrium chemistry and the physical configration of a flow-through microbial culture are combined to yield equations which predict the pH, total carbon concentration (C/sub T/) and algal cell concentration of a continuous alga culture, given a ..mu../sub max/ and K/sub SCO2/ for the alga of interest. This model is further used to illustrate the under-utilization of inorganic carbon in mass algal cultures in which the pH is uncontrolled. One method of pH control in such cultures involves the utilization of CO/sub 2/ supply from bacterial degradation of waste organics in the influent culture medium. In such a situation both the culture pH and algal cell production will often be governed by either carbon or light limitation depending primarily on the influent BOD loading, detention time and culture depth. In spite of the obvious over-simplification of considering only light and carbon limits in describing the behavior of mass algal culture, comparisons to actual field data suggest that these two parameters will be of paramount importance in controlling net algal cell production rates.

  10. Measurement and Modeling of Algal Biokinetics in Highly EutrophicWaters

    SciTech Connect

    Stringfellow, William T.; Borglin, Sharon E.; Hanlon, Jeremy S.

    2006-04-04

    Excessive growth of suspended algae in eutrophic surface waters can contribute to the degradation of water quality. The objective of this study was to understand the fundamental processes limiting algal growth in highly nutrient-rich agricultural drainage water. Studies examining algal biokinetics (growth rates, yields, and decay) were conducted in a twenty-eight mile long, hydraulically simple, open channel. Algae biokinetics were found to follow a growth limited model,despite monitoring data demonstrating the presence of nutrients at concentrations far in excess of those expected to be limiting. A mechanistic algal biokinetic model was written to assist in data interpretation. Results from the mechanistic model suggested that at different times, soluble phosphate, minerals, and inorganic carbon could limit growth rates, but that growth yield was most likely limited by zooplankton grazing. The implication of these finding for control of algal growth are discussed.

  11. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  12. The algal lift: Buoyancy-mediated sediment transport

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, Clara; Federlein, Laura L.; Knie, Matthias; Mutz, Michael

    2016-01-01

    The role of benthic algae as biostabilizers of sediments is well-known, however, their potential to lift and transport sediments remains unclear. Under low-flow conditions, matured algal mats may detach from the bed and may lift up sediment, thereby causing disturbance to the uppermost streambed sediment. We tested the potential of algal mats to lift sediments in 12 indoor flumes filled with sand (0.2 - 0.8 mm), gravel (2 - 8 mm) or a sand-gravel mixture (25/75% mass). After four weeks, the algal mats covered about 50% of the flumes area. Due to the accumulation of oxygen gas bubbles in the mats, that developed from high primary production at 4.5 weeks, about half of the algal mats detached from the bed carrying entangled sediments. Both the area covered by algal mats and detached area were similar among sediment types, but the amount of sediment transported tended to be higher for sand and sand-gravel mixture compared to gravel. Our results reveal that biologically mediated sediment transport mainly depends on the development of a dense filamentous algal matrix, that traps gas bubbles, increasing the mats buoyancy. This novel mechanism of sediment transport will occur in shallow ecosystems during low-flow periods, with the highest impact for sandy sediments.

  13. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.

    PubMed

    Tang, An-Ching; Boyer, John S

    2003-11-01

    Profiles of water potential (Psi w) were measured from the soil to the tips of growing leaves of maize (Zea mays L.) when pressure (P) was applied to the soil/root system. At moderately low soil Psi w, leaf elongation was somewhat inhibited, large tensions existed in the xylem, and Psi w were slightly lower in the elongating leaf tissues than in the xylem, i.e. a growth-induced Psi w was present but small. With P, the tension was relieved, enlarging the difference in Psi w between the xylem and the elongating tissues, i.e. enlarging the growth-induced Psi w, which is critical for growth. Guttation occurred, confirming the high Psi w of the xylem, and the mature leaf tissue rehydrated. Water uptake increased and met the requirements of transpiration. Leaf elongation recovered to control rates. Under more severe conditions at lower soil Psi w, P induced only a brief elongation and the growth-induced Psi w responded only slightly. Guttation did not occur, water flow did not meet the requirements of transpiration, and the mature leaf tissues did not rehydrate. A rewatering experiment indicated that a low conductance existed in the severely dehydrated soil, which limited water delivery to the root and shoot. Therefore, the initial growth inhibition appeared to be hydraulic because the enlargement of the growth-induced Psi w by P together with rehydration of the mature leaf tissue were essential for growth recovery. In more severe conditions, P was ineffective because the soil could not supply water at the required rate, and metabolic factors began to contribute to the inhibition. PMID:14512379

  14. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  15. Potential use of duckweed based anaerobic digester effluent as a feed source for heterotrophic growth of micro-algae

    NASA Astrophysics Data System (ADS)

    Ahmadi, L.; Dupont, R.

    2013-12-01

    Finding an alternative source of energy for the growing world's demand is a challenging task being considered by many scientists. Various types of renewable energy alternatives are being investigated by researchers around the world. The abundance of duckweed (i.e., Lemna and Wolfia sp.) in wetlands and wastewater lagoons, their rapid growth, and their capacity for nutrient, metal and other contaminant removal from wastewater suggests their potential as an inexpensive source of biomass for biofuel production. Another source of biomass for biofuel and energy production is micro-algae. The large-scale growth of micro-algae can potentially be achieved in a smaller footprint and at a higher rate and lower cost via heterotrophic growth compared to autotrophic growth for specific species that can grow under both conditions. Here we describe two types of research. First, two lab-scale, 5 L anaerobic digesters containing municipal raw wastewater that were set up, maintained and monitored over the course of 6 months using duckweed as the feed source. The pH, salinity, amount of gas production and gas composition were measured on a daily basis. The results from these measurements show that duckweed can be used as a good source of biofuel production in the form of methane gas. The second set of reactors consisted of two 1 L batch fed reactors containing algae (Chlorella vulgaris) grown in the lab environment heterotrophically. The pH and DO were monitored on a daily basis in order to investigate their effect on algae growth. Lipid analysis of the harvested algal biomass was done to investigate the efficiency of harvestable biofuel products. A nutrient solution containing glucose as an energy source was used as the initial feed solution, and the potential substitution of the glucose solution with the organic carbon residue from the duckweed digester effluent was investigated. Methane production, carbon stabilization, and gas composition results from the duckweed fed anaerobic

  16. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential

    PubMed Central

    Powers, Ginny L.; Hammer, Kimberly D.P.; Domenech, Maribella; Frantskevich, Katsiaryna; Malinowski, Rita L.; Bushman, Wade; Beebe, David J.; Marker, Paul C.

    2014-01-01

    Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is over-expressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacological inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), Androgen Receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the sonic hedgehog pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from co-cultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared to vehicle treated controls. These studies suggest the pharmacological inhibition of PDE4D using small molecule inhibitors is an effective option for prostate cancer therapy. Implications PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer. PMID:25149359

  17. Growth-induced water potentials originate from wall yielding during growth.

    PubMed

    Boyer, J S

    2001-07-01

    Multicellular plants display growth-induced water potentials that generate tensions on water in the apoplast and move water into the growing cells. The potentials are sometimes assumed to arise from wall yielding, keeping the turgor pressure below what otherwise would occur. There has been no direct test of this theory, and therefore whole plants or growing regions of stems (hypocotyls) of dark-grown soybean (Glycine max L. Merr.) seedlings were sealed in a pressure chamber, and wall yielding was decreased by applying external pressure. In whole plants, external pressure had little effect because the plants and water supply were uniformly exposed to the pressure. If pressure was applied to the stem while the roots were outside in water, stem elongation was markedly inhibited because the pressure raised the water potential of the growing region and decreased water entry, reducing wall yielding. Further increasing the pressure prevented water entry completely and measured the tensions in the apoplast in the same growing regions. Tensions were about 0.19 MPa at low external pressure, but diminished as wall yielding was inhibited. At external pressures of about 0.63 MPa, wall yielding was abolished and tensions approached zero. There was a linear relation between wall yielding and tension, supporting the theory that wall yielding lowers the turgor thus causing most of the growth-induced water potential.

  18. An overview of the interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): advancing the scientific understanding of freshwater harmful algal blooms.

    PubMed

    Hudnell, H Kenneth; Dortch, Quay; Zenick, Harold

    2008-01-01

    There is growing evidence that the spatial and temporal incidence of harmful algal blooms is increasing, posing potential risks to human health and ecosystem sustainability. Currently there are no US Federal guidelines, Water Quality Criteria and Standards, or regulations concerning the management of harmful algal blooms. Algal blooms in freshwater are predominantly cyanobacteria, some of which produce highly potent cyanotoxins. The US Congress mandated a Scientific Assessment of Freshwater Harmful Algal Blooms in the 2004 reauthorization of the Harmful Algal Blooms and Hypoxia Research and Control Act. To further the scientific understanding of freshwater harmful algal blooms, the US Environmental Protection Agency (EPA) established an interagency committee to organize the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB). A theoretical framework to define scientific issues and a systems approach to implement the assessment and management of cyanobacterial harmful algal blooms were developed as organizing themes for the symposium. Seven major topic areas and 23 subtopics were addressed in Workgroups and platform sessions during the symposium. The primary charge given to platform presenters was to describe the state of the science in the subtopic areas, whereas the Workgroups were charged with identifying research that could be accomplished in the short- and long-term to reduce scientific uncertainties. The proceedings of the symposium, published in this monograph, are intended to inform policy determinations and the mandated Scientific Assessment by describing the scientific knowledge and areas of uncertainty concerning freshwater harmful algal blooms.

  19. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  20. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  1. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems.

  2. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling. PMID:24759425

  3. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  4. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

  5. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer.

    PubMed

    Huang, Yan; Li, Rong; Liu, Hongjun; Wang, Beibei; Zhang, Chenmin; Shen, Qirong

    2014-08-01

    Without further management, large amounts of refloated algal sludge from Taihu Lake to retrieve nitrogen and phosphorus resources may result in serious secondary environmental pollution. The possibility of utilization of algal sludge to improve the quality of organic fertilizer was investigated in this study. Variations of physicochemical properties, germination index (GI) and microcystin (MC) content were analysed during the composting process. The results showed that the addition of algal sludge improved the contents of nutrients, common free amino acids and total common amino acids in the novel organic fertilizer. Rapid degradation rates of MC-LR and MC-RR, a high GI value and more abundance of culturable protease-producing bacteria were observed during the composting process added with algal sludge. Growth experiments showed that the novel organic fertilizer efficiently promoted plant growth. This study provides a novel resource recovery method to reclaim the Taihu Lake algal sludge and highlights a novel method to produce a high-quality organic fertilizer.

  6. Validation of algal viability treated with total residual oxidant and organic matter by flow cytometry.

    PubMed

    Lee, Junghyun; Choi, Eun Joo; Rhie, Kitae

    2015-08-15

    Algal cell growth after starch and oxidant treatments in seawater species (Isochrysis galbana and Phaeodactylum tricornutum) and freshwater species (Selenastrum capricornutum and Scenedesmus obliquus) were evaluated by flow cytometry with fluorescein diacetate (FDA) staining to determine algal viability. Growth of algal cell was found to be significantly different among groups treated with NaOCl, starch and/or sodium thiosulfate, which are active substance (Total Residual Oxidant; TRO as Cl2), organic compound to meet efficacy testing standard and neutralizer of TRO by Ballast Water Management Convention of International Maritime Organization, respectively. The viability of algal cell treated with TRO in starch-add culture of 5days after treatment and neutralization was decreased significantly. ATP contents of the treated algal cells corresponded to the FL1 fluorescent signal of flow cytometry with FDA staining. I. galbana was the most sensitive to TRO-neutralized cultures during viability analysis.

  7. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  8. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  9. Individual insurance: health insurers try to tap potential market growth.

    PubMed

    November, Elizabeth A; Cohen, Genna R; Ginsburg, Paul B; Quinn, Brian C

    2009-11-01

    Individual insurance is the only source of health coverage for people without access to employer-sponsored insurance or public insurance. Individual insurance traditionally has been sought by older, sicker individuals who perceive the need for insurance more than younger, healthier people. The attraction of a sicker population to the individual market creates adverse selection, leading insurers to employ medical underwriting--which most states allow--to either avoid those with the greatest health needs or set premiums more reflective of their expected medical use. Recently, however, several factors have prompted insurers to recognize the growth potential of the individual market: a declining proportion of people with employer-sponsored insurance, a sizeable population of younger, healthier people forgoing insurance, and the likelihood that many people receiving subsidies to buy insurance under proposed health insurance reforms would buy individual coverage. Insurers are pursuing several strategies to expand their presence in the individual insurance market, including entering less-regulated markets, developing lower-cost, less-comprehensive products targeting younger, healthy consumers, and attracting consumers through the Internet and other new distribution channels, according to a new study by the Center for Studying Health System Change (HSC). Insurers' strategies in the individual insurance market are unlikely to meet the needs of less-than-healthy people seeking affordable, comprehensive coverage. Congressional health reform proposals, which envision a larger role for the individual market under a sharply different regulatory framework, would likely supersede insurers' current individual market strategies. PMID:19899193

  10. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  11. Investigating the impact of land use and the potential for harmful algal blooms in a tropical lagoon of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Limoges, Audrey; de Vernal, Anne; Ruiz-Fernández, Ana-Carolina

    2015-12-01

    Palynological and geochemical analyses were carried out on a sediment core collected in the shallow Alvarado lagoon (Veracruz, Southwestern Gulf of Mexico) in order to evaluate the impact of the significant decline in the surrounding native coastal vegetation on phytoplankton assemblages. The sedimentary sequence encompasses the last millennium and provides information on pre-industrial phytoplankton assemblages. Results highlight a recent increase of freshwater-sourced organic matter relative to marine organic matter in line with reduced total concentrations of cyst-producing dinoflagellates. These changes appear to be synchronous to the extensive conversion of wetlands into agricultural areas, with consequences on the stability and water retention capacity of the soils bordering the lagoon system. The data also show that Polysphaeridium zoharyi, a cyst produced by the potentially toxic dinoflagellate Pyrodinium bahamense, is present in high abundance in the dinoflagellate population of the lagoon. Consequently, the modern cyst bank of P. bahamense in sediment has the potential to initiate harmful blooms since surface sediments are prone to resuspension events related to strong seasonal winds and human activities.

  12. Effects of “Reduced” and “Business-As-Usual” CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae)

    PubMed Central

    Bender, Dorothea; Champ, Connor Michael; Kline, David; Diaz-Pulido, Guillermo; Dove, Sophie

    2015-01-01

    Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 “reduced” and the A1FI “business-as-usual” CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under “reduced” CO2 emission, but not “business-as-usual” scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under “reduced” emission scenarios. PMID:26121163

  13. Effects of "Reduced" and "Business-As-Usual" CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae).

    PubMed

    Bender, Dorothea; Champ, Connor Michael; Kline, David; Diaz-Pulido, Guillermo; Dove, Sophie

    2015-01-01

    Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios.

  14. Effects of "Reduced" and "Business-As-Usual" CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae).

    PubMed

    Bender, Dorothea; Champ, Connor Michael; Kline, David; Diaz-Pulido, Guillermo; Dove, Sophie

    2015-01-01

    Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios. PMID:26121163

  15. Numerical simulation of an algal bloom in Dianshan Lake

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lin, Weiqing; Zhu, Jianrong; Lu, Shiqiang

    2016-01-01

    A hydrodynamic model and an aquatic ecology model of Dianshan Lake, Shanghai, were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D, which is an integrated modelling suite offered by Deltares. The simulated water elevation, current velocity, and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data, as well as simulated results. In 2008, the dominant algae in Dianshan Lake was Bacillariophyta from February to March, while it was Chlorophyta from April to May, and Cyanophyta from July to August. In summer, the biomass of Cyanophyta grew quickly, reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however, increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions, resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.

  16. Growth reproductive potential and control strategies for deeproot sedge (Cyperus entreianus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse, growth chamber, and field studies were conducted at Stoneville, MS in 2000-2008 to determine the growth rate, reproductive and overwintering potential, and control of deeproot sedge. In growth chamber studies, deeproot sedge growth rate (height) and plant dry weights were greatest for 2...

  17. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery.

  18. Algal Lipids as Quantitative Paleosalinity Proxies

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Shinneman, A.; Hemeon, K.; Sachs, J. P.

    2012-12-01

    The tropics play an important role in driving climate. However it is difficult to uncover past changes in tropical precipitation due to a lack of tree ring records and low accumulation rates of marine sediments. Hydrogen isotope ratios of algal lipids preserved in lacustrine and marine sediments have been used to qualitatively reconstruct tropical paleohydrology. Changes in the hydrologic balance are reflected in salinity and in lake water D/H ratios, which are closely tracked by lipid D/H ratios of algal biomarkers. While useful for determining past periods of "wetter" or "drier" conditions, variability in isotope fractionation in algal lipids during lipid biosynthesis can be exploited to more quantitatively determine how much wetter or drier conditions were in the past. The estuarine diatom, Thalassiosira pseudonnana, was grown in continuous cultures under controlled light, temperature, nutrient, and growth rate conditions to assess the influence of salinity (9-40 PSU) on D/H fractionation between lipids and source water. Three fatty acids, 24-methylcholesta-5,24(28)-dien-3B-ol, and phytol show decreasing fractionation between lipid and source water as salinity increases with 0.8-1.3‰ change in fractionation per salinity unit. These results compliment field-based empirical observations of dinosterol in Chesapeake Bay suspended particles that change 0.99‰ per salinity unit and lipid biomarkers from hyper-saline ponds on Christmas Island that change 0.7-1.1‰ per salinity unit. Biological pathways responsible for the inverse relationship between fractionation and salinity will be discussed.

  19. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format.

  20. Identification of potential genetic markers for improved growth rate in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of genetic polymorphism associated with muscle growth would improve selection efficiency of channel catfish broodstock. Because faster growth is typically associated with increased food intake, factors involved in food intake regulation may serve as potential gene markers for selecti...

  1. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment.

    PubMed

    Drexler, Ivy L C; Joustra, Caryssa; Prieto, Ana; Bair, Robert; Yeh, Daniel H

    2014-02-01

    AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).

  2. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  3. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  4. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  5. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  6. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  7. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  8. Fungal farmers or algal escorts: lichen adaptation from the algal perspective.

    PubMed

    Piercey-Normore, Michele D; Deduke, Christopher

    2011-09-01

    Domestication of algae by lichen-forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations (Goward 1992). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont 'selection' by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction (Ahmadjian & Jacobs 1981) only after the interaction has been initiated. The theory of ecological guilds (Rikkinen et al. 2002) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens (Rikkinen et al. 2002), other studies propose models to explain variation in symbiont combinations in green algal lichens (Ohmura et al. 2006; Piercey-Normore 2006; Yahr et al. 2006) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & Škaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose

  9. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1981-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  10. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1982-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  11. Effect of Commercial Cyanobacteria Products on the Growth and Antagonistic Ability of Some Bioagents under Laboratory Conditions

    PubMed Central

    El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.

    2013-01-01

    Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948

  12. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. PMID:27008510

  13. Growth kinetics of Chlorococcum humicola - A potential feedstock for biomass with biofuel properties.

    PubMed

    Thomas, Jibu; Jayachithra, E V

    2015-11-01

    Economically viable production facilities for microalgae depend on the optimization of growth parameters with regard to nutrient requirements. Using microalgae to treat industrial effluents containing heavy metals presents an alternative to the current practice of using physical and chemical methods. Present work focuses on the statistical optimization of growth of Chlorococcum humicola to ascertain the maximum production of biomass. Plackett Burman design was carried out to screen the significant variables influencing biomass production. Further, Response Surface Methodology was employed to optimize the effect of inoculum, light intensity and pH on net biomass yield. Optimum conditions for maximum biomass yield were identified to be inoculum at 15%, light intensity to be 1500lx and pH 8.5. Theoretical and predicted values were in agreement and thus the model was found to be significant. Gas chromatography analyses of the FAME derivatives showed a high percentage of saturated fatty acids thereby confirming the biofuel properties of the oil derived from algal biomass.

  14. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.

    PubMed

    Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul

    2015-12-01

    Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.

  15. Cost structures and life cycle impacts of algal biomass and biofuel production

    NASA Astrophysics Data System (ADS)

    Christiansen, Katrina Lea

    2011-12-01

    Development and extraction of energy sources, energy production and energy use have huge economic, environmental and geopolitical impacts. Increasing energy demands in tandem with reductions in fossil fuel production has led to significant investments in research into alternative forms of energy. One that is promising but yet not commercially established is the production of biofuel from algae. This research quantitatively assessed the potential of algae biofuel production by examining its cost and environmental impacts. First, two models developed by the RAND corporation were employed to assess Cost Growth defined as the ratio of actual costs to estimated costs, and Plant Performance defined as the ratio of actual production levels to design performance, of three algal biofuel production technologies. The three algal biofuel production technologies examined to open raceway ponds (ORPs), photobioreactors (PBRs), and a system that couples PBRs to ORPs (PBR-ORPs). Though these analyses lack precision due to uncertainty, the results highlight the risks associated with implementing algal biofuel systems, as all scenarios examined were predicted to have Cost Growth, ranging from 1.2 to 1.8, and Plant Performance was projected as less than 50% of design performance for all cases. Second, the Framework the Evaluation of Biomass Energy Feedstocks (FEBEF) was used to assess the cost and environmental impacts of biodiesel produced from three algal production technologies. When these results were compared with ethanol from corn and biodiesel from soybeans, biodiesel from algae produced from the different technologies were estimated to be more expensive, suffered from low energy gains, and did not result in lower greenhouse gas emissions. To identify likely routes to making algal biofuels more competitive, a third study was undertaken. In this case, FEBEF was employed to examine pinch-points (defined as the most costly, energy consuming, greenhouse gas producing processes), in

  16. Stability of alginate-immobilized algal cells

    SciTech Connect

    Dainty, A.L.; Goulding, K.H.; Robinson, P.K.; Simpkins, I; Trevan, M.D.

    1986-01-01

    Investigations were carried out using immobilized Chlorella cells to determine the diameter, compressibility, tolerance to phosphate chelation, and ability to retain algal cells during incubation of various alginate beads. These physical bead-characteristics were affected by a variety of interactive factors, including multivalent cation type (hardening agent) and cell, cation, and alginate concentration, the latter exhibiting a predominant influence. The susceptibility of alginate beads to phosphate chelation involved a complex interaction of cation type, concentration, and pH of phosphate solution. A scale of response ranging from gel swelling to gel shrinking was observed for a range of conditions. However, stable Ca alginate beads were maintained in incubation media with a pH of 5.5 and a phosphate concentration of 5 micro M. A preliminary investigation into cell leakage from the beads illustrated the importance of maintaining a stable gel structure and limiting cell growth to reduce leakage.

  17. (Metabolic mechanisms of plant growth at low water potentials)

    SciTech Connect

    Not Available

    1990-01-01

    The work supported by DOE showed that water-limitation inhibits plant growth first by imposing a physical limitation that is followed in a few h by metabolic changes leading to reduced wall extensibility in the enlarging cells. After the wall extensibility decreased, a 28kD protein accumulated particularly in the walls of the growth-affected cells. Antibodies were used to identify cDNA for the protein. The base sequence of the cDNA was typical of an enzyme rather than known structural components of walls. The sequence was identical to one published by another laboratory at the same time and encoding a protein that accumulates in vacuoles of depodded soybean plants.

  18. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L. PMID:26961083

  19. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    SciTech Connect

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.; Raymer, Michelle; Collins, Aaron M.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing, Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.

  20. An overview of reliability growth models and their potential use for NASA applications

    NASA Technical Reports Server (NTRS)

    Taneja, V. S.; Safie, F. M.

    1992-01-01

    An overview is provided of reliability growth literature over the past 25 years. This includes a thorough literature review of different areas of the application of reliability growth such as design, prediction, tracking/management, and demonstration. Various reliability growth models use different bases on how they characterize growth. Different models are discussed. Also, the use is addressed of reliability growth models to NASA applications. This includes the application of these models to the space shuttle main engine. For potential NASA applications, we classify growth models in two groups, which are characterized.

  1. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  2. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    PubMed

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  3. Growth factors: potential for the management of solid epithelial tumours.

    PubMed

    Jankowski, J A

    1996-03-01

    At present we are on the threshold of an enormous change in clinical practice. The application of molecular medicine has already started and the area of growth factor biology is particularly relevant to this endeavor (Figure 6) (Jankowski and Polak 1996). Perhaps the major limitation to this process is the rate at which the clinician can comprehend and then undertake carefully designed molecular studies in gastroenterology. In time monographs that specifically address the issue of molecular medicine in clinical gene analysis and manipulation may perhaps replace standard text books (see Jankowski and Polak, 1996). PMID:8732307

  4. Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041.

    PubMed

    Kim, Jeong-Dong; Kim, Ji-Young; Park, Jae-Kweon; Lee, Choul-Gyun

    2009-01-01

    In this study, we examined the algal-lytic activities and biological control mechanisms of Pseudoalteromonas haloplanktis AFMB-08041, which was isolated from surface seawater obtained at Masan Bay in Korea. In addition, we assessed whether AFMB-08041 could be used as a biocontrol agent to regulate harmful dinoflagellate Prorocentrum minimum. From these experiments, we found that the inoculation of AFMB-08041 at a final density of 2.5 x 10(4) cfu ml(-1) caused P. minimum cells to degrade (>90%) within 5 days. The algal cells were lysed through an indirect attack by the AFMB-08041 bacterial strain. Our results also suggest that the algal-lytic compounds produced by AFMB-08041 may have beta-glucosidase activity. However, P. haloplanktis AFMB-08041 was not able to suppress the growth of other alga such as Alexandrium tamarense, Akashiwo sanguinea, Cochlodinium polykrikoides, Gymnodinium catenatum, and Heterosigma akashiwo. Moreover, we observed that the growth of Prorocentrum dentatum, which has a very similar morphological structure to P. minimum, was also effectively suppressed by P. haloplanktis AFMB-08041. Therefore, the effect of AFMB-08041 on P. minimum degradation appears to be species specific. When testing in an indoor mesocosms, P. haloplanktis AFMB-08041 reduced the amount of viable P. minimum cells by 94.5% within 5 days after inoculation. The combined results of this study clearly demonstrate that this bacterium is capable of regulating the harmful algal blooms of P. minimum. In addition, these results will enable us to develop a new strategy for the anthropogenic control of harmful algal bloom-forming species in nature.

  5. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    sensitivity to the viscosity of the interior fluid than the average areal strain. Overall, the dissertation lays the groundwork for more efficient algal disruption through the judicious use of microbubbles. Separation of bubble generation and bubble growth provides the ability to improve the efficiency of each process and localize energy. Results suggest that effective disruption can occur by pulsing high-pressure ultrasound waves to a solution of cells co-suspended with microbubbles. The models are thought to represent basic phenomenological mechanisms of disruption that could be exploited to improve the overall energy efficiency of schemes. Analysis suggests that extensional flow alone cannot be the cause of cell disruption near an expanding microbubble. Additionally, this work provides an estimate of the areal strain required disrupt an algal cell membrane. This research suggests a couple routes toward reducing the energy required for production of algal biodiesel.

  6. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  7. Growth hormone receptor antagonists: discovery and potential uses.

    PubMed

    Kopchick, J J; Okada, S

    2001-06-01

    Serum levels of growth hormone (GH) in the human body vary and can influence the levels of insulin-like growth factor I (IGF-1). Low levels of GH can result in a dwarf phenotype and have been positively correlated with an increased life expectancy. High levels of GH can lead to gigantism or a clinical syndrome termed acromegaly, and also have been implicated in diabetic eye and kidney damage. Additionally, it has been postulated that the GH-IGF-I system can be involved in several types of cancers. Overall, both elevated and suppressed circulating levels of GH can have pronounced physiological effects. More than a decade ago a new class of drug, a GH antagonist, was discovered. It is now being tested for its ability to combat the effects of high circulating levels of GH. In this review, we will discuss some of the detrimental actions of GH and how a GH antagonist may be used to combat these effects. PMID:11527080

  8. Fractal growth kinetics and electric potential oscillations during electropolymerization of pyrrole.

    PubMed

    Das, Ishwar; Agrawal, Namita R; Gupta, Sanjeev Kumar; Gupta, Sujeet Kumar; Rastogi, R P

    2009-05-01

    Fractal growth, growth kinetics, and electrical conductivity of aggregates obtained during electropolymerization in the systems (A) pyrrole-4-toluene sulfonic acid silver salt (4-TSS)-acetonitrile, (B) pyrrole-4-TSS-ZnSO(4)-acetonitrile, and (C) pyrrole-4-TSS-aniline-acetonitrile were investigated. In the case of system (A), effect of [4-TSS], [pyrrole], field intensity, and solvents H(2)O and CH(3)OH on morphology, fractal character, and growth kinetics was also studied. Fractal growth data were examined in detail. During studies on system (A), electric potential oscillations were observed and subjected to detailed study. The results indicate that fractal growth pattern and electric potential oscillations are inter-related. The mechanism of development of fractal growth, dendritic structure, and electric potential oscillations is discussed in terms of diffusion-limited aggregation and modified Diaz's mechanism, which explains the random movement of radical cations.

  9. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  10. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  11. (Metabolic mechanisms of plant growth at low-water potentials)

    SciTech Connect

    Boyer, J.S.

    1989-01-01

    For the year 1989, the progress made on this DOE sponsored research will be described by considering the questions presented in the original proposal and describing the work on each one. We used soybean seedlings grown in vermiculite in a dark, humid environment because they are convenient to grow, undergo most of the physiological changes induced by low water potentials in large plants, and have exposed growing regions on which molecular experiments can be done.

  12. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  13. Algal omics: unlocking bioproduct diversity in algae cell factories.

    PubMed

    Guarnieri, Michael T; Pienkos, Philip T

    2015-03-01

    Rapid advances in "omic" technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems.

  14. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  15. Primary events regulating stem growth at low water potentials. [Glycine max (L. )

    SciTech Connect

    Nonami, Hiroshi; Boyer, J.S. )

    1990-08-01

    Cell enlargement is inhibited by inadequate water. As a first step toward understanding the mechanism, all the physical parameters affecting enlargement were monitored to identify those that changed first, particularly in coincidence with the inhibition. The osmotic potential, turgor, yield threshold turgor, growth-induced water potential, wall extensibility, and conductance to water were measured in the elongating region, and the water potential was measured in the xylem of stems of dark-grown soybean (Glycine max (L.) Merr.) seedlings. The results indicate that the primary event during the growth inhibition was the change in the growth-induced water potential. Because the growth limitation subsequently shifted to the low wall extensibility and tissue conductance for water, the initial change in potential may have set in motion subsequent metabolic changes that altered the characteristics of the wall and cell membranes.

  16. Metabolic mechanisms of plant growth at low water potentials. Progress report

    SciTech Connect

    Boyer, J.S.

    1986-01-01

    Experiments were conducted to identify primary and secondary factors that cause cell enlargement to be inhibited in the stems of soybean seedlings exposed to low water potentials. The factors that were analyzed are wall extensibility, yield threshold of the walls, hydraulic conductance of the tissue, turgor, osmotic potential, and growth-induced water potentials.

  17. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. PMID:27486951

  18. Changes in Algal Trends and Nutrient Budgets in Arctic Tundra Ponds Over the Past 40 Years in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hernandez, C.; Lougheed, V.

    2011-12-01

    In the 1970's, Barrow, Alaska was host to a detailed ecological study, the International Biological Program (IBP), which examined physical, chemical and biological characteristics of Arctic tundra ponds. Forty years later, this area has experienced warming and potential release of nutrients from permafrost; however, there have been no follow up studies since the 1970's and biological changes in these ponds remain unknown. The 1970's IBP research suggested that algae had warmer temperature optima than ambient temperatures and that phosphorus was the limiting nutrient. The goal of this study was to understand algal growth trends during the 2010 growing season, the role of limiting nutrients, and how both these have changed through time in light of shifting climate regimes. Algae was collected and quantified weekly from periphyton (attached to sediment) and phytoplankton (free-floating algae) from several IBP ponds over the summer of 2010. Nutrient addition and release experiments with known quantities of nitrogen (N) and phosphorus (P) were utilized to determine algal nutrient limitation. Algal biomass was significantly greater in 2010 than in the 1970s. Nutrient addition experiments showed a shift from phosphorus limitation in the 1970s to nitrogen limitation of periphyton in 2010, while phytoplankton was co-limited by nitrogen and phosphorus in 2010. These preliminary results indicate substantial changes have occurred over the past 40 years. Further studies are being completed in Summer 2011 to understand inter-annual variability in these trends and to reveal the implications of these trends in algal production and nutrient budgets in the Arctic.

  19. Advances in algal drug research with emphasis on enzyme inhibitors.

    PubMed

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2014-12-01

    Enzyme inhibitors are now included in all kinds of drugs essential to treat most of the human diseases including communicable, metabolic, cardiovascular, neurological diseases and cancer. Numerous marine algae have been reported to be a potential source of novel enzyme inhibitors with various pharmaceutical values. Thus, the purpose of this review is to brief the enzyme inhibitors from marine algae of therapeutic potential to treat common diseases. As per our knowledge this is the first review for the potential enzyme inhibitors from marine origin. This review contains 86 algal enzyme inhibitors reported during 1989-2013 and commercial enzyme inhibitors available in the market. Compounds in the review are grouped according to the disease conditions in which they are involved; diabetes, obesity, dementia, inflammation, melanogenesis, AIDS, hypertension and other viral diseases. The structure-activity relationship of most of the compounds are also discussed. In addition, the drug likeness properties of algal inhibitors were evaluated using Lipinski's 'Rule of Five'. PMID:25195189

  20. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  1. Endophytic bacteria isolated from orchid and their potential to promote plant growth.

    PubMed

    Faria, Deise Cristina; Dias, Armando Cavalcante Franco; Melo, Itamar Soares; de Carvalho Costa, Francisco Eduardo

    2013-02-01

    Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.

  2. The Human Potential Movement: Body/Nonverbal/Movement Approaches to Human Growth.

    ERIC Educational Resources Information Center

    Caldwell, Stratton F.

    This report briefly describes the recent search for personal and interpersonal growth which has been termed the "Human Potential Movement," and the institutions or "growth centers" which have evolved as a result of this movement. It presents a list of body, nonverbal, and movement experiences derived from descriptive literature of the growth…

  3. Coordinating Gene Expression and Axon Assembly to Control Axon Growth: Potential Role of GSK3 Signaling

    PubMed Central

    Liu, Chang-Mei; Hur, Eun-Mi; Zhou, Feng-Quan

    2012-01-01

    Axon growth requires the coordinated regulation of gene expression in the neuronal soma, local protein translation in the axon, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3) signaling has recently been shown to play key roles in the regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. We review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors. PMID:22347166

  4. Promotion of harmful algal blooms by zooplankton predatory activity.

    PubMed

    Mitra, Aditee; Flynn, Kevin J

    2006-06-22

    The relationship between algae and their zooplanktonic predators typically involves consumption of nutrients by algae, grazing of the algae by zooplankton which in turn enhances predator biomass, controls algal growth and regenerates nutrients. Eutrophication raises nutrient levels, but does not simply increase normal predator-prey activity; rather, harmful algal bloom (HAB) events develop often with serious ecological and aesthetic implications. Generally, HAB species are outwardly poor competitors for nutrients, while their development of grazing deterrents during nutrient stress ostensibly occurs too late, after the nutrients have largely been consumed already by fast-growing non-HAB species. A new mechanism is presented to explain HAB dynamics under these circumstances. Using a multi-nutrient predator-prey model, it is demonstrated that these blooms can develop through the self-propagating failure of normal predator-prey activity, resulting in the transfer of nutrients into HAB growth at the expense of competing algal species. Rate limitation of this transfer provides a continual level of nutrient stress that results in HAB species exhibiting grazing deterrents protecting them from top-down control. This process is self-stabilizing as long as nutrient demand exceeds supply, maintaining the unpalatable status of HABs; such events are most likely under eutrophic conditions with skewed nutrient ratios.

  5. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  6. Will an algal CO2-concentrating mechanism work in higher plants?

    PubMed

    Meyer, Moritz T; McCormick, Alistair J; Griffiths, Howard

    2016-06-01

    Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions. PMID:27194106

  7. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.

  8. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  9. Sixty years in algal physiology and photosynthesis.

    PubMed

    Pirson, A

    1994-06-01

    This personal perspective records research experiences in chemistry and biology at four German universities, two before and two after World War II. The research themes came from cytophysiology of green unicellular algae, in particular their photosynthesis. The function of inorganic ions in photosynthesis and dark respiration was investigated at different degrees of specific mineral stress (deficiencies), and the kinetics of recovery followed after the addition of the missing element. Two types of recovery of photosynthesis were observed: indirect restitution via growth processes and immediate normalisation. From the latter case (K(+), phosphate, Mn(++)) the effect of manganese was emphasized as its role in photosynthetic O2 evolution became established during our research. Other themes of our group, with some bearing on photosynthesis were: synchronization of cell growth by light-dark change and effects of blue (vs. red) light on the composition of green cells. Some experiences in connection with algal mass cultures are included. Discussion of several editorial projects shows how photosynthesis, as an orginally separated field of plant biochemistry and biophysics, became included into general cell physiology and even ecophysiology of green plants. The paper contains an appreciation of the authors' main mentor Kurt Noack (1888-1963) and of Ernst Georg Pringsheim (1881-1970), founder of experimental phycology.

  10. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs.

    PubMed

    Pickhardt, Paul C; Folt, Carol L; Chen, Celia Y; Klaue, Bjoern; Blum, Joel D

    2002-04-01

    Mercury accumulation in fish is a global public health concern, because fish are the primary source of toxic methylmercury to humans. Fish from all lakes do not pose the same level of risk to consumers. One of the most intriguing patterns is that potentially dangerous mercury concentrations can be found in fish from clear, oligotrophic lakes whereas fish from greener, eutrophic lakes often carry less mercury. In this study, we experimentally tested the hypothesis that increasing algal biomass reduces mercury accumulation at higher trophic levels through the dilution of mercury in consumed algal cells. Under bloom dilution, as algal biomass increases, the concentration of mercury per cell decreases, resulting in a lower dietary input to grazers and reduced bioaccumulation in algal-rich eutrophic systems. To test this hypothesis, we added enriched stable isotopes of Hg to experimental mesocosms and measured the uptake of toxic methylmercury (CH3 200Hg+) and inorganic 201Hg2+ by biota at several algal concentrations. We reduced absolute spike detection limits by 50-100 times compared with previous techniques, which allowed us to conduct experiments at the extremely low aqueous Hg concentrations that are typical of natural systems. We found that increasing algae reduced CH3Hg+ concentrations in zooplankton 2-3-fold. Bloom dilution may provide a mechanistic explanation for lower CH3Hg+ accumulation by zooplankton and fish in algal-rich relative to algal-poor systems. PMID:11904388

  11. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. PMID:25585252

  12. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.

  13. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading.

    PubMed

    Shriwastav, Amritanshu; Gupta, Sanjay Kumar; Ansari, Faiz Ahmad; Rawat, Ismail; Bux, Faizal

    2014-12-01

    Chlorella sorokiniana can sustain growth in conditions hostile to other species, and possesses good nutrient removal and lipid accumulation potentials. However, the effects of variable nutrient levels (N and P) in wastewaters on growth, productivity, and nutrient uptake by C. sorokiniana have not been studied in detail. This study demonstrates the ability of this alga to sustain uniform growth and productivity, while regulating the relative nutrient uptake in accordance to their availability in the bulk medium. These results highlight the potential of C. sorokiniana as a suitable candidate for fulfilling the coupled objectives of nutrient removal and biomass production for bio-fuel with wastewaters having great variability in nutrient levels.

  14. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  15. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth.

  16. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  17. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  18. On the dielectric behaviour of collagen-algal sulfated polysaccharide blends: effect of glutaraldehyde crosslinking.

    PubMed

    Figueiró, S D; Macêdo, A A M; Melo, M R S; Freitas, A L P; Moreira, R A; de Oliveira, R S; Góes, J C; Sombra, A S B

    2006-03-20

    In this paper, impedance measurements in the frequency range from 10(-2) to 10(6) Hz are presented for collagen and algal sulfated polysaccharide crosslinked films. We are considering the development of new biomaterials which have potential applications in coating of cardiovascular prostheses, support for cellular growth and in systems for controlled drug delivery. The effect of crosslink sulfated polysaccharide on the physical chemical properties of collagen was studied using FT-infrared spectroscopy, differential scanning calorimetry (DSC), dielectric spectroscopy. The resulting films crosslinked with glutaraldehyde (GA) in concentrations of 0.001% and 0.05% when analysed by DSC, showed that the GA treatment not only left the thermal stability of the collagen unaffected, but it also decreased the thermal transition energy. Dielectric spectroscopy shows that the effect of the crosslink on the blend film was associated to the decrease and stabilization of the dielectric permittivity at low frequencies and decreased its conductivity.

  19. Nitrogen deposition fuels harmful algal blooms in the East China Sea

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Kavanaugh, M.; Chien, C. T.; Chen, Y.; Glover, D. M.; Paytan, A.

    2015-12-01

    Chinese marginal seas support vast fisheries and vital economies, but their productivity is threatened by eutrophication and increasing harmful algal blooms (HABs). Here we provide direct experimental evidence that aerosol enrichment shifts seawater chemistry by increasing the ratio of N to phosphorus (N:P) and supports the growth of bloom-forming phytoplankton in the East China Sea. We use a combination of field-based aerosol addition incubation experiments, along with ocean color data on blooms dominated by different taxa to show that HAB forming dinoflagellates are particularly responsive to aerosol inputs. Moreover, we show that the effect of N deposition is strongest in offshore waters further from the Yangtze River outflow, consistent with the large anthropogenic flux of N from this source. This study shows the potential for aerosols to control N:P ratios in offshore waters and to shape the phytoplankton community, contributing to the success of bloom-forming organisms.

  20. Growth Potential

    ERIC Educational Resources Information Center

    Barry, Dana M.

    2004-01-01

    Students enjoy carrying out an exciting and challenging research project that combines science with computers and mathematics to investigate how polyacrylate animals change in size over time when placed in water and aqueous salt solutions. The hands-on activity motivates students and provides them with the necessary skills and information to have…

  1. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  2. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  3. The impact of atmospheric deposition of cadmium on dominant algal species in the East China Sea

    NASA Astrophysics Data System (ADS)

    Quan, Qiwei; Chen, Ying; Ma, Qingwei; Wang, Fujiang; Meng, Xi; Wang, Bo

    2016-04-01

    Cadmium (Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem, affecting the phytoplankton community and primary productivity. In this study, we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea (ECS) through both laboratory and in situ mesocosm incubation experiments. The mesocosm experiment showed that Cd in low concentration (0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity. In high concentration (0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity. The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate, as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth. We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region. In our laboratory experiments, adding Cd, similar to aerosol deposition, stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu (dinoflagellate) and Skeletonema costatum (diatom). Adding Cd on a higher level inhibited the growth of both the species, but Skeletonema costatum seemed obviously more sensitive to toxicity. This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.

  4. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  5. Measuring Cellular-scale Nutrient Distribution in Algal Biofilms with Synchrotron Confocal Infrared Microspectroscopy

    SciTech Connect

    J Murdock; W Dodds; J Reffner; D Wetzel

    2011-12-31

    The microscope and infrared spectrometer are two of the most useful tools for the study of biological materials, and their combined analytical power far exceeds the sum of the two. Performing molecular spectroscopy through a microscope superimposes chemical information onto the physical microstructure obtained from the optical microscope when visible and infrared information are collected under the same conditions. The instrument developments that enable current infrared microspectroscopic studies began with the introduction of the first research-grade infrared microscope, patented in 1989 (1). By 1993, published reports using this method to determine macroalgae (seaweed) cell-wall composition appeared (2-4). Since these initial reports, the use of infrared microspectroscopy (IMS) in microalgal (single cells or groups of cells) research has grown. Primarily, cultured algae have been used to hone IMS methodology and evaluate its capabilities in algal research (5-8). Studies involving natural, mixed species assemblages, which can utilize the spatial resolution potential of this technique fully are rare (9-11). For instance, in a recent review of IMS microalgal ecological research (12), only 3 of the 29 peer-reviewed publications investigated natural algal assemblages. Both thermal and synchrotron infrared sources provide a resolution capable of measuring individual algae in mixed species assemblages, and each has its advantages. For example, thermal source IMS is more accessible, allowing more samples to be analyzed than synchrotron IMS. However, synchrotron IMS with confocal masking provides superior resolution, which can be critical in isolating small or contiguous cells. Algal ecology is the study of the interaction between algae and their environment. Infrared microspectroscopy addresses a major logistical problem in this field, obtaining species-specific cellular biochemical information from natural, mixed-species assemblages (11,12). Benthic (bottom

  6. Significance of cyclic Pennsylvanian-Permian coral/algal buildups Snaky Canyon

    SciTech Connect

    Canter, K.L. ); Isaacson, P.E. )

    1991-02-01

    Five cyclic algal, hydrozoan, and coral buildups occur within a thick sequence of Pennsylvanian-Permian (Virgilian through Wolfcampain) carbonates in south-central Idaho. The Juniper Gulch Member of the Snaky Canyon Formation, as described by Skipp and coworkers, is approximately 600 m thick and contains four depositional facies, including: (1) open circulation outer( ) platform, (2) hydrozoan and phylloid algal mound-dominated carbonate buildup, (3) backmound, restricted platform/lagoon, and (4) restricted inner platform facies. Several microlithofacies, including lime mud-rich bafflestone, diversely fossiliferous packstone and grainstone, bryozoan lime floatstone, and phylloid algal and hydrozoan (Palaeoaplysina) lime bindstone are described within the phylloid algal mounds. Successional faunal assemblage stages are recognized within the buildups. Colonial rugose corals comprise a stabilization stage. When the algal communities of the diversification stage reached wave base, because of their rapid upward growth, cross-bedded oolitic grainstone and occasional cross-bedded dolomite shoals developed. Supratidal to high intertidal platform sedimentation is represented by dolomitic Palaeoaplysina bindstone, algal mat bindstone, and vuggy dolomite. Five vertical sequences of buildup development, each terminate by intertidal, supratidal, or erosional events, are seen in the Juniper Gulch Member in the North Howe stratigraphic section of the southern Lost River Range. The carbonate platform was constructed within a depositional basin that includes an eroded highland to the west, and a mixed siliciclastic-carbonate inner platform with craton uplifts to the east.

  7. Effects of four rice paddy herbicides on algal cell viability and the relationship with population recovery.

    PubMed

    Nagai, Takashi; Ishihara, Satoru; Yokoyama, Atsushi; Iwafune, Takashi

    2011-08-01

    Paddy herbicides are a high-risk concern for aquatic plants, including algae, because they easily flow out from paddy fields into rivers, with toxic effects. The effect on algal population dynamics, including population recovery after timed exposure, must be assessed. Therefore, we demonstrated concentration-response relationships of four paddy herbicides for algal growth inhibition and mortality, and the relationship between the effect on algal cell viability and population recovery following exposure. We used SYTOX Green dye assay and flow cytometry to assess cell viability of the alga Pseudokirchneriella subcapitata. Live cells could be clearly distinguished from dead cells during herbicide exposure. Our results showed that pretilachlor and quinoclamine had both algicidal and algistatic effects, whereas bensulfuron-methyl only had an algistatic effect, and pentoxazone only had an algicidal effect. Then, a population recovery test following a 72-h exposure was conducted. The algal population recovered in all tests, but the periods required for recovery differed among exposure concentrations and herbicides. The periods required for recovery were inconsistent with the dead cell ratio at the beginning of the recovery test; that is, population recovery could not be described only by cell viability. Consequently, the temporal effect of herbicides and subsequent recovery of the algal population could be described not only by the toxicity characteristics but also by toxicokinetics, such as rate of uptake, transport to the target site, and elimination of the substance from algal cells. PMID:21590715

  8. The engine of the reef: photobiology of the coral-algal symbiosis.

    PubMed

    Roth, Melissa S

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  9. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.

    PubMed

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Leal, Lucia Hernandez; Fernandes, Tânia V; Langenhoff, Alette; Zeeman, Grietje

    2016-03-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied. Biodegradation and photolysis led to 60-100% removal of diclofenac, ibuprofen, paracetamol and metoprolol. Removal of carbamazepine and trimethoprim was incomplete and did not exceed 30% and 60%, respectively. Sorption to algal biomass accounted for less than 20% of the micropollutant removal. Furthermore, the presence of micropollutants did not inhibit C. sorokiniana growth at applied concentrations. Algal treatment systems allow simultaneous removal of micropollutants and recovery of nutrients from source separated wastewater. Nutrient rich algal biomass can be harvested and applied as fertilizer in agriculture, as lower input of micropollutants to soil is achieved when algal biomass is applied as fertilizer instead of urine. PMID:26546707

  10. Draft genome sequence of algal polysaccharides degradation bacterium, Flammeovirga sp. OC4.

    PubMed

    Liu, Yang; Yi, Zhiwei; Cai, Yaping; Zeng, Runying

    2015-06-01

    Flammeovirga sp. OC4 was isolated from seawater sample of the South China Sea using the method of in-situ-enrichment, which has the ability to degrade algal polysaccharides. Colonies are reddish orange in the exponential growth phase and turn white in the late stationary growth phase, which is the indicator of the bacterial death. Here, we present an annotated draft genome sequence of Flammeovirga sp. OC4, which contains 8,069,312bp with a G+C content of 34.8%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of algal polysaccharides-degrading mechanism and the physiology of this species.

  11. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  12. A Geospatial Analysis of Harmful Algal Blooms along the California Coast

    NASA Astrophysics Data System (ADS)

    Jensen, C.; Rothwell, R.; Johnson, E.; Condamoor, M.; Patil, M.; Largier, J. L.; Schmidt, C.

    2012-12-01

    Algal blooms are natural phenomena consisting of the rapid growth of phytoplankton populations. Some blooms have negative ecological or public health effects due to toxin production and removal of oxygen from the water column. In recent years, such "harmful algal blooms" (HABs) have been linked to human illness, economic loss from decreased fishing, and ecological damage related to marine life mortality as well as eutrophication. A notable HAB event occurred along the coast of northern California in August 2011, resulting in economic and ecological impacts of approximately $82 million. This was one of several algal blooms that occurred in fall 2011, with similar northward propagating algal blooms occurring in autumn of other years. Although the scale of the bloom impact is well-known, the spatial and temporal extent of the bloom boundary is still unclear. This study tracked the space-time pattern of numerous blooms during August-October 2011 using multiple NASA Earth observing systems in an effort to quantify and understand the structure of these recurrent bloom events. Aqua MODIS images were used to quantify surface chlorophyll-α levels, and thus to map the extent and development of all autumn algal blooms. The relation between sea surface temperature, ocean surface topography, and algal blooms was further explored with AVHRR and Jason-2 satellite data. A Generalized Additive Model (GAM) was used to identify the environmental factors most statistically influential in algal blooms and specifically in HAB events. Results from this study will assist California's Departments of Public Health and Fish & Game in mitigating and managing the impact of future harmful algal blooms.

  13. Effects of water potential on mycelial growth, sclerotial production, and germination of Rhizoctonia solani from potato.

    PubMed

    Ritchie, Faye; McQuilken, Mark P; Bain, Ruairidh A

    2006-06-01

    The effects of osmotic and matric potential on mycelial growth, sclerotial production and germination of isolates of Rhizoctonia solani [anastomosis groups (AGs) 2-1 and 3] from potato were studied on potato dextrose agar (PDA) adjusted osmotically with sodium chloride, potassium chloride, glycerol, and matrically with polyethylene glycol (PEG) 6000. All isolates from AGs 2-1 and AG-3 exhibited fastest mycelial growth on unamended PDA (-0.4MPa), and growth generally declined with decreasing osmotic and matric potentials. Growth ceased between -3.5 and -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media, with slight differences between isolates and osmotica. Sclerotium yield declined with decreasing osmotic potential, and formation by AG 2-1 and AG-3 isolates ceased between -1.5 and -3.0MPa and -2.5 and -3.5MPa, respectively. On matrically adjusted media, sclerotial formation by AG 2-1 isolates ceased at -0.8MPa, whereas formation by AG-3 isolates ceased at the lower matric potential of -1.5MPa. Sclerotial germination also declined with decreasing osmotic and matric potential, with total inhibition occurring over the range -3.0 to -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media. In soil, mycelial growth and sclerotial germination of AG-3 isolates declined with decreasing total water potential, with a minimum potential of -6.3MPa permitting both growth and germination. The relevance of these results to the behaviour of R. solani AGs in soil and their pathogenicity on potato is discussed.

  14. Algal viruses hitchhiking on zooplankton across phytoplankton blooms

    PubMed Central

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical ‘engines’ of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings. PMID:26479489

  15. Algal viruses hitchhiking on zooplankton across phytoplankton blooms.

    PubMed

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical 'engines' of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings.

  16. Integrated Kinetic and Probabilistic Modeling of the Growth Potential of Bacterial Populations

    PubMed Central

    George, S. M.; Métris, A.

    2015-01-01

    When bacteria are exposed to osmotic stress, some cells recover and grow, while others die or are unculturable. This leads to a viable count growth curve where the cell number decreases before the onset of the exponential growth phase. From such curves, it is impossible to estimate what proportion of the initial cells generates the growth because it leads to an ill-conditioned numerical problem. Here, we applied a combination of experimental and statistical methods, based on optical density measurements, to infer both the probability of growth and the maximum specific growth rate of the culture. We quantified the growth potential of a bacterial population as a quantity composed from the probability of growth and the “suitability” of the growing subpopulation to the new environment. We found that, for all three laboratory media studied, the probability of growth decreased while the “work to be done” by the growing subpopulation (defined as the negative logarithm of their suitability parameter) increased with NaCl concentration. The results suggest that the effect of medium on the probability of growth could be described by a simple shift parameter, a differential NaCl concentration that can be accounted for by the change in the medium composition. Finally, we highlighted the need for further understanding of the effect of the osmoprotectant glycine betaine on metabolism. PMID:25747002

  17. Integrated kinetic and probabilistic modeling of the growth potential of bacterial populations.

    PubMed

    George, S M; Métris, A; Baranyi, J

    2015-05-01

    When bacteria are exposed to osmotic stress, some cells recover and grow, while others die or are unculturable. This leads to a viable count growth curve where the cell number decreases before the onset of the exponential growth phase. From such curves, it is impossible to estimate what proportion of the initial cells generates the growth because it leads to an ill-conditioned numerical problem. Here, we applied a combination of experimental and statistical methods, based on optical density measurements, to infer both the probability of growth and the maximum specific growth rate of the culture. We quantified the growth potential of a bacterial population as a quantity composed from the probability of growth and the "suitability" of the growing subpopulation to the new environment. We found that, for all three laboratory media studied, the probability of growth decreased while the "work to be done" by the growing subpopulation (defined as the negative logarithm of their suitability parameter) increased with NaCl concentration. The results suggest that the effect of medium on the probability of growth could be described by a simple shift parameter, a differential NaCl concentration that can be accounted for by the change in the medium composition. Finally, we highlighted the need for further understanding of the effect of the osmoprotectant glycine betaine on metabolism.

  18. The potential of Arctica islandica growth records to reconstruct coastal climate in north west Scotland, UK

    NASA Astrophysics Data System (ADS)

    Stott, K. J.; Austin, W. E. N.; Sayer, M. D. J.; Weidman, C. R.; Cage, A. G.; Wilson, R. J. S.

    2010-07-01

    This paper describes potential methods for reconstructing past marine environmental and climatic variability in Scottish coastal waters through the investigation of annual growth increments measured from shells of the long-lived marine bivalve Arctica islandica (L.). This is accomplished by using a combination of sclerochronological and dendrochronological techniques which were employed to determine the age of specimens and to create growth chronologies. Using negative exponential detrending methods, a preliminary A. islandica master chronology for the Lynn of Lorn, Scotland has been produced. This chronology indicates highly suppressed growth between the mid 1940s and late 1980s. The growth response of this species to the sea surface temperatures in Scottish coastal waters appears to be complex, most notably during recent decades when land-use changes and marine aquaculture may influence shell growth at this site.

  19. Selective algicidal action of peptides against harmful algal bloom species.

    PubMed

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  20. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes.

    PubMed

    Neuenschwander, Stefan M; Pernthaler, Jakob; Posch, Thomas; Salcher, Michaela M

    2015-03-01

    We studied the seasonal growth potential of opportunistic bacterial populations in Lake Zurich (Switzerland) by a series of grazer-free dilution culture assays. Pronounced shifts in the composition of the bacterial assemblages were observed within one doubling of total cell numbers, from initially abundant Actinobacteria to other fast-growing microbial lineages. Small populations with growth potentials far above community average were detected throughout the year with striking seasonal differences in their respective taxonomic affiliations. Members of Cytophaga-Flavobacteria (CF) were disproportionally proliferating only during phytoplankton blooms in spring and summer, while Beta- and Gammaproteobacteria showed superior growth at all other occasions. Growth rates of Alphaproteobacteria and esp. Sphingomonadaceae were significantly correlated to water temperatures and were far above community average in summer. Within the genus Flavobacterium, two species-like populations showed a tendency for fast growth in most experiments, while four others were exclusively proliferating either during a spring or during a summer phytoplankton bloom. Their high growth potentials but low in situ abundances hint at a tight control by bacterivorous grazers and at a consequently accelerated carbon flux to higher trophic levels.

  1. Riparian shading and groundwater enhance growth potential for smallmouth bass in Ozark streams.

    PubMed

    Whitledge, Gregory W; Rabeni, Charles F; Annis, Gust; Sowa, Scott P

    2006-08-01

    Moderation of stream temperatures by riparian shading and groundwater are known to promote growth and survival of salmonid fishes, but effects of riparian shade and groundwater on to be growth of warmwater stream fishes are poorly understood or assumed to be negligible. We used stream temperature models to relate shading from riparian vegetation and groundwater inflow to summer water temperatures in Missouri Ozark streams and evaluated effects of summer water temperatures on smallmouth bass, Micropterus dolomieu, growth using a bioenergetics model. Bioenergetics model simulations revealed that adult smallmouth bass in non-spring-fed streams have lower growth potential during summer than fish in spring-fed streams, are subject to mass loss when stream temperatures exceed 27 degrees C, and will likely exhibit greater interannual variation in growth during summer if all growth-influencing factors, other than temperature, are identical between the two stream types. Temperature models indicated that increased riparian shading will expand the longitudinal extent of thermal habitat capable of supporting adult smallmouth bass growth in spring-fed stream reaches when mean daily air temperatures exceed 27 degrees C. Optimum growth temperature (22 degrees C) will be present only in spring-fed streams under these conditions. Potential for increasing shade through riparian restoration is greatest for streams <5 m wide and along north-south reaches of larger streams. However, temperature models also indicated that restoring riparian shading to maximum levels throughout a watershed would increase the total stream mileage capable of supporting positive growth of adult smallmouth bass by only 1-6% when air temperatures are at or near average summer maxima; increases in suitable thermal habitat would be greatest in watersheds with higher spring densities. Riparian management for maintenance or restoration of the thermal habitat of adult smallmouth bass during summer should be

  2. Maximum Growth Potential and Periods of Resource Limitation in Apple Tree.

    PubMed

    Reyes, Francesco; DeJong, Theodore; Franceschi, Pietro; Tagliavini, Massimo; Gianelle, Damiano

    2016-01-01

    Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individual organs in trees with reduced competition for resources to trees grown under standard field conditions. Special attention was dedicated to disentangling patterns and values of maximum potential growth for each organ type. The period of resource limitation for vegetative growth was much longer than in another fruit tree species (peach): from late May until harvest. Two periods of resource limitation were highlighted for fruit: from the beginning of the season until mid-June, and about 1 month prior to harvest. By investigating the variability in individual organs growth we identified substantial differences in RGRs among different shoot categories (proleptic and epicormic) and within each group of monitored organs. Qualitatively different and more accurate values of growth rates for vegetative organs, compared to the use of the simple compartmental means, were estimated. Detailed, source-sink based tree growth models, commonly in need of fine parameter tuning, are expected to benefit from the results produced by these analyses.

  3. Maximum Growth Potential and Periods of Resource Limitation in Apple Tree.

    PubMed

    Reyes, Francesco; DeJong, Theodore; Franceschi, Pietro; Tagliavini, Massimo; Gianelle, Damiano

    2016-01-01

    Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individual organs in trees with reduced competition for resources to trees grown under standard field conditions. Special attention was dedicated to disentangling patterns and values of maximum potential growth for each organ type. The period of resource limitation for vegetative growth was much longer than in another fruit tree species (peach): from late May until harvest. Two periods of resource limitation were highlighted for fruit: from the beginning of the season until mid-June, and about 1 month prior to harvest. By investigating the variability in individual organs growth we identified substantial differences in RGRs among different shoot categories (proleptic and epicormic) and within each group of monitored organs. Qualitatively different and more accurate values of growth rates for vegetative organs, compared to the use of the simple compartmental means, were estimated. Detailed, source-sink based tree growth models, commonly in need of fine parameter tuning, are expected to benefit from the results produced by these analyses. PMID:26973676

  4. Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation.

    PubMed

    Birk, T; Henriksen, S; Müller, K; Hansen, T B; Aabo, S

    2016-11-01

    Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential- and stationary-phase Salmonella Typhimurium (DT12 and DTU292) during freezing at -18°C and their subsequent growth potential during 72h sausage fermentation at 25°C. After 0, 7 and >35d of frozen storage, sausage batters were prepared with NaCl (3%) and NaNO2 (0, 100ppm) and fermented with and without starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat.

  5. Maximum Growth Potential and Periods of Resource Limitation in Apple Tree

    PubMed Central

    Reyes, Francesco; DeJong, Theodore; Franceschi, Pietro; Tagliavini, Massimo; Gianelle, Damiano

    2016-01-01

    Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individual organs in trees with reduced competition for resources to trees grown under standard field conditions. Special attention was dedicated to disentangling patterns and values of maximum potential growth for each organ type. The period of resource limitation for vegetative growth was much longer than in another fruit tree species (peach): from late May until harvest. Two periods of resource limitation were highlighted for fruit: from the beginning of the season until mid-June, and about 1 month prior to harvest. By investigating the variability in individual organs growth we identified substantial differences in RGRs among different shoot categories (proleptic and epicormic) and within each group of monitored organs. Qualitatively different and more accurate values of growth rates for vegetative organs, compared to the use of the simple compartmental means, were estimated. Detailed, source-sink based tree growth models, commonly in need of fine parameter tuning, are expected to benefit from the results produced by these analyses. PMID:26973676

  6. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  7. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans

    PubMed Central

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan

    2015-01-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs. PMID:26195510

  8. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.

  9. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels. PMID:22324757

  10. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  11. Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages.

    PubMed

    Saxton, Matthew A; Arnold, Robert J; Bourbonniere, Richard A; McKay, Robert Michael L; Wilhelm, Steven W

    2012-01-01

    Blooms of the potentially toxic cyanobacterium Microcystis are common events globally, and as a result significant resources continue to be dedicated to monitoring and controlling these events. Recent studies have shown that a significant proportion of total cell-associated phosphorus (P) in marine phytoplankton can be surface adsorbed; as a result studies completed to date do not accurately report the P demands of these organisms. In this study we measure the total cell-associated and intracellular P as well as growth rates of two toxic strains of Microcystis aeruginosa Kütz grown under a range of P concentrations. The results show that the intracellular P pool in Microcystis represents a percentage of total cell-associated P (50-90%) similar to what has been reported for actively growing algae in marine systems. Intracellular P concentrations (39-147 fg cell(-1)) generally increased with increasing P concentrations in the growth medium, but growth rate and the ratio of total cell-associated to intracellular P remained generally stable. Intracellular P quotas and growth rates in cells grown under the different P treatments illustrate the ability of this organism to successfully respond to changes in ambient P loads, and thus have implications for ecosystem scale productivity models employing P concentrations to predict algal bloom events. PMID:22279445

  12. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  13. Effects of anodic oxidation of a substoichiometric titanium dioxide reactive electrochemical membrane on algal cell destabilization and lipid extraction.

    PubMed

    Hua, Likun; Guo, Lun; Thakkar, Megha; Wei, Dequan; Agbakpe, Michael; Kuang, Liyuan; Magpile, Maraha; Chaplin, Brian P; Tao, Yi; Shuai, Danmeng; Zhang, Xihui; Mitra, Somenath; Zhang, Wen

    2016-03-01

    Efficient algal harvesting, cell pretreatment and lipid extraction are the major steps challenging the algal biofuel industrialization. To develop sustainable solutions for economically viable algal biofuels, our research aims at devising innovative reactive electrochemical membrane (REM) filtration systems for simultaneous algal harvesting and pretreatment for lipid extraction. The results in this work particularly demonstrated the use of the Ti4O7-based REM in algal pretreatment and the positive impacts on lipid extraction. After REM treatment, algal cells exhibited significant disruption in morphology and photosynthetic activity due to the anodic oxidation. Cell lysis was evidenced by the changes of fluorescent patterns of dissolved organic matter (DOM) in the treated algal suspension. The lipid extraction efficiency increased from 15.2 ± 0.6 g-lipidg-algae(-1) for untreated algae to 23.4 ± 0.7 g-lipidg-algae(-1) for treated algae (p<0.05), which highlights the potential to couple algal harvesting with cell pretreatment in an integrated REM filtration process. PMID:26722810

  14. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer.

    PubMed

    Huang, Yan; Li, Rong; Liu, Hongjun; Wang, Beibei; Zhang, Chenmin; Shen, Qirong

    2014-08-01

    Without further management, large amounts of refloated algal sludge from Taihu Lake to retrieve nitrogen and phosphorus resources may result in serious secondary environmental pollution. The possibility of utilization of algal sludge to improve the quality of organic fertilizer was investigated in this study. Variations of physicochemical properties, germination index (GI) and microcystin (MC) content were analysed during the composting process. The results showed that the addition of algal sludge improved the contents of nutrients, common free amino acids and total common amino acids in the novel organic fertilizer. Rapid degradation rates of MC-LR and MC-RR, a high GI value and more abundance of culturable protease-producing bacteria were observed during the composting process added with algal sludge. Growth experiments showed that the novel organic fertilizer efficiently promoted plant growth. This study provides a novel resource recovery method to reclaim the Taihu Lake algal sludge and highlights a novel method to produce a high-quality organic fertilizer. PMID:24956756

  15. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  16. Microflotation performance for algal separation.

    PubMed

    Hanotu, James; Bandulasena, H C Hemaka; Zimmerman, William B

    2012-07-01

    The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm. In contrast, continuous air flow at the same rate through the same diffusers yielded an average bubble size of 1,059 µm, 28 times larger than the pore size. Following microbubble generation, the separation of algal cells under fluidic oscillator generated microbubbles was investigated by varying metallic coagulant types, concentration and pH. Best performances were recorded at the highest coagulant dose (150 mg/L) applied under acidic conditions (pH 5). Amongst the three metallic coagulants studied, ferric chloride yielded the overall best result of 99.2% under the optimum conditions followed closely by ferric sulfate (98.1%) and aluminum sulfate with 95.2%. This compares well with conventional dissolved air flotation (DAF) benchmarks, but has a highly turbulent flow, whereas microflotation is laminar with several orders of magnitude lower energy density.

  17. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps.

    PubMed

    Norvill, Zane N; Shilton, Andy; Guieysse, Benoit

    2016-08-01

    Whereas the fate of emerging contaminants (ECs) during 'conventional' and 'advanced' wastewater treatment (WWT) has been intensively studied, little research has been conducted on the algal WWT ponds commonly used in provincial areas. The long retention times and large surface areas exposed to light potentially allow more opportunities for EC removal to occur, but experimental evidence is lacking to enable definite predictions about EC fate across different algal WWT systems. This study reviews the mechanisms of EC hydrolysis, sorption, biodegradation, and photodegradation, applying available knowledge to the case of algal WWT. From this basis the review identifies three main areas that need more research due to the unique environmental and ecological conditions occurring in algal WWT ponds: i) the effect of diurnally fluctuating pH and dissolved oxygen upon removal mechanisms; ii) the influence of algae and algal biomass on biodegradation and sorption under relevant conditions; and iii) the significance of EC photodegradation in the presence of dissolved and suspended materials. Because of the high concentration of dissolved organics typically found in algal WWT ponds, most EC photodegradation likely occurs via indirect mechanisms rather than direct photolysis in these systems.

  18. Evaluating the Growth Potential of Pathogenic Bacteria in Water ▿ †

    PubMed Central

    Vital, Marius; Stucki, David; Egli, Thomas; Hammes, Frederik

    2010-01-01

    The degree to which a water sample can potentially support the growth of human pathogens was evaluated. For this purpose, a pathogen growth potential (PGP) bioassay was developed based on the principles of conventional assimilable organic carbon (AOC) determination, but using pure cultures of selected pathogenic bacteria (Escherichia coli O157, Vibrio cholerae, or Pseudomonas aeruginosa) as the inoculum. We evaluated 19 water samples collected after different treatment steps from two drinking water production plants and a wastewater treatment plant and from ozone-treated river water. Each pathogen was batch grown to stationary phase in sterile water samples, and the concentration of cells produced was measured using flow cytometry. In addition, the fraction of AOC consumed by each pathogen was estimated. Pathogen growth did not correlate with dissolved organic carbon (DOC) concentration and correlated only weakly with the concentration of AOC. Furthermore, the three pathogens never grew to the same final concentration in any water sample, and the relative ratio of the cultures to each other was unique in each sample. These results suggest that the extent of pathogen growth is affected not only by the concentration but also by the composition of AOC. Through this bioassay, PGP can be included as a parameter in water treatment system design, control, and operation. Additionally, a multilevel concept that integrates the results from the bioassay into the bigger framework of pathogen growth in water is discussed. The proposed approach provides a first step for including pathogen growth into microbial risk assessment. PMID:20693455

  19. Turgor and growth at low water potentials. [Glycine max (L. ) Merr

    SciTech Connect

    Nonami, H.; Boyer, J.S. )

    1989-03-01

    Turgor affects cell enlargement but has not been measured in enlarging tissue of intact plants when growth is inhibited by inadequate water. Mature or excised tissue can be problematic for these measurements because turgor may not be the same as in intact enlarging cells. Therefore, we measured the average turgor in the elongating region of intact stems of soybean (Glycine max (L.) Merr.) while the seedlings were exposed to low water potentials by transplanting to vermiculite of low water content. Stem growth was completely inhibited by the transplanting, and the average turgor decreased in the mature stem tissue. However, it did not decrease in the elongating region whether measured in intact or excised tissue (total of four methods). At the cellular level, turgor was uniform in the elongating tissue except at transplanting, when turgor decreased in a small number of cortical cells near the xylem. The reduced turgor in these cells, but constant turgor in most of the cells confirmed that no general turgor loss had occurred but indicated that gradients in water potential extending from the xylem into the enlarging tissue were reduced, thus decreasing the movement of water into the tissue for cell enlargement. A modest growth recovery occurred after 2 days and was preceded by a recovery of the gradient. This suggests that under these conditions, growth initially was inhibited not by turgor loss but by a collapse of the water potential gradient necessary for the growth process.

  20. Raman microspectroscopy based sensor of algal lipid unsaturation

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  1. Monthly Ensembles in Algal Bloom Predictions on the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Roiha, Petra; Westerlund, Antti; Stipa, Tapani

    2010-05-01

    In this work we explore the statistical features of monthly ensembles and their capability to predict biogeochemical conditions in the Baltic Sea. Operational marine environmental modelling has been considered hard, and consequently there are very few operational ecological models. Operational modelling of harmful algal blooms is harder still, since it is difficult to separate the algal species in models, and in general, very little is known of HAB properties. We present results of an ensemble approach to HAB forecasting in the Baltic, and discuss the applicability of the forecasting method to biochemical modelling. It turns out that HABs are indeed possible to forecast with useful accuracy. For modelling the algal blooms in Baltic Sea we used FMI operational 3-dimensional biogeochemical model to produce seasonal ensemble forecasts for different physical, chemical and biological variables. The modelled variables were temperature, salinity, velocity, silicate, phosphate, nitrate, diatoms, flagellates and two species of potentially toxic filamentous cyanobacteria nodularia spumigena and aphanizomenon flos-aquae. In this work we concentrate to the latter two. Ensembles were produced by running the biogeochemical model several times and forcing it on every run with different set of seasonal weather parameters from ECMWF's mathematically perturbed ensemble prediction forecasts. The ensembles were then analysed by statistical methods and the median, quartiles, minimum and maximum values were calculated for estimating the probable amounts of algae. Validation for the forecast method was made by comparing the final results against available and valid in-situ HAB data.

  2. Recycling produced water for algal cultivation for biofuels

    SciTech Connect

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.; Steichen, Seth A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  3. Changes in muscle gene expression related to metabolism according to growth potential in young bulls.

    PubMed

    Bernard, Carine; Cassar-Malek, Isabelle; Renand, Gilles; Hocquette, Jean-François

    2009-06-01

    To analyse the effects of genetic selection in favour of high muscle development on muscle gene expression, oligonucleotide microarrays were used to compare the transcriptome of Longissimusthoracis muscle from 15- and 19-month-old Charolais bull calves divergently selected for high (H) or low (L) muscle growth. Transcriptome data revealed that about two thirds of the genes involved in glycolysis were up-regulated at 15 and at 19months of age in H animals. Lastly, some differentially expressed genes were associated with muscle mass in the carcass (FGF6, PLD2) independently of fat deposition and meat quality. Selection for muscle growth potential is associated with modified expression of some genes involved in growth, and also with increased expression of genes involved in glycolysis. Furthermore, this change in muscle metabolism is likely to be dissociated from fat deposition and beef quality, providing new criteria for genetic selection in favour of muscle growth. PMID:20416758

  4. Changes in muscle gene expression related to metabolism according to growth potential in young bulls.

    PubMed

    Bernard, Carine; Cassar-Malek, Isabelle; Renand, Gilles; Hocquette, Jean-François

    2009-06-01

    To analyse the effects of genetic selection in favour of high muscle development on muscle gene expression, oligonucleotide microarrays were used to compare the transcriptome of Longissimusthoracis muscle from 15- and 19-month-old Charolais bull calves divergently selected for high (H) or low (L) muscle growth. Transcriptome data revealed that about two thirds of the genes involved in glycolysis were up-regulated at 15 and at 19months of age in H animals. Lastly, some differentially expressed genes were associated with muscle mass in the carcass (FGF6, PLD2) independently of fat deposition and meat quality. Selection for muscle growth potential is associated with modified expression of some genes involved in growth, and also with increased expression of genes involved in glycolysis. Furthermore, this change in muscle metabolism is likely to be dissociated from fat deposition and beef quality, providing new criteria for genetic selection in favour of muscle growth.

  5. Influence of microbial growth in the redox potential of fermented cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commonly, pH measurements are used during the production of fermented cucumbers to indirectly monitor growth of lactic acid bacteria (LAB) and acid production. Redox potential (Eh) measurements, which are determined by the flux of electrons in a system, could serve as a more accurate tool to monitor...

  6. Predicting Reading Growth with Event-Related Potentials: Thinking Differently about Indexing "Responsiveness"

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; Key, Alexandra P. F.; Fuchs, Douglas; Yoder, Paul J.; Fuchs, Lynn S.; Compton, Donald L.; Williams, Susan M.; Bouton, Bobette

    2010-01-01

    The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade…

  7. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  8. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    USGS Publications Warehouse

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  9. Sterol phylogenesis and algal evolution.

    PubMed Central

    Nes, W D; Norton, R A; Crumley, F G; Madigan, S J; Katz, E R

    1990-01-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like micro-organisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and 1H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecycloartanol, ergosterol, protothecasterol, 4alpha-methylergostanol, 4alpha-methylclionastanol, clionastanol, 24beta-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I [2-3H]lanosterol, [2-3H]cycloartenol, [24-3H]lanosterol, and [methyl-2H3]methionine and by feeding to II [methyl-2H3]methionine. The results demonstrate that the 24beta configuration is formed by different alkylation routes in I and II. The Delta25(27) route operates in I while the Delta24(28) route operates in II. Based on what is known in the literature regarding sterol distribution and phylogenesis together with our findings that the stereochemical outcome of squalene oxide cyclization leads to the production of cycloartenol rather than lanosterol (characteristic of the fungal genealogy) and the chirality of the C-24 alkyl group is similar in the two nonphotosynthetic microbes (beta oriented), we conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors. PMID:11607106

  10. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer.

    PubMed

    Mulbry, Walter; Westhead, Elizabeth Kebede; Pizarro, Carolina; Sikora, Lawrence

    2005-03-01

    An alternative to land spreading of manure is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to evaluate the fertilizer value of dried algal biomass that had been grown using anaerobically digested dairy manure. Results from a flask study using two soils amended with algal biomass showed that 3% of total algal nitrogen (N) was present as plant available N at day 0. Approximately 33% of algal N was converted to plant available N within 21 days at 25 degrees C in both soils. Levels of Mehlich-3 extractable phosphorus (P) in the two soils rose with increasing levels of algal amendment but were also influenced by existing soil P levels. Results from plant growth experiments showed that 20-day old cucumber and corn seedlings grown in algae-amended potting mix contained 15-20% of applied N, 46-60% of available N, and 38-60% of the applied P. Seedlings grown in algae-amended potting mixes were equivalent to those grown with comparable levels of fertilizer amended potting mixes with respect to seedling dry weight and nutrient content. These results suggest that dried algal biomass produced from treatment of anaerobically digested dairy manure can substitute for commercial fertilizers used for potting systems. PMID:15491826

  11. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  12. Oil crop biomass residue-based media for enhanced algal lipid production.

    PubMed

    Wang, Zhen; Ma, Xiaochen; Zhou, Wenguang; Min, Min; Cheng, Yanling; Chen, Paul; Shi, Jian; Wang, Qin; Liu, Yuhuan; Ruan, Roger

    2013-10-01

    The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

  13. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  14. Xylem tension affects growth-induced water potential and daily elongation of maize leaves.

    PubMed

    Tang, An-Ching; Boyer, John S

    2008-01-01

    Diurnal rates of leaf elongation vary in maize (Zea mays L.) and are characterized by a decline each afternoon. The cause of the afternoon decline was investigated. When the atmospheric environment was held constant in a controlled environment, and water and nutrients were adequately supplied to the soil or the roots in solution, the decline persisted and indicated that the cause was internal. Inside the plants, xylem fluxes of water and solutes were essentially constant during the day. However, the forces moving these components changed. Tensions rose in the xylem, and gradients of growth-induced water potentials decreased in the surrounding growing tissues of the leaf. These potentials, measured with isopiestic thermocouple psychrometry, changed because the roots became less conductive to water as the day progressed. The increased tensions were reversed by applying pressure to the soil/root system, which rehydrated the leaf. Afternoon elongation immediately recovered to rapid morning rates. The rapid morning rates did not respond to soil/root pressurization. It was concluded that increased xylem tension in the afternoon diminished the gradients in growth-induced water potential and thus inhibited elongation. Because increased tensions cause a similar but larger inhibition of elongation if maize dehydrates, these hydraulics are crucial for shaping the growth-induced water potential and thus the rates of leaf elongation in maize over the entire spectrum of water availability.

  15. Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut.

    PubMed

    Palacios, Sofia; Casasnovas, Francisco; Ramirez, María L; Reynoso, María M; Torres, Adriana M

    2014-01-01

    Studies were conducted to determine the effect of osmotic and matric stress on germination and growth of two Fusarium solani strains, the etiological agent responsible of peanut brown root rot. Both strains had similar osmotic and matric potential ranges that allowed growth, being the latter one narrower. F. solani showed the ability to grow down to -14 MPa at 25 °C in non-ionic modified osmotic medium, while under matric stress this was limited to -8.4 MPa at 25 °C. However, both strains were seen to respond differently to decreasing osmotic and matric potentials, during early stages of germination. One strain (RC 338) showed to be more sensitive to matric than osmotic (non ionic) and the other one (RC 386) showed to be more sensitive to osmotic than matric imposed water stress. After 24 h of incubation, both isolates behaved similarly. The minimum water potential for germination was -8.4 MPa on glycerol amended media and -5.6 MPa for NaCl and PEG amended media, respectively. The knowledge of the water potential range which allow mycelia growth and spore germination of F. solani provides an inside to the likely behaviour of this devastating soilborne plant pathogen in nature and has important practical implications.

  16. Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut

    PubMed Central

    Palacios, Sofia; Casasnovas, Francisco; Ramirez, María L.; Reynoso, María. M.; Torres, Adriana M.

    2014-01-01

    Studies were conducted to determine the effect of osmotic and matric stress on germination and growth of two Fusarium solani strains, the etiological agent responsible of peanut brown root rot. Both strains had similar osmotic and matric potential ranges that allowed growth, being the latter one narrower. F. solani showed the ability to grow down to −14 MPa at 25 °C in non-ionic modified osmotic medium, while under matric stress this was limited to −8.4 MPa at 25 °C. However, both strains were seen to respond differently to decreasing osmotic and matric potentials, during early stages of germination. One strain (RC 338) showed to be more sensitive to matric than osmotic (non ionic) and the other one (RC 386) showed to be more sensitive to osmotic than matric imposed water stress. After 24 h of incubation, both isolates behaved similarly. The minimum water potential for germination was −8.4 MPa on glycerol amended media and −5.6 MPa for NaCl and PEG amended media, respectively. The knowledge of the water potential range which allow mycelia growth and spore germination of F. solani provides an inside to the likely behaviour of this devastating soilborne plant pathogen in nature and has important practical implications. PMID:25477950

  17. Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut.

    PubMed

    Palacios, Sofia; Casasnovas, Francisco; Ramirez, María L; Reynoso, María M; Torres, Adriana M

    2014-01-01

    Studies were conducted to determine the effect of osmotic and matric stress on germination and growth of two Fusarium solani strains, the etiological agent responsible of peanut brown root rot. Both strains had similar osmotic and matric potential ranges that allowed growth, being the latter one narrower. F. solani showed the ability to grow down to -14 MPa at 25 °C in non-ionic modified osmotic medium, while under matric stress this was limited to -8.4 MPa at 25 °C. However, both strains were seen to respond differently to decreasing osmotic and matric potentials, during early stages of germination. One strain (RC 338) showed to be more sensitive to matric than osmotic (non ionic) and the other one (RC 386) showed to be more sensitive to osmotic than matric imposed water stress. After 24 h of incubation, both isolates behaved similarly. The minimum water potential for germination was -8.4 MPa on glycerol amended media and -5.6 MPa for NaCl and PEG amended media, respectively. The knowledge of the water potential range which allow mycelia growth and spore germination of F. solani provides an inside to the likely behaviour of this devastating soilborne plant pathogen in nature and has important practical implications. PMID:25477950

  18. Xylem tension affects growth-induced water potential and daily elongation of maize leaves.

    PubMed

    Tang, An-Ching; Boyer, John S

    2008-01-01

    Diurnal rates of leaf elongation vary in maize (Zea mays L.) and are characterized by a decline each afternoon. The cause of the afternoon decline was investigated. When the atmospheric environment was held constant in a controlled environment, and water and nutrients were adequately supplied to the soil or the roots in solution, the decline persisted and indicated that the cause was internal. Inside the plants, xylem fluxes of water and solutes were essentially constant during the day. However, the forces moving these components changed. Tensions rose in the xylem, and gradients of growth-induced water potentials decreased in the surrounding growing tissues of the leaf. These potentials, measured with isopiestic thermocouple psychrometry, changed because the roots became less conductive to water as the day progressed. The increased tensions were reversed by applying pressure to the soil/root system, which rehydrated the leaf. Afternoon elongation immediately recovered to rapid morning rates. The rapid morning rates did not respond to soil/root pressurization. It was concluded that increased xylem tension in the afternoon diminished the gradients in growth-induced water potential and thus inhibited elongation. Because increased tensions cause a similar but larger inhibition of elongation if maize dehydrates, these hydraulics are crucial for shaping the growth-induced water potential and thus the rates of leaf elongation in maize over the entire spectrum of water availability. PMID:18349050

  19. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    NASA Astrophysics Data System (ADS)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  20. Do external resource ratios matter?: Implications for modelling eutrophication events and controlling harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Flynn, Kevin J.

    2010-11-01

    Relationships between nutrient N:P ratio and P-limitation in phytoplankton are explored using a multi-nutrient photoacclimative quota-based model. The relationship depends on concentrations of input and residual nutrients, and also on variable phytoplankton C:N:P stoichiometry. In reality, usually only the residual nutrient concentrations and their ratios are known. However, the total amount of nutrient present in the system affects biomass growth potential through self-shading, and thence the potential for variation in organismal N:P. The critical external N:P resource ratio above which P becomes limiting increases as residual concentrations of nutrients increase to saturate transport kinetics; oligotrophic waters require a lower nutrient N:P to avoid P-limitation than do eutrophic waters. In eutrophic systems, which may support harmful algal blooms (HABs), and/or in systems in which light is rapidly attenuated (sediment loading, gelbstoff), P-limitation may not develop even in high resource N:P situations due to light limitation. This is more likely in high washout systems, where phytoplankton growth rates must remain elevated. The only diagnostics for nutrient stress are cellular functions (C-fixation, C:N:P), and the only nutrient parameters of consequence are concentrations and not ratios of them. Control of resource ratios alone should not be considered as a tool for mitigating HABs.

  1. A novel Vibrio beta-glucosidase (LamN) that hydrolyzes the algal storage polysaccharide laminarin.

    PubMed

    Wang, Zheng; Robertson, Kelly L; Liu, Charles; Liu, Jinny L; Johnson, Brandy J; Leary, Dagmar H; Compton, Jaimee R; Vuddhakul, Varaporn; Legler, Patricia M; Vora, Gary J

    2015-08-01

    The metabolic versatility, tractability and rapid growth potential of the Vibrio spp. have made them increasingly attractive systems for investigating carbon cycling in the marine environment. In this study, an in silico subtractive proteomic strategy was used to identify a novel 101 kDa GH3 family β-glucosidase (LamN) that was found in bioluminescent Vibrio campbellii strains capable of utilizing the algal storage glucan laminarin. A heterologous overexpression system verified the sequence-predicted function of LamN as it enabled the growth of Escherichia coli on laminarin as a sole carbon source. Quantitative reverse transcription PCR analyses revealed that V. campbellii grown on laminarin demonstrated a 4- to 314-fold induction of lamN gene expression when compared to the same strains grown on glucose or glycerol. Corresponding tandem mass spectrometric analyses detected LamN protein expression only in cells grown on laminarin. Heterologous expression, purification and biochemical characterization identified LamN as a heat stable laminarinase with β-1,3, β-1,4 and β-1,6 glucosidase activity. Collectively, these data identify an enzyme that may allow V. campbellii to exploit some of the most abundant polysaccharides associated with deteriorating phytoplankton blooms and provide support for the potential involvement of V. campbellii in the formation of bioluminescent milky seas.

  2. Seasonal variation of a snow algal community on an Alaskan glacier

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.

    2003-12-01

    There are cold tolerant algae (snow algae) growing on the surface of glaciers. Several species of snow algae have been reported on Alaskan glaciers. Seasonal variation of the snow algal community was investigated on Gulkana Glacier in the Alaska Range from May to September, 2001. Chlorophyll, nutrients, and stable isotope for carbon and nitrogen (particulate organic matter) were also measured. The snow algal community on this glacier varied with time, in particular changed with snow melting and nutrients in the snow. When the glacier is covered with snow (May), the algal community consisted of mainly only one species of alga (Chlamydomonas nivalis, alga of red snow). The algal biomass and chlorophyll concentration increased with snow melting in early summer. When the glacial ice surface appeared, the community structure changed drastically. The community on the ice consisted of some of different species. The community structure and biomass kept almost constant after the ice surface appeared. Nutrients measurements showed that nitrogen was likely limited on the algal growth rather than phosphate. Especially, the nitrate was depleted from August to September. Results of stable isotope measurements also support the nitrogen limitation of the snow algae in late summer.

  3. Problems related to water quality and algal control in Lopez Reservoir, San Luis Obispo County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Averett, Robert C.; Hines, Walter G.

    1975-01-01

    A study to determine the present enrichment status of Liopez Reservoir in San Luis Obispo county, California, and to evaluate copper sulfate algal treatment found that stratification in the reservoir regulates nutrient release and that algal control has been ineffective. Nuisance algal blooms, particularly from March to June, have been a problem in the warm multipurpose reservoir since it was initially filled following intense storms in 1968-69. The cyanophyte Anabaena unispora has been dominant; cospecies are the diatoms Stephanodiscus astraea and Cyclotella operculata, and the chlorophytes Pediastrum deplex and Sphaerocystis schroeteri. During an A. unispora bloom in May 1972 the total lake surface cell count was nearly 100,000 cells/ml. Thermal stratification from late spring through autumn results in oxygen deficiency in the hypolimnion and metalimnion caused by bacterial oxidation of organic detritus. The anaerobic conditions favor chemical reduction of organic matter, which constitute 10-14% of the sediment. As algae die, sink to the bottom, and decompose, nutrients are released to the hypolimnion , and with the autumn overturn are spread to the epilimnion. Algal blooms not only hamper recreation, but through depletion of dissolved oxygen in the epilimnion may have caused periodic fishkills. Copper sulfate mixed with sodium citrate and applied at 1.10-1.73 lbs/acre has not significantly reduced algal growth; a method for determining correct dosage is presented. (Lynch-Wisconsin)

  4. Microbial dynamics of an epilithic algal-bacterial mat community in an oligotrophic, high alpine stream

    SciTech Connect

    McFeters, G.A.; Haack, T.K.

    1982-04-01

    Previous studies of an epilithic algal-bacterial community in a pristine mountain stream suggested that heterotrophic bacteria were responding to the metabolic activities of the photorophic population. Subsequent studies were performed to follow the flow of labeled carbon, from its initial inorganic form, through the trophic levels of the mat community. A majority of primary production metabolites were excreted by the algal population during active growth; this shifted to an incorporation into cellular material as phototrophic activity declined. Results suggest that there was a direct flux of soluble algal products to the bacterial population, with little heterotrophic utilization of dissolved organics from the overlying stream water. Both phototrophic productivity and bacterial utilization of algal products peaked at approximately the same time of year. Activity of the diatom-dominated algal population declined as silica concentrations in the stream water dropped, leading to a situation in which the sessile bacteria were substrate limited. These events resulted in an almost complete disappearance of the community in early September.

  5. Study of Growth Potential of Listeria Monocytogenes in Low Fat Salami: An Innovative Italian Meat Product

    PubMed Central

    Cosciani-Cunico, Elena; Pavoni, Enrico; Bertasi, Barbara; Daminelli, Paolo; Finazzi, Guido; Losio, Marina N.; Varisco, Giorgio

    2014-01-01

    In the last years, consequently to EC Regulation no. 1924/2006 on nutrition and health claims made on foods, some Italian food businnes operators (FBOs) leaders in the meat sector, invested in research to develop innovative products such as low fat salami, containing up to 30% less fat than the traditional one. For FBOs it is essential to demonstrate for each production process whether the substrate allows the growth of L. monocytogenes and whether L. monocytogenes could reach or exceed the limit of 100 cfu g–1 at the end of the shelf life, as stated by EC Regulation no. 2073/2005. In the present study, the growth potential of L. monocytogenes during the shelf life of low fat salami packed in modified atmosphere was evaluated. The results show that the product is unable to support the growth of pathogen, even if the storage temperature is between 8 and 12°C. PMID:27800321

  6. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  7. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for

  8. Do costochondral grafts have any growth potential in temporomandibular joint surgery? A systematic review

    PubMed Central

    Kumar, Praveen; Rattan, Vidya; Rai, Sachin

    2015-01-01

    Purpose of the study To assess the growth potential of costochondral graft in temporomandibular joint reconstruction in patients with temporomandibular ankylosis and hemifacial microsomia. Method Systematic review after inclusion of articles fulfilling the following criteria: (1) only human studies; (2) patients of temporomandibular joint ankylosis and hemifacial microsomia; and (3) studies with minimum of five cases and with a minimum follow-up for a period of 5 years. The primary outcome measure was the percentage of patients with optimum growth of costochondral graft. Secondary outcomes were any abnormal growth and restoration of function. Delphi's criteria were used for assessing the quality of the included studies. Result Only three studies satisfied all the inclusion criteria. A total of 96 costochondral grafts were placed in the included studies. Optimum growth was reported in 54 grafts, undergrowth in 1 graft, overgrowth in 7 grafts, lateral overgrowth in 1 graft and no growth in 1 graft. Graft resorption, reankylosis and sequestration were seen in 21, 8 and 3 cases, respectively. When the Delphi's criteria were applied to the case series for the assessment of quality, majority of the studies could be considered as satisfying at least 50% of the criteria. Conclusion There are no randomised clinical trials and the only evidence is in the form of case series that is considered as the lowest level of evidence for any study. No inference can be interpreted regarding growth potential of costochondral graft. Thus, on the basis of available evidence, it can be concluded that use of costochondral graft for temporomandibular joint reconstruction lacks scientific evidence. PMID:26605146

  9. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.

    PubMed

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-10-01

    On the basis of the icing-delay performance and ice adhesion strength, the anti-icing potential of the superhydrophobic surface has been well-investigated in the past few years. The present work mainly emphasized the investigations of ice nucleation and growth to fully explore the anti-icing potential of the superhydrophobic surface. We took the various surfaces ranging from hydrophilic to superhydrophobic as the research objects and, combining the classical nucleation theory, discussed the ice nucleation behaviors of the water droplets on these sample surfaces under the condition of supercooling. Meanwhile, the macroscopical growth processes of ice on these surfaces were analyzed on the basis of the growth mechanism of the ice nucleus. It was found that the superhydrophobic surface could greatly reduce the solid-liquid interface nucleation rate, owing to the extremely low actual solid-liquid contact area caused by the composite micro-nanoscale hierarchical structures trapping air pockets, leading to the bulk nucleation dominating the entire ice nucleation at the lower temperatures. Furthermore, ice on the superhydrophobic surface possessed a lower macroscopical growth velocity as a result of the less ice nucleation rate and the insulating action of the trapped air pockets. PMID:26367109

  10. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    PubMed

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions.

  11. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    PubMed

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions. PMID:27386392

  12. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants.

    PubMed

    Fortier, Marie-Odile P; Sturm, Belinda S M

    2012-10-16

    Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited. PMID:22970803

  13. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  14. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  15. Algal fossils from a late precambrian, hypersaline lagoon.

    PubMed

    Oehler, D Z; Oehler, J H; Stewart, A J

    1979-07-27

    Organically preserved algal microfossils from the Ringwood evaporite deposit in the Gillen Member of the Bitter Springs Formation (late Precambrian of central Australia) are of small size, low diversity, and probable prokaryotic affinities. These rather primitive characteristics appear to reflect the stressful conditions that prevailed in a periodically stagnant, hypersaline lagoon. This assemblage (especially in comparison with the much more diverse assemblages preserved in the Loves Creek Member of the same formation) illustrates the potential utility of Proterozoic microbiotas for basin analysis and local stratigraphic correlation and demonstrates the need to base evolutionary considerations and Precambrian intercontinental biostratigraphy on biotas that inhabited less restricted environments.

  16. Direct current electrical potential measurement of the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.

    1992-01-01

    The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.

  17. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.

    PubMed

    Feist, Adam M; Zielinski, Daniel C; Orth, Jeffrey D; Schellenberger, Jan; Herrgard, Markus J; Palsson, Bernhard Ø

    2010-05-01

    Integrated approaches utilizing in silico analyses will be necessary to successfully advance the field of metabolic engineering. Here, we present an integrated approach through a systematic model-driven evaluation of the production potential for the bacterial production organism Escherichia coli to produce multiple native products from different representative feedstocks through coupling metabolite production to growth rate. Designs were examined for 11 unique central metabolism and amino acid targets from three different substrates under aerobic and anaerobic conditions. Optimal strain designs were reported for designs which possess maximum yield, substrate-specific productivity, and strength of growth-coupling for up to 10 reaction eliminations (knockouts). In total, growth-coupled designs could be identified for 36 out of the total 54 conditions tested, corresponding to eight out of the 11 targets. There were 17 different substrate/target pairs for which over 80% of the theoretical maximum potential could be achieved. The developed method introduces a new concept of objective function tilting for strain design. This study provides specific metabolic interventions (strain designs) for production strains that can be experimentally implemented, characterizes the potential for E. coli to produce native compounds, and outlines a strain design pipeline that can be utilized to design production strains for additional organisms.

  18. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.

    PubMed

    Romero, Maria J R H; Nakashima, Syozi; Nikaido, Toru; Ichinose, Shizuko; Sadr, Alireza; Tagami, Junji

    2015-08-01

    Salivary phosphoproteins are essential in tooth mineral regulation but are often overlooked in vitro. This study aimed to evaluate the effect of casein, as a salivary phosphoprotein homologue, on the deposition and growth of hydroxyapatite (HA) on tooth surfaces. Hydroxyapatite growth was quantified using seeded crystal systems. Artificial saliva (AS) containing HA powder and 0, 10, 20, 50, or 100 μg ml(-1) of casein, or 100 μg ml(-1) of dephosphorylated casein (Dcasein), was incubated for 0-8 h at 37°C, pH 7.2. Calcium concentrations were measured using atomic absorption spectroscopy (AAS). Surface precipitation of HA on bovine enamel and dentine blocks, incubated in similar conditions for 7 d, was examined using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). Casein adsorption was assessed using modified Lowry assays and zeta-potential measurements. The AAS results revealed a concentration-dependent inhibition of calcium consumption. Hydroxyapatite precipitation occurred when no casein was present, whereas precipitation of HA was apparently completely inhibited in casein-containing groups. Adsorption data demonstrated increasingly negative zeta-potential with increased casein concentration and an affinity constant similar to proline-rich proteins with Langmuir modelling. Casein inhibited the deposition and growth of HA primarily through the binding of esterized phosphate to HA active sites, indicating its potential as a mineral-regulating salivary phosphoprotein homologue in vitro. PMID:26083784

  19. Lysing bloom-causing alga Phaeocystis globosa with microbial algicide: An efficient process that decreases the toxicity of algal exudates

    PubMed Central

    Cai, Guanjing; Yang, Xujun; Lai, Qiliang; Yu, Xiaoqi; Zhang, Huajun; Li, Yi; Chen, Zhangran; Lei, Xueqian; Zheng, Wei; Xu, Hong; Zheng, Tianling

    2016-01-01

    Algicidal microbes could effectively remove the harmful algae from the waters. In this study, we were concerned with the ecological influence of an algicide extracted from Streptomyces alboflavus RPS, which could completely lyse the Phaeocystis globosa cells within two days. In microcosms, 4 μg/mL of the microbial algicide could efficiently remove P. globosa cells without suppressing other aquatic organisms. Bioluminescent assays confirmed that the toxicity of microbial algicide at this concentration was negligible. Interestingly, the toxicity of P. globosa exudates was also significantly reduced after being treated with the algicide. Further experiments revealed that the microbial algicide could instantly increase the permeability of the plasma membrane and disturb the photosynthetic system, followed by the deformation of organelles, vacuolization and increasing oxidative stress. The pre-incubation of N-acetyl cysteine (NAC) verified that the rapid damages to the plasma membrane and photosynthetic system caused the algal death in the early phase, and the increasing oxidative stress killed the rest. The late accumulation and possible release of CAT also explained the decreasing toxicity of the algal culture. These results indicated that this microbial algicide has great potential in controlling the growth of P. globosa on site. PMID:26847810

  20. Algal 'greening' and the conservation of stone heritage structures.

    PubMed

    Cutler, Nick A; Viles, Heather A; Ahmad, Samin; McCabe, Stephen; Smith, Bernard J

    2013-01-01

    In humid, temperate climates, green algae can make a significant contribution to the deterioration of building stone, both through unsightly staining ('greening') and, possibly, physical and chemical transformations. However, very little is known about the factors that influence the deteriorative impact and spatial distribution of green algal biofilms, hindering attempts to model the influence of climate change on building conservation. To address this problem, we surveyed four sandstone heritage structures in Belfast, UK. Our research had two aims: 1) to investigate the relationships between greening and the deterioration of stone structures and 2) to assess the impacts of environmental factors on the distribution of green biofilms. We applied an array of analytical techniques to measure stone properties indicative of deterioration status (hardness, colour and permeability) and environmental conditions related to algal growth (surface and sub-surface moisture, temperature and surface texture). Our results indicated that stone hardness was highly variable but only weakly related to levels of greening. Stone that had been exposed for many years was, on average, darker and greener than new stone of the same type, but there was no correlation between greening and darkening. Stone permeability was higher on 'old', weathered stone but not consistently related to the incidence of greening. However, there was evidence to suggest that thick algal biofilms were capable of reducing the ingress of moisture. Greening was negatively correlated with point measurements of surface temperature, but not moisture or surface texture. Our findings suggested that greening had little impact on the physical integrity of stone; indeed the influence of algae on moisture regimes in stone may have a broadly bioprotective action. Furthermore, the relationship between moisture levels and greening is not straightforward and is likely to be heavily dependent upon temporal patterns in moisture

  1. Arctic spring awakening - Steering principles behind the phenology of vernal ice algal blooms

    NASA Astrophysics Data System (ADS)

    Leu, E.; Mundy, C. J.; Assmy, P.; Campbell, K.; Gabrielsen, T. M.; Gosselin, M.; Juul-Pedersen, T.; Gradinger, R.

    2015-12-01

    Marine ecosystems at high latitudes are characterized by extreme seasonal changes in light conditions, as well as a limited period of high primary production during spring and early summer. As light returns at the end of winter to Arctic ice-covered seas, a first algal bloom takes place in the bottom layer of the sea ice. This bottom ice algae community develops through three distinct phases in the transition from winter to spring, starting with phase I, a predominantly net heterotroph community that has limited interaction with the pelagic or benthic realms. Phase II begins in the spring once light for photosynthesis becomes available at the ice bottom, although interaction with the water column and benthos remains limited. The transition to the final phase III is then mainly driven by a balance of atmospheric and oceanographic forcing that induce structural changes in the sea ice and ultimately the removal of algal biomass from the ice. Due to limited data availability an incomplete understanding exists of all the processes determining ice algal bloom phenology and the considerable geographic differences in sympagic algal standing stocks and primary production. We present here the first pan-Arctic compilation of available time-series data on vernal sea ice algal bloom development and identify the most important factors controlling its development and termination. Using data from the area surrounding Resolute Bay (Nunavut, Canada) as an example, we support previous investigations that snow cover on top of the ice influences sea ice algal phenology, with highest biomass development, but also earliest termination of blooms, under low snow cover. We also provide a pan-Arctic overview of sea ice algae standing stocks and primary production, and discuss the pertinent processes behind the geographic differences we observed. Finally, we assess potential future changes in vernal algal bloom phenology as a consequence of climate change, including their importance to

  2. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    PubMed

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  3. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    PubMed Central

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  4. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    PubMed

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  5. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  6. The potential impacts of increasing temperatures on old-growth forest biomass density

    NASA Astrophysics Data System (ADS)

    Larjavaara, M.; Muller-Landau, H. C.

    2012-04-01

    Global atmospheric and climate change could alter forest carbon stores, potentially causing important positive or negative feedbacks on global change. For example, rising temperatures are likely to influence old-growth forest biomass density (biomass per unit area), and thereby could make old growth forests sources or sinks of carbon to the atmosphere, but the magnitude and direction of likely change continue to be debated. It is difficult if not impossible to run experiments on sufficiently large spatial and temporal scale to capture global change impacts on old-growth biomass in different forest types. Thus, models that capture the key physiological impacts of global change on forest carbon budgets are a critical tool for assessing impacts of climate and atmospheric change. The expected changes in temperatures are similar to spatial temperature variation observed currently and, therefore, models explaining current variation in old¬-growth forest biomass can be directly applied to predict expected equilibrium biomass after a transitional period lasting decades or centuries. In a recent paper (Larjavaara and Muller-Landau 2012. Temperature explains global variation in biomass among humid old-growth forests. Global Ecology and Biogeography), we developed a physiologically motivated model for global variation in old-growth forest biomass. We modelled annual GPP as a function of monthly average temperatures (minimum and maximum) and sun angle, and modelled plant biomass "maintenance cost" (including autotrophic respiration and construction required to maintain biomass) as a function of temperatures alone. We then used fitted models for GPP and maintenance cost to predict old-growth forest biomass density under different climates. We found that highest old-growth biomass is expected in maritime temperate climates in which temperatures remain between 5˚C and 25˚C for most of the year, and in which the ratio of GPP to maintenance cost is thus the highest. In tropical

  7. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    PubMed Central

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Maffei, Massimo E.

    2015-01-01

    Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial–plants and microbial–microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use. PMID:25821453

  8. A potential energy scaling Monte Carlo simulation of thin film nucleation and growth

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Heinbockel, J. H.

    1983-01-01

    The initial growth of thin Ge fims on the (100) surface of an Fe substrate is investigated theoretically by means of Monte Carlo simulations based on a potential-energy-scaling technique. The substrate is modeled as a 20 x 20-square array with periodic boundary conditions, as described by Heinbockel et al. (1983), and the movement of surface atoms under the influence of the substrate interaction potential and the lateral interaction of neighboring atoms is explored via continuous updating (on the time scale of single events) of the potential energy at each site in the array. Results for the clustering of nine dispersed atoms over 1.0 s at 600 K and for deposition at 5 x 10 to the -14th/sq cm s over 2.0 s at 500 K are presented graphically.

  9. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  10. A Two-Stage-to-Orbit Spaceplane Concept With Growth Potential

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; Bowles, Jeffrey V.

    2001-01-01

    A two-stage-to-orbit (TSTO) spaceplane concept developed in 1993 is revisited, and new information is provided to assist in the development of the next-generation space transportation vehicles. The design philosophy, TSTO spaceplane concept, and the design method are briefly described. A trade study between cold and hot structures leads to the choice of cold structures with external thermal protection systems. The optimal Mach number for staging the second stage of the TSTO spaceplane (with air-breathing propulsion on the first stage) is 10, based on life-cycle cost analysis. The performance and specification of a prototype/experimental (P/X) TSTO spaceplane with a turbo/ram/scramjet propulsion system and built-in growth potential are presented and discussed. The internal rate of return on investment is the highest for the proposed TSTO spaceplane, vis-A-vis a single-stage-to-orbit (SSTO) rocket vehicle and a TSTO spaceplane without built-in growth. Additional growth potentials for the proposed spaceplane are suggested. This spaceplane can substantially decrease access-to-space cost and risk, and increase safety and reliability in the near term It can be a serious candidate for the next-generation space transportation system.

  11. Remote coral reefs can sustain high growth potential and may match future sea-level trends

    PubMed Central

    Perry, Chris T.; Murphy, Gary N.; Graham, Nicholas A. J.; Wilson, Shaun K.; Januchowski-Hartley, Fraser A.; East, Holly K.

    2015-01-01

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m−2 yr−1). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr−1) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100. PMID:26669758

  12. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  13. Volasertib suppresses tumor growth and potentiates the activity of cisplatin in cervical cancer

    PubMed Central

    Xie, Feng-Feng; Pan, Shi-Shi; Ou, Rong-Ying; Zheng, Zhen-Zhen; Huang, Xiao-Xiu; Jian, Meng-Ting; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Yang, Yang; Li, Wen-Feng; Shi, Zhi; Yan, Xiao-Jian

    2015-01-01

    Volasertib (BI 6727), a highly selective and potent inhibitor of PLK1, has shown broad antitumor activities in the preclinical and clinical studies for the treatment of several types of cancers. However, the anticancer effect of volasertib on cervical cancer cells is still unknown. In the present study, we show that volasertib can markedly induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the decreased protein expressions of PLK1 substrates survivin and wee1 in human cervical cancer cells. Furthermore, volasertib also enhances the intracellular reactive oxidative species (ROS) levels, and pretreated with ROS scavenger N-acety-L-cysteine totally blocks ROS generation but partly reverses volasertib-induced apoptosis. In addition, volasertib significantly potentiates the activity of cisplatin to inhibit the growth of cervical cancer in vitro and in vivo. In brief, volasertib suppresses tumor growth and potentiates the activity of cisplatin in cervical cancer, suggesting the combination of volasertib and cisplatin may be a promising strategy for the treatment of patients with cervical cancer. PMID:26885445

  14. Volasertib suppresses tumor growth and potentiates the activity of cisplatin in cervical cancer.

    PubMed

    Xie, Feng-Feng; Pan, Shi-Shi; Ou, Rong-Ying; Zheng, Zhen-Zhen; Huang, Xiao-Xiu; Jian, Meng-Ting; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Yang, Yang; Li, Wen-Feng; Shi, Zhi; Yan, Xiao-Jian

    2015-01-01

    Volasertib (BI 6727), a highly selective and potent inhibitor of PLK1, has shown broad antitumor activities in the preclinical and clinical studies for the treatment of several types of cancers. However, the anticancer effect of volasertib on cervical cancer cells is still unknown. In the present study, we show that volasertib can markedly induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the decreased protein expressions of PLK1 substrates survivin and wee1 in human cervical cancer cells. Furthermore, volasertib also enhances the intracellular reactive oxidative species (ROS) levels, and pretreated with ROS scavenger N-acety-L-cysteine totally blocks ROS generation but partly reverses volasertib-induced apoptosis. In addition, volasertib significantly potentiates the activity of cisplatin to inhibit the growth of cervical cancer in vitro and in vivo. In brief, volasertib suppresses tumor growth and potentiates the activity of cisplatin in cervical cancer, suggesting the combination of volasertib and cisplatin may be a promising strategy for the treatment of patients with cervical cancer. PMID:26885445

  15. Remote coral reefs can sustain high growth potential and may match future sea-level trends.

    PubMed

    Perry, Chris T; Murphy, Gary N; Graham, Nicholas A J; Wilson, Shaun K; Januchowski-Hartley, Fraser A; East, Holly K

    2015-12-16

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m(-2) yr(-1)). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr(-1)) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100.

  16. Sildenafil Potentiates a cGMP-Dependent Pathway to Promote Melanoma Growth.

    PubMed

    Dhayade, Sandeep; Kaesler, Susanne; Sinnberg, Tobias; Dobrowinski, Hyazinth; Peters, Stefanie; Naumann, Ulrike; Liu, He; Hunger, Robert E; Thunemann, Martin; Biedermann, Tilo; Schittek, Birgit; Simon, Hans-Uwe; Feil, Susanne; Feil, Robert

    2016-03-22

    Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk. PMID:26971999

  17. Remote coral reefs can sustain high growth potential and may match future sea-level trends.

    PubMed

    Perry, Chris T; Murphy, Gary N; Graham, Nicholas A J; Wilson, Shaun K; Januchowski-Hartley, Fraser A; East, Holly K

    2015-01-01

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m(-2) yr(-1)). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr(-1)) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100. PMID:26669758

  18. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    PubMed Central

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands. PMID:23781499

  19. Using hyperspectral imagery to monitor algal persence

    SciTech Connect

    Anderson, J.M.; Monk, J.; Yan, Gu; Brignal, W.

    1997-08-01

    This paper illustrates how an inexpensive and easily deployable imaging spectrometer can be used to monitor and identify algal blooms at short notice, thus making practical the addition of airborne data to the usual in-situ measurements. Two examples are described, one in the Irish Sea and the other in a reservoir system in the London area.

  20. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways.

  1. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, T.J.; Loftin, C.S.; Tsomides, L.; Difranco, J.L.; Connors, B.

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  2. Simulated Macro-Algal Outbreak Triggers a Large-Scale Response on Coral Reefs

    PubMed Central

    Welsh, Justin Q.; Bellwood, David R.

    2015-01-01

    Ecosystem degradation has become common throughout the world. On coral reefs, macroalgal outbreaks are one of the most widely documented signs of degradation. This study simulated local-scale degradation on a healthy coral reef to determine how resident taxa, with the potential to reverse algal outbreaks, respond. We utilized a combination of acoustic and video monitoring to quantify changes in the movements and densities, respectively, of coral reef herbivores following a simulated algal outbreak. We found an unprecedented accumulation of functionally important herbivorous taxa in response to algal increases. Herbivore densities increased by 267% where algae were present. The increase in herbivore densities was driven primarily by an accumulation of the browsing taxa Naso unicornis and Kyphosus vaigiensis, two species which are known to be important in removing macroalgae and which may be capable of reversing algal outbreaks. However, resident individuals at the site of algal increase exhibited no change in their movements. Instead, analysis of the size classes of the responding individuals indicates that large functionally-important non-resident individuals changed their movement patterns to move in and feed on the algae. This suggests that local-scale reef processes may not be sufficient to mitigate the effects of local degradation and highlights the importance of mobile links and cross-scale interactions. PMID:26171788

  3. Harmful Algal Bloom Hotspots Really Are Hot: A Case Study from Monterey Bay, California

    NASA Astrophysics Data System (ADS)

    Kudela, R. M.; Anderson, C.; Birch, J. M.; Bowers, H.; Caron, D. A.; Chao, Y.; Doucette, G.; Farrara, J. D.; Gellene, A. G.; Negrey, K.; Howard, M. D.; Ryan, J. P.; Scholin, C. A.; Smith, J.; Sukhatme, G.

    2015-12-01

    Monterey Bay, California is one of several recognized hotspots for harmful algal blooms along the US west coast, particularly for the toxigenic diatom Pseudo-nitzschia, which produces domoic acid and is responsible for Amnesic Shellfish Poisoning. Historical observations have linked bloom activity to anomalously warm conditions with weak and sporadic upwelling. In particular, blooms appear to be associated with El Niño conditions. Monterey, as with much of the US west coast, experienced unusual warm conditions in spring and summer 2014, leading to multiple ecosystem effects including massive algal blooms, concentration of apex predators nearshore, and unusually high levels of domoic acid. As the warm anomalies continued and strengthened into 2015, Monterey (and much of the west coast) has been experiencing the largest and most toxic algal bloom recorded in the last 15 years, as well as unprecedented coccolithophore blooms associated with warm, nutrient-depleted waters. With the strengthening El Niño conditions developing in summer 2015, it is possible that 2016 will result in a third consecutive year of unusually toxic algal blooms. Using a combination of historical observations, intensive field studies, and predictive models we explore the hypothesis that these warm anomalies lead to shifts in the typical upwelling-dominated food web leading to a collapse of the ecosystem towards the coast, unusual algal blooms, and enhanced trophic transfer of toxins, resulting in magnified negative impacts to wildlife and, potentially, humans.

  4. Evaluation of High Density Algal Cultivation for Secondary Wastewater Polishing.

    PubMed

    Xu, Meng; Xu, Shengnan; Bernards, Matthew; Hu, Zhiqiang

    2016-01-01

    This study evaluated the performance of an algal membrane bioreactor (A-MBR) for secondary wastewater effluent polishing and determined the membrane fouling behavior and dominance of algae in the A-MBR. The continuous flow A-MBR (effective volume = 7.2 L) was operated with low biomass wastage for more than 180 days, resulting in an average algal mixed liquor suspended solid concentration of 4922 mg/L. At the influent concentrations of 43 mg/L COD, 1.6 mg/L total phosphorus (TP), and 11.8 mg/L total nitrogen (TN), the effluent COD, TP and TN concentrations were 26 ± 6 mg/L, 0.7 ± 0.3 mg/L, and 9.6 ± 1.2 mg/L, respectively. High-density algae cultivation facilitated P adsorption and chemical precipitation. However, the TN removal efficiency was only 14% because of low biomass wastage. Although bacteria represented less than 2% of the total biomass in the A-MBR, bacterial growth in the secondary wastewater effluent accelerated membrane fouling. PMID:26803026

  5. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  6. Evaluation of a bacterial algal control agent in tank-based experiments.

    PubMed

    Schmack, M; Chambers, J; Dallas, S

    2012-05-01

    A bacterial-based bioremediation product, LakeRelief™ by Novozymes (Waterguru LakeRelief, 2011), was tested in a series of experiments between October 2008 and March 2009 to evaluate its suitability as a short-term intervention technique to reduce algal blooms in the Swan-Canning River system. Results from fibreglass tank experiments (1100 L) suggested that the product did not actively attack and lyse algal cells. The product decreased NH(4) and NO(x) concentrations in treated tanks, both aerated and non-aerated. Product application decreased PO(4) concentrations in non-aerated tanks but not in aerated tanks. The product appeared to suppress algal growth in non-aerated tanks over short periods (several days). Algal growth regularly diminished after product application but reappeared shortly afterwards. Aeration had a negative effect on bacterial proliferation in the tanks, possibly through alteration of environmental conditions (e.g. water mixing). As a consequence of the environmental conditions in the tanks being counterproductive to the development of a representative microbial composition, several aspects regarding the product's effectiveness could not be assessed satisfactorily in the tank experiments. The importance of long-term nutrient immobilisation into a well developed food web and the subsequent nutrient removal through removal of the top order organisms is highlighted. PMID:22386889

  7. Biosorption of fluoride from aqueous phase onto algal Spirogyra IO1 and evaluation of adsorption kinetics.

    PubMed

    Venkata Mohan, S; Ramanaiah, S V; Rajkumar, B; Sarma, P N

    2007-03-01

    Non-viable algal Spirogyra IO1 was studied for its fluoride sorption potential in batch studies. The results demonstrated the ability of the biosorbent for fluoride removal. The sorption interaction of fluoride on to non-viable algal species obeyed the pseudo-first-order rate equation. The intraparticle diffusion of fluoride molecules within the Spirogyra was identified to be the rate-limiting step. It was also found that the adsorption isotherm followed the rearranged Langmuir isotherm adsorption model. Fluoride sorption was dependent on the aqueous phase pH and the fluoride uptake was greater at lower pH.

  8. Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential

    NASA Astrophysics Data System (ADS)

    Bourgain, J.

    In this paper, we consider the following problem. Let iut+Δu+V(x,t)u= 0 be a linear Schrödinger equation ( periodic boundary conditions) where V is a real, bounded, real analytic potential which is periodic in x and quasi periodic in t with diophantine frequency vector λ. Denote S(t) the corresponding flow map. Thus S(t) preserves the L2-norm and our aim is to study its behaviour on Hs(TD), s> 0. Our main result is the growth in time is at most logarithmic; thus if φ∈Hs, then More precisely, (*) is proven in 1D and 2D when V is small. We also exhibit examples showing that a growth of higher Sobolev norms may occur in this context and (*) is thus essentially best possible.

  9. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  10. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  11. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology.

    PubMed

    Ding, Yi; Wang, Wei; Liu, Xingpo; Song, Xinshan; Wang, Yuhui; Ullman, Jeffrey L

    2016-11-01

    High rate algal pond (HRAP) was combined with constructed wetland (CW) to intensify nitrogen removal through optimizing nitrification and denitrification. Nitrification and denitrification process mainly depends on the oxygen content and carbon source level in CWs. Algal biomass was enriched in HRAP, and dissolved oxygen (DO) concentration was increased via photosynthesis. Algal debris increased COD as degradable bioresource. The results showed that HRAP-CW hybrid systems effectively promoted the nitrogen removal performance due to rich DO and COD. The extension of hydraulic retention time in HRAP significantly improved NH4-N and TN removals by 10.9% and 11.1% in hybrid systems, respectively. The highest NH4-N and TN removals in hybrid systems respectively reached 67.2% and 63.5%, which were significantly higher than those in single CW. The study suggested that the hybrid system had the application potentials in nitrogen removal from wastewater. PMID:27544265

  12. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    PubMed

    Jones, Alison; Berkelmans, Ray

    2010-05-03

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  13. Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types

    PubMed Central

    Jones, Alison; Berkelmans, Ray

    2010-01-01

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change. PMID:20454653

  14. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation.

    PubMed

    Hoffman, E M; Zhang, Z; Anderson, M B; Schechter, R; Miller, K E

    2011-10-13

    Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self-harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception-related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined (1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, (2) IENF density, and (3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm(2)) and small neurons (<400 μm(2)), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception-related protein expression are potential mechanisms for tanezumab-induced hypoalgesia. PMID:21802499

  15. Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus.

    PubMed

    Armengol, Josep; Alaniz, Sandra; Vicent, Antonio; Beltrán, Roberto; Abad-Campos, Paloma; Pérez-Sierra, Ana; García-Jiménez, José; Ben Salem, Ibtissem; Souli, Mounira; Boughalleb, Naima

    2011-03-01

    The effect of double stranded RNA (dsRNA) infection on growth rate and the reproductive potential of Monosporascus cannonballus was studied in 21 isolates collected in cucurbit growing areas of Spain and Tunisia. The isolates were incubated on potato dextrose agar (PDA) under different conditions of temperature, pH, and water potential (Ψ(s)). They showed optimal growth temperatures over the range of 27-34°C and perithecia formation was obtained mainly at 25 and 30°C, although some isolates were able to produce perithecia at 35°C. All isolates were able to produce perithecia in a broad range of pHs (4-8). Regarding the effect of Ψ(s,) the isolates were more tolerant to grow on KCl than on NaCl. For each solute, radial growth decreased progressively as Ψ(s) decreased and was severely limited at -5.0 to -6.0MPa. Perithecia formation was highest at -0.5MPa, decreased at -1.0MPa and occurred just in some isolates at -2.0MPa. Nine of the M. cannonballus isolates harboured dsRNA with 2-6 bands each and a size range of 1.9-18.0Kb. Phenotypical data were subjected to multivariate factorial analysis. Most of the isolates clustered in two groups corresponding with the presence/absence of dsRNA elements. Isolates without detectable dsRNA produced more perithecia. However, isolates with dsRNA produced lower number of perithecia depending on the pH, Ψ(s,) or solute used. These results improve our understanding of the behaviour and growth of this pathogen in soil, and can be useful to implement effective disease control.

  16. Detection of Virulence Genes and Growth Potential in Listeria monocytogenes Strains Isolated from Ricotta Salata Cheese.

    PubMed

    Coroneo, Valentina; Carraro, Valentina; Aissani, Nadhem; Sanna, Adriana; Ruggeri, Alessandra; Succa, Sara; Meloni, Barbara; Pinna, Antonella; Sanna, Clara

    2016-01-01

    Ricotta Salata is a traditional ripened and salted whey cheese made in Sardinia (Italy) from sheep's milk. This product is catalogued as ready-to-eat food (RTE) since it is not submitted to any further treatment before consumption. Thus, foodborne pathogens, such as Listeria monocytogenes, can represent a health risk for consumers. In September 2012, the FDA ordered the recall of several batches of Ricotta Salata imported from Italy linked to 22 cases of Listeriosis in the United States. This study was aimed at evaluating the presence and virulence properties of L. monocytogenes in 87 samples of Ricotta Salata produced in Sardinia. The ability of this product to support its growth under foreseen packing and storing conditions was also evaluated in 252 samples. Of the 87 samples 17.2% were positive for the presence of L. monocytogenes with an average concentration of 2.2 log10 cfu/g. All virulence-associated genes (prfA, rrn, hlyA, actA, inlA, inlB, iap, plcA, and plcB) were detected in only one isolated strain. The Ricotta Salata samples were artificially inoculated and growth potential (δ) was assessed over a period of 3 mo. The value of the growth potential was always >0.5 log10 cfu/g under foreseen packing and storing conditions. This study indicates that Ricotta Salata supports the L. monocytogenes growth to levels that may present a serious risk to public health, even while stored at refrigeration temperatures. PMID:26666835

  17. Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus.

    PubMed

    Armengol, Josep; Alaniz, Sandra; Vicent, Antonio; Beltrán, Roberto; Abad-Campos, Paloma; Pérez-Sierra, Ana; García-Jiménez, José; Ben Salem, Ibtissem; Souli, Mounira; Boughalleb, Naima

    2011-03-01

    The effect of double stranded RNA (dsRNA) infection on growth rate and the reproductive potential of Monosporascus cannonballus was studied in 21 isolates collected in cucurbit growing areas of Spain and Tunisia. The isolates were incubated on potato dextrose agar (PDA) under different conditions of temperature, pH, and water potential (Ψ(s)). They showed optimal growth temperatures over the range of 27-34°C and perithecia formation was obtained mainly at 25 and 30°C, although some isolates were able to produce perithecia at 35°C. All isolates were able to produce perithecia in a broad range of pHs (4-8). Regarding the effect of Ψ(s,) the isolates were more tolerant to grow on KCl than on NaCl. For each solute, radial growth decreased progressively as Ψ(s) decreased and was severely limited at -5.0 to -6.0MPa. Perithecia formation was highest at -0.5MPa, decreased at -1.0MPa and occurred just in some isolates at -2.0MPa. Nine of the M. cannonballus isolates harboured dsRNA with 2-6 bands each and a size range of 1.9-18.0Kb. Phenotypical data were subjected to multivariate factorial analysis. Most of the isolates clustered in two groups corresponding with the presence/absence of dsRNA elements. Isolates without detectable dsRNA produced more perithecia. However, isolates with dsRNA produced lower number of perithecia depending on the pH, Ψ(s,) or solute used. These results improve our understanding of the behaviour and growth of this pathogen in soil, and can be useful to implement effective disease control. PMID:21354530

  18. Detection of Virulence Genes and Growth Potential in Listeria monocytogenes Strains Isolated from Ricotta Salata Cheese.

    PubMed

    Coroneo, Valentina; Carraro, Valentina; Aissani, Nadhem; Sanna, Adriana; Ruggeri, Alessandra; Succa, Sara; Meloni, Barbara; Pinna, Antonella; Sanna, Clara

    2016-01-01

    Ricotta Salata is a traditional ripened and salted whey cheese made in Sardinia (Italy) from sheep's milk. This product is catalogued as ready-to-eat food (RTE) since it is not submitted to any further treatment before consumption. Thus, foodborne pathogens, such as Listeria monocytogenes, can represent a health risk for consumers. In September 2012, the FDA ordered the recall of several batches of Ricotta Salata imported from Italy linked to 22 cases of Listeriosis in the United States. This study was aimed at evaluating the presence and virulence properties of L. monocytogenes in 87 samples of Ricotta Salata produced in Sardinia. The ability of this product to support its growth under foreseen packing and storing conditions was also evaluated in 252 samples. Of the 87 samples 17.2% were positive for the presence of L. monocytogenes with an average concentration of 2.2 log10 cfu/g. All virulence-associated genes (prfA, rrn, hlyA, actA, inlA, inlB, iap, plcA, and plcB) were detected in only one isolated strain. The Ricotta Salata samples were artificially inoculated and growth potential (δ) was assessed over a period of 3 mo. The value of the growth potential was always >0.5 log10 cfu/g under foreseen packing and storing conditions. This study indicates that Ricotta Salata supports the L. monocytogenes growth to levels that may present a serious risk to public health, even while stored at refrigeration temperatures.

  19. Potential benefits of biotechnology in aquaculture: The case of growth hormones in French trout farming

    SciTech Connect

    Bonnieux, F.; Gloaguen, Y.; Rainelli, P.; Faure, A.; Fauconneau, B.; Le Bail, P.Y.; Maisse, G.; Prunet, P.

    1993-05-01

    Against the background of rapidly increasing fish demand and stagnant or declining marine harvest, aquaculture or fish farming has assumed a major role in France which is set to expand. Trout farming in particular has already displayed considerable growth and France is the leading producer in the EEC. Biotechnology holds the key to future changes in trout culture. One such technology, which trials show has potential to reduce production costs, is recombinant trout growth hormone (rtGH). This paper sets out to perform a preliminary ex ante assessment of the possible social benefits from the adoption of rtGH by French trout producers. Several scenarios, based on possible hypotheses of supply and demand growth, are considered. Scenarios assuming an association of the technology with diversification towards more highly processed trout products display the highest estimated welfare gains. A key factor which will determine the outcome of using rtGH is its acceptance by the public. There has already been strong adverse reaction in Europe to the use of genetically engineered growth hormones in meat production and to the use of bovine somatotropin to enhance milk yields. The possibility that there might be a similar response in the case of trout is examined by considering the possibility of a sharp drop in demand. Part 1 of the paper sets out the economic and technological background to biotechnological development of trout farming in France. Part 2 undertakes an ex ante assessment of potential changes in producer and consumer surplus from the adoption of rtGH applying alternative supply and demand shifts in the framework of partial equilibrium analysis. 16 refs., 4 figs., 2 tabs.

  20. Development and application of a marine sediment porewater toxicity test using algal spores

    SciTech Connect

    Hooten, R.; Carr, R.S.

    1995-12-31

    An acute pore water toxicity test protocol using germination and growth of marine macroalgae as endpoints was developed to indicate the presence of toxic compounds in marine/estuarine and sediment porewater samples. Zoospores collected from Ulva fasciata and U. lactuca were used as test organisms. Preliminary results with sodium dodecyl sulfate (SDS, a reference toxicant) indicate that zoospores germination and growth of embryonic gametophytes are as sensitive as the sea urchin fertilization and embryological development toxicity tests. Algal germination and growth data for copper, mercury and other metals will be presented. The results of tests utilizing this algal assay with sediment pore water from contaminated sediments will be compared with more traditional sediment toxicity test methods.

  1. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled.

  2. Influence of projected ocean warming on population growth potential in two North Atlantic copepod species

    NASA Astrophysics Data System (ADS)

    Stegert, Christoph; Ji, Rubao; Davis, Cabell S.

    2010-10-01

    Copepods of the genera Pseudocalanus and Centropages play an important role in the North Atlantic ecosystems and have distinctive spatial and temporal patterns depending on physiological adaptation to different environmental conditions. To examine the possible impact of climate change on these biogeographic patterns, potential population growth rate was computed for each species using IPCC projections of sea surface temperature together with chlorophyll distributions from SeaWiFS climatology and published laboratory data on temperature and food-dependent life-history parameters. The results indicate that the predicted temperature increase throughout the North Atlantic will cause temporal and spatial shifts in copepod species population growth potential. The Centropages population is projected to increase in mid-latitudinal shelf areas, e.g. the Gulf of Maine and the North Sea, due to shorter generation times and a longer growing season, while Pseudocalanus is predicted to be less abundant in these regions after 2050. These shifts potentially have a significant impact on the future demographics of pelagic fish species for which the copepods are the major food source.

  3. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms. PMID:25682049

  4. The engine of the reef: photobiology of the coral–algal symbiosis

    PubMed Central

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  5. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  6. Stalagmite growth perturbations from the Kumaun Himalaya as potential earthquake recorders

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; Sanwal, Jaishri; Morell, Kristin D.; Sandiford, Mike; Kotlia, B. S.; Hellstrom, John; Rajendran, Kusala

    2016-04-01

    The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 ± 410 years BP (2673-1853 BC), 2782 ± 79 years BP (851-693 BC), 2498 ± 117 years BP (605-371 BC), 1503 ± 245 years BP (262-752 AD), 1346 ± 101 years BP (563-765 AD), and 687 ± 147 years BP (1176-1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176-1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050-1250 and 1259-1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.

  7. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    USGS Publications Warehouse

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  8. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    NASA Astrophysics Data System (ADS)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  9. Predicting fish growth potential and identifying water quality constraints: a spatially-explicit bioenergetics approach.

    PubMed

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  10. Importance of controlling pH-depended dissolved inorganic carbon to prevent algal bloom outbreaks.

    PubMed

    Liu, Na; Yang, Yixuan; Li, Feng; Ge, Fei; Kuang, Yangduo

    2016-11-01

    This study investigated effects of pH-depended inorganic carbon (IC) species and pH on algal growth in the sewage simulation system, and fruitfully discussed the relationships among IC, pH and algal growth by the Monod kinetics. Results showed HCO3(-) significantly increased algal growth by 3.17-6.52 times than that of CO3(2-) and/or glucose when the value of pH was in the range of 8.0-9.5, and also the preferentially utilized indicated by the affinity coefficient (Kp) of HCO3(-), CO3(2-) and glucose (0.17, 15.14 and 31.22, respectively). Meanwhile, the same pH range facilitated HCO3(-) to become a dominated species (e.g., 48.80-93.19% of total IC). More importantly, good linear correlations pairwise existed among pH, IC species and algae growth. These results suggested pH plays a critical role in regulation of IC species and algae growth, which would be an efficient method to control the IC discharge from sewage effluents and weaken bloom outbreak. PMID:27584901

  11. Importance of controlling pH-depended dissolved inorganic carbon to prevent algal bloom outbreaks.

    PubMed

    Liu, Na; Yang, Yixuan; Li, Feng; Ge, Fei; Kuang, Yangduo

    2016-11-01

    This study investigated effects of pH-depended inorganic carbon (IC) species and pH on algal growth in the sewage simulation system, and fruitfully discussed the relationships among IC, pH and algal growth by the Monod kinetics. Results showed HCO3(-) significantly increased algal growth by 3.17-6.52 times than that of CO3(2-) and/or glucose when the value of pH was in the range of 8.0-9.5, and also the preferentially utilized indicated by the affinity coefficient (Kp) of HCO3(-), CO3(2-) and glucose (0.17, 15.14 and 31.22, respectively). Meanwhile, the same pH range facilitated HCO3(-) to become a dominated species (e.g., 48.80-93.19% of total IC). More importantly, good linear correlations pairwise existed among pH, IC species and algae growth. These results suggested pH plays a critical role in regulation of IC species and algae growth, which would be an efficient method to control the IC discharge from sewage effluents and weaken bloom outbreak.

  12. Comparison of Methods to Determine Algal Concentrations in Freshwater Lakes

    NASA Astrophysics Data System (ADS)

    Georgian, S. E.; Halfman, J. D.

    2008-12-01

    Algal populations are extremely important to the ecological health of freshwater lake systems. As lakes become eutrophic (highly productive) through nutrient loading, sediment accumulation rates increase, bottom waters become anoxic in the mid-to late summer, the opacity of the water column decreases, and significantly decreases the lake's potential as a drinking water source and places respiratory stress on aquatic animals. One indicator of eutrophication is increasing algal concentrations over annual time frames. Algal concentrations can be measured by the concentration of chlorophyll a, or less directly by fluorescence, secchi disk depth, and turbidity by backscattering and total suspended solids. Here, we present a comparison of these methods using data collected on Honeoye, Canandaigua, Keuka, Seneca, Cayuga, Owasco, Skaneateles, and Otisco, the largest Finger Lakes of western and central New York State during the 2008 field season. A total of 124 samples were collected from at least two mid-lake, deep-water sites in each lake monthly through the 2008 field season (May-Oct); Seneca Lake was sampled weekly at four sites and Cayuga Lake every two weeks at six sites. Secchi depths, CTD profiles and surface water samples were collected at each site. Chlorophyll a was measured by spectrophotometer in the lab after filtration at 0.45 um and digestion of the residue in acetone. Water samples were also filtered through pre-weighed glass-fiber filters for total suspended solids concentrations. A SBE-25 SeaLogger CTD collected profiles of turbidity and fluorescence with WetLabs ECO FL-NTU. Surface CTD values were used in the comparison. The strongest linear correlations were detected between chlorophyll-a and fluorescence (r2 = 0.65), and total suspended solids and turbidity (r2 = 0.63). Weaker correlations were detected between secchi depths and chlorophyll-a (r2 = 0.42), and secchi depths and turbidity (r2 = 0.46). The weakest correlations were detected between secchi

  13. Effect of growth potential on the electrodeposition of CIS thin films

    NASA Astrophysics Data System (ADS)

    Dhanwate, Vishakha N.; Chaure, N. B.

    2013-02-01

    Thin films of copper indium diselenide (CIS) were prepared in aqueous bath by low-cost potentiostatic electrodeposition technique onto Fluorine doped tin oxide substrates. The deposition potential was optimized using cyclic voltammetry study in a ternary Cu-In-Se system. The films were characterized systematically with the aid of UV-Vis spectroscopy, IV measurements, X-ray diffraction, Scanning electron microscopy and Energy dispersive X-ray analysis. CIS films deposited for different growth potential shows the tetragonal structure with (112) preferential orientation. Annealing of the films at temperature 400°C not only improves the crystallinity of layers, but it also increases the grain size, which is suitable for the development of high efficiency solar cells.

  14. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  15. A potential-energy scaling model to simulate the initial stages of thin-film growth

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Outlaw, R. A.; Walker, G. H.

    1983-01-01

    A solid on solid (SOS) Monte Carlo computer simulation employing a potential energy scaling technique was used to model the initial stages of thin film growth. The model monitors variations in the vertical interaction potential that occur due to the arrival or departure of selected adatoms or impurities at all sites in the 400 sq. ft. array. Boltzmann ordered statistics are used to simulate fluctuations in vibrational energy at each site in the array, and the resulting site energy is compared with threshold levels of possible atomic events. In addition to adsorption, desorption, and surface migration, adatom incorporation and diffusion of a substrate atom to the surface are also included. The lateral interaction of nearest, second nearest, and third nearest neighbors is also considered. A series of computer experiments are conducted to illustrate the behavior of the model.

  16. Hair growth promoting potential of phospholipids purified from porcine lung tissues.

    PubMed

    Choi, Seong-Hyun; Moon, Jeong-Su; Jeon, Byung-Suk; Jeon, Yeon-Jeong; Yoon, Byung-Il; Lim, Chang-Jin

    2015-03-01

    BP201, porcine lung tissue-derived phospholipids, consists of phosphatidylcholine as a major phospholipid species. BP201 promoted hair growth after application onto the shaved backs of BALB/c and C3H mice. Its effect was enhanced when applied together with minoxidil (MNX) in C3H mice. When the tissue specimens prepared from the shaved skins of BP201-treated and control mice were microscopically examined, the total numbers of hair follicles in both anagen and telogen phases of BP201-treated mice were significantly higher than those of control mice. The numbers of hair follicles in the anagen phase of BP201-treated mice were also higher than those of control mice. In combination with MNX, BP201 further increased the total number of hair follicles, but did not alter the percentage of hair follicles in the anagenic phase. BP201 also increased the proliferation of human hair follicle dermal papilla cells. Collectively, BP201 possesses hair growth promoting potential, which would suggest its use singly or in combination for hair growth products. PMID:25767686

  17. Growth Potential of Halophilic Bacteria Isolated from Solar Salt Environments: Carbon Sources and Salt Requirements

    PubMed Central

    Javor, Barbara J.

    1984-01-01

    Eighteen strains of extremely halophilic bacteria and three strains of moderately halophilic bacteria were isolated from four different solar salt environments. Growth tests on carbohydrates, low-molecular-weight carboxylic acids, and complex medium demonstrated that the moderate halophiles and strains of the extreme halophiles Haloarcula and Halococcus grew on most of the substrates tested. Among the Halobacterium isolates were several metabolic groups: strains that grew on a broad range of substrates and strains that were essentially confined to either amino acid (peptone) or carbohydrate oxidation. One strain (WS-4) only grew well on pyruvate and acetate. Most strains of extreme halophiles grew by anaerobic fermentation and possibly by nitrate reduction. Tests of growth potential in natural saltern brines demonstrated that none of the halobacteria grew well in brines which harbor the densest populations of these bacteria in solar salterns. All grew best in brines which were unsaturated with NaCl. The high concentrations of Na+ and Mg2+ found in saltern crystallizer brines limited bacterial growth, but the concentrations of K+ found in these brines had little effect. MgSO4 was relatively more inhibitory to the extreme halophiles than was MgCl2, but the reverse was true for the moderate halophiles. PMID:16346609

  18. Hair Growth Promoting Potential of Phospholipids Purified from Porcine Lung Tissues

    PubMed Central

    Choi, Seong-Hyun; Moon, Jeong-Su; Jeon, Byung-Suk; Jeon, Yeon-Jeong; Yoon, Byung-Il; Lim, Chang-Jin

    2015-01-01

    BP201, porcine lung tissue-derived phospholipids, consists of phosphatidylcholine as a major phospholipid species. BP201 promoted hair growth after application onto the shaved backs of BALB/c and C3H mice. Its effect was enhanced when applied together with minoxidil (MNX) in C3H mice. When the tissue specimens prepared from the shaved skins of BP201-treated and control mice were microscopically examined, the total numbers of hair follicles in both anagen and telogen phases of BP201-treated mice were significantly higher than those of control mice. The numbers of hair follicles in the anagen phase of BP201-treated mice were also higher than those of control mice. In combination with MNX, BP201 further increased the total number of hair follicles, but did not alter the percentage of hair follicles in the anagenic phase. BP201 also increased the proliferation of human hair follicle dermal papilla cells. Collectively, BP201 possesses hair growth promoting potential, which would suggest its use singly or in combination for hair growth products. PMID:25767686

  19. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt.

    PubMed

    Galal, Tarek M; Shehata, Hanaa S

    2016-12-01

    Arundo donax L. has a high biomass production and a tendency toward community dominance in many habitats and thereby a tolerance to a wide range of environmental conditions. Therefore, the present study investigated the potentiality of A. donax to accumulate nutrients and trace metals in its biomass. Six main habitats (Nile Bank, Drain Bank, Canal Bank, Field Edges, Railways and Roadsides) were recognized. At each habitat, six quadrats (each 1 m(2)), distributed equally in two sites, were selected for growth measurements (e.g., density, shoot height, diameter, leaf area and biomass), plant and soil analyses. Plants from Nile, Canal and Drain Banks had the highest values of most growth measurements, while those from Railways and Roadsides had the lowest. Canal Bank plants accumulated the highest concentrations of P, Cu and Pb in their leaves; Zn in the stem; and Mg, Cd and Fe in the rhizome. The bioaccumulation factor (BF) of A. donax, for Cd, Fe, Mn and Zn, was greater than 1, while the translocation factor (TF) of most trace metals was less than unity in most habitats. In conclusion, A. donax showed morphological plasticity in response to habitat heterogeneity, and its growth was most vigorous in the riparian habitats. The high BF, as well as the significant positive correlations between trace metals, especially Cd, in soil and plant, renders A. donax a powerful phytoremediator. PMID:27257886

  20. Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil.

    PubMed

    Li, Liang; Zhang, Honggang; Pan, Gang

    2015-02-01

    Using chitosan modified soil to flocculate and sediment algal cells has been considered as a promising strategy to combat cyanobacteria blooms in natural waters. However, the flocculation efficiency often varies with algal cells with different zeta potential (ZP) attributed to different growth phases or water conditions. This article investigated the relationship between ZP of Microcystis aeruginosa and its influence to the flocculation efficiency using chitosan modified soil. Results suggested that the optimal removal efficiency was obtained when the ZP was between -20.7 and -6.7 mV with a removal efficiency of more than 80% in 30 min and large floc size of >350 μm. When the algal cells were more negatively charged than -20.7 mV, the effect of chitosan modified soil was depressed (<60%) due to the insufficient charge density of chitosan to neutralize and destabilize the algal suspension. When the algal cells were less negative than -6.7 mV or even positively charged, a small floc size (<120 μm) was formed, which may be difficult to sink under natural water conditions. Therefore, manipulation of ZP provided a viable tool to improve the flocculation efficiency of chitosan modified soil and an important guidance for practical engineering of cyanobacteria bloom control.

  1. Vascular endothelial growth factor receptors: Molecular mechanisms of activation and therapeutic potentials

    PubMed Central

    Rahimi, Nader

    2006-01-01

    Angiogenesis-associated eye diseases are among the most common cause of blindness in the United States and worldwide. Recent advances in the development of angiogenesis-based therapies for treatment of angiogenesis-associated diseases have provided new hope in a wide variety of human diseases ranging from eye diseases to cancer. One group of growth factor receptors critically implicated in angiogenesis is vascular endothelial growth factor receptors (VEGFR), a subfamily of receptor tyrosine kinases (RTKs). VEGFR-1 and VEGFR-2 are closely related receptor tyrosine kinases and have both common and specific ligands. VEGFR-1 is a kinase-impaired RTK and its kinase activity is suppressed by a single amino acid substitution in its kinase domain and by its carboxyl terminus. VEGFR-2 is highly active kinase, stimulates a variety of signaling pathways and broad biological responses in endothelial cells. The mechanisms that govern VEGFR-2 activation, its ability to recruit signaling proteins and to undergo downregulation are highly regulated by phosphorylation activation loop tyrosines and its carboxyl terminus. Despite their differential potentials to undergo tyrosine phosphorylation and kinase activation, both VEGFR-1 and VEGFR-2 are required for normal embryonic development and pathological angiogenesis. VEGFR-1 regulates angiogenesis by mechanisms that involve ligand trapping, receptor homodimerization and heterodimerization. This review highlights recent insights into the mechanism of activation of VEGFR-1 and VEGFR-2, and focuses on the signaling pathways employed by VEGFR-1 and VEGFR-2 that regulate angiogenesis and their therapeutic potentials in angiogenesis-associated diseases. PMID:16713597

  2. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Han, Jeongwoo; Palou-Rivera, Ignasi; Elgowainy, Amgad; Wang, Michael Q.

    2012-03-01

    Researchers around the world are developing sustainable plant-based liquid transportation fuels (biofuels) to reduce petroleum consumption and greenhouse gas emissions. Algae are attractive because they promise large yields per acre compared to grasses, grains and trees, and because they produce oils that might be converted to diesel and gasoline equivalents. It takes considerable energy to produce algal biofuels with current technology; thus, the potential benefits of algal biofuels compared to petroleum fuels must be quantified. To this end, we identified key parameters for algal biofuel production using GREET, a tool for the life-cycle analysis of energy use and emissions in transportation systems. The baseline scenario produced 55 400 g CO2 equivalent per million BTU of biodiesel compared to 101 000 g for low-sulfur petroleum diesel. The analysis considered the potential for greenhouse gas emissions from anaerobic digestion processes commonly used in algal biofuel models. The work also studied alternative scenarios, e.g., catalytic hydrothermal gasification, that may reduce these emissions. The analysis of the nitrogen recovery step from lipid-extracted algae (residues) highlighted the importance of considering the fate of the unrecovered nitrogen fraction, especially that which produces N2O, a potent greenhouse gas with global warming potential 298 times that of CO2.

  3. Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence?

    NASA Astrophysics Data System (ADS)

    Davidson, Keith; Gowen, Richard J.; Tett, Paul; Bresnan, Eileen; Harrison, Paul J.; McKinney, April; Milligan, Stephen; Mills, David K.; Silke, Joe; Crooks, Anne-Marie

    2012-12-01

    There is a perception that anthropogenically-driven changes in nutrient supply to coastal waters influences the abundance, frequency and toxicity of harmful algal blooms (HABs) through a change in the form or ratio of nutrient that limits phytoplankton growth. If nutrient concentrations are not limiting for growth, then ratios do not influence floristic composition. At non-limiting concentrations, evidence that alteration of nitrogen: phosphorus (N:P) ratios has stimulated HABs is limited, and primarily based on hypothesised relationships in relatively few locations (in particular: Tolo Harbour Hong Kong and Dutch Coastal Waters). In all cases, an unequivocal causal link between an increase in HABs (frequency, magnitude or duration) and change in N or P as the limiting nutrient is difficult to establish. The silicon (Si) limitation hypothesis is generally supported by experimental evidence and field data on the nuisance flagellate Phaeocystis. We found little evidence that high N:Si ratios preferentially promote harmful dinoflagellates over benign species. Laboratory studies demonstrate that nutrient ratios can influence toxin production, but genus and species specific differences and environmental control make extrapolation of these data to the field difficult. Studies of the role of dissolved and particulate organic nutrients in the growth of HAB species, while limited, demonstrate the potential for organic nutrients (especially organic N) to support the growth of a range of HAB species. There is a clear need for better understanding of the role of mixotrophy in the formation of HABs and for studies of HAB and non-HAB species in competition for environmentally realistic concentrations of organic nutrients.

  4. Growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill site in Ibeno, Nigeria.

    PubMed

    Etuk, C U; John, R C; Ekong, U E; Akpan, M M

    2012-10-01

    The growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill sites at Inua-eyet Ikot in Ibeno, Nigeria were examined using standard microbiological methods. The results of the analysis revealed that the viable plate count of microorganisms in the polluted soil ranged from 2.2 ± 0.04 × 10(3) to 3.4 ± 0.14 × 10(6) cfu/g for bacteria and 1.4 ± 0.5 × 10(2) to 2.3 ± 0.4 × 10(4) cfu/g for fungi while count of biodegraders ranged from 1.2 ± 0.4 × 10(3) to 2.1 ± 0.8 × 10(5) cfu/g. A total of 11 microbial isolates comprising of Micrococcus, Klebsiella, Flavobacterium, Bacillus, Pseudomonas, Candida, Aspergillus, Cladosporium, Penicillium, Saccharomyces and Fusarium were characterized. The ability of the selected isolates to utilize the pollutant (aviation fuel) as their sole source of carbon and energy was examined and noticed to vary in growth profiles between the isolates. The results of their degradability after 28 days of incubation shows that species of Cladosporium, Pseudomonas, Candida, Bacillus, Micrococcus and Penicillium were the most efficient Aviation fuel degraders with percentage weight loss of 86.2, 78.4, 78, 56, 53 and 50.6 respectively. Flavobacterium, Saccharomyces and Aspergillus exhibited moderate growth with percentage weight loss of 48, 45.8 and 43.4 respectively while Klebsiella and Fusarium species showed minimal growth with percentage weight loss of 20 and 18.5 respectively. The results imply that the most efficient biodegraders like Cladosporium, Pseudomonas, Candida, Bacillus and Microoccus could tolerate and remove aviation fuel from the environment.

  5. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations.

  6. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes.

    PubMed

    Zhang, Weijia; Zhou, Jinglie; Liu, Taigang; Yu, Yongxin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Phycodnaviruses are algae-infecting large dsDNA viruses that are widely distributed in aquatic environments. Here, partial genomic sequences of four novel algal viruses were assembled from a Yellowstone Lake metagenomic data set. Genomic analyses revealed that three Yellowstone Lake phycodnaviruses (YSLPVs) had genome lengths of 178,262 bp, 171,045 bp, and 171,454 bp, respectively, and were phylogenetically closely related to prasinoviruses (Phycodnaviridae). The fourth (YSLGV), with a genome length of 73,689 bp, was related to group III in the extended family Mimiviridae comprising Organic Lake phycodnaviruses and Phaeocystis globosa virus 16 T (OLPG). A pair of inverted terminal repeats was detected in YSLPV1, suggesting that its genome is nearly complete. Interestingly, these four putative YSL giant viruses also bear some genetic similarities to Yellowstone Lake virophages (YSLVs). For example, they share nine non-redundant homologous genes, including ribonucleotide reductase small subunit (a gene conserved in nucleo-cytoplasmic large DNA viruses) and Organic Lake virophage OLV2 (conserved in the majority of YSLVs). Additionally, putative multidrug resistance genes (emrE) were found in YSLPV1 and YSLPV2 but not in other viruses. Phylogenetic trees of emrE grouped YSLPVs with algae, suggesting that horizontal gene transfer occurred between giant viruses and their potential algal hosts. PMID:26459929

  7. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes

    PubMed Central

    Zhang, Weijia; Zhou, Jinglie; Liu, Taigang; Yu, Yongxin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Phycodnaviruses are algae-infecting large dsDNA viruses that are widely distributed in aquatic environments. Here, partial genomic sequences of four novel algal viruses were assembled from a Yellowstone Lake metagenomic data set. Genomic analyses revealed that three Yellowstone Lake phycodnaviruses (YSLPVs) had genome lengths of 178,262 bp, 171,045 bp, and 171,454 bp, respectively, and were phylogenetically closely related to prasinoviruses (Phycodnaviridae). The fourth (YSLGV), with a genome length of 73,689 bp, was related to group III in the extended family Mimiviridae comprising Organic Lake phycodnaviruses and Phaeocystis globosa virus 16 T (OLPG). A pair of inverted terminal repeats was detected in YSLPV1, suggesting that its genome is nearly complete. Interestingly, these four putative YSL giant viruses also bear some genetic similarities to Yellowstone Lake virophages (YSLVs). For example, they share nine non-redundant homologous genes, including ribonucleotide reductase small subunit (a gene conserved in nucleo-cytoplasmic large DNA viruses) and Organic Lake virophage OLV2 (conserved in the majority of YSLVs). Additionally, putative multidrug resistance genes (emrE) were found in YSLPV1 and YSLPV2 but not in other viruses. Phylogenetic trees of emrE grouped YSLPVs with algae, suggesting that horizontal gene transfer occurred between giant viruses and their potential algal hosts. PMID:26459929

  8. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes.

    PubMed

    Zhang, Weijia; Zhou, Jinglie; Liu, Taigang; Yu, Yongxin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-10-13

    Phycodnaviruses are algae-infecting large dsDNA viruses that are widely distributed in aquatic environments. Here, partial genomic sequences of four novel algal viruses were assembled from a Yellowstone Lake metagenomic data set. Genomic analyses revealed that three Yellowstone Lake phycodnaviruses (YSLPVs) had genome lengths of 178,262 bp, 171,045 bp, and 171,454 bp, respectively, and were phylogenetically closely related to prasinoviruses (Phycodnaviridae). The fourth (YSLGV), with a genome length of 73,689 bp, was related to group III in the extended family Mimiviridae comprising Organic Lake phycodnaviruses and Phaeocystis globosa virus 16 T (OLPG). A pair of inverted terminal repeats was detected in YSLPV1, suggesting that its genome is nearly complete. Interestingly, these four putative YSL giant viruses also bear some genetic similarities to Yellowstone Lake virophages (YSLVs). For example, they share nine non-redundant homologous genes, including ribonucleotide reductase small subunit (a gene conserved in nucleo-cytoplasmic large DNA viruses) and Organic Lake virophage OLV2 (conserved in the majority of YSLVs). Additionally, putative multidrug resistance genes (emrE) were found in YSLPV1 and YSLPV2 but not in other viruses. Phylogenetic trees of emrE grouped YSLPVs with algae, suggesting that horizontal gene transfer occurred between giant viruses and their potential algal hosts.

  9. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.

  10. Improved algal harvesting using suspended air flotation.

    PubMed

    Wiley, Patrick E; Brenneman, Kristine J; Jacobson, Arne E

    2009-07-01

    Current methods to remove algae from a liquid medium are energy intensive and expensive. This study characterized algae contained within a wastewater oxidation pond and sought to identify a more efficient harvesting technique. Analysis of oxidation pond wastewater revealed that algae, consisting primarily of Chlorella and Scenedesmus, composed approximately 80% of the solids inventory during the study period. Results demonstrated that suspended air flotation (SAF) could harvest algae with a lower air:solids (A/S) ratio, lower energy requirements, and higher loading rates compared to dissolved air flotation (DAF) (P < 0.001). Identification of a more efficient algal harvesting system may benefit wastewater treatment plants by enabling cost effective means to reduce solids content of the final effluent. Furthermore, use of SAF to harvest commercially grown Chlorella and Scenedesmus may reduce manufacturing costs of algal-based products such as fuel, fertilizer, and fish food.

  11. Algal diseases: spotlight on a black box.

    PubMed

    Gachon, Claire M M; Sime-Ngando, Télesphore; Strittmatter, Martina; Chambouvet, Aurélie; Kim, Gwang Hoon

    2010-11-01

    Like any other living organisms, algae are plagued by diseases caused by fungi, protists, bacteria or viruses. As aquaculture continues to rise worldwide, pathogens of nori or biofuel sources are becoming a significant economic burden. Parasites are also increasingly being considered of equal importance with predators for ecosystem functioning. Altered disease patterns in disturbed environments are blamed for sudden extinctions, regime shifts, and spreading of alien species. Here we review the biodiversity and impact of pathogens and parasites of aquatic primary producers in freshwater and marine systems. We also cover recent advances on algal defence reactions, and discuss how emerging technologies can be used to reassess the profound, multi-faceted, and so far broadly-overlooked influence of algal diseases on ecosystem properties.

  12. Phytoplankton community growth in enrichment bioassays: Possible role of the nutrient intracellular pools

    NASA Astrophysics Data System (ADS)

    Rouzic, B. Le; Bertru, G.

    Examination of published experimental data showed that nutrient addition can sometimes inhibit growth rate of natural algal communities. Such reductions in algal growth might be due to toxic effects of some enrichments. This hypothesis could not however explain inhibitions following moderate additions of nitrate and phosphate. A new hypothesis is proposed to account for such "unexplained" results. It considers a limitation of algal community growth by several different resources. Experimental observations are consistent with resource competition determining the coexistence of several species competing for the same resources. Intracellular nutrient storage may reduce bioavailability of many resources involved in algal growth limitation. A simplified mathematical approach, derived from the DROOP growth model (1973) , was developed to describe possible relationships between species diversity and algal community growth. Coexistence of several species competing for different resources might provide a partial buffer against large variations in algal community growth following nutrient enrichments.

  13. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  14. Study on the dynamics of algal bloom and its influence factors in Tolo Harbour, Hong Kong.

    PubMed

    Li, Y S; Chen, X; Wai, Onyx W H; King, B

    2004-01-01

    In this paper, the semi-enclosed bay named Tolo Harbour and Channel in Hong Kong, which was frequently attacked by red tides, was used as a case study. Data sets related to marine water quality, river nutrients, and meteorological conditions recorded between 1988 and 1999 were chosen for statistical analysis. A multivariate analysis showed that algal growth, represented by the chlorophyll a concentration, had obvious spatial and temporal variations in the study area. The chlorophyll a concentration had a consistently decreasing trend from the inner part of the Harbour and surface waters to the outer part and bottom waters. The temporal variations had a markedly seasonal variation with high bioproductivity in spring and winter. There were long-term fluctuations in the chlorophyll a concentration with a high-low-high pattern in the study period. Nutrients and hydrological and meteorological conditions were important factors of algal bloom. Besides nitrogen, which was the most critical factor of algal bloom for the whole water body, total phosphorus in the surface waters and phosphate (PO4) and silica (SiO2) in the bottom waters also showed strongly positive or negative correlations with the chlorophyll a level. For the meteorological conditions, global solar radiation was the key factor of massive algal bloom in the study period, while rainfall and wind direction were the most important factors of seasonal variation. PMID:16042112

  15. Bacilysin from Bacillus amyloliquefaciens FZB42 Has Specific Bactericidal Activity against Harmful Algal Bloom Species

    PubMed Central

    Wu, Liming; Wu, Huijun; Chen, Lina; Xie, Shanshan; Zang, Haoyu; Borriss, Rainer

    2014-01-01

    Harmful algal blooms, caused by massive and exceptional overgrowth of microalgae and cyanobacteria, are a serious environmental problem worldwide. In the present study, we looked for Bacillus strains with sufficiently strong anticyanobacterial activity to be used as biocontrol agents. Among 24 strains, Bacillus amyloliquefaciens FZB42 showed the strongest bactericidal activity against Microcystis aeruginosa, with a kill rate of 98.78%. The synthesis of the anticyanobacterial substance did not depend on Sfp, an enzyme that catalyzes a necessary processing step in the nonribosomal synthesis of lipopeptides and polyketides, but was associated with the aro gene cluster that is involved in the synthesis of the sfp-independent antibiotic bacilysin. Disruption of bacB, the gene in the cluster responsible for synthesizing bacilysin, or supplementation with the antagonist N-acetylglucosamine abolished the inhibitory effect, but this was restored when bacilysin synthesis was complemented. Bacilysin caused apparent changes in the algal cell wall and cell organelle membranes, and this resulted in cell lysis. Meanwhile, there was downregulated expression of glmS, psbA1, mcyB, and ftsZ—genes involved in peptidoglycan synthesis, photosynthesis, microcystin synthesis, and cell division, respectively. In addition, bacilysin suppressed the growth of other harmful algal species. In summary, bacilysin produced by B. amyloliquefaciens FZB42 has anticyanobacterial activity and thus could be developed as a biocontrol agent to mitigate the effects of harmful algal blooms. PMID:25261512

  16. Response of an algal assemblage to nutrient enrichment and shading in a Hawaiian stream

    USGS Publications Warehouse

    Stephens, S.H.; Brasher, A.M.D.; Smith, C.M.

    2012-01-01

    To investigate the effects of nitrate enrichment, phosphate enrichment, and light availability on benthic algae, nutrient-diffusing clay flowerpots were colonized with algae at two sites in a Hawaiian stream during spring and autumn 2002 using a randomized factorial design. The algal assemblage that developed under the experimental conditions was investigated by determining biomass (ash-free dry mass and chlorophyll a concentrations) and composition of the diatom assemblage. In situ pulse amplitude-modulated fluorometry was also used to model photosynthetic rate of the algal assemblage. Algal biomass and maximum photosynthetic rate were significantly higher at the unshaded site than at the shaded site. These parameters were higher at the unshaded site with either nitrate, or to a lesser degree, nitrate plus phosphate enrichment. Analysis of similarity of diatom assemblages showed significant differences between shaded and unshaded sites, as well as between spring and autumn experiments, but not between nutrient treatments. However, several individual species of diatoms responded significantly to nitrate enrichment. These results demonstrate that light availability (shaded vs. unshaded) is the primary limiting factor to algal growth in this stream, with nitrogen as a secondary limiting factor. ?? 2011 Springer Science+Business Media B.V.

  17. Production of Algal-based Biofuel from Non-fresh Water Sources

    NASA Astrophysics Data System (ADS)

    Sun, A. C.; Reno, M. D.

    2008-12-01

    A system dynamics model is developed to assess the availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual framework is based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The simulation framework contains an algal growth module, a dairy module, an oil production module, and a gas production module. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil and gas produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

  18. Spatiotemporal Distribution of Harmful Algal Flora in the Tropical Estuarine Complex of Goa, India

    PubMed Central

    Pednekar, Suraksha M.; Prabhu Matondkar, S. G.; Kerkar, Vijaya

    2012-01-01

    Mandovi and Zuari estuarine complex is monsoon-influenced estuaries located along the central west coast of India. During the past few years, there has been an increase in nutrient loading specially during monsoonal runoff which is responsible for the growth of harmful algal flora. To understand occurrence and distribution of harmful algal blooms species, daily/alternate day samplings were carried out in Mandovi and Zuari estuaries during 2007-2008 and 2008-2009 periods, respectively, comprising of monsoon (June–November) and nonmonsoon (December–May). In Mandovi, total 54 HAB species with 49 in monsoon and 36 during nonmonsoon period were reported. In Zuari, total 46 HAB species with 38 in monsoon and 41 were reported during nonmonsoon period. Bray-Curtis cluster analysis based on log-transformed phytoplankton density detected seven well-defined groups revealing spatiotemporal variability. The density of the dominant harmful algal species was significantly positively correlated with nutrients, but negatively correlated with salinity. The results of the study indicate that monsoon plays an important role in occurrence and distribution of harmful algal species having direct correlation with salinity variations and nutrient loading. PMID:22629154

  19. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. PMID:26625979

  20. Spatiotemporal distribution of harmful algal flora in the tropical estuarine complex of Goa, India.

    PubMed

    Pednekar, Suraksha M; Prabhu Matondkar, S G; Kerkar, Vijaya

    2012-01-01

    Mandovi and Zuari estuarine complex is monsoon-influenced estuaries located along the central west coast of India. During the past few years, there has been an increase in nutrient loading specially during monsoonal runoff which is responsible for the growth of harmful algal flora. To understand occurrence and distribution of harmful algal blooms species, daily/alternate day samplings were carried out in Mandovi and Zuari estuaries during 2007-2008 and 2008-2009 periods, respectively, comprising of monsoon (June-November) and nonmonsoon (December-May). In Mandovi, total 54 HAB species with 49 in monsoon and 36 during nonmonsoon period were reported. In Zuari, total 46 HAB species with 38 in monsoon and 41 were reported during nonmonsoon period. Bray-Curtis cluster analysis based on log-transformed phytoplankton density detected seven well-defined groups revealing spatiotemporal variability. The density of the dominant harmful algal species was significantly positively correlated with nutrients, but negatively correlated with salinity. The results of the study indicate that monsoon plays an important role in occurrence and distribution of harmful algal species having direct correlation with salinity variations and nutrient loading.

  1. Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species.

    PubMed

    Wu, Liming; Wu, Huijun; Chen, Lina; Xie, Shanshan; Zang, Haoyu; Borriss, Rainer; Gao, Xuewen

    2014-12-01

    Harmful algal blooms, caused by massive and exceptional overgrowth of microalgae and cyanobacteria, are a serious environmental problem worldwide : In the present study, we looked for Bacillus strains with sufficiently strong anticyanobacterial activity to be used as biocontrol agents. Among 24 strains, Bacillus amyloliquefaciens FZB42 showed the strongest bactericidal activity against Microcystis aeruginosa, with a kill rate of 98.78%. The synthesis of the anticyanobacterial substance did not depend on Sfp, an enzyme that catalyzes a necessary processing step in the nonribosomal synthesis of lipopeptides and polyketides, but was associated with the aro gene cluster that is involved in the synthesis of the sfp-independent antibiotic bacilysin. Disruption of bacB, the gene in the cluster responsible for synthesizing bacilysin, or supplementation with the antagonist N-acetylglucosamine abolished the inhibitory effect, but this was restored when bacilysin synthesis was complemented. Bacilysin caused apparent changes in the algal cell wall and cell organelle membranes, and this resulted in cell lysis. Meanwhile, there was downregulated expression of glmS, psbA1, mcyB, and ftsZ-genes involved in peptidoglycan synthesis, photosynthesis, microcystin synthesis, and cell division, respectively. In addition, bacilysin suppressed the growth of other harmful algal species. In summary, bacilysin produced by B. amyloliquefaciens FZB42 has anticyanobacterial activity and thus could be developed as a biocontrol agent to mitigate the effects of harmful algal blooms.

  2. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts.

  3. Modeling the impact of awareness on the mitigation of algal bloom in a lake.

    PubMed

    Misra, A K; Tiwari, P K; Venturino, Ezio

    2016-01-01

    The proliferation of algal bloom in water bodies due to the enhanced concentration of nutrient inflow is becoming a global issue. A prime reason behind this aquatic catastrophe is agricultural runoff, which carries a large amount of nutrients that make the lakes more fertile and cause algal blooms. The only solution to this problem is curtailing the nutrient loading through agricultural runoff. This could be achieved by raising awareness among farmers to minimize the use of fertilizers in their farms. In view of this, in this paper, we propose a mathematical model to study the effect of awareness among the farmers of the mitigation of algal bloom in a lake. The growth rate of awareness among the farmers is assumed to be proportional to the density of algae in the lake. It is further assumed that the presence of awareness among the farmers reduces the inflow rate of nutrients through agricultural runoff and helps to remove the detritus by cleaning the bottom of the lake. The results evoke that raising awareness among farmers may be a plausible factor for the mitigation of algal bloom in the lake. Numerical simulations identify the most critical parameters that influence the blooms and provide indications to possibly mitigate it.

  4. Modeling the impact of awareness on the mitigation of algal bloom in a lake.

    PubMed

    Misra, A K; Tiwari, P K; Venturino, Ezio

    2016-01-01

    The proliferation of algal bloom in water bodies due to the enhanced concentration of nutrient inflow is becoming a global issue. A prime reason behind this aquatic catastrophe is agricultural runoff, which carries a large amount of nutrients that make the lakes more fertile and cause algal blooms. The only solution to this problem is curtailing the nutrient loading through agricultural runoff. This could be achieved by raising awareness among farmers to minimize the use of fertilizers in their farms. In view of this, in this paper, we propose a mathematical model to study the effect of awareness among the farmers of the mitigation of algal bloom in a lake. The growth rate of awareness among the farmers is assumed to be proportional to the density of algae in the lake. It is further assumed that the presence of awareness among the farmers reduces the inflow rate of nutrients through agricultural runoff and helps to remove the detritus by cleaning the bottom of the lake. The results evoke that raising awareness among farmers may be a plausible factor for the mitigation of algal bloom in the lake. Numerical simulations identify the most critical parameters that influence the blooms and provide indications to possibly mitigate it. PMID:26411559

  5. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    SciTech Connect

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  6. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  7. Observations on gas exchange and element recycle within a gas-closed algal-mouse system

    NASA Technical Reports Server (NTRS)

    Smernoff, D. T.; Wharton, R. A., Jr.; Averner, M. M.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Algae are potentially useful for a variety of Closed Ecological Life Support System (CELSS) functions including the revitalization of atmospheres, production of food and for nitrogen fixation. The results of experiments conducted with a gas-closed algal-mouse system designed to investigate gas exchange phenomena under varying algal environmental conditions, and the ability of algae to utilize oxidized mouse solid waste are reported. Inherent instabilities exist between the uptake and release of carbon dioxide (CO2) and oxygen (O2) by the mouse and algae in a gas-closed system. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable short-term steady-state concentrations of atmospheric CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations were examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system.

  8. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  9. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  10. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Caldwell, Jamie M; Fisher, Micah R; Genco, Brandon M; Running, Steven W

    2015-06-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  11. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.

    2015-01-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  12. Salinity as a constraint on growth of oligohaline marsh macrophytes. II. Salt pulses and recovery potential

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    1999-01-01

    The ability of common oligohaline marsh macrophytes of the northern Gulf of Mexico coast to recover from pulses of increased salinity was investigated in a greenhouse experiment with Eleocharis palustris, Panicum hemitomon, Sagittaria lancifolia, and Scirpus americanus monocultures. Components of salinity pulses applied were final salinity reached (6 or 12 g/L), salinity influx rate (3 d or 3 wk), and duration of exposure (1, 2, or 3 mo). After each exposure period, we placed plants into freshwater until the end of the 120-d experiment to determine recovery potential. The four species varied in their ability to recover from the salinity pulses. Within a species, recovery varied with final salinity level and duration of exposure, and to a lesser extent with salinity influx rate. Scirpus americanus, growth of which was stimulated by <3 mo of exposure to 6 g/L, was able to recover even under the most extreme conditions of exposure to 12 g/L salinity for 3 mo. Ability to recover decreased with increased salinity and increased duration of exposure for the remaining three species. Recovery of specific aspects of growth was also suppressed in these species by a rapid salinity influx rate compared to a slow influx rate. The complex variations in recovery patterns displayed by the different species may lead to changes in species dominance following the short-term salinity pulses that can occur during storm events, which in turn may affect marsh plant community composition and structure.

  13. Immunoreactivity of proliferating cell nuclear antigen in salivary gland tumours: an assessment of growth potential.

    PubMed

    Yang, L; Hashimura, K; Qin, C; Shrestha, P; Sumitomo, S; Mori, M

    1993-01-01

    Immunoreactivity of proliferating cell nuclear antigen (PCNA) was assessed to evaluate growth potential in surgically resected tissue specimens from 70 cases of benign and malignant salivary gland tumours. Three stage streptavidin-biotin immunoperoxidase immunostaining using monoclonal antibody to PCNA showed a heterogeneity of PCNA index and distribution. In normal salivary gland specimens, PCNA was demonstrated in the nuclei of few ductal and acinar cells. In pleomorphic adenoma a multiple nodular growth pattern was observed with positive immunoreactivity restricted to the nuclei of tubulo-ductal structures. Warthin's tumour had positive nuclei in the outer cuboidal cells of epithelial component and germinal centres of lymphoid tissue. Myoepithelioma and acinic cell carcinoma showed slightly differing values and a statistically significant difference in the value of the index was observed in tumour cell aggregates of the cribiform type of adenoid cystic carcinoma and the solid undifferentiated type and between low/intermediate and high-grade mucoepidermoid tumours. PCNA is a useful marker of tumour cell proliferation; the index correlates with the grade of malignancy in salivary gland tumours.

  14. Evaluation of internal loading and water level changes: implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2013-01-01

    Hydrologic manipulations have the potential to exacerbate or remediate eutrophication in productive reservoirs. Dam operations at Kabetogama Lake, Minnesota, were modified in 2000 to restore a more natural water regime and improve water quality. The US Geological Survey and National Park Service evaluated nutrient, algae, and nuisance bloom data in relation to changes in Kabetogama Lake water levels. Comparison of the results of this study to previous studies indicates that chlorophyll a concentrations have decreased, whereas total phosphorus (TP) concentrations have not changed significantly since 2000. Water and sediment quality data were collected at Voyageurs National Park during 2008–2009 to assess internal phosphorus loading and determine whether loading is a factor affecting TP concentrations and algal productivity. Kabetogama Lake often was mixed vertically, except for occasional stratification measured in certain areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, higher bottom water and sediment nutrient concentrations than in other parts of the lake, and phosphorus release rates estimated from sediment core incubations indicated that Lost Bay is one of several areas that may be contributing to internal loading. Internal loading of TP is a concern because increased TP may cause excessive algal growth including potentially toxic cyanobacteria.

  15. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential

    PubMed Central

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon

  16. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential.

    PubMed

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970-2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon isotope

  17. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  18. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  19. Evidence for a reduction of growth potential in adolescent female gymnasts.

    PubMed

    Theintz, G E; Howald, H; Weiss, U; Sizonenko, P C

    1993-02-01

    The goal of this prospective study was to assess whether intensive physical training during puberty could alter the growth potential of adolescent female athletes. Height, sitting height, leg length, weight, body fat, and pubertal stage of 22 gymnasts aged 12.3 +/- 0.2 years (mean +/- SEM), with an average training period of 22 hr/wk, and of 21 swimmers aged 12.3 +/- 0.3 years (average training period 8 hr/wk) were recorded half-yearly for a mean period of 2.35 years (range 2.0 to 3.7 years). Adult height predictions were performed with the methods of Bayley and Pinneau; Roche, Wainer, and Thissen, and Tanner et al. Growth velocity of gymnasts was significantly lower than that of swimmers from 11 to 13 years of bone age (p < 0.05), with a mean peak height velocity of 5.48 +/- 0.32 cm/yr versus 8.0 +/- 0.50 cm/yr for swimmers. Height standard deviation score decreased significantly in gymnasts with time (r = -0.747; p < 0.001). This observation was not associated with a significant alteration of chronologic age/bone age ratio. By contrast, height standard deviation score remained unchanged in swimmers (r = -0.165; p = 0.1). A marked stunting of leg-length growth was observed in gymnasts from 12 years of bone age, resulting in a marked difference in overall sitting-height/leg-length ratio (gymnasts 1.054 +/- 0.005 vs swimmers 1.100 +/- 0.005; p < 0.001). Concomitantly, predicted height of gymnasts decreased significantly with time (Tanner et al.: r = 0.63, p < 0.001; Bayley-Pinneau: r = 0.44, p < 0.001), whereas those of swimmers did not change. We conclude that heavy training in gymnastics (> 18 hr/wk), starting before puberty and maintained throughout puberty, can alter growth rate to such an extent that full adult height will not be reached. The mechanisms underlying these observations are not settled; we suggest that prolonged inhibition of the hypothalamic-pituitary-gonadal axis by exercise, together with or because of the metabolic effects of dieting, is

  20. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology.

    PubMed

    Canon-Rubio, Karen A; Sharp, Christine E; Bergerson, Joule; Strous, Marc; De la Hoz Siegler, Hector

    2016-02-01

    Phototrophic microorganisms have been proposed as an alternative to capture carbon dioxide (CO2) and to produce biofuels and other valuable products. Low CO2 absorption rates, low volumetric productivities, and inefficient downstream processing, however, currently make algal biotechnology highly energy intensive, expensive, and not economically competitive to produce biofuels. This mini-review summarizes advances made regarding the cultivation of phototrophic microorganisms at highly alkaline conditions, as well as other innovations oriented toward reducing the energy input into the cultivation and processing stages. An evaluation, in terms of energy requirements and energy return on energy invested, is performed for an integrated high-pH, high-alkalinity growth process that uses biofilms. Performance in terms of productivity and expected energy return on energy invested is presented for this process and is compared to previously reported life cycle assessments (LCAs) for systems at near-neutral pH. The cultivation of alkaliphilic phototrophic microorganisms in biofilms is shown to have a significant potential to reduce both energy requirements and capital costs.

  1. Algal Bioremediation of Waste Waters from Land-Based Aquaculture Using Ulva: Selecting Target Species and Strains

    PubMed Central

    Lawton, Rebecca J.; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day−1 respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2–20.4% day−1) and Sydney strains had the lowest growth rates (2.5–8.3% day−1). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  2. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    PubMed

    Lawton, Rebecca J; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  3. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    SciTech Connect

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-12-31

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of {sup 10}B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10{sup 5} {minus}10{sup 6} EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10{sup 8} boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight ({approximately} 6 kD), this has allowed us to construct relatively small bioconjugates containing {approximately} 900 boron atoms per EGF molecule{sup 3}, which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using {sup 131}I{minus} or {sup 99m}{Tc}-labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma.

  4. Stromal interactions as regulators of tumor growth and therapeutic response: A potential target for photodynamic therapy?

    PubMed Central

    Celli, Jonathan P.

    2013-01-01

    It has become increasingly widely recognized that the stroma plays several vital roles in tumor growth and development and that tumor-stroma interactions can in many cases account poor therapeutic response. Inspired by an emerging body of literature, we consider the potential role of photodynamic therapy (PDT) for targeting interactions with stromal fibroblasts and mechano-sensitive signaling with the extracellular matrix as a means to drive tumors toward a more therapeutically responsive state and synergize with other treatments. This concept is particularly relevant for cancer of the pancreas, which is characterized by tumors with a profoundly dense, rigid fibrous stroma. Here we introduce new in vitro systems to model interactions between pancreatic tumors and their mechanical microenvironment and restore signaling with stromal fibroblasts. Using one such model as a test bed it is shown here that PDT treatment is able to destroy fibroblasts in an in vitro 3D pancreatic tumor-fibroblast co-culture. These results and the literature suggest the further development of PDT as a potential modality for stromal depletion. PMID:23457416

  5. Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential.

    PubMed

    Basile, Boris; Marsal, Jordi; DeJong, Theodore M

    2003-07-01

    We studied relationships between diurnal patterns of stem water potential (PsiSTEM) and stem extension growth of the same scion cultivar growing on three rootstocks with differing size-controlling potentials. The peach trees (Prunus persica (L.) Batsch) used in this field experiment consisted of an early-maturing freestone cultivar, 'Flavorcrest,' grafted onto three different rootstocks: Nemaguard (a vigorous seed-propagated control, P. persica x P. davidiana hybrid), Hiawatha (an intermediate vigor rootstock, derived from an open pollinated seedling of a P. besseyi x P. salicina hybrid) and K-146-43 (a semi-dwarfing rootstock, P. salicina x P. persica hybrid). Diurnal patterns of PsiSTEM and stem extension growth were measured on six dates (March 29, April 12, April 26, May 10, May 24 and June 18) during the primary period of peach shoot extension growth. Rootstocks clearly affected diurnal patterns of PsiSTEM and stem extension growth. Trees on K-146-43 had the lowest midday PsiSTEM and stem extension growth. Differences among rootstocks in the amount of diurnal oscillation in PsiSTEM explained stem extension rate differences induced by the three rootstocks. The sensitivity of shoot extension growth to tree water relations tended to decrease as the season progressed and was not apparent by mid-June. The results of the study indicate that water relations may play an important role in the dwarfing mechanism induced by size-controlling peach rootstocks.

  6. Biophysical basis of growth promotion in primary leaves of Phaseolus vulgaris L. by hormones versus light: solute accumulation and the growth potential

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Cleland, R. E.

    1990-01-01

    Rapid cell enlargement in primary leaves of bean is induced by bright white light (WL), gibberellic acid (GA3) or the cytokinin N6-benzyladenine (BA). In previous studies it has been show that all three agents cause an increase in wall extensibility, although by different mechanisms. Here we examine the effects of the three growth promoters on the osmotic potential difference (delta Psi), the accumulation of solutes (delta TSC), the wall yield threshold (Y) and the growth potential (delta Psi -Y). With GA3 and BA, but not WL, there was a rapid decline in delta Psi as measured by the osmotic concentration of expressed sap. Unlike WL, neither GA3 nor BA promoted the accumulation of osmotic solutes. The decline in delta Psi, however, was apparently counteracted by a decline in Y since the growth potential, as measured by the external-osmoticum method, remained unchanged. It is concluded that WL, GA3 and BA all promote cell enlargement of bean leaves by increasing one cellular growth parameter, wall extensibility. Only WL, however, promotes osmotic adjustment during growth.

  7. Controlling silver nanoparticle exposure in algal toxicity testing – A matter of timing

    PubMed Central

    Baun, Anders

    2015-01-01

    The aquatic ecotoxicity testing of nanoparticles is complicated by unstable exposure conditions resulting from various transformation processes of nanoparticles in aqueous suspensions. In this study, we investigated the influence of exposure timing on the algal test response to silver nanoparticles (AgNPs), by reducing the incubation time and by aging the AgNPs in algal medium prior to testing. The freshwater green algae Pseudokirchneriella subcapitata were exposed to AgNO3, NM-300 K (a representative AgNP) and citrate stabilized AgNPs from two different manufacturers (AgNP1 and AgNP2) in a standard algal growth inhibition test (ISO 8692:2004) for 48 h and a short-term (2 h) 14C-assimilation test. For AgNO3, similar responses were obtained in the two tests, whereas freshly prepared suspensions of citrate stabilized AgNPs were less toxic in the 2-h tests compared to the 48-h tests. The 2-h test was found applicable for dissolved silver, but yielded non-monotonous concentration–response relationships and poor reproducibility for freshly prepared AgNP suspensions. However, when aging AgNPs in algal medium 24 h prior to testing, clear concentration–response patterns emerged and reproducibility increased. Prolonged aging to 48 h increased toxicity in the 2-h tests whereas aging beyond 48 h reduced toxicity. Our results demonstrate that the outcome of algal toxicity testing of AgNPs is highly influenced not only by the test duration, but also by the time passed from the moment AgNPs are added to the test medium. This time-dependency should be considered when nanomaterial dispersion protocols for ecotoxicity testing are developed. PMID:24842597

  8. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  9. Freshwater harmful algal blooms: toxins and children's health.

    PubMed

    Weirich, Chelsea A; Miller, Todd R

    2014-01-01

    Massive accumulations of cyanobacteria (a.k.a. "blue-green algae"), known as freshwater harmful algal blooms (FHABs), are a common global occurrence in water bodies used for recreational purposes and drinking water purification. Bloom prevalence is increased due to anthropogenic changes in land use, agricultural activity, and climate change. These photosynthetic bacteria produce a range of toxic secondary metabolites that affect animals and humans at both chronic and acute dosages. Children are especially at risk because of their lower body weight, behavior, and toxic effects on development. Here we review common FHAB toxins, related clinical symptoms, acceptable concentrations in drinking water, case studies of children's and young adults' exposures to FHAB toxins through drinking water and food, methods of environmental and clinical detection in potential cases of intoxication, and best practices for FHAB prevention.

  10. Algal-based, single-step treatment of urban wastewaters.

    PubMed

    Henkanatte-Gedera, S M; Selvaratnam, T; Caskan, N; Nirmalakhandan, N; Van Voorhies, W; Lammers, Peter J

    2015-08-01

    Currently, urban wastewaters (UWW) laden with organic carbon (BOD) and nutrients (ammoniacal nitrogen, N, and phosphates, P) are treated in multi-stage, energy-intensive process trains to meet the mandated discharge standards. This study presents a single-step process based on mixotrophic metabolism for simultaneous removal of carbon and nutrients from UWWs. The proposed system is designed specifically for hot, arid environments utilizing an acidophilic, thermotolerant algal species, Galdieria sulphuraria, and an enclosed photobioreactor to limit evaporation. Removal rates of BOD, N, and P recorded in this study (14.93, 7.23, and 1.38 mg L(-1) d(-1), respectively) are comparable to literature reports. These results confirm that the mixotrophic system can reduce the energy costs associated with oxygen supply in current UWW treatment systems, and has the potential to generate more energy-rich biomass for net energy extraction from UWW.

  11. Freshwater harmful algal blooms: toxins and children's health.

    PubMed

    Weirich, Chelsea A; Miller, Todd R

    2014-01-01

    Massive accumulations of cyanobacteria (a.k.a. "blue-green algae"), known as freshwater harmful algal blooms (FHABs), are a common global occurrence in water bodies used for recreational purposes and drinking water purification. Bloom prevalence is increased due to anthropogenic changes in land use, agricultural activity, and climate change. These photosynthetic bacteria produce a range of toxic secondary metabolites that affect animals and humans at both chronic and acute dosages. Children are especially at risk because of their lower body weight, behavior, and toxic effects on development. Here we review common FHAB toxins, related clinical symptoms, acceptable concentrations in drinking water, case studies of children's and young adults' exposures to FHAB toxins through drinking water and food, methods of environmental and clinical detection in potential cases of intoxication, and best practices for FHAB prevention. PMID:24439026

  12. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    PubMed

    Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T

    2014-07-01

    The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal

  13. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    PubMed

    Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T

    2014-07-01

    The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal

  14. Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono- and mixed surfactants.

    PubMed

    Das, Ishwar; Goel, Neha; Agrawal, Namita R; Gupta, Sanjeev Kumar

    2010-10-14

    Fractal and dendrimer growth patterns of polypyrrole were obtained during electrochemical polymerization of pyrrole in systems (A) pyrrole-sodium dodecyl sulfate (NaDS)-water and (B) pyrrole-NaDS-cetyl trimethyl ammonium bromide (CTAB)-water. Different morphological transitions including compact → flower-like and fractal → dendrimer → fractal were observed depending on experimental conditions. Growth kinetics during electropolymerization of pyrrole was studied. Growth rate was found to be higher in system A than in B. Effect of [NaDS], [pyrrole], and field intensity on morphology and weight of polymer aggregates was also studied in both the systems. Different empirical equations were obeyed under different conditions. Electropolymerized aggregates were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), electrical conductivity measurement, and reflectance spectroscopy. TEM studies revealed that the particle size decreased to ∼140-200 nm in the presence of CTAB. The decrease in particle size on addition of CTAB was also observed in XRD studies. Reflectance spectra of the polymer aggregates support the large π-conjugation in the dendrimer. During electropolymerization, oscillations in potential were monitored as a function of time. Results indicated that growth pattern and electric potential oscillations were interrelated. In the case of fractal growth, the amplitude of chaotic oscillation was higher than the amplitude of oscillation during the growth of dendrimer. Growth morphologies and electric potential oscillations have been explained on the basis of modified Diaz's mechanism.

  15. Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potential.

    PubMed Central

    Delli-Bovi, P; Curatola, A M; Newman, K M; Sato, Y; Moscatelli, D; Hewick, R M; Rifkin, D B; Basilico, C

    1988-01-01

    We recently reported that the protein encoded in a novel human oncogene isolated from Kaposi sarcoma DNA was a growth factor with significant homology to basic and acidic fibroblast growth factors (FGFs). To study the properties of this growth factor (referred to as K-FGF) and the mechanism by which the K-fgf oncogene transforms cells, we have studied the production and processing of K-FGF in COS-1 cells transfected with a plasmid encoding the K-fgf cDNA. The results show that, unlike basic and acidic FGFs, the K-FGF protein is cleaved after a signal peptide, glycosylated, and efficiently secreted as a mature protein of 176 or 175 amino acids. Inhibition of glycosylation impaired secretion, and the stability of the secreted K-FGF was greatly enhanced by the presence of heparin in the cultured medium. We have used the conditioned medium from transfected COS-1 cells to test K-FGF biological activity. Similar to basic FGF, the K-FGF protein was mitogenic for fibroblasts and endothelial cells and induced the growth of NIH 3T3 mouse cells in serum-free medium. Accordingly, K-fgf-transformed NIH 3T3 cells grew in serum-free medium, consistent with an autocrine mechanism of growth. We have also expressed the protein encoded in the K-fgf protooncogene in COS-1 cells, and it was indistinguishable in its molecular weight, glycosylation, secretion, and biological activity from K-FGF. Taken together, these results suggest that the mechanism of activation of this oncogene is due to overexpression rather than to mutations in the coding sequences. Images PMID:3043199

  16. Anomalous rise in algal production linked to lakewater calcium decline through food web interactions

    PubMed Central

    Korosi, Jennifer B.; Burke, Samantha M.; Thienpont, Joshua R.; Smol, John P.

    2012-01-01

    Increased algal blooms are a threat to aquatic ecosystems worldwide, although the combined effects of multiple stressors make it difficult to determine the underlying causes. We explore whether changes in trophic interactions in response to declining calcium (Ca) concentrations, a water quality issue only recently recognized in Europe and North America, can be linked with unexplained bloom production. Using a palaeolimnological approach analysing the remains of Cladocera (herbivorous grazers) and visual reflectance spectroscopically inferred chlorophyll a from the sediments of a Nova Scotia (Canada) lake, we show that a keystone grazer, Daphnia, declined in the early 1990s and was replaced by a less effective grazer, Bosmina, while inferred chlorophyll a levels tripled at constant total phosphorus (TP) concentrations. The decline in Daphnia cannot be attributed to changes in pH, thermal stratification or predation, but instead is linked to declining lakewater [Ca]. The consistency in the timing of changes in Daphnia and inferred chlorophyll a suggests top-down control on algal production, providing, to our knowledge, the first evidence of a link between lakewater [Ca] decline and elevated algal production mediated through the effects of [Ca] decline on Daphnia. [Ca] decline has severe implications for whole-lake food webs, and presents yet another mechanism for potential increases in algal blooms. PMID:21957138

  17. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local soil.

    PubMed

    Li, Hong; Pan, Gang

    2015-05-19

    Cyanobacterial harmful algal blooms (cyano-HAB) and microcystins (MCs) can cause a potential threat to public health. Here, a method for simultaneous removal of cyano-HAB and MCs was developed using chitosan-modified local soil (MLS) flocculation plus microorganism-modified soil capping. The experiment was conducted in simulated columns containing algal water collected from Lake Taihu (China). More than 90% of algal cells and intracellular MCs were flocculated and removed from water using chitosan-MLS and the sunken flocs were treated by different capping materials including Pseudomonas sp. An18 modified local soil. During 40 days of incubation, dissolved MC-LR and MC-RR showed 10-fold increase in the flocculation-only system. The increase of MC-LR and MC-RR in water was reduced by 30 and 70% in soil capping treatments; however, the total content of MCs in the sediment-water column remained similar to that in the control and flocculation only systems. In contrast, both dissolved MCs and total MCs were reduced by 90% in Pseudomonas sp. An18 modified soil capping treatment. The high performance of toxin decomposition was due to the combined effects of flocculation and MC-degrading bacteria that embedded in the capping material, which prevents dilution of bacteria biomass, concentrates algal cells, confines released toxins, and enhances toxin biodegradation.

  18. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.